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Abstract 

Problem: Attention deficit hyperactivity disorder (ADHD) is the most commonly 
found neurodevelopmental condition among children with an estimated 2.5% to 9% 
global prevalence. While ADHD has been regarded as a lifelong condition, its early 
diagnosis elevates the probability of recovery and normal life for children. Despite 
clinical diagnosis being the primary one, substantial developments in ADHD diagnosis 
have been made during the past decade.

Aim: Several imaging-based technologies and approaches have been presented 
in the existing literature including magnetic resonance imaging (MRI) and functional 
MRI (fMRI). In addition, the deployment of machine learning and deep learning models 
has paved the way for automated diagnosis of ADHD which increases both accuracy 
and robustness of ADHD detection. A comprehensive and systematic literature review 
(SLR) of imaging technologies and machine learning approaches is highly desired 
to comprehend the current status of such approaches concerning their potential 
and challenges to outline future directions. Although a substantial body of literature 
exists on imaging-based ADHD diagnosis, comprehensive SRL on such approaches 
is scarce. This SLR aims to provide a comprehensive overview of imaging-based ADHD 
diagnosis with emphasis on machine learning approaches, reveals their pros and cons, 
and provides potential future research directions thereby contributing to the scientific 
community to accelerate further research for ADHD diagnosis.

Methods: This SRL focuses on analyzing recently published studies between 2010 
and 2023. For this purpose, preferred reporting items for systematic review and meta-
analyses (PRISMA) approach is performed in this study. Five eminent academic data-
bases Web of Science, ACM, Springerlink, Elsevier, and PubMed are selected for article 
search. The SLR follows a systematic methodology comprising article search, selection 
based on inclusion and exclusion criteria, and rigorous assessment for categorization.

Results: It is found that MRI and fMRI are the dominant approaches integrated 
with machine learning models for ADHD detection and function near-infrared spec-
troscopy is also adopted by a few studies. Predominantly, the ATHENA preprocessing 
approach is used to preprocess MRI data before model training. Due to the public 
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availability of the ADHD-200 dataset, it is widely used in the existing literature 
while a few studies utilized their self-collected datasets. Machine learning models are 
the choice of the majority of the studies, particularly, the support vector machines 
model has been widely used for ADHD detection. Feature fusion is observed to be 
a better choice for obtaining more accurate results.

Conclusion: Machine learning and deep learning models provide automated 
ADHD detection with better accuracy and robustness, however, such models are 
not generalizable and their performance varies concerning the locality of data used 
for experiments. In addition, the heterogeneity of data collection from various devices 
is a challenge, and the use of a standard device may provide better solutions. The 
lack of labeled data also adds difficulties to training models. Besides the use of MRI 
and fMRI, other novel technologies should be explored for better ADHD detection 
performance.

Keywords: Attention deficit hyperactivity disorder, Magnetic resonance imaging, 
Machine learning, ADHD diagnosis

Introduction
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition 
commonly found in children and the second most common chronic illness [1]. The 
World Health Organization (WHO) report of the 2016 World Mental Health Survey 
involving ten countries showed a global prevalence of 2.8% for ADHD [2]. The mani-
festation of ADHD is found between 2.5% to 9% in the world population [3]. The report 
indicates a higher ADHD ratio for high-income countries and low education and males. 
Similarly, 9.4% of children in the United States (US) are reported to have an ADHD diag-
nosis while 8.4% are reported to have ADHD [4, 5]. ADHD is more common in boys 
than girls, with a ratio of 2-4 boys for every girl. It is usually diagnosed in children using 
the guidelines from the Diagnostic and Statistical Manual of Mental Disorders, 5th edi-
tion (DSM-5). To diagnose ADHD, a child must show at least six symptoms of inatten-
tion or hyperactivity for at least 6 months in two different settings.

ADHD patients, both children and adults, exhibit various symptoms but inattention, 
and impulsive and hyperactive behavior are more frequent, although their intensity 
may vary concerning ADHD subtype [6]. ADHD has three subtypes ADHD inatten-
tive (ADHD-I), ADHD hyperactive (ADHD-H), and ADHD combined (ADHD-C) [7]. 
ADHD-I patients experience distraction and inattention but lack hyperactivity symp-
toms while ADHD-H patients exhibit hyperactivity and impulsivity but lack inatten-
tion. Finally, people suffering from ADHD-C exhibit all symptoms including impulsivity, 
hyperactivity, and inattention.

ADHD has been regarded as a lifelong disorder and diverse technologies and 
approaches have been designed for its diagnosis. Although clinical diagnosis remained 
the primary diagnosis method, other modalities have been adopted lately. Now, a diverse 
range of technologies is used for diagnosing ADHD including magnetic resonance 
imaging (MRI), electroencephalography (EEG), questionnaire, eye movement analy-
sis, functional MRI (fMRI), electrocardiography (ECG), actimetry, etc. The adoption of 
a technology depends on several factors like complexity, desired level of accuracy, the 
willingness of the subjects to undergo a particular test, etc. Each of these techniques 
has associated advantages and challenges for diagnosing ADHD. Despite the substantial 
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body of literature on ADHD, systematic literature (SLR) studies on ADHD diagnosing 
approaches are rather scarce. Therefore, this study embarks on exploring the realm of 
machine learning and imaging modalities concerning the diagnosis of ADHD.

Neuroimaging using magnetic resonance imaging

During the past few decades, various methods have been designed to study the function-
ing of the human brain. These techniques include those that map the brain’s electrical 
activity and those that map the local physiological or metabolic changes caused by brain-
altered electrical activity. In the first category, non-invasive methods are used including 
EEG and magnetoencephalography (MEG). These methods provide excellent temporal 
resolution of neural processes but suffer from poor spatial resolution. fMRI falls into the 
second category of brain mapping techniques. It detects changes in regional blood flow, 
blood volume (using injected contrast agents), or blood oxygenation linked to neuronal 
activity. Blood oxygenation level-dependent (BOLD) fMRI, which mainly focuses on 
blood oxygenation, offers image spatial resolution of a few millimeters and a temporal 
resolution of a few seconds (due to the time it takes for the blood to respond) [8].

In early childhood, kids with ADHD often show behavioral changes that might prompt 
a pediatrician to order a clinical MRI scan. Such scans are initiated to check for struc-
tural issues causing cognitive or behavioral problems. Existing studies on ADHD have 
discovered patterns of anatomical differences and variations in brain function among 
various groups. Various types of MRIs have been utilized to study neurological disorders.

Structural MRI is a well-know technique used for research and clinical purposes in 
various patient groups of neurological disorders. It provides anatomical detail and clear 
contrast between gray and white matter which is useful for detecting various neurologi-
cal disorders [9]. The short scan times make it suitable to acquire images quickly that 
can be used for diagnosis. It is used to obtain information regarding anatomical location, 
cortical thickness, regional volumes, vascular lesions, and morphological changes.

The ability to visualize anatomical connections in the brain non-invasively has revo-
lutionized functional neuroimaging. This visualization of brain tissues has become 
possible, thanks to diffusion magnetic resonance imaging (dMRI). The dMRI gener-
ates MRI-based maps showing the microscopic movements of water molecules in brain 
tissues [10]. These water molecules act like probes, thereby making it possible to get 
detailed information about the structure of healthy and diseased tissues.

fMRI detects changes in blood oxygen levels (BOLD) in the MRI signal that happen 
when neuronal activity changes, such as when the brain responds to a stimulus or per-
forms a task. Many current uses of functional imaging are based on the idea that differ-
ent behaviors and brain functions depend on the coordinated interaction of components 
within large-scale brain systems. These systems are spatially distinct but connected in 
functional networks. Task activation fMRI studies aim to create different neural states in 
the brain by changing visual, auditory, or other stimuli during the scan [11]. Activation 
maps are then created by comparing the signals recorded during these different states. 
To get accurate results, it is important to take each image quickly to prevent head move-
ment and physiological processes like breathing and heartbeats from adding noise to the 
signals related to neural processing [12, 13].
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Structural MRI is used to examine the sizes and shapes of various brain regions. 
On the other hand, diffusion MRI helps map out the white matter pathways connect-
ing these regions. In addition, fMRI helps obtain images of those brain areas that are 
active at different times.

Research questions

This SLR investigates the following research questions (RQs)

• RQ1: What are the key neuroimaging technologies and how do they differ in 
ADHD diagnostic capabilities?

• RQ2: Which data preprocessing approaches are predominant for fMRI data?
• RQ3: Which datasets are frequently used for fMRI-based ADHD diagnosis?
• RQ4: Which machine learning and deep learning models have been utilized for 

ADHD diagnosis?
• RQ5: Which feature extraction approaches proved to be most influential for 

ADHD diagnosis?
• RQ6: How ADHD diagnosis using imaging-based approaches can be improved?

Existing surveys

The survey [6] discusses the genetics related to ADHD. Various models related to 
ADHD are elaborated on including the dopamine model, dopamine D2 , generational 
association of dopaminergic genes, dopamine transporter gene, etc. Then the survey 
goes on to discuss various medical treatments for ADHD. In particular, pharmaco-
logical, polypharmacy, and multigenetic approaches, are combination therapies dis-
cussed. In addition, dietary treatment, vitamin supplements, herbal remedies, and 
Nutraceuticals are also analyzed in detail.

A survey of automated diagnosis approaches concerning ADHD is presented in [14]. 
The study discovers various machine learning and deep learning approaches from the 
existing literature, as well as, other diagnostic methods. The prime objective of the 
study is the use of artificial intelligence (AI) for ADHD diagnosis involving different 
kinds of data, for example, imaging data, physiological signals data, etc. In addition, 
various questionnaire types, simulators, and motion modalities are also covered.

The study [15] reviews the choice of various machine learning models and their 
evaluations concerning MRI-based ADHD diagnosis. The survey focuses on the clini-
cal significance of the applied machine learning models. In addition, the choice of 
evaluation is discussed such as cross-validation, size of the dataset used for experi-
ments, etc. The survey also evaluates the impact of different factors like training 
dataset size, class imbalance problem, etc. The study does not cover the neurological 
imaging aspect of ADHD diagnosis, its types, or the role of various feature extrac-
tion approaches in the context of machine learning models. Similarly, the benchmark 
datasets used in the existing studies, data collection, and processing pipelines are also 
not covered (Table 1).
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Research gaps

Even though a wide range of research works are found in the existing literature which 
also includes a few review articles, the following research gaps are found:

• MRI and fMRI-based works are not reviewed extensively and several aspects are 
not covered. For example, Zhang-James et  al. [15] focused on machine learning 
models from the sample size, training, and evaluation perspective only.

• Feature engineering is the essence of machine learning models and the perfor-
mance of machine learning models relies heavily on the choice of an appropriate 
feature extraction approach. However, ML models are not investigated from a fea-
ture engineering perspective.

• Aspects related to ML models like feature fusion, feature reduction approaches, 
and data heterogeneity are also not very well covered.

• Due to the publication of several articles during the past couple of years, an SLR 
is needed to select and discuss those articles concerning automated ADHD detec-
tion.

Contributions

The survey paper aims to explore the most widely acknowledged imaging modalities 
for imaging-based ADHD diagnosis. The choice of imaging modalities is based on a 
large number of published literature regarding ADHD diagnosis using various image-
based technologies and approaches. Despite their wide use and applications, each 
imaging technology has its advantages and disadvantages, which will be explored in 
this survey. Besides that, this survey paper makes several significant contributions 

 i. Imaging Techniques: This study contributes to exploring the imaging technologies 
and approaches that are widely adopted in the existing literature for ADHD diag-
nosis.

 ii. Machine Learning: The literature is filled with various approaches, machine learn-
ing, deep learning, and transfer learning, which are employed for automated diag-
nosis of ADHD. A comprehensive review of such approaches along with their pros 
and cons is provided.

Table 1 Comparative analysis of existing surveys

Refs. Year Scope Limitation

[6] 2008 Clinical models for AHDH are discussed like 
dopamine, dopamine D2 . Possible therapies to 
treat ADHD are elaborated

Automated approaches involving machine 
learning and deep learning approaches are not 
covered

[14] 2022 Use of AI-based approach along with MRI, EEG, 
motion modalities, as well as, questionnaire-
based ADHD diagnosis

Feature extraction approaches, data balancing 
strategies, and model evaluation metrics are 
not covered. Recent studies from 2023 are not 
included in the survey

[15] 2023 Machine learning models for MRI-based ADHD 
classification are covered

The study covers only the sample size, model 
training, and evaluation approaches for ADHD 
classification
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 iii. Feature Engineering: Feature engineering is part and parcel of machine learning 
approaches and the choice of feature engineering approach is based on several fac-
tors like nature of data, quality of data, desired accuracy, and selected model for 
diagnosis. A detailed discussion of feature engineering approaches and their suit-
ability for ADHD diagnosis is carried out.

 iv. Performance Analysis: ADHD diagnostic methods require high performance with 
fewer false alarms. Performance metrics are important elements of diagnostic sys-
tems and various evaluation metrics, commonly utilized in the existing literature, 
are discussed in this survey.

 v. Dataset: The availability of publicly available datasets is essential to design and test 
novel machine learning models. This study provides a discussion on the publicly 
available datasets and their suitability for ADHD diagnosis.

 vi. Optimization: For more accurate ADHD diagnosis and model optimization, differ-
ent research directions are formulated to help future research.

These motivations and contributions collectively aim to improve the efficiency, realism, 
standardization, adaptability, scalability, and performance optimization in the load-test-
ing process for web applications.

Further, this paper is divided into six sections. The methodology adopted for this SLR 
is described in “Methodology” section which is followed by the analysis of results in 
“Results” section. Afterward, ADHD diagnosis using fMRI data and MRI is discussed in 
“ADHD diagnosis using function magnetic resonance imaging data” and “ADHD diag-
nosis using magnetic resonance imaging and functional near infrared spectroscopy” 
sections, respectively. “Discussions of research questions” section provides a discussion 
of the formulated research questions while the conclusion is given in “Conclusions and 
future directions” section.

Methodology
This paper follows a systematic methodology to develop and evaluate the proposed 
approach. This section defines data sources, search strategy, selection of studies, and eli-
gibility criteria for data extraction and analysis procedure. This study follows preferred 
reporting items for systematic reviews and meta-analysis (PRISMA) methodology, as 
outlined by Kitchenham in [16]. Figure  1 shows the sequence of various steps carried 
out in this survey. Starting with the query formulation, various well-known reposito-
ries are selected. Articles are searched from the selected repositories using the formu-
lated query. Although the search query is defined after meticulous efforts, search results 
might contain irrelevant, and redundant articles which require further refining. Articles 
are refined manually by reading their abstracts and keywords to define their scope. After 
the article refining, classification is performed for research questions. Afterward, articles 
are discussed from various aspects.

Formulating search query

Search query is very important to search all the relevant articles related to the selected 
topic. In addition, since the articles need to be selected from various repositories, it 
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must be ensured that the query is effective for all sources. The following query is used to 
search articles in this survey:

((TI = adhd) OR (TI = attention deficit hyperactivity disorder) OR (TI = atten-
tion deficit/ hyperactivity disorder)) OR (TI = attention deficit-hyperactiv-
ity disorder) OR (TI = ad/hd) OR (TI = ad-hd) AND ((TI/Abstract = machine 
learning) OR (TI/Abstract = deep learning) OR (TI/Abstract = artificial intelligence) OR 
(TI/Abstract = transfer learning))

Data sources and strategies

We carried out a comprehensive search across various online electronic repositories 
including the Institute of Electrical and Electronics Engineers (IEEE) Xplore, Elsevier, 
ACM digital library, Springer, and PubMed. These repositories are selected due to their 
containing a large number of papers and their wide use in existing surveys. We carefully 
expanded the search terms to ensure the inclusion of a wide range of relevant studies. 
These repositories are selected as these are the most commonly used among scholars 
and contain a large number of article collections.

Selection of studies

We conducted an initial literature search and screened the titles and abstracts of each 
study. Potentially relevant studies were further assessed concerning the eligibility crite-
ria. To reduce the risk of bias, the studies are assessed from three authors and are only 
selected if an agreement between at least two authors is reached. Among the screened 
articles, those without full-text availability are excluded. The eligibility of the remaining 
full-text articles was assessed, resulting in the exclusion of some articles based on prede-
fined criteria.

Eligibility criteria

In this study, the following criteria are employed for the articles’ inclusion:

• Publications between 2010 and 2023 with the diagnosis of ADHD as the main theme 
of the study,

• Publishing language is English; several articles in Chinese, and French are excluded,
• The focus of the study is ADHD diagnosis using a machine learning approach,
• Published in a peer-reviewed journal or conference,
• Only research articles are considered.

The exclusion of a study is based on the following criteria

• Survey, book chapters, books, and non-peer-reviewed articles are excluded,
• Publications published without a peer review,
• Unpublished studies like thesis or dissertations,
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• Studies that do not perform ADHD diagnoses such as brain-to-computer interfaces, 
teaching solutions for ADHD individuals, games and simulations-based treatments 
for ADHD, etc.

For article selection, three authors evaluated the scope and quality of an article. To 
include or exclude an article, at least two authors agreed. In the case of a dispute, where 
there was no consensus among the authors, the article was removed.

Results
Figure 2 shows the results of the screening process for article search and selection from 
IEEE Xplore, WoS, ACM, Springer, and PubMed. Five online well-known repositories 
were searched using the formulated search string. Each repository contains a differ-
ent number of published articles and the search resulted in 102 articles from WoS, 287 
articles from IEEE Xplore, 162 articles from ACM, 300 articles from Springer, and 202 
articles from PubMed. Since the articles may be duplicated due to selection from dif-
ferent repositories, a duplication removal step is carried out from all selected articles 
(n = 1053). Comparing article titles indicates that only 712 articles are unique while the 
rest 341 are duplicates, hence removed from further processing. Afterward, inclusion 
and exclusion criteria, as defined in “Eligibility criteria” section, are applied to further 
refine the selected articles. This process results in a total of 85 studies After the inclusion 
criteria

The articles were selected and published between 2010 and 2023. The starting year is 
selected as 2010 because other review and survey papers cover the articles published 
before 2010. A distribution of selected articles for this survey is presented in Fig. 3 indi-
cating that a higher number of articles were published during recent years with the max-
imum number of articles published in 2020. A higher number of publications is expected 
for the year 2023, as the current selection is only up to July 2023.

The selected articles are published in journals and conferences. Figure 4 illustrates the 
publication venue of the selected papers. It shows that the majority of the selected arti-
cles, i.e., 62%, are published in peer-reviewed journals while the rest 38% are published 
in conference proceedings.

Figure 5 indicates the number of publications for each modality discussed in this sur-
vey including MRI, fNIRS, and fMRI. It can be observed that the fMRI modality has 
the highest number of published articles while the fNIRS has the lowest number of 
publications.

ADHD diagnosis using function magnetic resonance imaging data
ADHD diagnosis is an important research field that aims to provide timely and accurate 
diagnosis of ADHD and its various classes and help children, adolescents, and adults get 
appropriate treatment. Existing research works focus on various aspects to improve the 
accuracy and efficiency of ADHD diagnosis and prognosis. The categorization of such 
works depends on specific objectives and may vary concerning the aim of the analysis. In 
this study, we have divided fMRI-based works into the following categories
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• Dimensionality reduction: Works that particularly focus on feature vector dimension 
reduction approaches like principal component analysis (PCA), etc.

• Machine learning: Some research works especially focus on the use of specialized 
and customized machine learning approaches to increase ADHD diagnosis accuracy.

• Feature engineering: Machine learning approaches require feature engineering which 
can substantially impact the performance of machine learning models. This category 
discusses those works that especially emphasize the implementation of feature selec-
tion and extraction approaches.

• Feature fusion: Owing to the importance of feature engineering approaches for 
machine learning models, several works in the existing literature have been dedi-
cated to multi-modal feature fusion. Such works incorporate features from multiple 
sources to obtain better ADHD classification.

• Deep learning: These works utilize various deep learning approaches to overcome 
the issue of manual feature crafting and focus on customized and pre-trained deep 
learning models.

• Sub-type classification: Predominantly, works on ADHD classification focus on dis-
criminating between ADHD and healthy controls, and works on ADHD sub-type 
classification are very few. This category explores those works that primarily focus on 
classifying ADHD subjects into subtypes.

Fig. 4 Selected articles with respect to publication venue, conference vs journal

Fig. 5 Distribution of selected articles concerning imaging modality and publication venue
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Dimensionality reduction‑based approaches

The study [17] investigated different feature extraction approaches for the automated 
diagnosis of ADHD using fMRI data. Feature extraction is performed using Fast Fourier 
Transform (FFT), PCA and its variants, and FFT and PCA together. For experiments, 
resting state fMRI and phenotypic data including age, gender, IQ, etc. are considered. 
Various experiments are performed using a support vector machine (SVM) model 
involving phenotypic data and imaging data alone, as well as, both types of data together. 
Experimental results indicate a 72.9% accuracy with phenotypic data for ADHD and 
control while 66.8% for three classes. The study shows that the use of fMRI images alone 
does not produce good results. A 76.0% accuracy is achieved when using both the FFT 
and PCA features from phenotypic and image data for ADHD and control while the 
accuracy is reduced to 68.6% for three classes.

In Bohland et al. [18], quantitative markers, about 12,000 per subject, from fMRI data 
are obtained containing anatomical features, and local and global network measures. 
Of various features used from the covariance matrix, the L1-norm regularization pen-
alty is reported to be the most efficient. Experiments involve various machine learn-
ing approaches like cross-validation, 2 sample t-test, and recursive feature elimination 
(RFE). Results show that the highest performance is obtained from non-imaging fea-
tures. However, adding the imaging features improves the generalization of the results. 
Another important factor is the stratification by gender which can enhance the classifi-
cation performance. Phenotypic features provide an area under the curve (AUC) of 0.81 
while network features provide an AUC score of up to 0.72. Combining these features 
tends to improve the robustness.

The study [19] presents a machine learning approach to automatically classify the 
subjects into ADHD and typically developing (TD). For model training, structural and 
demographic features are used together. Structural features contain quantitative met-
rics while functional features contain Pearson correlation, nodal power spectra, etc. To 
improve the classification accuracy, feature ranking is performed using SVM RFE (SVM-
RFE). Generalization of SVM is improved using radial basis function kernel on selective 
features. Predictions are made for each modality separately and are later combined using 
voting. Results show an accuracy of 55%, sensitivity of 33%, and specificity of 80%.

A deep belief network (DBN) is proposed in [20] for ADHD diagnosis from ADHD-
2000, Neuro, OHSU, and Pittsburgh datasets. Preprocessing of data involves a Broad-
mann template to transform the data from 4D to 3D to reduce dimensionality. Later, 
FFT is applied to convert the data to the frequency domain. Lastly, frequency max-pool-
ing is performed to select the frequency with maximum amplitude. Results show that 
accuracy for Neuro, OHSU, and Pittsburgh are 44.4%, 80.88%, and 55.56%, respectively.

Similarly, the study [21] follows a DBN-based approach for ADHD diagnosis from 
fMRI data. A total of 263 samples from ADHD-200 data are used for children between 
the ages of 7 to 21 years for experiments. Besides using the imaging features, the authors 
utilize several other features like handedness, IQ, medication status, verbal IQ, etc. to 
enhance the predictive performance of DBN. An accuracy of 63.68% is reported for the 
NYU dataset while the accuracy is improved to 69.83% for the NeuroImage dataset.

The study [22] presents an automated approach for ADHD classification using rs-
fMRI of 56 drug-naive ADHD and 56 TD children. The study collects its own data of 
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whole-brain T1-weighted 3D MPRAGE using SEIEMS TRIO 3-Tesla MRI scanner. The 
dataset is preprocessed using the GRENTA toolbox and SPM12 [23]. Later automated 
anatomical labeling (AAL) atlas is employed to obtain 116 ROIs. Local and global graph 
measures are calculated for the brain using graph theory. For this purpose, the between 
centrality, clustering coefficient, path length, local efficiency, and degree centrality are 
calculated as local measures. In addition, global measures and small-world parameters 
are also obtained. Feature selection is performed using the RFE approach to determine 
impactful features. Classification is carried out using SVM, gradient boosting (GB), and 
RF. GB model proves to be more accurate with a 78.2% accuracy, 75% sensitivity, and 
80% specificity when used with RFE-based selective features.

The authors propose a machine learning-based solution for ADHD diagnosis in [24]. 
The study considers phenotype features such as age, sex, IZ, and medication status, from 
fMRI data for this purpose. The study utilizes the ADHD-200 dataset for Peking, Brown, 
KKi, NeuorImage, NYU, and OHSU sites with 776 subjects. Experiments are carried out 
using different feature sets, called personal characteristics selection (PCS) 1, 2, 3, and 
4. Five machine learning models are investigated for their classification performance 
including logistic SVM, liner SVM, quadratic SVM, cubic SVM, and radial basis func-
tion SVM. In addition, LR, RF, DT-J48, KNN, and MLP are also utilized with genetic 
algorithms for model optimization. DT-J48 shows the best performance with an 84.41% 
accuracy, followed by the RF model with an 82.74% accuracy.

Machine learning approaches

The use of machine learning and deep learning approaches has been dominant in sev-
eral applications, however, healthcare and disease diagnosis have readily adopted them. 
The study [25] provides a comprehensive framework for disabled patients. The pro-
posed solution is based on federated learning and deep CNN (DCNN) to design a digital 
framework. Wheelchair bio-sensors are used for data collection and DCNN is evaluated 
concerning cost, accuracy, latency, etc. Results suggest a 25% energy reduction with a 
99% disease prediction accuracy.

The study [26] designs a federated learning-based CNN-LSTM model to improve the 
detection accuracy of autism spectrum disorder. The authors also added an advanced 
standard encryption (AES) scheme to secure patients’ data in the proposed framework. 
Various Internet of Things (IoT) applications are also incorporated to improve perfor-
mance. Results show an accuracy of 99%, which is better compared to existing frame-
works. The authors present a detailed review of artificial intelligence (AI) approaches for 
diagnosing Parkinson’s disease in [27]. The focus is particularly on the use of data-driven 
AI approaches in the context of better diagnosis accuracy.

To avoid noise issues with the input data and lower classification accuracy, the study 
[28] introduces an automatic ADHD diagnosis system with high accuracy. Initially, the 
data is preprocessed using min-max normalization, followed by feature extraction which 
is performed using the fast independent component analysis. Finally, the authors adopt 
a deep extreme learning machine (DELM) for classifying the subjects into ADHD and 
health controls. DELM combines extreme learning (EL) with kernel and multilayer EL 
machine (MELM). Experimental results show an accuracy of 98.2% for DELM while 
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efficiency-enhanced extreme learning machines (EEELM), SVM, and ANN obtain an 
accuracy of 84.2%, 74.2%, and 71.3%, respectively.

The study [29] employs pattern classification on fMRI data for ADHD diagnosis. The 
data are collected from 30 adolescents with ADHD and 30 control subjects with Stop 
tasks. Gaussian process classifiers (GPC) are used to classify the subjects using the 
whole-brain beta maps. Using brain activation features, an accuracy of 77% is reported 
for ADHD subjects while the sensitivity is 90%. On the other hand, for control subjects, 
63% subjects are classified.

Deep learning models suffer from the high dimensions of fMRI data. Due to a lack of 
enough data models experience overfitting and lack generalization. The study [30] uti-
lizes a generative model to model small datasets. In addition, a deep variational AE is 
designed to cope with the problem of small data. The model uses FBNs of fMRI data 
to discriminate between ADHD and healthy subjects. Using the ADHD-200 dataset for 
experiments, the accuracy of 77.8%, 65.1%, 61.2%, and 60.8% are reported for KKI, PU, 
NYU, and NI sites respectively. Reportedly, the model shows better results for smaller 
datasets.

The authors present a deep learning-based ADHD diagnosis approach in [31] using 
rs-fMRI modality. Features are extracted using the convolutional AE which is custom-
ized for feature extraction. For classification, a novel interval type-2 fuzzy regression 
(IT2FR) model is proposed. The proposed IT2FR model is optimized using particle 
swarm optimization (PSO) and gray wolf optimization (GWO) approaches. For experi-
ments, the University of California Los Angeles dataset is used. The performance of the 
proposed approach is compared with several other machine learning models including 
MLP, KNN, SVM, RF, DT, and adaptive neuro-fuzzy inference system (ANFIS) meth-
ods. Results show an accuracy of 72.71% using the IT2FR which is better than other 
employed models.

The model called, deep channel self-attention factorization (Deep CSAF) is presented 
in [32] to obtain the most important non-linear features from the fMRI data of ADHD 
and healthy subjects for better classification. N-correlated self-attention CNNs are used 
to extract non-linear factors for this purpose. The proposed approach is a tensor factori-
zation approach that can learn maximum factor matrics with less or no a priori knowl-
edge. Experimental results using the ADHD-200 data indicate a superior accuracy of 
99% while precision, recall, and F1 scores are 99.87%, 99.90%, and 99.88%, respectively.

A hybrid model is introduced in [33] which combines a 3D CNN and BiLSTM models 
to make a 3D CNN-BiLSTM model for accurate ADHD classification. The CNN model 
is used to extract features from fMRI which are fed into the BiLSTM model for training 
and classification. For experiments, NYU, PU, KKI, and NI sites of the ADHD-200 data-
set are used. Experimental results show an accuracy of 75.4%.

The authors adopt a transfer learning approach for ADHD diagnosis using the fMRI 
data in [34]. The study focuses on improving classification accuracy by resolving the 
issue of class imbalance distribution. The authors adopt a pre-trained ResNet-50 model, 
a CNN variant, for the automatic classification of ADHD and control subjects. Experi-
ments show an accuracy of 93.45% using ten-fold cross-validation.
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Feature selection

Despite better accuracy from various machine learning and deep learning architectures, 
the desired accuracy requires further efforts, particularly concerning important feature 
extraction from fMRI data. The study [35] focuses on a similar endeavor and investi-
gates impactful feature extraction from original fMRI data. A novel approach, the local 
binary encoding method (LBEM) is proposed to characterize function interaction pat-
terns from fMRI data. Later a kernel ELM (ELM) is used for subject classification. For 
experiments, a public dense individualized and common connectivity-basic cortical 
landmarks (DICCCOL) dataset is used [36] which contains fMRI data from 45 control 
and 23 ADHD children. Improved accuracy of 96.06% and 97.64% is obtained for ADHD 
and control groups showing the efficacy of the proposed approach.

Along the same lines, [37] proposes an intuitive feature selection method for ADHD 
diagnosis using resting state fMRI (rs-fMRI) data. A feature subset is obtained by pre-
processed fMRI data fractional amplitude of low-frequency fluctuation (fALFF) from 
rs-fMRI features are extracted. The feature selection method is founded on the Relief 
algorithm and verification accuracy (VA-Relief ). The data for 82 ADHD and 72 control 
subjects from the ADHD-200 dataset is used for experiments. Maximum accuracies of 
77.92%, 80.52%, and 98.04% are obtained using Relief, minimum redundancy maximum 
relevance (mRMR), and VA-Relief algorithms, respectively.

The use of spatio-temporal decomposition involving spatial filtering like the Fukun-
aga–Koontz transform, and independent component analysis (ICA) have provided val-
uable insights for fMRI data. These approaches can decompose fMRI data into spatial 
and temporal features which can provide discriminative features for better classification. 
One limitation is their error-proneness in estimating covariance matrices. The study 
[38] presents a framework to robustly estimate the covariance matrices to reduce atypi-
cal anomalies. The proposed approach, the regularized spatial filtering method (R-SFM), 
uses Mahalanobis whitening to maintain spatial arrangements as well. The proposed 
approach is evaluated using the ADHD-200 dataset involving 947 subjects (580 boys and 
367 girls) with spatial filtering method (SFM) and R-SFM. Results demonstrate a bet-
ter performance with 70.39% accuracy using R-SFM while the SFM approach shows an 
accuracy of 64.54%.

The authors adopt the multi-task learning (MTL) paradigm in [39] to investigate its 
capability to classify autism spectrum disorder (ASD) and ADHD. To improve the dis-
crimination between ADHD and control subjects, a graph-based feature extraction 
approach is also proposed to characterize the correlations that remove low-impact 
FC features. For the MLT-based framework, a multi-gate mixture-of-experts (MMoE) 
is employed which comprises two expert networks as an ensemble for learning vari-
ous patterns from the data. Experimental results using the ADHD-200 dataset show an 
accuracy of 67.4% using 776 samples from the dataset. The mean accuracy for ASD and 
ADHD is 68.7% and 65.0%, respectively.

One challenge for ADHD diagnosis is the high dimension of rs-fMRI data. In addition, 
inter-classes have low separability while intra-class separability is high which further 
complicates the classification process. Spatial transformation has shown promise in this 
regard however suffers from a lack of generalization as most of the proposed approaches 
are tested on the ADHD-200 datasets alone. The study [40] contributes in this regard 
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and introduces a metaheuristic spatial transformation (MST) approach that transforms 
the spatial filter problem into an optimization problem and resolves it using the genetic 
algorithm. Later MST is used to obtain the highly impactful features with linear discri-
minant analysis (LDA). Results using ten-fold cross-validation produce a 72.10% clas-
sification accuracy.

The authors propose a deep learning-based approach in [41] for accurate classifica-
tion of ADHD subjects. The study aims to demonstrate the importance of FC for accu-
rate ADHD classification results which are interpretable. The proposed approach is an 
end-to-end approach that comprises a feature extractor, FC network, and classification 
network. Feature extractor is a convolutional neural network (CNN) to extract features 
from brain regions. FC network is used to learn FC between brain regions and uses 
Siamese-based similarity measures. The study uses ADHD-200 data involving 247 (147 
ADHD, 100 control) from NYU, 73 (36 ADHD 37 control) from NI, and 136 (51 ADHD, 
85 control) from the Peking site. Experimental results reveal a superior performance of 
the proposed model with 67.9%, 62.7%, and 73.1% for NI, Peking, and NYU sites.

The study [42] introduces a lightweight CNN model that follows an end-to-end 
approach. The proposed approach is based on hierarchical representation learning, 
called hierarchical and lightweight graph Siamese network (HLGSNet). Experiments use 
the ADHD-200 dataset to extract 116 anatomical regions for subjects. Temporal con-
nections between brain regions are used to build the graphs which are later fed into a 
graph CNN for training. Testing experimental results involving 25 subjects (11 ADHD, 
14 control) for NI and 41 subjects (29 ADHD, 12 control) from NYU sites show 68% 
accuracy for the NI site and 68.29% accuracy for the NYU site.

The study [43] considers FC features from fMRI data using various time templates 
(Atlases) to improve the classification accuracy of ADHD subjects. Various templates 
are used for FC feature analysis like CC400, CC200, and automatic anatomical labeling 
(AAL). Each template is marked by different ROI function connectivity maps. For fea-
ture extraction, the authors employ a local binary encoding method (LBEM). Finally, the 
subjects are classified using a hierarchical extreme learning machine (HELM). Experi-
ments are performed involving 100 ADHD and 143 typically growing children from 
the ADHD-200 dataset from the Peking site. An accuracy of 96% is reported for ADHD 
while for healthy controls the accuracy is 98% using CC400 features.

Feature extraction holds central importance for the accuracy of ADHD classification 
and various pivotal features are engineered manually. However, it is time time-consum-
ing and laborious task. The study [44] devises an approach called, convolutional denois-
ing (CDAE), which is an automatic feature extraction approach. The CDAE extracts 3D 
spatial information features of fMRI data. Later, PCA is used to reduce the dimensions 
of features to avoid model overfitting. For classification, the authors utilize an adaptive 
boosting DT (AdaDT) which has multiple weak learners to build a strong model. The 
authors use Peking, KKI, NeuroImage, NYU, and OHSU sites of the ADHD-200 dataset 
for experiments. Results show 73.17%, 70.59%, 81.82%, 78.95%, and 82.35% accuracy for 
NYU, Peking, KKI, NeuroImage, and OHSU sites respectively.

The study [45] presents a subspace learning framework where a subspace is learned for 
ADHD and healthy subjects using different subspace measures. To enhance intra-class 
relationships, a graph embedding measure is adopted. The core idea of the study is to 
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compare the energy of the FC feature of a subject to the energy of subspaces to find the 
subspace with a large energy. To improve the efficiency and stability of this process, the 
binary hypothesis is also employed to select discriminative FC. The ADHD-200 dataset 
is used to analyze the performance of the proposed approach which obtains very good 
results with an 90% accuracy.

The two core problems of ADHD classification from fMRI data, insufficient data, and 
noise disturbance, are handled in [46]. The study utilizes the FC features using an l2,1
-norm LDA model and binary hypothesis testing. The binary hypothesis framework is 
utilized to deal with the problem of smaller datasets for ADHD. For training, FCs are 
used without labeling for subspace learning. The authors use the concept of subspace 
energy to discriminate between ADHD and healthy subjects’ subspace. Experiments are 
carried out on the ADHD-200 dataset which shows an accuracy of 97.6% outperforming 
existing approaches.

The authors adopt a transfer learning-based approach for ADHD diagnosis and focus 
on Haralick features [47]. In addition, HOG features were also investigated for the same 
task. 2D texture images are generated from 3D MRIs where multiple slices are combined 
to get a 2D image. Four transfer learning CNN variants are utilized for experiments 
including AlexNet, VGGNet, ResNet, and GoogleNet. Experiments are performed on 
static MRI data from NPNeuroPsychiatric Hospital and the ADHD-200 dataset. ResNet 
shows the best performance with 100% accuracy, sensitivity, and specificity while deci-
sion tree (DT) shows 99% accuracy, sensitivity, and specificity using Haralick features.

The study [48] focuses on two important problems of ADHD classification, feature 
noise due to similarity with other mental disorders and small datasets. The authors 
introduce a deep learning-based architecture for accurate ADHD classification in con-
junction with binary hypothesis testing. In addition, a modified AE is also designed 
in the study. The insufficient data problem is resolved by using the binary hypothesis 
framework. FC features are used for training while the AE network shows a better train-
ing process. Its purpose is to enhance the inter and intra-class difference and mitigate 
the influence of feature noise. Experiments using the ADHD-200 dataset, comprising 
subjects from NI, NYU, KKI, and PU, show an impressive accuracy of 99.6%.

The study [49] introduces two novel deep-learning approaches for ADHD classifi-
cation involving various models. The first approach utilizes ICA with CNN to extract 
independent components. The extracted components are fed as features into another 
CNN model for training so as to classify the subjects into ADHD and control groups. 
The second approach involves using correlation AE which utilizes ROI-based correla-
tions as training features. Both methods use the inter-voxel information from fMRI data. 
Experiments are carried out using two approaches along with other models like LR, 
SVM, etc. on the ADHD-200 dataset from NI, NYU, Peking, BU, KKI, and OHSU sites. 
Experimental results show 67% accuracy using the proposed ICA-CNN model while 
specificity, sensitivity, and precision are 89%, 42%, and 77% respectively. The correlation 
AE-based approach shows slightly better results with a 69% accuracy.

The authors consider FC of subjects using voxel size blood-oxygen-level-dependent 
(BOLD) signal in [50]. The authors introduce a modified bidirectional LSTM (BiLSTM) 
to use voxel features from active regions of RSN for subject classification. Experiments 
are performed using 28 active regions, in addition to the behavioral data of 40 subjects. 
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Initial experiments indicate that the model can provide accurate results with an accuracy 
of 87.50% which is better than several complex models in the existing literature.

ADHD subtype classification

While predominantly the majority of the existing studies focus on classifying the sub-
jects into ADHD and control subjects, comparatively less work is done for ADHD sub-
type classification. To bridge this gap, the study [51] employs genetic algorithm learning 
vector quantization 2 neural network (GA-LVQ2NN) to divide the subjects into vari-
ous ADHD subtypes. Learning vector quantization 2 (LVQ2) can advantageously set 
the weight vectors for supervised learning but can lead to poor performance if weights 
are set improperly. The authors utilize a genetic algorithm (GA) to optimize weight vec-
tors. The dataset is collected from House of Fatima involving 100 subjects with ADHD 
symptoms which are classified into high-intensity, medium-intensity, and low-intensity. 
Experimental results show an average accuracy of 80% for LVQ2NN and 89.5% for GA-
LVQ2NN approaches.

The [52] utilizes the fully connected cascade (FCC)-based artificial neural network 
(ANN) to carry out the classification of ADHD subjects into different subtypes. The 
research involves using different brain connectivity-based methods to identify the most 
impactful features to enhance prediction performance. The data from 173 ADHD-I 
subjects and 260 ADHD-C subjects are used from the ADHD-2000 dataset. The study 
performs various experiments using balanced and unbalanced datasets with connectiv-
ity path weights, principal components, and latent variables features using SVM and 
ANN models. The accuracy for subjects classification into ADHD and healthy groups is 
approximately 90% which increases to approximately 95% when classifying ADHD sub-
types. FCC ANN performs better in comparison to the SVM classifier and is less influ-
enced by balanced and unbalanced class distribution.

The complex network theory has been utilized to detect several neuropathologi-
cal conditions including Alzheimer’s, ADHD, etc. For this purpose, predominantly, the 
correlation matrix from fMRI is utilized for subtype classification. Such approaches are 
computationally complex and contain personalized bias. The study [53] presents a deter-
ministic approach for ADHD subtype classification using eigenvector centrality. The 
human connectome project (HCP) dataset is used for experiments and three classes, 
ADHD-C, ADHD-I, and ADHD-H are used for experiments. ADHD-C and ADHD-I 
have 43 male subjects and 19 and 22 female subjects, respectively while ADHD-H has 6 
males and 1 female subject. The classification is carried out using the classification and 
regress tree (CART) model using the eigenvector centrality measure. An average accu-
racy score of 0.675 is reported for male subjects while for female subjects the accuracy 
score is 0.771 for three classes of ADHD.

Another interesting work on ADHD subtype classification is [54] which aims to 
improve the ADHD subtype classification accuracy using structural MRI and fMRI 
data. The study proposes a hierarchical binary hypothesis testing (H-BHT) that uses 
FC as input signals. The proposed framework utilizes a two-stage process involving 
the DT model for subtype classification. The process involves finding important FC 
at both stages concerning each subtype. For experimental evaluation, fMRI data from 
the ADHD-200 dataset is used. A total of 490 subjects are selected comprising 275 TD, 
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97 ADHD-I, and 118 ADHD-C. The obtained accuracy varies between 93.3% to 98.8% 
for different sites of the ADHD-200 dataset, however, an average accuracy of 97.1% is 
reported with a kappa score of 0.947.

The authors utilize the neuroimaging features to find differences in ADHD subtypes 
and classify them in [55]. Experiments are conducted using the fMRI data of 34 subjects 
comprising 13 ADHD-IA subjects and 21 ADHD-C subjects. Connectivity measures for 
ADHD subjects were used with an SVM classifier which reports an accuracy of 91.8% 
for two classes. Brain regions are identified using the gambling punishment and emotion 
task paradigms. It is found that there are significant connectivity differences in frontal, 
cingulate, and parietal cortices between ADHD subtypes.

Feature fusion

Improving ADHD classification accuracy is an important aspect of the automated diag-
nosis of ADHD and various approaches have been presented in this regard including 
feature fusion, combining models, and data preprocessing. The study [56] proposes 
the use of multiple features to train machine learning models for better classification 
accuracy. The authors integrate imaging and non-imaging features from rs-fMRI data in 
this regard. The study investigates the automatic classification of ADHD by identifying 
the functional connectivity of ADHD and control subjects. In addition, the impact of 
using imaging and non-imaging features on classification accuracy is also studied. For 
determining functional connectivity, clustering algorithms including affinity propaga-
tion (AP) [57] and density peak algorithm [58] are used. The study uses the ADHD-200 
dataset involving 189 ADHD and 243 control subjects while the synthetic minority over-
sampling technique (SMOTE) is applied to balance the class distribution. Experimental 
results with imaging and non-imaging features combined using the SVM model show 
accuracies of 86.7%, 52.7%, and 85.8% for the KKI, NI, and Peking sites of the ADHD-
200 dataset. On the other hand, using imaging features only manages to obtain classi-
fication accuracy of 67.4%, 72.9%, 25.4%, and 85.3% for KKI, NI, NYU, and Peking. In 
addition, it is also observed that using a higher number of imaging features also tends to 
improve SVM performance.

Another similar endeavor is the study [59] that fuse spatial and temporal features to 
enhance the effectiveness of fMRI-based ADHD classification. For improved perfor-
mance, a 4D convolutional neural network model is built which is based on granular 
computing. To comprehend the structure of rs-fMRI data, the authors designed different 
models for fusing spatial and temporal features such as feature pooling, long short-term 
memory (LSTM), and spatio-temporal convolution. In addition, a data augmentation 
approach is also proposed to augment rs-fMRI frames into short pieces. Experiments are 
performed using the ADHD-200 sample dataset and an accuracy of 71.3% is reported 
with an area under the curve (AUC) score of 0.80.

The study [60] uses the fractional amplitude of low-frequency fluctuation (fALFF) 
with fMRI data to improve the diagnosing capabilities of machine learning models. The 
authors propose multiple linear regressions to mitigate the confounding effects. The 
fALFF is integrated with the principal component analysis (PCA), Shannon entropy, and 
sample entropy to formulate features. Experiments use logistic regression (LR), linear 
SVM, radial basis function SVM (RBF-SVM), random forest (RF), and decision tree (DT) 
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using the publicly available ADHD-200 dataset. The highest accuracies of 81.82%, 76.0%, 
70.73%, and 68.63% are reported for KKI, NI, NYU, and Peking sites of the ADHD-200 
dataset.

The authors introduce a feature selection framework in [61] which is based on the 
function function connectivity patterns. The proposed feature selection uses rela-
tive importance and weighted ensemble learning to reduce dimensionality. For experi-
ments, the data are collected from 112 ADHD and 77 control adult subjects from the 
Sixth Hospital of Peking University. Similarly, the data from 106 ADHD and 73 control 
children are also gathered for experiments. For the ensemble model, gradient boosting 
(GB), RF, extra tree (ET), and extreme gradient boosting (XGBoost) are combined with 
0.15, 0.30, 0.10, and 0.45 weights which provide a 70.1% accuracy. Most importantly, the 
study reports that the FC features derived from children can be used to diagnose adult 
subjects.

Deep learning models have proven to be more accurate than machine learning mod-
els, however, require larger datasets and higher computational resources. The study [62] 
works on an alternative approach to deep learning models and investigates deep forest, 
also called gcForest for ADHD classification. The gcForest, being shown excellent results 
for image processing tasks, is adopted for fMRI data to classify subjects into ADHD and 
control groups. The authors utilized 1-D functional connectivity and 3-D amplitude 
of low-frequency fluctuations (ALFF) as features for training the gcForest. For feature 
fusion, gcForest is modified that utilize the two concatenated features as input. In addi-
tion, the dataset is balanced using the synthetic minority over-sampling technique. The 
ADHD-200 dataset is used to test the performance of the proposed approach. Results 
show that using FC and ALFF features together, produces better results for Peking, 
KKI, NYU, and NI sites with average accuracy of 64.87%, 82.73%, 73.17%, and 72.00%, 
respectively.

While several studies focused on different biomarkers and spatial and temporal fea-
tures, phenotypic information is not investigated very well. For example, age and gen-
der are known to be contributing features for ADHD diagnosis, but are seldom studied. 
In this regard, [63] focuses on integrating age and gender features into other features 
obtained from fMRI images using an attention mechanism. A convolutional variational 
autoencoder is used to jointly optimize the learning process using brain connectivity 
embedding and age and gender attributes. For experiments, the ADHD-200 dataset with 
780 subjects is used with 256 subjects from NYU, 245 subjects from Peking, 112 sub-
jects from OHSU, 94 subjects from KKI, and 73 subjects from NueroIMAGE. The pro-
posed model provides an accuracy of 76.42%, 78.43%, 94.54%, 83.33%, and 98.40% for 
NYU, Peking, OHSU, KKI, and NeuroIMAGE samples. An average accuracy of 86.22% is 
obtained by the proposed approach for ADHD and TD control groups.

In the realm of machine and deep learning, often ensemble models are reported to 
provide better results compared to single models. Using multiple models is advanta-
geous, as these models can compensate for limitations of each other. The [64] adopts a 
similar approach for ADHD classification by proposing a multi-network approach where 
multiple LSTM models are adopted. For feature selection, the authors adopt the Gauss-
ian mixture model which clusters the regions of interest (ROIs). It is followed by the data 
augmentation approach where phenotypic information is also integrated to better the 
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classification accuracy. Experimental results using the ADHD-200 dataset with 947 sub-
jects, provide an accuracy score of 0.737 using an independent set validation approach.

In the existing literature, predominantly, studies focus on using single channel infor-
mation such as FC features which means that these studies ignore using intrinsic infor-
mation from fMRI. To fill this gap, [65] designs a two-stage model combining separate 
channel CNN (SC-CNN) and an attention-based network for accurate classification. The 
SC-CNN learns temporal features in the first stage while temporal-dependent features 
are learned by the attention network in the second stage. The ADHD-200 dataset is used 
from five sites including 104, 73, 262, 113, and 245 subjects from KKI, NI, NYU, OHSU, 
and Peking sites for experiments. An average accuracy of 68.6% is reported for all sites.

Another study on feature fusion is [66], where a modified AE is utilized for discrimi-
nating between ADHD and healthy controls. The authors combine FC features and non-
imaging data from fMRI. A traditional AE is used to learn high-level features while a 
sub-network is leveraged to integrate high-level features with their labels. The sub-net-
work also incorporates non-imaging features such as age, gender, and IQ to improve 
the robustness of the model. A binary hypothesis is also generated using two sets of 
high-level features. To discriminate between binary hypotheses, a variability score is 
utilized. Experiments are carried out using ADHD-200 data from NYU, KKI, and PU 
sites. Results show superior accuracy for all sites obtaining higher than 99% accuracy for 
NYU, PU, and KKI.

The study [67] presents a multimodal data fusion to boost the accuracy of ADHD clas-
sification. The authors design an ensemble model that uses transform for 3D images 
(Trans3D) and RF. The former is used for extracting spatio-temporal features while the 
latter extracts clinical features. Trans3D comprises a 3D-CNN model to extract volu-
metric spatial information which is transformed into patch embeddings. Temporal pool-
ing is also used to fuse image tokens across time and get features from fMRI images. 
Compared to existing studies that utilize stand-alone models, the ensemble model oper-
ates on the principle of stacking and produces better results with a 74.5% accuracy using 
the ADHD-200 dataset.

A spatiotemporal method for the classification of subjects into ADHD and TD sub-
jects is presented in [68]. The authors design a 3-dimensional CNN (3D-CNN) to extract 
the most suitable features from rs-fMRI data. For classification, the authors build a cus-
tomized gated recurrent unit (GRU) model that can process 3D spatial and 1D temporal 
information efficiently. Using a 5-fold cross-validation on the ADHD-200 dataset, the 
proposed approach obtains 71.65% accuracy, 68.00% sensitivity, and 73.80% specificity. 
The model proves to show better generalizability than other approaches in the existing 
literature.

The study [69] works on capturing long-distance dependency (LDD) which is not cov-
ered by existing deep learning models due to the sequential nature of LDD. The authors 
propose a novel spatiotemporal attention AE (STAAE) to address the issue of obtain-
ing LDDs from volumetric rs-fMRI. The proposed STAAE is an unsupervised frame-
work that can model spatiotemporal sequence by decomposing rs-fMRI into spatial 
and temporal patterns. Despite spatial patterns being widely investigated, temporal pat-
terns are rarely investigated. A resting-state temporal template (RSTT) is formulated 
in this regard while an STAAE-based classification framework is utilized for ADHD 
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Table 2 Summary of fMRI-based ADHD diagnosis approaches

Refs. Dataset Model Classes Results Key findings and 
contributions

[17] ADHD-2000 (668 
subjects)

SVM 2 76.0% (ADHD, 
control)

FFT & kPCA-st using 
resting-state fMRI 
image and phenotypic 
data can provide better 
diagnosis accuracy for 
ADHD

3 68.6 (ADHD-com-
bined, ADHD-inatten-
tive, control)

[18] ADHD-2000 168 CV, Recursive FE 2 0.81 using pheno-
typic, 0.76 using 
network features

Combining phenotypic 
and imaging feature 
improves generalization 
of the models

[19] ADHD-2000 776 (491 
TD, 285 ADHD)

SVM 2 55.0% accuracy Structural and 
functional features 
can provide valuable 
insight into abnormal 
brain activity for ADHD 
subjects

[20] ADHD, Neuro, OHSU DBN 4 80.88% accuracy for 
OHSU

Balancing class distrib-
tions can potentially 
improve the accuracy

[29] 60 (30 ADHD, 30 
control)

GPC 2 77%, 63% Better performance 
can be obtained using 
whole brain pattern 
analysis of task-based 
fMRI data

[52] 260 ADHD-C, 173 
ADHD-I

FCC ANN, SVM 2 90.0% (ADHD, 
control)

Reduced and altered 
connectivity in left 
orbitofrontal cortex and 
cerebellar regions is 
most impactful feature

3 95.0% (ADHD-I, TDC, 
ADHD-C)

[35] DICCCOL 78, 23 
ADHD, 45 control

KELM 2 96.06% ADHD, 97.64% 
control

Dynamics of brain 
functional interac-
tions can be helpful to 
enhance classification 
performance

[21] 263 NYU, NeuroImage DBN 63.68% NYU, 69.83% 
NeuroImage

Using additional 
features to imaging 
features significantly 
improves DBN perfor-
mance

[37] ADHD-200 154 (82 
ADHD, 72 control)

Relief, mRMR, VA-
Relief

2 Relief—77.92%, 
mRMR—80.25%, VA-
Relief—98.04%

Using preprocessing 
on rs-fMRI data with 
machine learning can 
be used for clinical 
diagnosis

[51] Self-collected 100 
subjects

LVQ2NN, GA-LVQ2NN 3 LVQ2NN—80%, GA-
LVQ2NN—89.5%

Using GA for weight 
vector optimization can 
enhance the perfor-
mance of deep learning

[38] ADHD-200 947 (580 
boys and 367 girls)

SFM, R-SFM 2 SFM—64.54%, 
R-SFM—7039%

Mahalanobis whitening 
reduces noisy data and 
maintains the spatial 
arrangement of the 
data
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Table 2 (continued)

Refs. Dataset Model Classes Results Key findings and 
contributions

[56] ADHD-200 (189 
ADHD and 243 
control)

SVM, SMOTE 2 86.7%—KKI Elastic Net-based 
features combined with 
non-imaging features 
can be a better strategy 
to improve ADHD clas-
sification

[59] ADHD-200 4-D CNN, LSTM 2 CNN—71.3% Deep learning features 
are better than hand-
crafted features and 
1 min fMRI scans can 
potentially discriminate 
ADHD subjects from 
the control group

[60] ADHD-200 SVM, RF, LR, DT 2 KKI—81.82%, 
NI—76.0%, 
NYU—70.73%, 
Peking—68.63%

R-RELIEF shows promis-
ing feature selection 
to classify ADHD and 
control subjects

[61] Self-collected (112 
ADHD, 77 control 
adult, 106 ADHD, and 
73 children control)

Ensemble (GB, RF, ET, 
XGBoost)

2 70.1% FC features from ADHD 
children can serve as a 
biomarker to guide pre-
diction of adult ADHD

[62] ADHD gcForest 2 Peking—64.87%, 
KKI—82.73%, NYU—
73.17%, NI—72.00%

Combining multi-
grained structure 
to fuse FC and ALFF 
improves performance

[39] ADHD (776 subjects) MTL with MMoE 2 67.4% accuracy The graph-based 
feature selection with 
MMoE holds potential 
for real-time diagnosis

[40] ADHD-200 MST-based classifier 2 72.10% accuracy Using a non-deter-
ministic approach to 
resolve transformation 
filter is better than 
mathematical modeling

[41] ADHD-200 DeepFMRI 2 Ni—67.9%, 
Peking—62.7%, 
NYU—73.1%

Functional connectivity 
is found to be a very 
important biomarker 
for ADHD classification

[42] ADHD-200 HLGSNet 2 NI—68.0%, NYU—
68.29%

Siamese-based network 
can be used with 
smaller datasets to alle-
viate model over-fitting

[63] ADHD-200 NYU—
280, Peking—245, 
OHSU—112, KKI—94, 
NeuroIMAGE—73

CV autoencoder 2 86.22 average 
accuracy

Insufficient linked con-
nections to the brain 
region of precuneus are 
observed for the ADHD 
group

[64] ADHD-200 947 
subjects

LSTM ensemble 2 73.7% Using phenotypic 
features and various 
feature clusters can 
elevate classification 
performance

[65] ADHD-200, 1019 
subjects

SC-CNN 2 68.6% Two-stage network 
structure can provide a 
better implementation 
effect and robust results 
across different sites
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Table 2 (continued)

Refs. Dataset Model Classes Results Key findings and 
contributions

[45] ADHD-200 Subspace learning 2 90.0% Feature sensitivity prob-
lem is handled using 
energy comparison of 
FC to improve perfor-
mance

[43] ADHD-200, 
Peking—243

HELM 2 96%—ADHD, 98% 
health control

Obtaining features 
using HELM spares 
autoencoder before 
ELM model can provide 
efficient results

[46] ADHD-200, 272 
ADHD, 361 control

LDA, subspace 2 97.6% Gender has a significant 
effect on rectus, easy 
activation by males

[30] ADHD-200 Deep variational AE 2 77.8%—KKI, 65.1%—
PU, 61.2%—NYU, 
60.8%—NI

Generative models 
and DVAE can provide 
better results on smaller 
datasets

[66] ADHD-200 AE, binary hypothesis 2 96.7% Using variability score 
of high-level features 
between binary 
hypotheses, label pre-
diction accuracy is high

[47] NPNeuroPsychiatric 
Hospital and ADHD-
200

AlexNet 2 100% Combining white and 
gray matter to make 
2D texture images can 
increase ADHD clas-
sification accuracy

[44] ADHD-200, 289 
ADHD, 388 healthy

AdaDT 2 73.17%—NYU, 
70.59%—Peking, 
81.82%—KKI, 
78.95%—NeuroIm-
age, 82.35%—OHSU

Automatic feature 
extraction using CDAE 
from spatial dimen-
sions can be helpful 
for improved ADHD 
classification

[28] ABIDE-ADHD-200, 173 
ADHD-I, 260 ADHD-C

DELM 2 98.2% Extreme learning and 
ICA can provide better 
results

[67] ADHD-200 Trans3D-ensemble 2 74.5% Multimodal data fusion 
can improve the auxil-
iary diagnosis of ADHD

[31] UCLA dataset, ADHD 
45, 60 healthy

IT2FR 2 72.71% Model optimization 
using GWO can signifi-
cantly increase ADHD 
classification

[22] Self collected 56 
ADHD, 56 healthy

GB 2 78.2% Graph features 
facilitated the accurate 
classification of ADHD 
from TD controls

[68] ADHD-200, 319 
ADHD, 531 control

3D-CNN & GRU 2 75.58% Combining spatial and 
temporal features can 
improve ADHD clas-
sification accuracy

[69] ADHD-200 STAAE, RSTT 2 72.5% Accuracy of RSTTs var-
ies as there exist differ-
ences in brain activity 
of ADHD patients with 
respect to age

[53] HCP 91 subjects CART 3 67.5%—males, 77.1—
females

EVC and CART can 
provide a low compu-
tationally expensive 
solution with moderate 
accuracy
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classification. The study uses the ADHD-200 dataset for NYU, PU, KKI, NeuroImage, 
and OHSU sites. Results show that the proposed approach can achieve an accuracy of 
72.5%. RSTTS obtained from one dataset works on other sites’ datasets, but accuracy 
varies depending upon the age differences that exist between subjects of various sites 
Table 2.

Table 2 (continued)

Refs. Dataset Model Classes Results Key findings and 
contributions

[24] ADHD-200 776 
subjects

DT-J48 2 84.41% Optimal features search 
using the Genetic 
algorithm can provide 
higher classification 
accuracy

[48] ADHD-200 AE, binary hypothesis 2 99.6% Binary hypotheses and 
AE have the potential 
to reduce feature noise 
and improve prediction 
accuracy

[32] ADHD-200 Deep CSAF 2 99.00% Self-attention module 
with tensor factoriza-
tion can learn better 
factor matrices of inter-
est and show better 
performance

[49] ADHD-200, 93 ADHD, 
126 control

ICA-CNN, CorrAE 2 67%—ICA-CNN, 69% 
CorrAE

Using inter-voxel cor-
relations can lead to 
better performance 
even when used with 
classical machine learn-
ing models

[70] ADHD-200 357 ADHD, 
523 control

CNN+GAT 2 69.01% Data augmentation 
helps to improve cross-
site ADHD classification 
accuracy

[50] 40 subjects, 20 ADHD, 
20 control

BiLSTM 2 87.50% BOLD signals from RSN 
can potentially improve 
the classification of 
ADHD

[33] ADHD-200, 243 
ADHD, 293 control

3D CNN-BiLSTM 2 75.4% Feature extraction 
using CNN can improve 
the performance of 
deep learning models

[54] ADHD-200, 275 TD, 97 
ADHD-I, 118 ADHD-C

H-BHT 3 97.1% Discriminative FC 
between ADHD 
subtypes is found by 
comparing the P-values 
of typical FC. Signifi-
cance

[34] – ResNet-50 2 93.45% Transfer learn-
ing approach can 
overcome the issue of 
imbalanced dataset 
and variability in data 
collection

[55] – SVM 2 91.18% Gambling punishment 
and emotion task 
paradigms can be used 
to find connectivity 
differences in ADHD 
subtypes
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The fMRI data availability for training deep learning models is a big challenge for 
ADHD classification. The authors propose three approaches in this regard for data aug-
mentation [70]. The data augmentation is based on functional connection networks in 
the fMRI data which is further complemented by a deep feature fusion approach. The 
first approach uses the Gaussian noise, mixup, and sliding window methods for FCN 
data augmentation. These methods are selected to balance the variation of the sample 
distribution. The second approach leverages CNN and the graph attention network 
to obtain local and global features. In the end, two features are combined for ADHD 
classification. The proposed approach is tested using the ADHD-200 dataset involving 
NYU, NI, PKU, KKI, OHSU, and Pittsburgh sites. Results show that using the feature 
fusion+sliding window the accuracy can be improved even when using a smaller num-
ber of samples. The proposed approach also tends to improve the robustness. A detailed 
overview of all discussed research works concerning the adopted approach, dataset, tar-
get classes, accuracy, and contributions is provided in Table 3.

ADHD diagnosis using magnetic resonance imaging and functional 
near infrared spectroscopy
A fully automatic ADHD diagnosis system is presented in [71]. The proposed approach 
comprises several steps starting with obtaining globally optimal segmentation of caudate 
in MRI images. A new segmentation approach is also proposed based on shape features 
which proves to be more accurate. Secondly, internal caudate segmentation is carried 
out using the shape feature. Lastly, ADHD diagnosis is carried out using extended volu-
metric features. Experiments utilized the URNC database with 39 ADHD, including 35 
boys and 4 girls, and 39 control groups comprising 27 boys and 12 girls. Various strate-
gies are used for ADHD diagnosis including decision stump (DS), geometric criterion, 
and SVM variants like linear, polynomial, and RBF kernels. The best results are obtained 
using ADA SVM which obtains an accuracy of 72.48%, specificity of 85.93%, and sensi-
tivity of 60.07%. The study shows that the proposed shape features using the SVM and 
DS produce better results than the state-of-the-art geometric criterion approach.

While several studies provide accurate automated diagnosis of ADHD, MRI images 
involve high computational complexity thus involving longer processing time. The 
authors propose an extreme learning machine (ELM) in [72] for ADHD diagnosis with 
reduced computational complexity and investigate the impact of sample size on ELM 
and SVM. Special focus is placed on identifying brain segments to identify ADHD. For 
experiments, 3D images from 55 ADHD and 55 control subjects are acquired. The study 
extracts 340 cortical features from 68 brain segments. F-score and selective feature 
selection are used for selecting optimal features. Experimental results indicate an accu-
racy of 90.18% for ELM using 11 features while linear SVM shows an accuracy of 84.73%. 
RBF SVM is also used which provides an 86.55% accuracy. It is further pointed out that 
the frontal lobe, temporal lobe, occipital lobe, and insular show striking differences for 
ADHD and control subjects.

Contrary to many existing studies which focus on prefrontal-striatal circuit dysfunc-
tion, the study [73] investigates the involvement of various brain regions in ADHD. 
Special emphasis is placed on analyzing structural and functional networks of the brain 
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Table 3 Summary of MRI-based ADHD diagnosis approaches

Refs. Subjects Scanner Model Classes Results

[73] 74 (25 ADHD, 49 
control)

3.0 Tesla Siemens Trio Structural/function 
networks

2 ADHD is a dysfunction 
of whole brain

[74] 68 (34 ADHD, 34 
control)

Siemens Sonanta SVM 2 93% accuracy using 
white matter only

[75] 360 (210 ADHD-I, 137 
ADHD-Inat deficient, 
13 ADHD-hyper def.

– McFIS 3 56.0% using 63 voxels 
from top 50 binary 
solutions

[76] 159 (53 each for 
ADHD-I, ADHD-C, 
ADHD-TD)

3.0 Tesla Scanner RFE-SVM+H-ELM 3 60.78% using RFE-
selected features

[77] 90 (30 each for 
ADHD-I, ADHD-C, 
ADHD-TD)

3.0 Tesla Scanner RFE-SVM+linear SVM 3 84.17% using RFE-SVM 
and linear SVM

[78] 559 (197 ADHD, 362 
control)

3.0 Tesla Scanner 3D CNN 2 Multimodality data can 
provide better results. 
69.15% accuracy is 
reported

[79] 133 (67 ADHD, 66 
control)

– SVM 2 74% accuracy for 
males, and 66% on 
average is reported

[80] – 3.0 Tesla Scanner 3 level CNN 2 A classification 
accuracy of 62.52% is 
reported

[81] 1.5 Tesla Philips MRI 
scanner

26 (15 ADHD, 11 
control)

KNN 2 100% accuracy is 
reported using texture 
and shape features

[82] 71 (36 ADHD, 35 
control)

3.0 Tesla Scanner Hybrid 2 74.65% accuracy is 
obtained using hybrid 
machine learning 
approach

[83] 433 (189 ADHD, 244 
control)

3.0 Tesla Scanner SVM 2 Using RFE-SVM and 
SVM model a 75.0% 
accuracy is obtained

[84] 184 3-Tesla Siemens Trio 
TIM

Bagged clustering 3 Cluster might contain 
subjects from different 
mental disorder

[85] 360 (13 ADHD-H, 
137 ADHD-I, 210 
ADHD-C)

3.0 Tesla Scanner Ensemble classifier 3 81.24% accuracy is 
obtainable using 
multi-region ensemble 
classifier

[86] – 3.0 Tesla Scanner Deep CNN 2 An accuracy of 66.67% 
is obtained using deep 
CNN mode.

[87] – 3.0 Tesla Scanner 3D CNN 2 Gray matter features 
and 3D CNN show a 
69.01% accuracy

[88] 730 (274 ADHD, 456 
control)

3.0 Tesla Scanner LDA 2 LDA shows better 
performance than SVM 
and KNN with a 74.93% 
accuracy

[89] – 3.0 Tesla Scanner CDAN + DNN 2 Best accuracy of 73.9% 
is reported

[90] 88 3.0 Tesla Scanner SBE-SVM 2 An accuracy of 84% is 
obtained using selec-
tive radiomic features

[91] 880 (55 ADHD, 25 
control)

– Multilayer feedfor-
ward

2 A 0.86 HIT and 0.04 FAR 
is reported
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and producing comparable results with existing studies. The study utilizes cortical land-
marks and points out connectomics abnormalities in ADHD. The authors identify RoIs 
called dense individualized and common connectivity-based cortical landmarks (DICC-
COL) to show group-wise similarity. The authors use 25 ADHD-c and 49 healthy control 
children between 8 to 14 years, for experiments. Results show that stronger interactions 
between emotion networks and memory networks are found for ADHD children. It is 
concluded that ADHD is a dysfunction of the whole brain which centers upon the emo-
tion network.

The study [74] investigates the use of structural T1 weighted brain scans to detect 
ADHD. A total of 68 participants were used for data collection including 34 each for 
ADHD and control groups. Mean threshold features were used involving the selection 
of voxels and the SVM classifier. The analysis involved the gray matter and white mat-
ter compartments, as well as, both combined. Results show an accuracy of 93% using 
the white matter, while the use of gray matter resulted in a 63% accuracy. The white and 
gray matter combined showed an accuracy of 81% to discriminate between ADHD and 
control groups.

The authors present an ADHD classification approach called, meta-cognitive neuro-
fuzzy interface system (McFIS) in [75]. In addition, a feature extraction approach is also 

Table 3 (continued)

Refs. Subjects Scanner Model Classes Results

[92] 38 (16 ADHD, 22 
healthy)

General Electric 
Medical Systems 
Ring scanner

RF 2 Mean accuracy is 82%, 
sensitivity and specific-
ity are 0.75 and 0.86, 
respectively

[93] 232 (116 ADHD, 116 
control)

– SVM 2 An accuracy of 64.3% 
and AUC score of 0.698 
is obtained

[94] 781 (351 ADHD, 430 
control)

3.0 Tesla Scanner 2D CNN-LSTM 2 98.12% accuracy is 
obtained

[96] 526 (163 ADHD, 363 
ASD)

– RF 2 AQ can potentially 
discriminate between 
ASD and ADHD males

[97] 164 (47 ADHD, 65 
ASD, 52 control)

Philips 3.0-T imaging 
system

LDA, Agglomerative 
hierarchical cluster-
ing

3 Fine motor function is 
correlated with social 
symptoms

[98] 632 (316 ADHD, 316 
control)

3.0 Tesla Scanner EFE, SVM 2 An accuracy of 75% is 
obtained using ensem-
ble feature extraction 
and SVM mode.

Functional NIRS

 [104] 44 (22 ADHD, 22 
control)

DYNOT Compact, 
NIRxBerlin NIRS 
device

SVM ensemble 2 an 81% accuracy using 
SVM ensemble, with 
PCA-based features

 [101] 127 (69 ADHD, 58 
control)

– RF+PCA 2 Z-score normalization, 
PCA-based features 
and RF provide an 
accuracy of 87.4%

 [102] 28 (13 ADHD with 
ASD, 15 control)

OEG-16, Spectratech 
Inc.

CNN-BiLSTM 2 A 94.0% accuracy is 
obtained under PL 
drawing task

 [103] 50 (25 ADHD, 25 
control)

ETG-4000 (Hitachi 
Medical Company)

SVM 2 SVM obtains a 88% 
accuracy using the 
fused features
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proposed which utilizes a binary coded genetic algorithm (BCGA). The BCGA is com-
bined with ELM to form BCGA-ELM to make an optimal feature extraction approach. 
The hippocampus features from MRI are extracted using the proposed approach. 
Optimal features that contribute to the final label are selected using the BCGA-ELM 
approach which is used to train the McFIS model. Best solutions are found using the 
count of each voxel appearing in 10, 50, 100, and 200 solutions. Results show that McFIS 
shows better performance using 63 voxels from the top 50 solutions with 0.68 and 0.56 
accuracy scores for training and testing.

A multiclassification approach is presented in [76] that utilizes a hierarchical ELM 
(H-ELM) classifier. Moreover, feature selection is performed using the SVM-based 
RFE approach. Performance comparison is carried out using SVM and ELM mod-
els as baseline models and 159 structural MRI images are used from the ADHD-200 
MRI dataset. Experiments involve three classes including ADHD-TD, ADHD-I, and 
ADHD-C. Experiments show an accuracy of 60.78% for three classes.

The study [77] proposed a modified RFE approach for optimal feature selection for 
multi-class ADHD classification. The selected features are fed into an SVM classifier 
for classification. Experiments involve 90 subjects, 30 each from three sub-classes of 
ADHD. Experimental results indicate an 84.17% accuracy using the modified RFE-
SVM feature selection and linear SVM classifier. It is also observed that cortical thick-
ness and volume tend to be the most important features for classification.

The authors introduce a 3D CNN model for ADHD classification using MRI data 
in [78]. Keeping in view the limitations of CNN to learn discriminative features from 
raw data, the authors extract low-level features from functional MRI and structural 
MRI. In addition, the 3D CNN model helps to learn local spatial patterns. Later, func-
tional and structural features are combined for a more discriminative representation 
of brain MRI. Results report an accuracy of 69.15% with a smaller training dataset. 
The authors suggest that the use of multi-modality data can enhance ADHD classifi-
cation accuracy.

The authors in [79] use neuroanatomical signatures for the ADHD spectrum with 
the help of a machine-learning model for pattern classification. The data from struc-
tural MRI and diffusion tensor imaging is used for ADHD and healthy controls. SVM 
is used as the machine learning classifier on data from 67 ADHD and 66 healthy con-
trol subjects. Classification accuracy of 66% is reported on average while the accuracy 
for male subjects only is 74%.

The study [80] proposes a three-level CNN for accurate ADHD classification. Pre-
processing involves skull stripping, Gaussian kernel smoothing, etc. to MRI data. The 
right caudate nucleus left precuneus, and other regions are selected using a coarse 
segmentation approach. In the end, the proposed CNN is implemented in these 
regions for training and testing. A classification accuracy of 62.52% is reported using 
the proposed three-level CNN model.

Shape and texture features are used to classify subjects into ADHD and con-
trol groups in [81]. The study extracts several shape features like eccentricity, axe 
lengths, area, etc in addition to texture features of mean, skewness, kurtosis, etc., as 
well as, contrast and correlation features. A KNN model is used to obtain gay and 
white matter. In addition, local and global features are also obtained using texture 
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and second-order statistics, respectively. Feature importance is determined using the 
PCA approach. Using a cross-validation approach on 26 subjects’ data, an accuracy of 
100% is reported.

The study [82] preferred the interregional morphological patterns over regional pat-
terns for ADHD classification from MRI. A surface-based analysis is carried out to 
extract these features. Features are prioritized using SVM concerning their impor-
tance and a total of 45 features are used for experiments. A hybrid machine learning 
model is implemented using a leave-one-out cross-validation approach. Experimental 
results show better performance with interregional morphological connectivity fea-
tures. The proposed approach obtained an accuracy of 74.65%, while the sensitivity 
and specificity are 75% and 74.29%, respectively.

In [83], the sparse representation is leverage for analyzing the functional connectiv-
ity of ADHD and healthy subjects using MRI data. A dictionary model is utilized to 
learn the feature space of both classes with the help of SVM-RFE. Models’ learning is 
improved using a penalty scheme to reduce the feature energy in the wrong feature 
space. Experimental results using an SVM classifier, show a 75% accuracy.

The study [84] performs a diagnosis-agnostic homogeneity for autism spectrum disor-
der, ADHD, and obsessive-compulsive disorder (OCD). For ADHD subjects, structural 
MRI data was recorded using a 3-Tesla Siemens Trio TIM sensor from 184 subjects. To 
analyze multi-dimensional brain-behavior data, the study designed a machine-learning 
pipeline that follows a three-step process. Initially, clustering is performed on group par-
ticipants, which is followed by the bagging procedure to improve clusters. In the end, 
feature weights are calculated to determine cortical regions. The agreement between 
labels and clusters, the study utilized several parameters such as normalized mutation 
information, homogeneity, completeness, etc. Analysis results indicate that diagnostic 
labels do not correspond to clusters and one cluster might contain subjects from differ-
ent disorders.

A multi-region-based ensemble approach is presented in [85] for accurate classifi-
cation of ADHD subtypes. The approach utilizes features from structural MRI data of 
the amygdala, caudate, and hippocampus. For feature extraction, a feature-selecting 
genetic algorithm is employed to extract multiple feature sets. The best feature set and 
its corresponding ELM are later determined using a classifier-selectin genetic algorithm. 
The ensemble classifier is based on the combining of the selected classifiers which are 
joined using a risk-sensitive loss function. Various scenarios are used to analyze the per-
formance of the proposed ensemble classifier. Results show that using a multi-region 
ensemble classifier, an accuracy of 81.24% can be obtained for three classes.

The study [86] designs a deep CNN model for improved performance concerning 
ADHD diagnosis. The authors employ a data augmentation approach to overcome the 
limitation of the smaller dataset for training. In addition, the study encodes gray-scale 
images to 3 channel images so that pre-trained CNN variants can be utilized with these 
images. Performance comparison of all deployed CNN variants indicates the superior 
performance of the proposed customized CNN model with an accuracy of 66.67% to 
classify the subjects into ADHD and healthy controls.

A 3D fractal dimension complexity map is used for automated ADHD classification 
in [87]. Fractal analysis has already been adopted for texture image analysis and can 
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highlight the intrinsic structural information. The study uses the same concept for diag-
nosing ADHD using MRI images. The gray matter of structural MRI is used where the 
Hausdorff fractal dimension is obtained for further processing. A 3D CNN is designed 
to be used with these features and classify ADHD and healthy subjects. Experiments 
show an accuracy of 69.01% using the proposed 3D CNN and gray matter features.

The study [88] uses a machine learning-based approach for ADHD classification using 
MRI data. Following the preprocessing, a deep 3D CNN is used for training. Gray matter 
from structural MRI and fALFF from fMRI are obtained using the CNN model. Later, 
early and late fusion is followed and classification is carried out using SVM, KNN, and 
LDA models. Results indicate improved performance if personal characteristics are 
employed. In addition, multimodal data including early, and late fusion and personal 
characteristics can further elevate the performance. LDA is reported to show a 74.93% 
classification accuracy.

The limited number of labeled samples is one of the issues for MRI-based ADHD clas-
sification. To resolve this issue, [89] adopts a conditional adversarial domain adapta-
tion network (CDAN). The objective is to learn impactful features from MRI data that 
can discriminate between the aDHD and healthy subjects. Experiments involve MRI 
data from multiple sites, to evaluate the generalizability of the proposed approach. For 
classification, SVM and DNN models are used along with different methods used with 
DNN including vanilla DNN, DNN-Z, domain adversarial NN (DANN), and conditional 
DANN with entropy. The best accuracy is reported as 73.9%.

The study [90] focuses on radiomic features from MRI data for ADHD subtype clas-
sification. Image preprocessing involves image reconstruction, correction, segmenta-
tion, etc. Feature extraction involves 1057 radiomic features from the gray matter of MRI 
data. Top impactful features are selected and classification is carried out using sequen-
tial backward elimination SVM (SBE-SVM). Experiments use the data of 88 patients. An 
accuracy of 84% is reported for two subtypes of ADHD.

The study [91] investigated archival MRI data in connection with the behavioral 
data for ADHD patient analysis. The objective was to evaluate the functional connec-
tivity to differentiate ADHD patients from healthy subjects. Experiments involved 80 
adults, including 55 with ADHD while the ranging 25 were healthy subjects. Classifica-
tion is performed using a multilayer feedforward classifier, with k-fold cross-validation. 
Reported scores for hit rate (HIT) and false alarm rate (FAR) are 0.86 and 0.04 indicating 
superior performance of the proposed approach.

Serotonin transporter (SERT) is reported to impact ADHD patients and the study [92] 
investigates the measure of SERT to classify ADHD subjects. During preprocessing RoIs 
were defined and the authors utilized an RF model for selecting features. Classification is 
also done using the RF model with a k-fold cross-validation approach. Several important 
features were selected that can potentially discriminate between ADHD patients and 
healthy subjects. RF shows a mean accuracy of 82% while the sensitivity and specificity 
scores are 0.75 and 0.86, respectively.

The study [93] uses a multimodal framework combining multiple machine learning 
models including Boruta. The Boruta is used for feature selection, along with multiple 
kernel learning to incorporate multiple features from structural and functional MRI. 
Various features are incorporated such as functional connectivity, macro and micro 
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structural features, etc. which are used at the kernel level. SVM is used as the final clas-
sifier for ADHD and healthy subjects which obtains a 64.3% classification accuracy while 
the AUC score is 0.698.

The authors propose a hybrid system in [94] to improve the classification accuracy of 
ADHD disease. Experiments involve using the data of resting state MRI to classify them 
into ADHD and healthy subjects. The proposed system is based on a two-dimensional 
CNN model and a hybrid model that comprises 2D CNN and an LSTM model. Results 
suggest an average accuracy of 98.12% using the hybrid 2D CNN-LSTM model. In addi-
tion, the model shows superior performance with 97.50% sensitivity, 98.16% specificity, 
97.72% F1 score, and 97.85% AUC.

The objective of [95] was to find new subgroups based on brain-behavior for similar 
neurological disorders including ASD, ADHD, and OCD. For this purpose, the study 
utilizes brain imaging features in conjunction with behavior features to discriminate 
between the three disorders. Normalized mutual information is used to determine the 
ranking of features that can contribute to determining inter-group similarity. The study 
identified transdiagnostic groups that exhibit homogeneous attributes within groups. It 
is observed that cortical thickness and inattention score are the top contributing features 
for the models. Using the top contributing features, various groups (ASD, ADHD, OCD) 
can be identified with a 42% to 86% mean sensitivity.

Along the same direction, the study [96] focuses on discriminating between ASD and 
ADHD, considering the impact of sex differences in each disorder. For this purpose, the 
authors consider the cognitive profiles of four groups, two groups each in the ASD and 
ADHD disorders, as males and females. A total of 526 patient data is analyzed including 
277 and 86 from ASD, for males, and females, respectively, and 99 males and 64 females 
from ADHD. Higher IQ and perceptual organization are observed in ADHD males com-
pared to females and males of ADHD and ASD, respectively. In addition, the percentage 
of the lowest score in a cluster is higher in females. The study also utilized an RF model 
to determine the importance of various features and found that autism quotient (AQ) is 
the most contributing attribute to discriminating between ASD and ADHD males. Simi-
larly, for females, verbal and performance intelligence discrepancy is the leading feature.

Another similar study is [97] that investigated various subtypes found in ASD and 
ADHD by considering multiple features including behavior, brain imaging, and cogni-
tion. The study utilizes subjects from three different groups such as ASD, ADHD, and 
healthy controls, and employs unsupervised methods to cluster the subjects using an 
agglomerative hierarchical clustering approach. By clustering the subjects into various 
groups, the objective is to find new diagnostic boundaries that are not covered by the 
DSM. The study finds three subtypes that indicate the association of white matter with 
symptoms and neurocognition.

The study [98] performs an investigation to determine if the cortical thickness and vol-
umetric features can be utilized as biomarkers to discriminate between ADHD patients 
and healthy controls. Volumetric features are obtained from gray matter with the help 
of the Automated Anatomical Labelling (AAL3) atlas. Similarly, cortical thickness (CT)-
related features are extracted using the Destrieux atlas. For obtaining the most contrib-
uting features, minimum redundancy, and maximum relevance are used along with an 
ensemble feature selection (EFS) approach. Classification is performed using various 
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machine learning models like linear SVM, radial-based SVM, and RF. Models are evalu-
ated using a different set of features to determine the best model and most impactful 
features. Results indicate that a 75% accuracy can be obtained using CT and personal 
characteristics using radial-based SVM and SVM when EFS is utilized for feature 
extraction.

The authors propose an approach for performing ADHD classification in [99] 
using MRI images. Image preprocessing is carried out involving contrast adjustment, 
noise removal, etc. to improve segmentation performance. Skull stripping is car-
ried out using the largest connected component (LCC). The authors utilized several 
approaches and showed that LCC is very efficient for skull stripping to obtain better 
segmentation. The segmented grey matter is then utilized to classify subjects. Perfor-
mance evaluation is carried out using dice coefficients, as well as, the Jaccard index.

The study [100] investigates new biomarkers for early ADHD diagnosis. The authors 
investigate the centrality of the phase-lag index concerning brain connectivity can be 
used as an important biomarker. This biomarker is found in beta and delta frequency 
bands. Another biomarker is the node betweenness centrality, found in the inter-site 
phase clustering connectivity. This biomarker is found in the delta and theta bands. 
Using these two biomarkers, six machine learning classifiers are implemented to clas-
sify the subjects into ADHD and healthy control. Results show a remarkable 99.17% 
accuracy.

Besides the fMRI and MRI approaches, functional near-infrared spectroscopy 
(nFIRS) is another brain imaging approach studied by several works. For example, the 
study crippa2017utility uses DYNOT Compact, NIRxBerlin NIRS device comprising 
32 channels, 8 emitters, and 24 diagnoses for recording brain activity. Feature reduc-
tion is carried out using z-score data. Later, the PCA algorithm is used to obtain a 
smaller set of features. The authors use an SVM model for binary classification tasks, 
along with an ensemble SVM model where multiple models trained on different fea-
tures are combined. An accuracy of 81% is reported for the ensemble classifier.

The study [101] utilizes the fNIRS data for ADHD diagnosis and proposes a half-
fold windowing (HFW) method. The proposed method aims at obtaining sub-series 
and interval features. In addition, functional connectivity features are obtained using 
correlation, and wavelet coherence. Z-score normalization is used in conjunction 
with PCA for feature space reduction. In the end, fused features are utilized with an 
RF model to classify subjects as ADHD and control. The best accuracy of 87.4% is 
reported along with 83.5% precision, 95.7% recall, and 89.2% F1 score.

Diagnosis of co-existing mental disorders including ASD and ADHD is considered 
in [102]. The proposed framework is based on a deep learning ensemble approach and 
uses the fNIRS data from 28 subjects gathered for experiments. The data are collected 
when children are asked to perform different tasks including periodic lines (PL), zig-
zag lines (ZL), etc. The hybrid model comparing CNN and BiLSTM models, shows an 
accuracy of 94.0% under the PL line task.

The study [103] explores a discriminant correlation analysis (DCA) supported fea-
ture fusion approach to classify ADHD patients. Feature fusion is performed using 
joint features from the 1-back condition and 0-back condition. Experiments involve 
data obtained from 25 ADHD and 25 control subjects. For classification, SVM is 



Page 35 of 58Ashraf et al. Journal of Big Data          (2024) 11:140  

trained on the fused feature set which shows an accuracy of 88.0% to classify subjects 
into ADHD and healthy controls.

Discussions of research questions
This section discusses the outputs concerning the defined research questions in the 
context of automated classification of ADHD subjects and control groups.

RQ1: What are the key neuroimaging technologies and how do they differ in ADHD 

diagnostic capabilities?

ADHD patients are characterized by inattention and impulsive and hyperactive disor-
ders. There are different studies from neuroanatomical, as well as genetic disciplines 
concerning ADHD diagnosis, however, neuroimaging studies have increased substan-
tially. The fMRI modality is the leading technology used for neuroimaging in the exist-
ing literature comprising both rs-fMRI and fMRI. Besides that MRI, positron emission 
tomography (PET), and diffusion tensor imaging (DTI) are also employed.

The fMRI assesses the variations in brain metabolism which is characterized by oxy-
genated and deoxygenated blood fluctuations. The increase and decrease in brain activ-
ity across particular regions over time, called BOLD can be assessed by the fMRI [105]. 
While MRI can provide brain structure information, fMRI can be used to examine 
regional brain functions. For this reason, fMRI results from ADHD and control groups 
can provide better insights into understanding abnormalities associated with ADHD 
[106]. Several findings are reported concerning ADHD in the existing studies using 
fMRI, indicating lower blood flow in frontal regions for ADHD patients [107–110]. The 
fMRI is advantageous concerning the examination of temporally correlated brain activi-
ties and helps derive inferences for FC of different regions [111]. The differences in FC of 
various anatomical regions help find differences in ADHD and control subjects.

PET, a function neuroimaging approach, uses intravenous injections, containing radio-
active isotopes, into the blood. PET scanner can detect positively charged particles in 
the brain [105, 112]. PET can provide more detailed analyses of neurotransmitter bind-
ing site density for better study of various brain regions [112].

DTI is yet another neuroimaging modality that is primarily employed to study white 
matter in ADHD individuals [111]. Unlike function neuroimaging approaches like fMRI 
and PET, the DTI assesses the axonal organization of the brain. It measures the trans-
lational motion of water molecules which enables us to draw inferences on the struc-
tural connectivity of the brain [113]. However, studies utilizing the DTI approach are 
few compared to fMRI and PET technologies.

Undoubtedly, neuroimaging technologies have laid the foundations of the physiologi-
cal basis for ADHD diagnosis and shed light on differences in brain functionality con-
cerning ADHD and control groups. However, there are several methodological concerns 
for these technologies. First, the neuroimaging procedures are not standardized and var-
iations exist in mathematical formulations leading to different interpretations of results. 
In addition, signal thresholds, contrast colors, and statistical methods chosen for analy-
sis also add to this variation.
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Most studies interpret neuroimages concerning change or difference in brain activity, 
however, the normal brain activity is not well defined and there is no baseline activity 
[114]. This is further complicated by the fact that age, health, emotional states, sex, etc. 
also affect the baseline activity. Despite the results reported in existing studies involv-
ing fMRI, PET, and DTI, such approaches lack the sensitivity and specificity required 
for psychiatric evaluations. While each neuroimaging technology has pros and cons, the 
superiority of one technology may change with respect to the adopted model, statistical 
approach, and the data used for experiments. Despite that, fMRI is more widely adopted 
for ADHD diagnosis [115].

RQ2: Which data preprocessing approaches are predominant for fMRI data?

Data preprocessing is a potentially important step to provide clean and appropriate 
data for training machine learning and deep learning models. It removes unnecessary, 
and redundant data and cleans it from noise added during the data recording process. 
In the case of fMRI data several standard libraries have been designed to preprocess 
the fRMI data before model training. Table 4 shows the details of various preprocess-
ing pipelines used in the studies discussed in this survey.

The data preprocessing pipeline for fMRI data follows several steps to process the 
data before it can be used for model training. Often, it starts with the timing correc-
tion of slices, followed by the motion correction. Next, quality control is carried out 
to correct motion. Normalization is also performed for linear and non-linear spatial 
information. It can be followed by the coregistration and concatenation phases. In 
addition, extraction of functional images, correction of time drifts and physiological 
nose, resampling, and spatial smoothing can be utilized.

Table  4 shows that ATHENA [116] is the most widely used preprocessing pipe-
line for fMRI data used for classifying ADHD and control subjects. ATHENA pipe-
line mainly focuses on processing the fMRI data, however, can also be used for T1 
images to obtain transformation from subject space to MNI space. Studies [30, 40, 
46, 48, 49, 66] utilize the ATHENA processing pipeline. Four studies [31, 41, 42, 70] 
have used the Functional MRI of the Brain (FMRIB) Software Library (FSL) [117] for 
data preprocessing. Similarly, analysis of functional neuroImages (AFNI) [118] is used 
by [41, 42, 70]. The AFNI pipeline involves using slice-time correction, registration, 

Table 4 Studies, and preprocessing pipelines

Pipeline References

ATHENA [116] [30, 40, 46, 48, 4966

FMRIB Software Library (FSL) [117] [31, 41, 42, 70]

AFNI [118] [41, 42] , [70]

Neuroimaging Analysis Kit (NIAK) [119] [65, 67, 69]

Statistical Parametric Mapping (SPM)12 [120] [22, 63]

Data Processing & Analysis for Brain Imaging (DPABI) [121] [43, 44]

Data Processing Assistant for Resting-State fMRI (DPARSF) [121–123] [44, 68]

Min-max normalization [28]

GRENTA toolbox [22]

Preprocessed Connectomes Project (PCP) [124] [64]
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and normalization of data, alignment of slices and motion correction, smoothing and 
masking, and scaling processed for fMRI data.

Neuroimaging analysis kit (NIAK) is another commonly used processing pipeline 
for fMRI data. The NIAK pipeline differs from the ATHENA pipeline in three ways. 
First, an automated approach is followed in the NIAK to detect physical noise while 
the ATHENA uses a regression approach. Secondly, contrary to the ATHENA, the 
NIAK does not use low-pass filtering. Lastly, the resolution used for functional vol-
umes is 3 mm, compared to the 4 mm used by the ATHENA.

RQ3: Which datasets are frequently used for fMRI‑based ADHD diagnosis?

The data holds central importance when considering ADHD classification using 
machine learning and deep learning models. Collecting fMRI data is difficult requiring 
specialized equipment containing various sensors to record brain activity and medical 
experts perform the data collection. In addition, the procedure involves the evaluation 
of the participants as ADHD and control subjects before data collection. While different 
authors can utilize various datasets, it becomes very difficult to analyze the efficiency 
of a particular classification approach without a benchmark dataset. The studies that 
utilize their own dataset, often do not make it public and it is very difficult to recreate 
the results of the proposed approach. Table 5 shows the details of the datasets used for 
experiments in the studies covered in this survey.

Table 5 indicate that 22 studies [24, 30, 32, 33, 40–44, 46–49, 54, 63–70] utilized the 
ADHD-200 dataset which is publicly available and serves as the benchmark dataset.

The ADHD-200 dataset is the most widely used dataset for fMRI-based ADHD diag-
nosis [125]. Prior to the release of this dataset, the majority of existing literature focused 
on biological markers and lacked a comprehensive pathophysiology model for ADHD. 
Predominantly, studies utilized small-sized self-collected datasets which were not 
available publicly thereby making it impossible to analyze the models on a common 
benchmark. In addition, such models lack robustness and generalizability and model 
reproducibility was a big challenge.

The ADHD-200 Sample was an excellent initiative to accelerate research and devel-
opment of models for accurate diagnosis of ADHD via open data-sharing. Under this 
project, fMRI samples from children and adolescents aged 7 to 21 years were collected 
from eight different sites. The participants involve 491 typically developing 285 subjects 
with ADHD. The sites for imaging include Kennedy Krieger Institute (KKI), NeuroImage 
(NI), New York University Medical Center (NYU), Bradley Hospital/Brown University, 

Table 5 Studies and corresponding datasets

References Dataset

[24, 30, 32, 33, 40–44, 46–49, 54, 63–70] ADHD-200

[53] HCP dataset

[31] UCLA dataset

[22] Self collected

[28] ABIDE-ADHD-200

[47] NPNeuroPsychiatric Hospital
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Oregon Health & Science University, Peking University (Peking), University of Pitts-
burgh, and Washington University in St. Louis. Now, the ADHD dataset has released 
the data of 776 rs-fMRIs combined from eight different sites. Each site has a different 
number of participants concerning age gender and sample distribution. With the release 
of the ADHD-200 dataset, various approaches can now be tested for performance evalu-
ation on a standard benchmark.

While the ADHD-200 dataset is predominantly used for fMRI-based ADHD classi-
fication, several studies collect and use their own datasets. For example, [53] used the 
HCP dataset, while [31] performed experiments using the UCLA dataset. The study [22] 
relied on its own collected data while [28] used the ABIDE-ADHD-200 dataset. Simi-
larly, the authors in [47] run the experiments using the dataset collected from NPNeu-
roPsychiatric Hospital.

RQ4: Which machine learning and deep learning models have been utilized for ADHD 

diagnosis?

Manual evaluation of the subjects concerning ADHD is a laborious and time-consuming 
task, not to mention the fact that it requires expert psychologists. In addition, medi-
cal experts and other evaluators need to follow the rating scales determined by various 
medical institutes [126]. For example, the American Academy of Pediatrics (AAP) [127] 
and the American Academy of Child and Adolescent Psychiatry (AACAP) [128] provide 
a systematic approach to ADHD evaluation. Often, parents and teachers have to partici-
pate in the evaluation of the child for ADHD.

Machine learning and deep learning models play a central role in the automated 
classification of subjects into various ADHD classes. In the existing literature, various 
machine learning and deep learning approaches have been designed and adopted for 
the automated classification of ADHD and control subjects. A large variety of machine 
learning models is available and the choice of a particular model depends on the type of 
task, such as classification, regression, etc., the nature of data, and the desired objective, 
such as accuracy, computational complexity, etc. Machine learning models require fea-
ture extraction and often a dedicated feature extraction approach is used [129]. Table 6 
shows a summary of all the models, both machine learning and deep learning, used in 
the discussed studies. The models and their accuracies are reported concerning various 
categories such as feature selection, feature fusion, subtype classification, etc.

Figure 6 shows the performance of machine learning models for classifying subjects 
into ADHD and control subjects. The accuracy depicted in Fig. 6 is reported from the 
original articles. It is also noteworthy to point out that for some articles, multiple values 
for accuracy are reported. Several of the studies performed experiments using ADHD-
200 benchmark dataset which contains multi-site data, involving eight sites. Conse-
quently, studies report the accuracy of particular site data. However, for comparison, a 
standard procedure is followed and accuracy values for multiple sites are averaged to 
report only one value in this case.

Accuracy statistics indicate that an accuracy score of higher than 0.95 is reported 
in several studies. For example, the study [28] reports an accuracy of 98.2% using the 
DELM model, which is the best among the machine learning models. Several other stud-
ies also report an accuracy, marginally lower than [28]. The study [37] shows an accuracy 
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Table 6 Machine and deep learning models and their corresponding accuracy for ADHD classification

References Model Accuracy

Dimensionality reduction

 [17] FFT, PCA, FFT+PCA with SVM 68.6%

 [18] RFE, imaging, non-imaging AUC-0.81%

 [19] SVM-RFE with SVM 55%

 [20] FFT with DBN 80.88%

 [21] imaging, non-imaging with DBN 69.83%

 [22] RFE with GB 78.2%

 [24] PCS with DT-J48 84.41%

Deep learning models

 [28] DELM 98.2%

 [29] GPC 77.00%

 [30] Deep variant AE 77.8%

 [31] IT2FR with PSO 72.71%

 [32] Deep CSAF 99.0%

 [33] 3D CNN-BiLSTM 75.4%

 [33] ResNet-50 93.45%

Feature selection

 [35] LBEM with kernel ELM 96.06%

 [37] fALFF with VA-Relief 98.04%

 [38] Covariance matrix with R-SFM 70.39%

 [39] Graph-based FE with MTL 67.4%

 [40] LDA with MST 72.10%

 [41] CNN with FC 73.1%

 [42] HLGSNet with CNN 68.29%

 [43] LBEM with H-ELM 98.0%

 [44] CDAE with AdaDT 82.35%

 [45] FC feature energy with binary hypothesis 90.0%

 [46] LDA with binary hypothesis 97.6%

 [47] Haralick with ResNet 100%

 [48] Binary hypothesis with AE 99.6%

 [49] ICA with AE 69.0%

 [50] Voxel size with BiLSTM 87.50%

Subtype classification

 [51] LVQ2NN 89.5%

 [52] FCC-ANN 90%

 [52] FCC-ANN 95%

 [53] CART 67.5% for males, 77.1% for females

 [54] H-BHT 97.1% for 3 classes

 [55] SVM 91.18%

Feature fusion

 [56] SVM 75.06% using imaging+non-imaging

 [56] SVM 62.75% using imaging

 [59] 4D CNN 71.3%

 [60] RBF-SVM 74.30%

 [61] Ensemble (GB+RF+ET+XGBoost) 70.1%

 [62] ALFF+SMOTE 73.19%

 [63] CV-AE 86.22%

 [64] LSTM 73.7%

 [65] SC-CNN 68.6%
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of 98.04% using fALFF with VA-Relief model while an accuracy of 98.0% is obtained in 
[43] using ELM model. On the other hand, [35] and [46] report accuracies of 97.6% and 
96.06% using binary hypothesis and ELM models, respectively.

Table  7 provides the details of the machine learning models that are most widely 
used for ADHD classification. Seemingly, SVM is the most commonly employed 
machine learning model for that purpose, followed by the ELM model. Many studies 
have embraced the SVM model and provided moderate results for fMRI-based ADHD 
classification. SVM is well-known for its effectiveness in dealing with high-dimen-
sional data. It can be particularly effective in cases where a limited number of sam-
ples are available for training. In addition, its kernel functions make it a well-selected 
choice for no-linear classification. It provides robust results using the hyperplane to 
divide the data using different boundary lines. It can learn complex relationships and 
can produce good results. These features make it well-suited for fMRI data. Despite 
its downside of having high computational complexity, it is widely used for ADHD 
classification.

Despite the success of machine learning models for fRMI-based ADHD diagnosis, 
machine learning models need manual feature engineering to produce better results. 
The choice of an appropriate feature is very important and the same model may per-
form very differently with the change in the dataset or feature engineering approach 
[130]. This problem leads to a lack of generalizability for machine learning models. In 
addition, machine learning models are unable to learn complex relationships among 
various attributes of the dataset. Deep learning models can solve most of these issues. 
They do not require a particular feature engineering approach and can extract features 
on their own during the training process. ADHD diagnosis has also embraced a deep 
learning approach and several models have been designed in this regard. Figure 7 shows 
deep learning models and their performance concerning ADHD classification. The 
best results are reported using the ResNet-50 in [47] and two AE models from [48, 66], 
respectively with accuracy reaching 100% for the ResNet-50 while 99.6% for AE models.

CNN models are well known for image processing tasks and are reported to obtain 
excellent performance in the medical domain [131–133]. CNN can learn intricate 
relationships among attributes without the need for manual feature engineering. It 
can process large amounts of data to produce more accurate results. Similarly, they 
produce more robust results compared to machine learning models. AE is the sec-
ond most widely used model for ADHD classification. AE follows a self-supervised 
learning approach and is particularly useful when very little training data is available. 

Table 6 (continued)

References Model Accuracy

 [66] AE 99.0%

 [67] 3D-CNN 74.5%

 [68] GRU 71.65%

 [69] STAAE 72.5%

 [70] CNN 76.02%
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Several other models are used as well in the context of ADHD classification such as 
DBN, ResNet, LSTM, GRU, and ANN. Nonetheless, CNN and AE remain the first 
choice of researchers to discriminate between ADHD and control subjects.

Table  8 shows the most frequently used deep learning models concerning ADHD 
classification. For brevity, we have grouped different variants of a model into a single 
category. For example, 3D CNN, 4D CNN, SC-CNN, etc. are all grouped into a sin-
gle category of CNN model. Similarly, studies have presented variants of AE, but are 
grouped as one for simplicity. However, in the case of ensemble models combining 
multiple deep learning models, models are given under separate categories.

Figure 8 shows the performance of the machine learning and deep learning models 
used in MRI-based ADHD diagnosis studies covered in this survey. While the accu-
racy varies significantly between 56% to 100%, the best performance is reported using 
machine learning models KNN and SVM, followed by deep learning models CNN-
BiLSTM. On average, machine learning models tend to show better performance 
when MRI data is used for ADHD binary classification.

The distribution and frequency of works employing machine learning and deep 
learning models in MRI-based ADHD classification are provided in Table 9. Similar 
to works based on fMRI-based ADHD diagnosis, SVM is the leading machine learn-
ing model adopted in this case as well. A total of nine studies [74, 77, 79, 83, 90, 93, 
98, 103, 104] prefer using SVM model from a total of 26 studies. These studies adopt 
SVM models with different variations such as linear, radial basis function, SVM 
ensemble, etc. Among deep learning models, CNN and its variants like 2D CNN, 3D 
CNN, and 3-level CNN have been adopted by 4 studies. RF and hybrid models have 
been used in three and two studies respectively, while other models like ELM, KNN, 
DNN, BilLSTM, etc. have been adopted in single studies.

For evaluating the performance of machine learning and deep learning approaches, 
while various studies have adopted diverse evaluation metrics, accuracy, specificity, 

Table 7 Machine learning models used for ADHD classification

References Model

[17, 19, 55, 56, 56, 60] SVM

[28, 35, 43] ELM

[45, 46, 54] BHT

[22] GB

[24] DT-J48

[29] GPC

[31] IT2FR

[37] VA-Relief

[38] R-SFM

[39] MTL

[40] MST

[44] AdaDT

[53] CART 

[61] Ensemble

[62] ALFF
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and sensitivity remain the most commonly used metrics. Accuracy determines the 
capability of a model to determine true positives and true negatives. Sensitivity and 
specificity are two other metrics widely used in disease diagnosis. Sensitivity indicates 
the ability of an approach to determine an individual with a disease as positive. High 
sensitivity shows that there will be few false negatives thereby indicating that fewer 
cases are missed. On the other hand, specificity shows the ability of an approach to 
determine an individual with no disease as negative. High specificity shows that there 
will be few false positives. Among the studies reviewed in this survey, predominantly, 
the accuracy metric is used for machine learning and deep learning models.

RQ5:Which feature extraction approaches proved to be most influential for ADHD 

diagnosis?

The choice of a particular feature comes from the selection of a machine-learning model 
and the type of data used for training. In the machine learning paradigm, the selection of 
an appropriate feature extraction approach is critically important. In addition, the often 
multi-feature approach yields better results, as reported in the existing literature [130, 
134, 135].

Table 10 shows the studies that utilized feature fusion approaches for obtaining supe-
rior performance compared to using a single feature. It is observed that FC features are 
the basic features that are utilized for MRI-based ADHD diagnosis. However, using FC 
features alone does not provide the desired level of accuracy which led the researchers to 
look for other features that complement FC features. Consequently, a rich variety of fea-
tures has been explored including phenotypic, spatial, temporal, long-term dependency 
(LTD) features, etc. In addition, Gaussian mixture, Shannon entropy, mixup, and sliding 
window approaches have also been utilized. Figure  9 shows the provided accuracy by 
various feature fusion approaches. It is observed that using imaging features like FC and 
non-imaging features such as phenotypic features produce better results, as reported by 
[63, 66].

Another important avenue in the paradigm of feature engineering is reducing fea-
ture dimensionality. One challenge in MRI-based ADHD diagnosis is the large feature 
set with a smaller number of labeled instances which often leads to poor training of 

Table 8 Deep learning models used for ADHD classification

References Model

[41, 42, 52, 59, 65, 67, 70] CNN

[30, 48, 49, 63, 66, 69] AE

[20, 21] DBN

[33, 47] ResNet-50

[32] CSAF

[33] CNN-BiLSTM

[50] BiLSTM

[51] LVQ2NN

[52] FCC-ANN

[64] LSTM

[68] GRU 
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machine learning models. As a result, the dimensionality reduction approach becomes 
an attractive solution. Table 11 shows the performance of various approaches when used 
with machine learning models.

How ADHD diagnosis using imaging‑based approaches can be improved?

Currently, machine learning and deep learning approaches act as assistive tools for 
medical experts to speed up the diagnosis process of ADHD. In Europe, the average 
ADHD diagnosis time is approximately 6 months as the subjects, parents, and teachers 
are interviewed multiple times using different questionnaires. Machine and deep learn-
ing approaches utilize various types of data, like neuroimaging, head movement, body 
movement, eye saccade speed and frequency, etc. to suggest the probability of ADHD 

Table 9 Machine learning and deep learning models used for MRI-based ADHD diagnosis

References Model

[74, 77, 79, 83, 90, 93, 98, 103, 104] SVM

[78, 80, 86, 87] CNN

[92, 96, 101] RF

[82, 85] Hybrid

[75] McFIS

[76] ELM

[81] KNN

[88] LDA

[89] CDAN + DNN

[91] Multilayer feedforward

[94] CNN-LSTM

[102] CNN-BiLSTM

Table 10 Commonly used fused features for ADHD classification

References Model Accuracy (%) Fused features

[56] SVM 75.06 Imaging+non-imaging features+SMOTE

[59] 4D CNN 71.3 Spatial and temporal

[60] RBF-SVM 74.30 PCA+ Shannon entropy and sample entropy

[61] Ensemble 
(GB+RF+ET+ 
XGBoost)

70.1 FC and weighted ensemble learning

[62] ALFF+SMOTE 73.19 FC and 3-D amplitude of low-frequency fluctuations (ALFF)

[63] CV-AE 86.22 Age, gender + imaging features

[64] LSTM 73.7 Gaussian mixture+phenotypic information

[65] SC-CNN 68.6 Temporal and FC features

[66] AE 99.0 FC and non-imaging features

[67] 3D-CNN 74.5 Spatial and temporal

[68] GRU 71.65 Spatial and temporal

[69] STAAE 72.5 Long term dependency, spatial and temporal

[70] CNN 76.02 Gaussian noise, mixup, sliding window+CNN and graph 
attention network
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among subjects thereby speeding up the diagnosis process. Suggesting insights into 
improving the performance of existing approaches, particularly those utilizing fMRI, 
MRI, and fNIRS, requires delving into the challenges and limitations of the machine and 
deep learning approaches that utilize these modalities.

fMRI is the leading neuroimaging modality extensively studied in the context of ana-
lyzing brain functions and related disorders. It has been widely adopted as it is a non-
invasive approach that provides high spatial resolution to investigate brain functions. 
In addition, it does not carry any radiation-related risks for the subjects. Despite these 
advantages, obtaining fMRI data is expensive. Therefore data labeling is also expensive 
leading to smaller datasets available for experiments.

Choice between rs‑fMRI and task‑based fMRI

Existing studies make a choice between rs-fMRI and task-related fMRI. The initial 
research on fMRI predominantly focuses on task-based fMRI data collection where 
the subjects are asked to perform an active task involving memory, attention, etc. On 
the contrary, rs-fMRI involves scanning the brain of a subject while he is presumably 
at rest. Research indicates that even at rest state, the BOLD signals show spatial and 
temporal fluctuations [136, 137]. Using the rs-fMRI data, it is possible to find differ-
ences in interindividual and intraindividual brain working making it a suitable tool to 
find impact on the brain due to trauma, etc.

Heterogeneity of data collection devices for rs‑fMRI

Despite the potential and recent use of rs-fMRI for ADHD diagnosis, different acqui-
sition methods exist where 1.5T, 3T, or, 7T sensors have been used making it diffi-
cult to compare the performance of various models. For rs-fMRI, a repetition time 
approach is followed where the scan is repeated between 1 to 3  s. Even for this 
approach, scans are carried out using open eyes, closed eyes, and eyes fixed on a fixa-
tion cross. Despite the difference between data gathered using these approaches being 
moderate, measurable differences have been recorded [138]. The best results have 
been reported using the eye-fixation approach, yet it is difficult to follow and varies 
from one subject to another. In addition, the MRI apparatus does not contain any 

Table 11 Dimensionality reduction approaches for ADHD diagnosis

References Feature reduction approach Model Accuracy

[17] PCA SVM 72.9%

[18] RFE SVM 0.81 AUC 

[19] SVM-RFE SVM 55%

[20] PCA DBN 80.88%

[22] RFE GB 78.2%

[37] fALFF VA-Relief 98.04%

[38] Covariance matrix R-SFM 70.39%

[40] LDA MST 72.10%

[44] PCA AdaDT 82.35%

[60] PCA SVM 81.82%

[61] Weighted ensemble Ensemble 70.1%
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eye tracking device which makes it difficult to estimate how accurate the eye fixation 
from a subject is. So, predominately in existing fMRI-based ADHD diagnosis studies, 
the closed-eyes approach is followed.

Limitations of task‑based fMRI

Task-based fMRI has been widely used in cognitive neuroscience to analyze brain 
activation in response to different tasks. It has been used to study group-level effects 
like brain activity in response to different stimuli. In addition, its recent application is 
analyzing across-subject correlation concerning different variables like cognitive per-
formance, behavior, etc. Nonetheless, the assumption of regional activation being a 
stable trait-like measure is challenged by several studies recently [139–142]. Although 
much research has been done with respect to trait stability among adults, very little 
work is available indicating the trait stability of task-based fMRI in children making 
the results based on task-based fMRI challengable.

Availability of labeled data

One of the challenges of using machine learning models in general and deep learning, in 
particular, is the availability of labeled data to train models. In the case of ADHD diag-
nosis, finding labeled fMRI data is a difficult task. Predominantly, researchers use their 
collected dataset for experiments. These datasets are smaller in size and not publicly 
available which makes research reproducibility almost impossible. Similar to the ADHD-
200 initiative More fMRI datasets must be publicly available to investigate the perfor-
mance of various approaches on such benchmarks.

Another course of action is to utilize data augmentation approaches such as the syn-
thetic minority oversampling (SMOTE) approach where the data samples from the 
minority class can be used to generate synthetic samples for class balancing. Existing 
works report elevated performance of machine learning and deep learning models using 
data augmentation approaches [143–145].

Exploring novel technologies

Although fMRI is currently a largely used technology for ADHD diagnosis, novel tech-
nologies need to be explored for improved performance. For example, transcranial 
magnetic stimulation (TMS) has emerged as a promising technology for studying neu-
rological and psychiatric disorders. Due to recent technology, TMS is not well investi-
gated and has been applied with fMRI [146]. However, utilizing it with fMRI can provide 
valuable insights to diagnose mental disorders. Similar to TMS, other approaches can 
be combined with fMRI to improve ADHD diagnosis accuracy. For example, physical 
movement data such as head movement, eye movement patterns, etc. can be combined 
with fMRI data to investigate their efficacy.

It is reported that the limited diagnosis power of fMRI poses bottlenecks for analyz-
ing brain functional connectivity networks. At the same time, using ultra-high magnetic 
fields may provide better resolution to study brain functions [147]. Higher image resolu-
tion is associated with higher specificity and sensitivity but may have the challenges of 
high variability when using a magnetic field of higher than 7 Tesla. Further investigations 
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into the use of ultra-high magnetic field-based fRMI may prove influential to better 
understand function connections for ADHD diagnosis.

Challenges of functional brain organization

The studies that utilize fMRI data perform analysis of the functional connectivity of the 
brain which is connected to various brain disorders. However, to reduce the complex-
ity of such data, the analysis is based on features of lower dimensional space. The fMRI 
data is transformed into a lower dimensional space for analysis of brain representation. 
The diversity of brain representations used in existing works makes it very difficult to 
reproduce the research thereby limiting the scope of research findings [148]. Standardi-
zation on the use of particular brain representations can potentially overcome this issue. 
Furthermore, open-source projects sharing details of model implementations and brain 
representation details can also broaden the scope of research findings.

Limitations of machine and deep learning approaches

A review of existing works on ADHD diagnosis indicates that machine and deep learn-
ing models can be utilized to obtain automated accurate diagnosis of ADHD disease, yet, 
the results provided from such models are not universal. What it infers is that the per-
formance of models varies from one dataset to another. Similarly, the choice of an appro-
priate feature selection method greatly influences the outcome of such models. Often, 
extensive fine-tuning for various parameters is needed to obtain the best results.

Changing the underlying data is expected to substantially affect the performance of 
these models indicating their lack of generalizability. Although such models work as 
assistance to medical experts in making the final decision, a higher classification accu-
racy would have a higher impact on medical experts’ reliance on such systems. For 
example, in the case of the ADHD-200 dataset, the data are collected from various sites. 
Among the existing approaches, there is no such approach that can provide a similar 
ADHD diagnosis accuracy for all sites. Studies [70] utilize data augmentation as one 
solution to overcome this issue and report the sliding window method can be used to 
improve the ADHD classification from cross-site data.

Existing models for ADHD diagnosis can not handle complex data representations 
from fMRI data. To avoid computational complexity and reduce processing time, brain 
function connectivity network data is transformed into a lower feature space which may 
lead to information loss. Dedicated efforts are needed to build more efficient machine 
learning and deep learning models to handle complex brain representations without the 
need to transform them into a lower space.

Another challenge for machine learning and deep learning models is to increase diag-
nostic accuracy. Currently, such models serve as assisting medical experts to accelerate 
their decisions and are not trusted for autonomous decisions. One hurdle in this case 
is the lack of trust in the diagnosis results of such models. Machine learning and deep 
learning models lack generalizability, and their outcome is severely affected in the case 
of cross-site data. Building a more trustworthy and generalized model is needed to over-
come this issue.
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Utility of neuroimaging‑based ADHD diagnosis

Neuroimaging has greatly helped understand the differences in functional connectivity 
of various regions of the brain concerning ADHD and control subjects. The exact cause 
that leads to ADHD is not determined yet, neurologic, biological, and environmental 
factors are reported to interplay in this disorder [149, 150]. From many studies, [151, 
152], a higher risk of ADHD is reported for children where first-degree relatives have 
ADHD. There is no single diagnosis technique for ADHD and often involves more than 
one type of test. For clinical practice, the United States (US) follows the DSM-V crite-
ria which involves field trials for assessing various symptoms among children of various 
sub-types of ADHD. Clinical diagnosis is more conclusive and deterministic compared 
to non-clinical approaches like the use of neuroimaging approaches.

Contrary to clinical diagnosis methods which provide more conclusive results, neuro-
imaging and other modes of ADHD diagnosis, function as assistive tools to help physi-
cians speed up the diagnosis process. As reported in [153], the average time of ADHD 
diagnosis (from the first visit to the physician to the diagnosis) is 10.8 months in Europe. 
On the other hand, the shortest duration was reported for Italy which is 3.0 months 
while the United Kingdom (UK) has the longest duration of 18.3 months. As such, the 
use of machine learning and deep learning integrated with various imaging tools aims 
at working as a “decision-aid” and is reported in [153] to reduce the diagnosis duration 
substantially.

Limitations of current study

Despite the systematic process like PRISMA followed in this study, it may have the fol-
lowing limitations:

• Great care has been taken while formulating the search string for the articles’ search. 
Since the survey is about the ADHD diagnosis approaches, “ADHD” was the cen-
tral point of the query. To ensure a search of all related articles, we used different 
variations of AHDH like “attention deficit-hyperactivity disorder”, “attention deficit/
hyperactivity disorder”, “ADHD”, “AD/HD”, “AD-HD”, etc. Even so, there is a probabil-
ity that some relevant articles were missed due to the absence of such terms in their 
title.

• There is always the probability of bias to some extent in the survey papers. Even 
though the article selection is handled with care involving multiple authors for article 
selection using the inclusion and exclusion criteria, the process may have some bias.

• For article classification, the core technology/approach is considered, for example, 
MRI, or, fMRI, etc. However, some articles may been placed in the wrong group 
due to this technique particularly those that involve more than one technology or 
approach.

Conclusions and future directions
ADHD is a neurological condition, found in children and adults, with a higher preva-
lence in children. Although it is not reversible, proper diagnosis and appropriate treat-
ment and care ensure normal life for ADHD victims. In this regard, a large number 
of technologies and approaches have been researched. This survey aims to provide a 
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comprehensive evaluation of neuroimaging approaches like fMRI, one of the leading 
modalities studied for ADHD diagnosis, and approaches based on fMRI data. The fMRI-
based approaches are discussed, particularly focusing on those that utilize machine 
learning, or deep learning models for automated diagnosis of ADHD using fMRI data. 
The objective of this study includes exploring leading machine learning and deep learn-
ing approaches incorporated with fMRI data, feature engineering pipelines followed for 
ADHD detection, discussion of datasets used for experiments, and finally pros and cons 
of each approach and how they can be further improved.

While exploring these aspects of existing research challenges and limitations of 
existing works have been identified and a discussion is provided on how to improve 
existing approaches for better outcomes concerning ADHD diagnosis. This survey 
serves as a foundation for those who embark on ADHD diagnosis using machine 
learning approaches. Using the insights provided in this survey, one can find suita-
ble models for ADHD diagnosis, as well as, available datasets recorded from different 
sensors thereby leading to novel and more accurate diagnostic frameworks.

This study followed a systematic approach for article search from various reposi-
tories and outlined inclusion and exclusion criteria to include quality articles from 
existing works. Multiple authors selected articles to reduce bias and ensure qual-
ity, even such, the probability of missing good quality articles can not be neglected. 
Similarly, article classification may be prone to error and the same article may be 
appearing in more than one category. In the light of the discussions, we focus on the 
following points for future work

• Standardization for rs-fMRI and task-related fMRI data for ADHD diagno-
sis. Existing research predominantly used task-related fMRI; further research is 
needed for rs-fMRI.

• The heterogeneity of data-collecting devices is a challenge that reduces the gener-
alizability of diagnosis approaches. For reproducibility and to broaden the scope 
of research findings, standards on the use of particular data collection modalities 
are needed.

• Except for the ADHD-200 initiative, large-size public data are not available which 
limits the research efforts in this domain. Large fMRI datasets should be made 
publicly available to accelerate research efforts.

• Currently, fMRI is the leading neuroimaging technology used for ADHD diagno-
sis and further novel technologies need to be explored. In addition, physiological 
traits like eye and head-related data can be incorporated with fMRI data for fur-
ther investigation.

• Various brain representations are used in existing research, thereby reducing the 
reproducibility of the research and the scope of their research findings.

• Novel and sophisticated models should be developed that can deal with complex 
brain functional connectivity networks from fMRI data.

Although fMRI is a largely, rather leading neuroimaging technology, used for ADHD 
diagnosis combined with machine learning models, better brain representation and 
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sophisticated models can increase the reliability of both fMRI and machine learning 
approaches.
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