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Abstract 

The frequent usage of computer networks and the Internet has made computer 
networks vulnerable to numerous attacks, highlighting the critical need to enhance 
the precision of security mechanisms. One of the most essential measures to safe-
guard networking resources and infrastructures is an intrusion detection system (IDS). 
IDSs are widely used to detect, identify, and track malicious threats. Although vari-
ous machine learning algorithms have been used successfully in IDSs, they are still 
suffering from low prediction performances. One reason behind the low accuracy 
of IDSs is that existing network traffic datasets have high computational complexities 
that are mainly caused by redundant, incomplete, and irrelevant features. Further-
more, standalone classifiers exhibit restricted classification performance and typically 
fail to produce satisfactory outcomes when dealing with imbalanced, multi-category 
traffic data. To address these issues, we propose an efficient intrusion detection model, 
which is based on hybrid feature selection and stack ensemble learning. Our hybrid 
feature selection method, called MI-Boruta, combines mutual information (MI) as a filter 
method and the Boruta algorithm as a wrapper method to determine optimal features 
from our datasets. Then, we apply stacked ensemble learning by using random forest 
(RF), Catboost, and XGBoost algorithms as base learners with multilayer perceptron 
(MLP) as meta-learner. We test our intrusion detection model on two widely recognized 
benchmark datasets, namely UNSW-NB15 and CICIDS2017. We show that our proposed 
IDS outperforms existing IDSs in almost all performance criteria, including accuracy, 
recall, precision, F1-Score, false positive rate, true positive rate, and error rate.

Keywords:  Intrusion detection system, Machine learning, Feature selection, Stacked 
ensemble

Introduction
The Internet has turned into an important part of our daily lives and an indispensable 
tool. The reliance of people on the Internet for accessing a range of electronic services, 
such as online education, banking, business, job search, and shopping, as part of their 
daily routines has been steadily increasing. Following the widespread growth in Internet 
usage, the cyberthreat landscape has evolved rapidly [1] and security breaches have now 
become a routine [2], making information systems, computer networks, and activities 
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associated with them prone to new and sophisticated attacks. Consequently, recent years 
have witnessed a surge in data and privacy breaches [2, 3] and the security of cyberspace 
has become the focus of much more scrutiny. For instance, many studies have focused 
on detecting cyberattacks on computer networks, such as the Internet of Things [4, 5], 
vehicle networks [6], and wireless networks [7], or on developing secure systems in cer-
tain business sectors, such as healthcare [8, 9] and energy [1]. Regardless of the appli-
cation domain, what cybersecurity initiatives have in common is that they all need to 
develop a robust security system to fend off cyberattacks. Although different security 
tools have been used to secure networks, such as user authentication mechanisms, data 
encryption techniques, firewalls, and antivirus software, they cannot be effective against 
all threats and cyberattacks [10]. Detecting cyberattacks, which are constantly growing 
in numbers and sophistication, requires intelligent security mechanisms, such as intru-
sion detection systems (IDSs) to protect networks and information systems from an 
array of threats [11, 12]. IDS is a hardware or software system that can carry out a vari-
ety of tasks, such as analyzing and monitoring computer networks, examining abnormal 
activity patterns, monitoring and inspecting user and system activities, and identifying 
common attacks. Hence, the criticality of IDS in network security cannot be overstated 
as it plays a crucial role in detecting and preventing malicious activities [13] that have 
the potential to violate security policies and compromise the confidentiality, integrity, 
and availability (CIA) of information [14, 15].

Generally, IDS are classified into two types: host intrusion detection systems (HIDS) 
and network intrusion detection systems (NIDS) [16]. A HIDS is established on a single 
host to monitor all activities on the host, e.g., scanning for suspicious activities and vio-
lations of security policies. On the other hand, a NIDS is established to secure all devices 
and networks against potential security breaches. IDS can also be categorized into two 
types based on the detection mechanism they use: (1) signature-based IDS or misuse-
based IDS, and (2) anomaly-based IDS [17]. Signature-based IDS identifies known attack 
patterns by utilizing a database of their signatures [18]. The main disadvantage of these 
systems is that they cannot detect zero-day attacks or more recent attacks if their data-
bases are outdated. Anomaly-based IDS, on the other hand, are designed to monitor and 
analyze all actions across a network by learning normal and anomalous network behav-
iors; therefore, they can also detect novel attacks [19, 20].

Over the past two decades, the performance of IDSs has been enhanced through the 
application of various machine learning techniques; however, these techniques still face 
various challenges. First, since intrusion detection algorithms deal with large amounts 
of network traffic data, and these data contain redundant, noisy, and/or irrelevant fea-
tures, reducing the feature space by selecting the most informative features still bears an 
important weight on the performance of IDS. Second, the use of single algorithm models 
may create statistical, representational, or computational issues that are driven by the 
numerous, multi-dimensional features of massive datasets. In the context of IDS, a sin-
gle algorithm classifier may reduce the efficiency of an IDS and make it unable to detect 
multiclass attacks.

Our goal in this paper is to address these challenges. Initially, we opt for the most 
suitable subset of features to enhance the effectiveness of machine learning algorithms, 
which helps to reduce the amount of data, storage space, and processing cost required. 



Page 3 of 32Alsaffar et al. Journal of Big Data          (2024) 11:133 	

Next, we develop a stacked ensemble learning model to detect cyberattacks. Finally, we 
test our model using two benchmark datasets and compare our results with existing 
studies, most of which have developed IDS using single algorithm models. The experi-
mental results show that our model performs well based on different evaluation metrics 
for binary and multi-class classification. Our study offers the following contributions:

1.	 Using a combination of filter and wrapper methods, it develops a hybrid feature 
selection method that combines the benefits of the two approaches and enables the 
development of a simpler, yet more accurate intrusion detection model.

2.	 It uses random forest (RF), Catboost, and XGBoost algorithms as base learners and 
multilayer perceptron (MLP) as the meta-learner to develop a stacked ensemble 
model that improves the multi-class classification performance of existing models in 
the literature.

3.	 Constructing and testing the model on two well-known benchmark datasets of dif-
ferent sizes illustrate that the proposed model is generalizable.

The subsequent sections of the paper are structured as follows. Sect.  "Related work" 
presents the related work for IDS feature selection techniques and ensemble learning. 
In Sect.  "Methodology", the proposed methodology is presented. Sect.  "Experimental 
Results and Discussion" discusses the experimental analysis and evaluates the results. 
Finally, Sect. "Conclusion" concludes the paper.

Related work
Many studies have been carried out to implement an efficient IDS. From a broad per-
spective, these studies can be classified based on two criteria: the type of feature selec-
tion method and the type of classification algorithm they use. Feature selection methods 
can be further divided into the filter, wrapper, and embedded methods. Similarly, clas-
sification algorithms can be split into single and ensemble learning algorithms. In what 
follows, we present a summary of the literature on IDSs, focusing on feature selection 
and model building approaches used in those studies.

The main idea behind filter methods is to select the most relevant features from a 
dataset based on their intrinsic characteristics, without involving a machine learning 
algorithm to predict the target variable. In filter feature selection methods, the features 
are evaluated based on some statistical measure, such as correlation  [21, 22], informa-
tion gain[23–  27], chi-square test [28–30], or ANOVA F-test [26, 30], and then ranked 
according to their scores. The top-ranked features are then selected for further analysis 
or used as input for a machine learning algorithm. Some advantages of using filter fea-
ture selection methods are that they are computationally efficient, easy to implement, 
and can work well with high-dimensional datasets; however, they may not always cap-
ture complex relationships between features and the target variable, and may also suffer 
from redundancy issues [31, 32].

In contrast to filter methods, wrapper feature selection methods use a machine learn-
ing algorithm to evaluate the relevance of features and select the best subset for a given 
model. In wrapper methods, the feature selection process is integrated with the train-
ing process of a machine learning algorithm. The algorithm is used to evaluate the 
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performance of different subsets of features and select the one that results in the best 
model performance. This process is typically done using a cross-validation approach, 
where the dataset is divided into training and validation sets, and the algorithm is evalu-
ated on multiple iterations. Wrapper feature selection methods can be more accurate 
than filter methods, as they take into account the interactions between features and the 
target variable. However, they can be computationally expensive and prone to overfitting 
if the number of features is large compared to the size of the dataset. Examples of wrap-
per methods that are used in prior studies include recursive feature elimination (RFE) 
[33, 34], Pigeon-inspired optimization [35, 36], Cuckoo Search Optimization [37], Parti-
cle Swarm Optimization [38, 39], Bat Optimization [40], Grey Wolf Optimization [39], 
and the Grasshopper optimization algorithms [41]. These methods are commonly used 
in machine learning applications where the number of features is high, and the goal is 
to find the optimal subset of features that leads to the best model performance [42, 43].

Embedded methods are techniques for feature selection that involve incorporat-
ing the feature selection process into the model training process itself. These methods 
aim to find the most informative subset of features to improve model performance and 
reduce overfitting. In embedded methods, feature selection is performed during the 
model training process to select the best subset of features that can be used to train the 
model. This can be achieved by adding a penalty term to the model’s objective function 
that encourages the selection of only the most informative features. Some examples of 
embedded feature selection methods that are used in previous studies include Gradient 
Boosting [26, 44–46], and decision tree-based algorithms such as Random Forest [30, 47, 
48], which select the most important features at each split. Embedded feature selection 
methods are often preferred over traditional filter and wrapper methods because they 
can lead to more accurate and efficient models by simultaneously selecting the most rel-
evant features and optimizing model performance. However, they can be computation-
ally expensive and require more resources compared to other feature selection methods 
[31, 49].

Regarding the classification algorithms used in previous studies, single algorithm clas-
sifiers that predict binary outcomes [24, 26, 35–40] comprise a significant proportion. In 
contrast, a smaller proportion of single algorithm efforts [23, 33, 47, 50] have tackled the 
more challenging problem of predicting multi-class network attacks. Some studies [17, 
25, 41, 44, 46] have predicted both binary and multi-class outcomes. A similar pattern 
is observed among the ensemble learning models: studies that predict binary outcomes 
include [21, 27–29, 51, 52]; those that focus on multi-class prediction include [34], and 
studies that predict network attacks both as binary and multi-class outcomes include 
[22, 30, 48, 53]. Table  1 provides a summary of previous studies that have developed 
IDSs using machine learning techniques.

Our review of prior research identifies several gaps in the literature. First, a large num-
ber of prior studies have used outdated datasets, such as KDD99 or NSL-KDD, that do 
not cover modern network attacks. Second, when building and testing an IDS using large 
datasets, such as CICIDS2017, researchers have typically tended to focus on a subset of 
commonly occurring network attacks while disregarding the infrequent ones. Therefore, 
their IDSs are unable to detect all possible cyber threats. Third, only a few attempts have 
been made to evaluate intrusion detection systems using multiple datasets that vary in 
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Table 1  A Summary of Prior Research on Intrusion Detection Systems

Author(s) FS 
techniques

FS 
techniques 
type

Classification algorithm 
techniques

Classification 
algorithm 
techniques 
type

Type of 
classification

Datasets

[23] IG Filter NB, BN, RF J48, RT Single Multi-class CICIDS2017

[24] IG Filter MLP Single Binary UNSW-NB15

[44] XGBoost Embedded DT, ANN, LR, KNN, SVM Single Binary & 
Multi-class

UNSW-NB15

[25] IG, Gain Ratio Filter DT, NB Single Binary & 
Multi-class

UNSW-NB15

[17] Genetic 
Algorithm

Wrapper LSTM + RNN Single Binary & 
Multi-class

NSL-KDD

[35] PIO Wrapper DT Single Binary KDD99,
NSL-KDD,
UNSW-NB15

[38] PSO Wrapper DT, KNN Single Binary KDD99

[40] BOA Wrapper SVM Single Binary KDD99

[50] TS–RF Wrapper RF Single Multi-class UNSW-NB15

[39] PSO, GWO Wrapper SVM, DT Single Binary NSL-KDD, 
UNSW-NB15

[33] RFE Wrapper DT, RF, KNN, NB Single Multi-class NSL-KDD

[37] CS Wrapper ANN Single Binary NSL-KDD

[36] PIO Wrapper CNN Single Binary NSL-KDD

[45] LightGBM Embedded AE, DAE, VAE Single Binary NSL-KDD

[46] LightGBM Embedded DNN Single Binary & 
Multi-class

KDD99, NSL-
KDD, UNSW-
NB15

[41] Ensemble 
Feature 
Selection, 
Grasshopper 
Optimization

Wrapper SVM Single Binary & 
Multi-class

KDD99, NSL-
KDD

[47] IGRF-RFE Fil-
ter + Embed-
ded + Wrap-
per

MLP Single Multi-class UNSW-NB15

[26] ANOVA, Pear-
son Correla-
tion, Gradient 
Boosting, 
IG, Greedy 
Algorithms

Filter + Wrap-
per + Embed-
ded

GRU, Bi-LSTM + , CNN, RF, DT Single Binary NSL-KDD, 
UNSW-NB15

[28] Chi-Square Filter XGBoost + K-means + BPNN + SVM Ensemble Binary NSL-KDD

[29] Chi-Square Filter NB + SVM + LR + MLP Ensemble Binary NSL-KDD

[22] Correlation Filter Adaboost + Bagging + REP-
Tree + J48 + RF

Ensemble Binary & 
Multi-class

KDD99, 
NSLKDD

[27] IG Filter REPTree + RF + RT + DS + J48 Ensemble Binary NSL-KDD

[21] Correlation- & 
Consistency-
based 
methods

Filter RF + BPNN + RBFN Ensemble Binary KDD99, 
Honeynet 
environment

[51] Variance 
threshold

Filter XGBoost + RF + DT Ensemble Binary NSL-KDD, 
UNSW-NB15

[34] RFE Wrapper RF + SVM + DT Ensemble Multi-class KDD99

[52] SFS Wrapper XGBoost + ET + RF + Bag-
ging + MLP

Ensemble Binary NSL-KDD

[48] RF Embedded GBM + RF Ensemble Binary & 
Multi-class

NSL-KDD

[53] Gradient 
Boosting 
Trees

Embedded XGBoost Ensemble Binary & 
Multi-class

CICIDS2017
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terms of the types of attacks they represent as well as their size. Fourth, few studies have 
focused on developing and testing IDSs for multi-class prediction using datasets that 
include all current types of network attacks. Lastly, almost all previous studies, especially 
those predicting multi-class attacks, have a fairly large false positive rate.

In order to address these deficiencies, we develop an IDS that improves the accuracy of 
predicting network attacks, while reducing the false positive rate. Our approach involves 
employing a hybrid feature selection method, which we call MI-Boruta, to optimize 
feature selection through the use of both mutual information (MI) as a filter method 
and the Boruta algorithm as a wrapper method. After selecting the most relevant fea-
tures from our datasets, we construct a stacked ensemble model that combines several 
machine learning algorithms, including random forest (RF), Catboost, and XGBoost, as 
base learners, with a multilayer perceptron (MLP) serving as the meta-learner. We eval-
uate the effectiveness of our proposed method by conducting experiments on two widely 
recognized benchmark datasets.

Methodology
As we explained before, filter, wrapper, and embedded feature selection models have 
their advantages and disadvantages. In this study, we use a combination of filter and 
wrapper methods to reap the benefits of both feature selection techniques. 1 When com-
bining these two methods, filter methods can be used initially to identify the most rel-
evant features based on some criterion, such as correlation with the target variable, and 
these selected features can then be passed on to the wrapper method for further evalu-
ation. Wrapper methods can then be used to fine-tune the subset of features, by con-
sidering all possible combinations and selecting the subset that maximizes the model 
performance. This combination approach can help to reduce the number of features and 
improve the accuracy and interpretability of the model while avoiding some of the draw-
backs of either method used alone.

After implementing our hybrid feature selection method, we utilize a stacked ensem-
ble learning classifier to enhance the detection performance of IDSs. The architecture 
and stages of our methodology are illustrated in Fig. 1, and we elaborate further on the 
individual steps of our approach in the subsequent sections.

Data description

This research uses two benchmark datasets: the UNSW-NB15 and the CICIDS2017 
datasets. We describe these two datasets in the following subsections.

Table 1  (continued)

Author(s) FS 
techniques

FS 
techniques 
type

Classification algorithm 
techniques

Classification 
algorithm 
techniques 
type

Type of 
classification

Datasets

[30] Chi-Square, 
ANOVA, Lin-
ear SVM, RF

Fil-
ter + Embed-
ded

DT + NB + LR Ensemble Binary & 
Multi-class

CICIDS2017

1  We do not consider embedded methods for feature selection to keep the computational cost of our methodology as 
low as possible, given that we will be building and testing our IDS on a significantly large benchmark dataset.
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UNSW‑NB15 dataset (D1)

Created by the Australian cybersecurity center [54], the UNSW-NB15 dataset (D1) 
comprises both training and testing partitions. The training set is composed of 175,341 
records, whereas the test set includes 83,332 records. The records of D1 can be broadly 
classified into normal network traffic and cyberattack, which itself has different types. 
The dataset has 44 features, two of which are class labels (i.e., attack cat and label). Fea-
tures of the dataset are of binary, categorical, or numeric (float and integer) formats. D1 
consists of ten classes, wherein one class represents normal traffic, and the remaining 
nine classes represent different types of attacks: DoS, Worms, Backdoors, Fuzzers, Shell-
code, Generic, Reconnaissance, Exploits, and Port scans [55]. The distribution of these 
ten classes is shown in Table 2. In the D1 dataset, the majority class is “Normal” with 
93,000 instances and the minority class is “Worms” with 174 instances. The imbalance 
ratio for each class is shown in Fig. 2. As we see in this figure, D1 is highly imbalanced, 
with the majority class being over 534 times more frequent than the minority class.

(1)Imbalance Ratio =

Number of instances inmajority class

Number of instance inminority class

Fig. 1  Proposed Methodology
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CICIDS2017 dataset (D2)

This dataset was created by the Canadian Institute for Cybersecurity (CIC) in 2017 [56] 
and includes 2,830,743 records that are spread across eight files. Each record comprises 
78 features plus a label. D2 contains 15 classes, including benign network traffic and 
14 attack types: DDoS, DoS Slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye, 
Heartbleed, PortScan, Bot, FTP-Patator, SSH-Patator, Web Attack-Brute Force, Web 
Attack-XSS, Web Attack-SQL Injection, and Infiltration. Table 3 shows the class distri-
bution of D2. Before preprocessing this dataset, we combined DoS slowloris, DoS Slow-
httptest, DoS Hulk, and DoS GoldenEye into a single class called DOS attack. Similarly, 
we aggregated Web Attack-XSS, Web Attack-Sql-Injection, and Web Attack-Brute Force 
to form a single class called the Web Attack class. In the D2 dataset, the majority class is 
“Benign” which has 2,273,097 instances, and the minority class is “Heartbleed” with 11 
instances. The imbalance ratio for each class is shown in Fig. 3. As we see in this figure, 
D2 is highly imbalanced. The “Benign” class is over 206,649 times more frequent than the 
“Heartbleed” class.

Table 2  The class distribution of the UNSW-NB15 dataset

Attack type Training dataset Testing dataset

Normal 56,000 37,000

Generic 40,000 18,871

Exploits 33,393 11,132

Fuzzers 18184 6062

Denial of service (DoS) 12,264 4089

Reconnaissance 10,491 3496

Analysis 2000 667

Backdoor 1746 583

Shellcode 1133 378

Worms 130 44

Total 175,341 82,332

Fig. 2  Distribution of classes for D1
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Drawing from the methodologies employed by leading authorities in the fields of sta-
tistical analysis and deep learning [57, 58], we aggregated the training and testing data-
sets for both D1 and D2. Subsequently, we randomly partitioned the combined data into 
two non-overlapping subsets, with 80% of the data allocated for model training and 20% 
reserved for testing and validation. This approach is particularly suited for larger data-
sets as it circumvents the computationally intensive run-time required by k-fold cross-
validation. Moreover, it affords the model with sufficient data to learn from, while still 
retaining an adequate amount of data for validation and testing purposes. Following 
the construction of our model using the training datasets, we will proceed to assess its 
binary and multiclass classification performance for both D1 and D2.

Table 3  The class distribution of the CICIDS2017 dataset

Category Type Total

BENIGN BENIGN 2,273,097

DoS DDoS 128,027

DoS slowloris 5796

DoS Slowhttptest 5499

DoS Hulk 231,073

DoS GoldenEye 10,293

PortScan PortScan 158,930

Bot Bot 1966

Brute-force FTP-Patator 7938

SSH-Patator 5897

Web attack Web Attack-Brute Force 1507

Web Attack-XSS 652

Web Attack-SQL Injection 21

Heartbleed Heartbleed 11

Infiltration Infiltration 36

Total Attacks 471,454

Total Records 2,830,743

Fig. 3  Distribution of classes for D2
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Data preprocessing

Data preprocessing is a necessary step in data mining that transforms the data into a 
suitable format for analysis and knowledge discovery. This phase contains three steps: 
data filtration, data numeralization, and data normalization.

Data filtration

Real-world data typically contain anomalous, incomplete, and inconsistent values that 
come from heterogeneous platforms and can degrade the classification performance of 
machine learning models. For instance, the feature ‘Flow Packets/s’ in D2 includes abnor-
mal values such as ‘NaN’ and ‘Infinity’ that may negatively influence the classification 
accuracy of predictive models. To deal with such instances, we applied basic data clean-
ing, including removing infinite data values and missing data samples from the datasets.

Data numeralization

This step converts the symbolic data (non-numeric features) into numerical values 
(numeric features) by using 1-N numeric coding, where N is the number of symbols. 
This paper has converted all the non-numeric features such as proto, service, and state in 
D1 into numerical values.

Data normalization

Feature scaling is an important step in data preprocessing. In this study, we applied the 
min–max normalization to scale the features within the range of [0,1]. The formula for 
the min–max normalization is given below:

where Xnormalized represents the value after normalization, X is the value before normali-
zation, Xmin is the minimum value of the feature, and Xmax is the maximum value of the 
feature.

Feature selection

Feature selection is an important aspect of constructing an efficient IDS. Feature selec-
tion eliminates irrelevant and redundant features from a dataset to improve the effi-
ciency of machine learning algorithms. As discussed earlier, there are three main feature 
selection methods: filter methods [32], wrapper methods [59], and embedded methods 
[60]. Filter methods select the most useful features without using any learning algo-
rithm. They are based on the intrinsic characteristics of features, such as correlation, 
consistency, information distance, statistical measures, etc. These methods are fast and 
have low computational complexity. Wrapper methods employ a learning algorithm 
to determine a subset of features, which are subsequently evaluated by the classifica-
tion algorithm. As a result, these methods can be computationally complex. Embedded 
methods are similar to wrapper methods, but the learning algorithm and search strat-
egy are achieved simultaneously. In other words, feature selection in these methods is 
made during the learning process itself, which could make them computationally inten-
sive for large datasets. In this section, we propose a hybrid features selection method 

(2)Xnormalized =
X − Xmin

Xmax − Xmin
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by combining mutual information as the filter method and the Boruta algorithm as the 
wrapper method to select the best features from each of the datasets.

Mutual information

Mutual information (MI) is one of the most used filter feature selection methods [61]. It 
measures the amount of mutual dependence between two random variables (features). 
More precisely, MI measures the quantity of information that is gained about one ran-
dom variable by observing the other random variable. Mutual information has several 
advantages over other filter feature selection methods. First, mutual information is a non-
parametric method, which means it does not make assumptions about the distribution of 
the data. This is particularly useful when dealing with complex or non-linear relationships 
between variables. Second, mutual information can capture both linear and non-linear 
[62] dependencies between variables. This is in contrast to some other methods, such as 
the Pearson correlation, which only capture linear relationships. Third, mutual informa-
tion is robust to noise and outliers [63], which can be a problem for some other methods.

For these reasons, we utilize MI in the first step of our feature selection. MI can be cal-
culated using the following equation:

where MI = (X;Y ) is the value of mutual information for variables X and Y  , e(X) rep-
resents the marginal entropy of X , and e(X |Y ) represents the conditional entropy of X 
given Y .

Boruta algorithm

Boruta is a wrapper feature selection algorithm [64] that identifies the most important 
variables in a dataset. It works by creating shadow features that mimic the original fea-
tures and comparing their importance to that of the original features using a random 
forest model [65]. The algorithm then assigns a tentative status to each feature based on 
its importance relative to the shadow features. Features that are more important than 
shadow features are given a confirmed status, while those that are less important are 
given a rejected status. The algorithm iteratively re-runs the random forest model until 
all features have been assigned a confirmed or rejected status, providing a robust feature 
selection process. The Boruta algorithm offers several advantages. First, it is a model-
agnostic algorithm, meaning it can be used with any machine learning model and is not 
biased toward a specific algorithm. Second, it can handle different types of data, such 
as numerical, categorical, and mixed data. Third, the algorithm can identify complex 
relationships between features and can handle interactions between them. Finally, it is 
a robust algorithm that can handle noisy data and is less likely to overfit compared to 
other feature selection methods [64, 66].

The Boruta algorithm has the following steps:

1.	 Extend the dataset by creating shadow features that mimic the original features.
2.	 Shuffle the values of the added duplicate features to eliminate any correlation with 

the response variable.

(3)MI = (X;Y ) = e (X)− e (X |Y )
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3.	 Train a random forest classifier on the extended dataset (including both the original 
and shadow features) and calculate the Zscore , which is the mean of accuracy loss 
divided by the standard deviation of accuracy loss.

4.	 Find the maximum Zscore among the shadow attributes (MZSA) , and then tenta-
tively tag the features as ‘important’ if their Z Score is significantly greater than 
MZSA or as ‘unimportant’ otherwise.

5.	 Repeat steps 3 and 4 until all features are tagged as important or unimportant.
6.	 Remove the unimportant features and retain the important ones.
7.	 Remove all shadow attributes.
8.	 Optionally, rank the important features and select a subset of top-ranked features for 

model training.

A MI‑boruta algorithm for feature selection

In this section, we propose an MI-Boruta algorithm to select the best subset of features 
from D1 and D2. At first, the MI method is used to select XMI−best from the set of all pos-
sible pairs of features in the feature space, with XMI−best being chosen based on the value 
of MI between the pairs. 2 Based on the MI algorithm, 31 and 51 features were respec-
tively selected out of 42 and 78 features of D1 and D2. Table 4 shows features selected by 
the MI algorithm. In the next step, the Boruta algorithm uses the feature importances 
obtained from the random forest models it trains to select the best YBoruta−best subset of 
features. Based on the Boruta algorithm, 33 and 59 features were respectively selected 
out of 42 and 78 features of D1 and D2. Table  5 shows features selected by Boruta. 
Lastly, the final subset of features, ZMI−Boruta−best , is selected by finding the intersection 
between XMI−best and YBoruta−best . Algorithm 1 summarizes this process. Based on this 
algorithm, 27 and 37 features are respectively selected out of 42 and 78 features of D1 
and D2. Table 6 depicts important selected features. 

Table 4  Feature selected through the MI approach

Dataset Features selected

D1 Dur, proto, state, spkts, ct_state_ttl, ct_dst_ltm, dinpkt, sjit, djit, stcpb, smean, dloss, 
ackdat, ct_dst_sport_ltm, ct_dst_src_ltm, sinpkt, dload, sloss, ct_src_dport_ltm, 
ct_srv_dst, dttl,dbytes, dmean, sload, ct_srv_src, sttl, tcprtt, synack, rate, dpkts, sbytes

D2 Destination Port, Total Length of Fwd Packets,, Fwd Packet Length Min, Fwd Packet 
Length Mean, Bwd Packet Length Min,,Flow Bytes/s, Flow Packets/s,Flow IAT Mean, 
Flow IAT Std, Flow IAT Max, Fwd IAT Total, Flow Duration, Total Backward Packets,Fwd 
IAT Mean, Total Length of Bwd Packets, Fwd Packet Length Max,Fwd IAT Std, Init_
Win_bytes_backward, min_seg_size_forward,Fwd IAT Max,, Fwd Packet Length Std, 
Bwd Packet Length Max, Bwd IAT Total, Bwd Packet Length Mean, Bwd Packet Length 
Std,Bwd IAT Mean, Subflow Bwd Bytes, Init_Win_bytes_forward,Bwd IAT Max, Bwd 
IAT Min, Fwd Header Length, Bwd Header Length, Fwd Packets/s, Bwd Packets/s, Min 
Packet Length, Max Packet Length, Packet Length Mean, Packet Length Std, Packet 
Length Variance, Average Packet Size, Idle Max, Idle Min.,Avg Fwd Segment Size, Avg 
Bwd Segment Size, Fwd Header Length.1,Subflow Fwd Bytes, Subflow Bwd Packets, 
Active Mean,Active Max, Active Min,Idle Mean,

2  Based on a few rounds of experiments, we used MI ≥ 0.1 for this step.
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Algorithm 1  MI-Boruta Approach for Features Selection

Input : UNSW-NB15 ( ), CICIDS2017( )

Output: The best subset of features for and 

Pre-processing dataset
// Data filtration
Step1:

= Remove ‘NaN’ and ‘Infinity’from . 
// Data numeralization
Step2:
            If (non-numeric features) then do:

= applied 1-N numeric coding for
End if

// Data normalization scaling
Step3:

, = compute Min-MaxScaling for ( , )

Step4: = Remove the features whose MI score less than 0.1 for 
and  based on the MI method.

Step5: = Using the Boruta algorithm to select the best subset for and 

Step6: = INTERSECTION ( , ) for 
and 

Table 5  Features selected through the boruta approach

Dataset Features selected

D1 Dur, proto, spkts, dinpkt, service,sjit, djit, stcpb, tcprtt, dtcpb,synack, ct_dst_ltm, swin,ct_src_dport_
ltm, ct_srv_dst, trans_depth, dpkts, sbytes, dbytes, sload, dload, sloss, ct_src_ltm, rate, sttl, ct_dst_
sport_ltm, ct_dst_src_ltm, is_sm_ips_ports, ackdat, smean, dmean, ct_srv_src, ct_state_ttl

D2 Destination Port, Total Backward Packets, URG Flag Count, CWE Flag Count,Total Length of Fwd Pack-
ets, Total Length of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Min, Fwd Avg Packets/
Bulk, Bwd Packet Length Mean, Flow Packets/s, Bwd URG Flags, Fwd Header Length, Bwd Header 
Length, Min Packet Length, Max Packet Length,Bwd Avg Bulk Rate,Packet Length Std, Packet Length 
Variance,FIN Flag Count, SYN Flag Count, ECE Flag Count, Down/Up Ratio, Average Packet Size, Avg 
Fwd Segment Size, Avg Bwd Segment Size, Fwd Header Length.1, Fwd Avg Bytes/Bulk, Subflow Fwd 
Packets, Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active 
Std, Active Max, Active Min,Idle Mean, Idle Std, Flow Duration, Total Fwd Packets, Flow IAT Mean, 
Flow IAT Std, Fwd URG Flags, Fwd Packet Length Mean, Fwd Packet Length Std, RST Flag Count, Bwd 
Packet Length Max, Bwd Packet Length Min, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Pack-
ets/Bulk, Subflow Bwd Packets, Subflow Bwd Bytes, Subflow Fwd Bytes,Init_Win_bytes_forward, Bwd 
Packet Length Std,Flow Bytes/s, PSH Flag Count, ACK Flag Count

Table 6  Features selected through the MI-boruta approach

Dataset Quantity Features selected by the MI-Boruta approach

D1 27 Dur, Proto, Dmean, Ct_srv_dst, Ackdat, Ct_dst_src_itm, Dpkts, ct_state_ttl, Stcpb, Ct_srv_
src,Sload, Ct_dst_itm,Smean, Dinpkt, Sttl, Rate, Sloss, Ct_src_dport_itm, Sjit, Sbytes, Tcprtt, 
Dload, Synack, Spkts, Dbytes, Ct_dst_sport_itm, djit

D2 37 Destination Port,Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet 
Length Max, Fwd Packet Length Min, Bwd Packet Length Max, Bwd Packet Length Min, 
Bwd Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Bwd Header Length, 
Min Packet Length, Packet Length Std, Packet Length Variance, Average Packet Size, Avg 
Fwd Segment Size, Avg Bwd Segment Size, Fwd Header Length.1, Subflow Bwd Packets, 
Subflow Bwd Bytes, Active Min,Init_Win_bytes_forward, Init_Win_bytes_backward, 
min_seg_size_forward, Active Max, Active Mean, Idle Mean, Flow Duration, Total Back-
ward Packets, Fwd Packet Length Mean, Fwd Packet Length Std, Flow IAT Std,Fwd Header 
Length, Max Packet Length, Packet Length Mean, Subflow Fwd Bytes
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Ensemble learning classifier

Ensemble learning classifiers combine two or more machine learning algorithms to 
attain better performance in contrast to using individual algorithms. The approach 
of ensemble learning can be classified into three categories: boosting, bagging, 
and stacking. The boosting method, which was first discussed by Schapire [67] in 
1990, involves intensive training of models on misclassified data during the train-
ing phase. Eventually, the model with the highest accuracy is selected as the clas-
sifier for the test data. The bagging approach, developed in 1996 by Breiman [68], 
involves using homogeneous models to predict the class of test data. Initially, the 
predictions of the selected homogenous models are recorded. Then, the class that 
is predicted by the majority of models is assigned to the test data. Wolpert [69] 
introduced the stacking approach, also known as stacked generalization, in 1992. 
This method is considered an effective strategy as it provides a general framework 
to combine numerous ensemble algorithms. It involves two levels of learning, where 
the initial (base) learners are trained using a training dataset in level 0, and meta-
learning takes place in level 1. The base learners generate a new dataset for the 
meta-learner, and this new dataset is used to train the meta-learner. The trained 
meta-learner is then used to classify the test set. Unlike boosting and bagging 
ensembles that typically use the same type of model, stacked ensemble can integrate 
different types of models. Therefore, selecting the optimal base learner is a crucial 
part of the stacking approach, and several base learners should be selected for the 
training dataset instead of a single one.

Overall, stacked ensemble learning provides several advantages over bagging and 
boosting methods:

•	 Improved predictive accuracy: Stacked ensembles can achieve higher predictive 
accuracy than individual models or other ensemble techniques, such as bagging 
and boosting. This is due to the combination of diverse base models in the stacked 
ensemble, which can capture different aspects of the data and reduce bias and var-
iance [69].

•	 Better robustness: Stacked ensemble learning can reduce the risk of overfitting and 
increase the robustness of the model by incorporating a meta-learner that combines 
the outputs of the base models. The meta-learner can identify and correct errors 
made by the base models, leading to better generalization performance [70].

•	 Flexibility: Unlike bagging and boosting, which typically use the same type of model, 
stacked ensembles can integrate different types of models, including both linear 
and non-linear models. This allows for more flexibility in model selection and can 
improve performance on complex datasets [71].

To leverage the advantages of stacked ensembles, we will employ them in this paper by 
using random forest, CatBoost, and XGBoost algorithms as base learners and multilayer 
perceptron (MLP) as the meta-learner. As we discuss later in the paper, using stacked 
ensembles enables us to reduce the variance of prediction errors, as well as to improve 
robustness by minimizing prediction dispersion [72].
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Random forest algorithm

Breiman’s random forest (RF) [73] is an ensemble-based classification method that con-
structs multiple classification trees by drawing bootstrap samples from the original data. 
Each tree then casts a vote on how to categorize a new item. The final decision is made 
based on the majority vote. RF offers several advantages, such as the ability to predict 
important variables, low classification errors, the capability to handle imbalanced data-
sets, efficient handling of big data sets with thousands of variables, addressing overfit-
ting, and maintaining accurate classification across various datasets. These advantages 
make RF a powerful and versatile classification method.

XGBoost algorithm

eXtreme Gradient Boosting (XGBoost) [74] is an ensemble learning method that is 
based on the gradient boosting decision tree (GBDT) algorithm. The Xgboost supports 
linear classifiers and uses traditional CART (Classification And Regression Trees) as the 
base classifier. It enhances prediction accuracy by utilizing Taylor expansion for the cost 
function and incorporating second derivatives. The XGBoost algorithm utilizes an addi-
tive training technique to optimize the objective function, where the optimization pro-
cess of each subsequent step relies on the results of the previous step. The principles of 
the XGBoost algorithm are as follows:

1.	 XGBoost employs an additive training technique to optimize the objective function, 
which means that the optimization process of latter steps relies on the optimization 
result of the previous steps. The tth objective function of the model is expressed by the 
following equation:

where l represents the loss term of the tth round, � is the regularization term, and C rep-
resents a constant term. The value of �(ft) is shown in Eq. 5

where both γ and � are customization parameters of XGBoost. In general, increasing the 
values of these two parameters simplifies the tree structure, effectively addressing the 
problem of overfitting.

2.	 Perform a second-order Taylor expansion on Eq.  4 This process is shown in 
Eq. 6where g is the first derivative, and h is the second derivative. gi and hi can be 
described as the following:
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∑n

i=1
l
(
yi, ŷ

t−1
i

)
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3.	 Substitute (5), (7), and (8) into (6) and take the derivative. Then, solutions can be 
obtained from (9) and (10) as follows:

In these equations, w∗
j  refers to the weights solution, and obj∗ represents the score of 

the loss function. The smaller this score, the better the structure of the tree.

Categorical boosting (Catboost) algorithm

Catboost is a machine learning classifier based on the gradient boosting decision tree 
framework and is available as an open-source library [75]. This classifier offers several 
advantages, including (1) the ability to handle categorical data using statistical methods, 
(2) optimization of extensive input parameters to reduce overfitting, (3) reduction of the 
loss function in each iteration to improve model generalization, (4) faster performance 
than other boosting algorithms thanks to the implementation of symmetric trees, (5) 
only requiring a small number of parameters, and (6) suitability for large datasets with 
low latency requirements.

Multilayer perceptron algorithm

MLP is a feed-forward artificial neural network that is constructed with three or more 
layers. The first layer is the input layer, the last layer is the output layer, and the middle 
layer has one or more hidden layers. Each layer contains a set of neurons or nodes. MLP 
learns a function f (x) : Rm → Ro by training on a dataset using the backpropagation 
learning method. Here, m represents the number of input dimensions, and o represents 
the number of output dimensions. In an MLP, each layer can be characterized by the fol-
lowing equivalent equations:

In the above equations, φ is the activation function, W  is the weight vector, X is the 
input vector, and b is the bias. For this study, we used MLP as the meta-learner, consist-
ing of one hidden layer with 200 neurons

(8)hi = ∂2
ŷt−1
i

l
(
yi, ŷ
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)
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(∑
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∑
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Stacked ensemble classifier

This section describes a proposed stacking ensemble classifier consisting of base clas-
sifiers (level 0) and meta-classifiers (level 1). The input training dataset (D) for the base 
classifiers is composed of selected features from MI-Boruta. The predictions from level 
0 serve as input for level 1. Overfitting issues during training are addressed by imple-
menting a k-fold cross-validation method. The training data (D) is partitioned into k dis-
joint subsets of equal size ( D1,D2,D3, . . . ,Dn ), with one of the k-subsets used for testing 
and the remaining subsets ( k − 1/k ) used for training the classifiers. In this study, the 
base classifiers (level 0) include RF, XGB, and Catboost, and are trained using five-fold 
cross-validation. The meta-classifier (level 1) utilizes the MLP algorithm to combine the 
results of the three base classifiers and generate the final predicted output. Table 7 shows 
the parameters of the stacked ensemble model. Algorithm 2 outlines the general algo-
rithm for stacking ensemble classifiers.

Algorithm 2  Stacked Ensemble Classifier

Performance evaluation

In this section, we evaluate our proposed model using different performance metrics, such 
as accuracy, recall, precision, F1 score, and the AUCROC curve. These metrics are derived 
from a confusion matrix, which is a two-dimensional table that compares the predicted and 

Table 7  Experimental model parameters

Model Parameters

RF
XGBoost
Catboost
MLP

n_estimators = 200, criterion = ”entropy”, max_depth = 60
n_estimators = 600, max_depth = 31, objective = ”binary:logistic" for binary classification and 
objective = "multi:softprob" for multi-classification
n_estimators = 500, loss_function = ”Logloss” for binary classification and
loss_function = ”MultiClass” for multi-classification
one hidden_layer_sizes with 200 neurons
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actual classes and distinguishes the outcomes of the classification. The confusion matrix is 
based on the following four values:

•	 True Negative (TN): both the original data as well as the predicted data are false.
•	 True Positive (TP): both the original data as well as the predicted data are true.
•	 False Negative (FN): original data are true, but the predicted data are false.
•	 False Positive (FP): original data are false, but the predicted data are true.

Accuracy is the ratio of instances that have been correctly classified to the total number 
of instances. This can be defined as:

Recall, also referred to as the detection rate (DR), true positive rate (TPR), or sensitivity, is 
the percentage of total true positive (TP) cases divided by the total number of true positive 
(TP) and false positive (FN) cases. It is calculated as illustrated in the following formula:

Precision is the percentage of total true positive (TP) cases divided by the total number of 
true positive (TP) and false positive (FP) cases. The following formula represents precision:

F1 score is the harmonic mean of recall and precision defined by the following equation:

The False Positive Rate (FPR) shows the percentage of normal traffic detected as an 
attack. The FPR is calculated as:

The False Negative Rate (FNR) is the percentage of attacks detected as normal traffic. 
FNR is calculated as:

Error Rate (ER) is calculated using the following equation:

Finally, the Area Under the Curve (AUC) is a parameter used for evaluating the perfor-
mance of a machine learning model at all categorization thresholds. It is characterized 
by the false positive and true positive rates on the X and Y axes, respectively. When the 

(13)accuracy =
TP + TN

TP + TN + FP + FN

(14)Recall = DR = TPR =
TP

TP + FN

(15)Precision =
TP

TP + FP

(16)F1 = 2×

(
Precision× Recall

Precision+ Recall

)

(17)FPR =
FP

FP + TN

(18)FNR =
FN

TP + FN

(19)ER =
FP + FN

TP + TN + FP + FN
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curve is close to the top left corner, the model performs better. Conversely, the model 
performs poorly if the curve is closer to the baseline. AUC is obtained using the follow-
ing formula:

Experimental results and discussion
In this section, we evaluate the performance of our proposed stacked ensemble classifier 
with various individual classification algorithms, as well as with state-of-the-art meth-
ods. It deserves to mention that model development and evaluation were performed 
using Python on a machine with the following specifications:

•	 Operating system: Windows 11 (64-bit)
•	 CPU: Ryzen7 5800 h
•	 RAM: 32 GB
•	 HDD: 1 TB SSD
•	 VGA: RTX3070 8 GB

Comparison with individual classifiers

We assessed the performance of our stack ensemble classifier by comparing it to several 
individual classification algorithms (such as RF, XGBoost, Catboost, and MLP) using the 
same MI-Boruta feature selection technique. Our study employed a multi-classification 
approach and evaluated the accuracy and F1 score using two confusion matrices. Fig-
ure  4 provides a summary of the model’s performance relative to the individual clas-
sification algorithms. According to Fig. 4a, our stack ensemble classifier outperformed 
the individual algorithms on both the UNSW-BN15 and CICIDS2017 datasets, with an 
accuracy of 84.88 and 99.92% for D1 and D2, respectively. Similarly, as shown in Fig. 4b, 
our model achieved a higher F1-score than the individual classification algorithms on 
both datasets, with scores of 84.15 and 99.92% for D1 and D2.

We recorded the computation time of each base classifier and the stacked ensemble 
for UNSWNB-15 and CICIDS2017 datasets, which have different sizes. The computa-
tion times of UNSWNB-15 were 0.14 s, 0.24 s, 0.28 s, 0.03 s, and 0.68 s for RF, Catboost, 
XGBoost, MLP, and stacked ensemble respectively. The computation times of CIC-
IDS2017 were 1.21 s, 3.29 s, 2.44 s, 0.43 s, and 7.21 s for RF, Catboost, XGBoost, MLP, 
and stacked ensemble respectively. As expected, the stacked ensemble takes more time 
than individual classification models in both datasets.

Comparison with the state‑of‑the‑art methods

In this section, we present a comparative analysis of our proposed model’s performance 
with earlier research on binary and multi-class classification using D1 and D2. The evalu-
ation metrics are presented in Tables  8, 9, 10. Table  8 shows the binary classification 
performance of our proposed model and other recent IDS studies for D1. Similarly, 

(20)AUC =

∫ 1

0

TPRd(FPR)
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Table 9 shows the performance of our model and recent IDS studies for binary classifica-
tion using D2. Table 10 compares the multi-class classification performance of our model 
with that of recent IDS studies for both datasets.

According to the information presented in these tables, our proposed model has a bet-
ter overall performance than prior studies. For binary classification of D1, our model’s 
accuracy is 95.34%, recall is 94.64%, precision is 92.62%, F1 score is 93.62%, FPR is 4.2%, 
and the AUC is 95.19% (Fig.  5a). For multi-class classification of D1 using a subset of 
27 features (which denotes a simpler model), the accuracy is 84.88%, recall is 84.88%, 
precision is 84.93%, and F1 score is 84.15%. Table 11 presents the performance results 
of the proposed model for each class of D1. For D2, the accuracy for binary classification 
is 99.925%, recall is 99.926%, precision is 99.979%, F1 score is 99.953%, FPR is 0.08%, 
and the AUC is 99.922% (Fig. 5b). For multi-class classification of D2 using a subset of 
37 features, the accuracy is 99.92%, recall is 99.92%, precision is 99.92%, and F1 score is 
99.92%. Table 12 presents the performance results of the proposed model for each class 
of D2.The confusion matrices for binary and multi-class classification of both datasets 
are shown in Figs. 6 and 7.

Fig. 4  Performance comparison of classifiers for the two datasets
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Conclusion
With the widespread use of the Internet, network security has become a crucial 
aspect in distributed systems. While previous studies have used different machine 
learning algorithms to improve the performance of intrusion detection systems (IDS), 
they still face several challenges in achieving optimal performance. To address this, 
we presented an effective IDS model that utilizes a hybrid feature selection method 
and an ensemble learning technique on two well-known intrusion detection bench-
mark datasets. Our approach started by proposing an MI-Boruta algorithm to select 
the best features from the datasets. Then, we used a stacked ensemble classifier, 
comprising random forest, XGBoost, and Catboost as base learners and multilayer 

Table 10  Comparison of evaluation metrics between our proposed model and recent IDS studies 
for multi-classification for both datasets (best values are denoted in bold)

Ref Dataset Feature 
selection 
method

Classification 
method

Accuracy 
(%)

Recall (%) Precision 
(%)

F1 Score (%)

[50] D1 TS RF 83.12 N/A N/A N/A

[47] D1 IGRF-RFE MLP 84.24 0.8424 0.8360 0.8285

[83] D1 NRS-SSA Adaptive 
ensemble 
(DT, KNN, RF, 
XGBoost)

81.54 81.54 82.7 79.7

[77] D1 UMAP RF 81.6 80 N/A 80

[84] D1 N/A Ensemble 
(Group convo-
lution network 
snapshot 
ensmble)

79.03 80.01 81.21 80.61

This study D1 MI-Boruta Stacked 
ensemble (RF, 
XGboost, Cat-
boost, MLP)

84.88 84.88 84.93 84.15

[30] D2 RF Hard voting 
(NB, LR, DT)

88.96 N/A N/A N/A

[85] D2 Boruta ET 99.8 99.8 N/A N/A

[53] D2 Gradient 
Boost Trees 
with meta-
transformer

XGBoost 99.90 99.90 99.90 99.90

[86] D2 Chi-squared Triple layered 
hybrid 
(weighted 
DNN, 
CNN + LSTM, 
XGBoost)

98.46 98.21 86.42 98.1

[82] D2 N/A Stacking (MLP, 
LSTM, DNN, 
CNN)

98.7 98.7 98.7 98.6

This study D2 MI-Boruta Stacked 
ensemble (RF, 
XGboost, Cat-
boost, MLP)

99.92 99.92 99.92 99.92
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perceptron as the meta-learner, for classification. Our experimental results indicated 
excellent performance in binary and multi-class classification for both datasets. Spe-
cifically, the accuracy of binary classification was 95.34%, with 94.64% recall, 92.62% 

Fig. 5  The Area under the ROC Curve for D1 and D2
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precision, 93.62% F1 score, and a 4.2% false positive rate. For multi-class classifica-
tion, the accuracy was 84.88%, with 84.88% recall, 84.93% precision, and 84.15% F1 
score, using a subset of 27 features from the UNSW-NB15 dataset. In particular, our 
model achieved the highest accuracy for binary and multi-class classification on CIC-
IDS2017, with a binary classification accuracy of 99.92%, 99.92% recall, 99.97% preci-
sion, 99.95% F1 score, and 0.08% FPR. For multi-class classification, the accuracy was 
99.92%, with 99.92% recall, 99.92% precision, and 99.92% F1 score, using a subset of 
37 features from D2. Furthermore, our proposed stacked ensemble classifier outper-
formed individual classification methods in terms of accuracy and F1 score. Finally, 
comparisons with state-of-the-art methods demonstrated that our model provides a 
competitive advantage in the intrusion detection domain.

Our study has several implications for future research in the field of intrusion detec-
tion. First, the proposed hybrid feature selection method and stacked ensemble clas-
sifier have demonstrated good results in detecting intrusions in widely used datasets 

Table 11  Performance results of D1 for multiclass classification

Attack type Precision Recall F1 score

Normal 93.19 93.45 93.19

Reconnaissance 92.27 75.51 83.05

Fuzzers 72.26 67.82 69.97

Analysis 76.63 15.32 25.54

Exploits 66.74 88.27 76.01

Backdoor 49.6 26.60 24.63

DoS 56.12 32.34 41.03

Generic 99.42 98.42 98.92

Shellcode 66.56 73.84 70.01

Worms 71.87 65.71 68.65

Table 12  Performance results of D2 for multiclass classification

Attack type Precision Recall F1 score

BENIGN 99.97 99.93 99.95

DDoS 99.97 99.96 99.97

FTP-Patator 100 99.93 99.96

DoS 99.83 99.96 99.89

Bot 98.63 73.91 84.5

Heartbleed 100 100 100

Infiltration 100 100 100

PortScan 99.34 99.98 99.66

SSH-Patator 100 100 100

Web Attack 99.06 97.47 98.26
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Fig. 6  Confusion matrices for binary classification of D1 and D2



Page 27 of 32Alsaffar et al. Journal of Big Data          (2024) 11:133 	

Fig. 7  Confusion matrix for multi-class classification of D1 and D2
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such as UNSW-NB15 and CICIDS017. Therefore, further research could explore the 
effectiveness of these techniques in other datasets to further evaluate their general-
izability. Second, while the proposed model outperformed state-of-the-art methods 
in terms of accuracy and F1 score, there is still room for improvement in terms of 
reducing false positives and false negatives. Future research could investigate how to 
further improve the model’s performance by fine-tuning its parameters or develop-
ing new algorithms to address these issues. Third, the proposed model used a com-
bination of RF, XGBoost, and Catboost as base learners with MLP as a meta-learner. 
Future research could explore the effectiveness of other machine learning algo-
rithms as base or meta-learners to enhance the model’s performance. Finally, while 
the proposed model achieved good results in both binary and multi-classification, it 
would be interesting to investigate how to improve the performance in specific types 
of attacks or in more complex scenarios such as detecting attacks in real-time or in 
highly dynamic environments.

One limitation of our study is its lack of explainability. The model’s decisions and pre-
dictions cannot be easily interpreted and understood, making it challenging to identify 
the root causes of errors or biases. This may limit the paper’s practical applications in 
sensitive domains where interpretability is essential, such as healthcare or finance.
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