
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Alsaffar et al. Journal of Big Data (2024) 11:133
https://doi.org/10.1186/s40537-024-00994-7

Journal of Big Data

Shielding networks: enhancing intrusion
detection with hybrid feature selection
and stack ensemble learning
Ali Mohammed Alsaffar1,2, Mostafa Nouri‑Baygi1* and Hamed M. Zolbanin3 

Abstract 

The frequent usage of computer networks and the Internet has made computer
networks vulnerable to numerous attacks, highlighting the critical need to enhance
the precision of security mechanisms. One of the most essential measures to safe-
guard networking resources and infrastructures is an intrusion detection system (IDS).
IDSs are widely used to detect, identify, and track malicious threats. Although vari-
ous machine learning algorithms have been used successfully in IDSs, they are still
suffering from low prediction performances. One reason behind the low accuracy
of IDSs is that existing network traffic datasets have high computational complexities
that are mainly caused by redundant, incomplete, and irrelevant features. Further-
more, standalone classifiers exhibit restricted classification performance and typically
fail to produce satisfactory outcomes when dealing with imbalanced, multi-category
traffic data. To address these issues, we propose an efficient intrusion detection model,
which is based on hybrid feature selection and stack ensemble learning. Our hybrid
feature selection method, called MI-Boruta, combines mutual information (MI) as a filter
method and the Boruta algorithm as a wrapper method to determine optimal features
from our datasets. Then, we apply stacked ensemble learning by using random forest
(RF), Catboost, and XGBoost algorithms as base learners with multilayer perceptron
(MLP) as meta-learner. We test our intrusion detection model on two widely recognized
benchmark datasets, namely UNSW-NB15 and CICIDS2017. We show that our proposed
IDS outperforms existing IDSs in almost all performance criteria, including accuracy,
recall, precision, F1-Score, false positive rate, true positive rate, and error rate.

Keywords:  Intrusion detection system, Machine learning, Feature selection, Stacked
ensemble

Introduction
The Internet has turned into an important part of our daily lives and an indispensable
tool. The reliance of people on the Internet for accessing a range of electronic services,
such as online education, banking, business, job search, and shopping, as part of their
daily routines has been steadily increasing. Following the widespread growth in Internet
usage, the cyberthreat landscape has evolved rapidly [1] and security breaches have now
become a routine [2], making information systems, computer networks, and activities

*Correspondence:
nouribaygi@um.ac.ir

1 Department of Computer
Engineering, Ferdowsi University
of Mashhad, Mashhad, Iran
2 Department of Computer
Techniques Engineering, Imam
Al-Kadhum College (IKC),
Baghdad, Iraq
3 School of Business
Administration, University
of Dayton, Dayton, OH, USA

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00994-7&domain=pdf

Page 2 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

associated with them prone to new and sophisticated attacks. Consequently, recent years
have witnessed a surge in data and privacy breaches [2, 3] and the security of cyberspace
has become the focus of much more scrutiny. For instance, many studies have focused
on detecting cyberattacks on computer networks, such as the Internet of Things [4, 5],
vehicle networks [6], and wireless networks [7], or on developing secure systems in cer-
tain business sectors, such as healthcare [8, 9] and energy [1]. Regardless of the appli-
cation domain, what cybersecurity initiatives have in common is that they all need to
develop a robust security system to fend off cyberattacks. Although different security
tools have been used to secure networks, such as user authentication mechanisms, data
encryption techniques, firewalls, and antivirus software, they cannot be effective against
all threats and cyberattacks [10]. Detecting cyberattacks, which are constantly growing
in numbers and sophistication, requires intelligent security mechanisms, such as intru-
sion detection systems (IDSs) to protect networks and information systems from an
array of threats [11, 12]. IDS is a hardware or software system that can carry out a vari-
ety of tasks, such as analyzing and monitoring computer networks, examining abnormal
activity patterns, monitoring and inspecting user and system activities, and identifying
common attacks. Hence, the criticality of IDS in network security cannot be overstated
as it plays a crucial role in detecting and preventing malicious activities [13] that have
the potential to violate security policies and compromise the confidentiality, integrity,
and availability (CIA) of information [14, 15].

Generally, IDS are classified into two types: host intrusion detection systems (HIDS)
and network intrusion detection systems (NIDS) [16]. A HIDS is established on a single
host to monitor all activities on the host, e.g., scanning for suspicious activities and vio-
lations of security policies. On the other hand, a NIDS is established to secure all devices
and networks against potential security breaches. IDS can also be categorized into two
types based on the detection mechanism they use: (1) signature-based IDS or misuse-
based IDS, and (2) anomaly-based IDS [17]. Signature-based IDS identifies known attack
patterns by utilizing a database of their signatures [18]. The main disadvantage of these
systems is that they cannot detect zero-day attacks or more recent attacks if their data-
bases are outdated. Anomaly-based IDS, on the other hand, are designed to monitor and
analyze all actions across a network by learning normal and anomalous network behav-
iors; therefore, they can also detect novel attacks [19, 20].

Over the past two decades, the performance of IDSs has been enhanced through the
application of various machine learning techniques; however, these techniques still face
various challenges. First, since intrusion detection algorithms deal with large amounts
of network traffic data, and these data contain redundant, noisy, and/or irrelevant fea-
tures, reducing the feature space by selecting the most informative features still bears an
important weight on the performance of IDS. Second, the use of single algorithm models
may create statistical, representational, or computational issues that are driven by the
numerous, multi-dimensional features of massive datasets. In the context of IDS, a sin-
gle algorithm classifier may reduce the efficiency of an IDS and make it unable to detect
multiclass attacks.

Our goal in this paper is to address these challenges. Initially, we opt for the most
suitable subset of features to enhance the effectiveness of machine learning algorithms,
which helps to reduce the amount of data, storage space, and processing cost required.

Page 3 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Next, we develop a stacked ensemble learning model to detect cyberattacks. Finally, we
test our model using two benchmark datasets and compare our results with existing
studies, most of which have developed IDS using single algorithm models. The experi-
mental results show that our model performs well based on different evaluation metrics
for binary and multi-class classification. Our study offers the following contributions:

1.	 Using a combination of filter and wrapper methods, it develops a hybrid feature
selection method that combines the benefits of the two approaches and enables the
development of a simpler, yet more accurate intrusion detection model.

2.	 It uses random forest (RF), Catboost, and XGBoost algorithms as base learners and
multilayer perceptron (MLP) as the meta-learner to develop a stacked ensemble
model that improves the multi-class classification performance of existing models in
the literature.

3.	 Constructing and testing the model on two well-known benchmark datasets of dif-
ferent sizes illustrate that the proposed model is generalizable.

The subsequent sections of the paper are structured as follows. Sect. "Related work"
presents the related work for IDS feature selection techniques and ensemble learning.
In Sect. "Methodology", the proposed methodology is presented. Sect. "Experimental
Results and Discussion" discusses the experimental analysis and evaluates the results.
Finally, Sect. "Conclusion" concludes the paper.

Related work
Many studies have been carried out to implement an efficient IDS. From a broad per-
spective, these studies can be classified based on two criteria: the type of feature selec-
tion method and the type of classification algorithm they use. Feature selection methods
can be further divided into the filter, wrapper, and embedded methods. Similarly, clas-
sification algorithms can be split into single and ensemble learning algorithms. In what
follows, we present a summary of the literature on IDSs, focusing on feature selection
and model building approaches used in those studies.

The main idea behind filter methods is to select the most relevant features from a
dataset based on their intrinsic characteristics, without involving a machine learning
algorithm to predict the target variable. In filter feature selection methods, the features
are evaluated based on some statistical measure, such as correlation [21, 22], informa-
tion gain[23– 27], chi-square test [28–30], or ANOVA F-test [26, 30], and then ranked
according to their scores. The top-ranked features are then selected for further analysis
or used as input for a machine learning algorithm. Some advantages of using filter fea-
ture selection methods are that they are computationally efficient, easy to implement,
and can work well with high-dimensional datasets; however, they may not always cap-
ture complex relationships between features and the target variable, and may also suffer
from redundancy issues [31, 32].

In contrast to filter methods, wrapper feature selection methods use a machine learn-
ing algorithm to evaluate the relevance of features and select the best subset for a given
model. In wrapper methods, the feature selection process is integrated with the train-
ing process of a machine learning algorithm. The algorithm is used to evaluate the

Page 4 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

performance of different subsets of features and select the one that results in the best
model performance. This process is typically done using a cross-validation approach,
where the dataset is divided into training and validation sets, and the algorithm is evalu-
ated on multiple iterations. Wrapper feature selection methods can be more accurate
than filter methods, as they take into account the interactions between features and the
target variable. However, they can be computationally expensive and prone to overfitting
if the number of features is large compared to the size of the dataset. Examples of wrap-
per methods that are used in prior studies include recursive feature elimination (RFE)
[33, 34], Pigeon-inspired optimization [35, 36], Cuckoo Search Optimization [37], Parti-
cle Swarm Optimization [38, 39], Bat Optimization [40], Grey Wolf Optimization [39],
and the Grasshopper optimization algorithms [41]. These methods are commonly used
in machine learning applications where the number of features is high, and the goal is
to find the optimal subset of features that leads to the best model performance [42, 43].

Embedded methods are techniques for feature selection that involve incorporat-
ing the feature selection process into the model training process itself. These methods
aim to find the most informative subset of features to improve model performance and
reduce overfitting. In embedded methods, feature selection is performed during the
model training process to select the best subset of features that can be used to train the
model. This can be achieved by adding a penalty term to the model’s objective function
that encourages the selection of only the most informative features. Some examples of
embedded feature selection methods that are used in previous studies include Gradient
Boosting [26, 44–46], and decision tree-based algorithms such as Random Forest [30, 47,
48], which select the most important features at each split. Embedded feature selection
methods are often preferred over traditional filter and wrapper methods because they
can lead to more accurate and efficient models by simultaneously selecting the most rel-
evant features and optimizing model performance. However, they can be computation-
ally expensive and require more resources compared to other feature selection methods
[31, 49].

Regarding the classification algorithms used in previous studies, single algorithm clas-
sifiers that predict binary outcomes [24, 26, 35–40] comprise a significant proportion. In
contrast, a smaller proportion of single algorithm efforts [23, 33, 47, 50] have tackled the
more challenging problem of predicting multi-class network attacks. Some studies [17,
25, 41, 44, 46] have predicted both binary and multi-class outcomes. A similar pattern
is observed among the ensemble learning models: studies that predict binary outcomes
include [21, 27–29, 51, 52]; those that focus on multi-class prediction include [34], and
studies that predict network attacks both as binary and multi-class outcomes include
[22, 30, 48, 53]. Table 1 provides a summary of previous studies that have developed
IDSs using machine learning techniques.

Our review of prior research identifies several gaps in the literature. First, a large num-
ber of prior studies have used outdated datasets, such as KDD99 or NSL-KDD, that do
not cover modern network attacks. Second, when building and testing an IDS using large
datasets, such as CICIDS2017, researchers have typically tended to focus on a subset of
commonly occurring network attacks while disregarding the infrequent ones. Therefore,
their IDSs are unable to detect all possible cyber threats. Third, only a few attempts have
been made to evaluate intrusion detection systems using multiple datasets that vary in

Page 5 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Table 1  A Summary of Prior Research on Intrusion Detection Systems

Author(s) FS
techniques

FS
techniques
type

Classification algorithm
techniques

Classification
algorithm
techniques
type

Type of
classification

Datasets

[23] IG Filter NB, BN, RF J48, RT Single Multi-class CICIDS2017

[24] IG Filter MLP Single Binary UNSW-NB15

[44] XGBoost Embedded DT, ANN, LR, KNN, SVM Single Binary &
Multi-class

UNSW-NB15

[25] IG, Gain Ratio Filter DT, NB Single Binary &
Multi-class

UNSW-NB15

[17] Genetic
Algorithm

Wrapper LSTM + RNN Single Binary &
Multi-class

NSL-KDD

[35] PIO Wrapper DT Single Binary KDD99,
NSL-KDD,
UNSW-NB15

[38] PSO Wrapper DT, KNN Single Binary KDD99

[40] BOA Wrapper SVM Single Binary KDD99

[50] TS–RF Wrapper RF Single Multi-class UNSW-NB15

[39] PSO, GWO Wrapper SVM, DT Single Binary NSL-KDD,
UNSW-NB15

[33] RFE Wrapper DT, RF, KNN, NB Single Multi-class NSL-KDD

[37] CS Wrapper ANN Single Binary NSL-KDD

[36] PIO Wrapper CNN Single Binary NSL-KDD

[45] LightGBM Embedded AE, DAE, VAE Single Binary NSL-KDD

[46] LightGBM Embedded DNN Single Binary &
Multi-class

KDD99, NSL-
KDD, UNSW-
NB15

[41] Ensemble
Feature
Selection,
Grasshopper
Optimization

Wrapper SVM Single Binary &
Multi-class

KDD99, NSL-
KDD

[47] IGRF-RFE Fil-
ter + Embed-
ded + Wrap-
per

MLP Single Multi-class UNSW-NB15

[26] ANOVA, Pear-
son Correla-
tion, Gradient
Boosting,
IG, Greedy
Algorithms

Filter + Wrap-
per + Embed-
ded

GRU, Bi-LSTM + , CNN, RF, DT Single Binary NSL-KDD,
UNSW-NB15

[28] Chi-Square Filter XGBoost + K-means + BPNN + SVM Ensemble Binary NSL-KDD

[29] Chi-Square Filter NB + SVM + LR + MLP Ensemble Binary NSL-KDD

[22] Correlation Filter Adaboost + Bagging + REP-
Tree + J48 + RF

Ensemble Binary &
Multi-class

KDD99,
NSLKDD

[27] IG Filter REPTree + RF + RT + DS + J48 Ensemble Binary NSL-KDD

[21] Correlation- &
Consistency-
based
methods

Filter RF + BPNN + RBFN Ensemble Binary KDD99,
Honeynet
environment

[51] Variance
threshold

Filter XGBoost + RF + DT Ensemble Binary NSL-KDD,
UNSW-NB15

[34] RFE Wrapper RF + SVM + DT Ensemble Multi-class KDD99

[52] SFS Wrapper XGBoost + ET + RF + Bag-
ging + MLP

Ensemble Binary NSL-KDD

[48] RF Embedded GBM + RF Ensemble Binary &
Multi-class

NSL-KDD

[53] Gradient
Boosting
Trees

Embedded XGBoost Ensemble Binary &
Multi-class

CICIDS2017

Page 6 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

terms of the types of attacks they represent as well as their size. Fourth, few studies have
focused on developing and testing IDSs for multi-class prediction using datasets that
include all current types of network attacks. Lastly, almost all previous studies, especially
those predicting multi-class attacks, have a fairly large false positive rate.

In order to address these deficiencies, we develop an IDS that improves the accuracy of
predicting network attacks, while reducing the false positive rate. Our approach involves
employing a hybrid feature selection method, which we call MI-Boruta, to optimize
feature selection through the use of both mutual information (MI) as a filter method
and the Boruta algorithm as a wrapper method. After selecting the most relevant fea-
tures from our datasets, we construct a stacked ensemble model that combines several
machine learning algorithms, including random forest (RF), Catboost, and XGBoost, as
base learners, with a multilayer perceptron (MLP) serving as the meta-learner. We eval-
uate the effectiveness of our proposed method by conducting experiments on two widely
recognized benchmark datasets.

Methodology
As we explained before, filter, wrapper, and embedded feature selection models have
their advantages and disadvantages. In this study, we use a combination of filter and
wrapper methods to reap the benefits of both feature selection techniques. 1 When com-
bining these two methods, filter methods can be used initially to identify the most rel-
evant features based on some criterion, such as correlation with the target variable, and
these selected features can then be passed on to the wrapper method for further evalu-
ation. Wrapper methods can then be used to fine-tune the subset of features, by con-
sidering all possible combinations and selecting the subset that maximizes the model
performance. This combination approach can help to reduce the number of features and
improve the accuracy and interpretability of the model while avoiding some of the draw-
backs of either method used alone.

After implementing our hybrid feature selection method, we utilize a stacked ensem-
ble learning classifier to enhance the detection performance of IDSs. The architecture
and stages of our methodology are illustrated in Fig. 1, and we elaborate further on the
individual steps of our approach in the subsequent sections.

Data description

This research uses two benchmark datasets: the UNSW-NB15 and the CICIDS2017
datasets. We describe these two datasets in the following subsections.

Table 1  (continued)

Author(s) FS
techniques

FS
techniques
type

Classification algorithm
techniques

Classification
algorithm
techniques
type

Type of
classification

Datasets

[30] Chi-Square,
ANOVA, Lin-
ear SVM, RF

Fil-
ter + Embed-
ded

DT + NB + LR Ensemble Binary &
Multi-class

CICIDS2017

1  We do not consider embedded methods for feature selection to keep the computational cost of our methodology as
low as possible, given that we will be building and testing our IDS on a significantly large benchmark dataset.

Page 7 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

UNSW‑NB15 dataset (D1)

Created by the Australian cybersecurity center [54], the UNSW-NB15 dataset (D1)
comprises both training and testing partitions. The training set is composed of 175,341
records, whereas the test set includes 83,332 records. The records of D1 can be broadly
classified into normal network traffic and cyberattack, which itself has different types.
The dataset has 44 features, two of which are class labels (i.e., attack cat and label). Fea-
tures of the dataset are of binary, categorical, or numeric (float and integer) formats. D1
consists of ten classes, wherein one class represents normal traffic, and the remaining
nine classes represent different types of attacks: DoS, Worms, Backdoors, Fuzzers, Shell-
code, Generic, Reconnaissance, Exploits, and Port scans [55]. The distribution of these
ten classes is shown in Table 2. In the D1 dataset, the majority class is “Normal” with
93,000 instances and the minority class is “Worms” with 174 instances. The imbalance
ratio for each class is shown in Fig. 2. As we see in this figure, D1 is highly imbalanced,
with the majority class being over 534 times more frequent than the minority class.

(1)Imbalance Ratio =

Number of instances inmajority class

Number of instance inminority class

Fig. 1  Proposed Methodology

Page 8 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

CICIDS2017 dataset (D2)

This dataset was created by the Canadian Institute for Cybersecurity (CIC) in 2017 [56]
and includes 2,830,743 records that are spread across eight files. Each record comprises
78 features plus a label. D2 contains 15 classes, including benign network traffic and
14 attack types: DDoS, DoS Slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye,
Heartbleed, PortScan, Bot, FTP-Patator, SSH-Patator, Web Attack-Brute Force, Web
Attack-XSS, Web Attack-SQL Injection, and Infiltration. Table 3 shows the class distri-
bution of D2. Before preprocessing this dataset, we combined DoS slowloris, DoS Slow-
httptest, DoS Hulk, and DoS GoldenEye into a single class called DOS attack. Similarly,
we aggregated Web Attack-XSS, Web Attack-Sql-Injection, and Web Attack-Brute Force
to form a single class called the Web Attack class. In the D2 dataset, the majority class is
“Benign” which has 2,273,097 instances, and the minority class is “Heartbleed” with 11
instances. The imbalance ratio for each class is shown in Fig. 3. As we see in this figure,
D2 is highly imbalanced. The “Benign” class is over 206,649 times more frequent than the
“Heartbleed” class.

Table 2  The class distribution of the UNSW-NB15 dataset

Attack type Training dataset Testing dataset

Normal 56,000 37,000

Generic 40,000 18,871

Exploits 33,393 11,132

Fuzzers 18184 6062

Denial of service (DoS) 12,264 4089

Reconnaissance 10,491 3496

Analysis 2000 667

Backdoor 1746 583

Shellcode 1133 378

Worms 130 44

Total 175,341 82,332

Fig. 2  Distribution of classes for D1

Page 9 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Drawing from the methodologies employed by leading authorities in the fields of sta-
tistical analysis and deep learning [57, 58], we aggregated the training and testing data-
sets for both D1 and D2. Subsequently, we randomly partitioned the combined data into
two non-overlapping subsets, with 80% of the data allocated for model training and 20%
reserved for testing and validation. This approach is particularly suited for larger data-
sets as it circumvents the computationally intensive run-time required by k-fold cross-
validation. Moreover, it affords the model with sufficient data to learn from, while still
retaining an adequate amount of data for validation and testing purposes. Following
the construction of our model using the training datasets, we will proceed to assess its
binary and multiclass classification performance for both D1 and D2.

Table 3  The class distribution of the CICIDS2017 dataset

Category Type Total

BENIGN BENIGN 2,273,097

DoS DDoS 128,027

DoS slowloris 5796

DoS Slowhttptest 5499

DoS Hulk 231,073

DoS GoldenEye 10,293

PortScan PortScan 158,930

Bot Bot 1966

Brute-force FTP-Patator 7938

SSH-Patator 5897

Web attack Web Attack-Brute Force 1507

Web Attack-XSS 652

Web Attack-SQL Injection 21

Heartbleed Heartbleed 11

Infiltration Infiltration 36

Total Attacks 471,454

Total Records 2,830,743

Fig. 3  Distribution of classes for D2

Page 10 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

Data preprocessing

Data preprocessing is a necessary step in data mining that transforms the data into a
suitable format for analysis and knowledge discovery. This phase contains three steps:
data filtration, data numeralization, and data normalization.

Data filtration

Real-world data typically contain anomalous, incomplete, and inconsistent values that
come from heterogeneous platforms and can degrade the classification performance of
machine learning models. For instance, the feature ‘Flow Packets/s’ in D2 includes abnor-
mal values such as ‘NaN’ and ‘Infinity’ that may negatively influence the classification
accuracy of predictive models. To deal with such instances, we applied basic data clean-
ing, including removing infinite data values and missing data samples from the datasets.

Data numeralization

This step converts the symbolic data (non-numeric features) into numerical values
(numeric features) by using 1-N numeric coding, where N is the number of symbols.
This paper has converted all the non-numeric features such as proto, service, and state in
D1 into numerical values.

Data normalization

Feature scaling is an important step in data preprocessing. In this study, we applied the
min–max normalization to scale the features within the range of [0,1]. The formula for
the min–max normalization is given below:

where Xnormalized represents the value after normalization, X is the value before normali-
zation, Xmin is the minimum value of the feature, and Xmax is the maximum value of the
feature.

Feature selection

Feature selection is an important aspect of constructing an efficient IDS. Feature selec-
tion eliminates irrelevant and redundant features from a dataset to improve the effi-
ciency of machine learning algorithms. As discussed earlier, there are three main feature
selection methods: filter methods [32], wrapper methods [59], and embedded methods
[60]. Filter methods select the most useful features without using any learning algo-
rithm. They are based on the intrinsic characteristics of features, such as correlation,
consistency, information distance, statistical measures, etc. These methods are fast and
have low computational complexity. Wrapper methods employ a learning algorithm
to determine a subset of features, which are subsequently evaluated by the classifica-
tion algorithm. As a result, these methods can be computationally complex. Embedded
methods are similar to wrapper methods, but the learning algorithm and search strat-
egy are achieved simultaneously. In other words, feature selection in these methods is
made during the learning process itself, which could make them computationally inten-
sive for large datasets. In this section, we propose a hybrid features selection method

(2)Xnormalized =
X − Xmin

Xmax − Xmin

Page 11 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

by combining mutual information as the filter method and the Boruta algorithm as the
wrapper method to select the best features from each of the datasets.

Mutual information

Mutual information (MI) is one of the most used filter feature selection methods [61]. It
measures the amount of mutual dependence between two random variables (features).
More precisely, MI measures the quantity of information that is gained about one ran-
dom variable by observing the other random variable. Mutual information has several
advantages over other filter feature selection methods. First, mutual information is a non-
parametric method, which means it does not make assumptions about the distribution of
the data. This is particularly useful when dealing with complex or non-linear relationships
between variables. Second, mutual information can capture both linear and non-linear
[62] dependencies between variables. This is in contrast to some other methods, such as
the Pearson correlation, which only capture linear relationships. Third, mutual informa-
tion is robust to noise and outliers [63], which can be a problem for some other methods.

For these reasons, we utilize MI in the first step of our feature selection. MI can be cal-
culated using the following equation:

where MI = (X;Y) is the value of mutual information for variables X and Y  , e(X) rep-
resents the marginal entropy of X , and e(X |Y) represents the conditional entropy of X
given Y .

Boruta algorithm

Boruta is a wrapper feature selection algorithm [64] that identifies the most important
variables in a dataset. It works by creating shadow features that mimic the original fea-
tures and comparing their importance to that of the original features using a random
forest model [65]. The algorithm then assigns a tentative status to each feature based on
its importance relative to the shadow features. Features that are more important than
shadow features are given a confirmed status, while those that are less important are
given a rejected status. The algorithm iteratively re-runs the random forest model until
all features have been assigned a confirmed or rejected status, providing a robust feature
selection process. The Boruta algorithm offers several advantages. First, it is a model-
agnostic algorithm, meaning it can be used with any machine learning model and is not
biased toward a specific algorithm. Second, it can handle different types of data, such
as numerical, categorical, and mixed data. Third, the algorithm can identify complex
relationships between features and can handle interactions between them. Finally, it is
a robust algorithm that can handle noisy data and is less likely to overfit compared to
other feature selection methods [64, 66].

The Boruta algorithm has the following steps:

1.	 Extend the dataset by creating shadow features that mimic the original features.
2.	 Shuffle the values of the added duplicate features to eliminate any correlation with

the response variable.

(3)MI = (X;Y) = e (X)− e (X |Y)

Page 12 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

3.	 Train a random forest classifier on the extended dataset (including both the original
and shadow features) and calculate the Zscore , which is the mean of accuracy loss
divided by the standard deviation of accuracy loss.

4.	 Find the maximum Zscore among the shadow attributes (MZSA) , and then tenta-
tively tag the features as ‘important’ if their Z Score is significantly greater than
MZSA or as ‘unimportant’ otherwise.

5.	 Repeat steps 3 and 4 until all features are tagged as important or unimportant.
6.	 Remove the unimportant features and retain the important ones.
7.	 Remove all shadow attributes.
8.	 Optionally, rank the important features and select a subset of top-ranked features for

model training.

A MI‑boruta algorithm for feature selection

In this section, we propose an MI-Boruta algorithm to select the best subset of features
from D1 and D2. At first, the MI method is used to select XMI−best from the set of all pos-
sible pairs of features in the feature space, with XMI−best being chosen based on the value
of MI between the pairs. 2 Based on the MI algorithm, 31 and 51 features were respec-
tively selected out of 42 and 78 features of D1 and D2. Table 4 shows features selected by
the MI algorithm. In the next step, the Boruta algorithm uses the feature importances
obtained from the random forest models it trains to select the best YBoruta−best subset of
features. Based on the Boruta algorithm, 33 and 59 features were respectively selected
out of 42 and 78 features of D1 and D2. Table 5 shows features selected by Boruta.
Lastly, the final subset of features, ZMI−Boruta−best , is selected by finding the intersection
between XMI−best and YBoruta−best . Algorithm 1 summarizes this process. Based on this
algorithm, 27 and 37 features are respectively selected out of 42 and 78 features of D1
and D2. Table 6 depicts important selected features.

Table 4  Feature selected through the MI approach

Dataset Features selected

D1 Dur, proto, state, spkts, ct_state_ttl, ct_dst_ltm, dinpkt, sjit, djit, stcpb, smean, dloss,
ackdat, ct_dst_sport_ltm, ct_dst_src_ltm, sinpkt, dload, sloss, ct_src_dport_ltm,
ct_srv_dst, dttl,dbytes, dmean, sload, ct_srv_src, sttl, tcprtt, synack, rate, dpkts, sbytes

D2 Destination Port, Total Length of Fwd Packets,, Fwd Packet Length Min, Fwd Packet
Length Mean, Bwd Packet Length Min,,Flow Bytes/s, Flow Packets/s,Flow IAT Mean,
Flow IAT Std, Flow IAT Max, Fwd IAT Total, Flow Duration, Total Backward Packets,Fwd
IAT Mean, Total Length of Bwd Packets, Fwd Packet Length Max,Fwd IAT Std, Init_
Win_bytes_backward, min_seg_size_forward,Fwd IAT Max,, Fwd Packet Length Std,
Bwd Packet Length Max, Bwd IAT Total, Bwd Packet Length Mean, Bwd Packet Length
Std,Bwd IAT Mean, Subflow Bwd Bytes, Init_Win_bytes_forward,Bwd IAT Max, Bwd
IAT Min, Fwd Header Length, Bwd Header Length, Fwd Packets/s, Bwd Packets/s, Min
Packet Length, Max Packet Length, Packet Length Mean, Packet Length Std, Packet
Length Variance, Average Packet Size, Idle Max, Idle Min.,Avg Fwd Segment Size, Avg
Bwd Segment Size, Fwd Header Length.1,Subflow Fwd Bytes, Subflow Bwd Packets,
Active Mean,Active Max, Active Min,Idle Mean,

2  Based on a few rounds of experiments, we used MI ≥ 0.1 for this step.

Page 13 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Algorithm 1  MI-Boruta Approach for Features Selection

Input : UNSW-NB15 (), CICIDS2017()

Output: The best subset of features for and

Pre-processing dataset
// Data filtration
Step1:

= Remove ‘NaN’ and ‘Infinity’from .
// Data numeralization
Step2:
 If (non-numeric features) then do:

= applied 1-N numeric coding for
End if

// Data normalization scaling
Step3:

, = compute Min-MaxScaling for (,)

Step4: = Remove the features whose MI score less than 0.1 for
and based on the MI method.

Step5: = Using the Boruta algorithm to select the best subset for and

Step6: = INTERSECTION (,) for
and

Table 5  Features selected through the boruta approach

Dataset Features selected

D1 Dur, proto, spkts, dinpkt, service,sjit, djit, stcpb, tcprtt, dtcpb,synack, ct_dst_ltm, swin,ct_src_dport_
ltm, ct_srv_dst, trans_depth, dpkts, sbytes, dbytes, sload, dload, sloss, ct_src_ltm, rate, sttl, ct_dst_
sport_ltm, ct_dst_src_ltm, is_sm_ips_ports, ackdat, smean, dmean, ct_srv_src, ct_state_ttl

D2 Destination Port, Total Backward Packets, URG Flag Count, CWE Flag Count,Total Length of Fwd Pack-
ets, Total Length of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Min, Fwd Avg Packets/
Bulk, Bwd Packet Length Mean, Flow Packets/s, Bwd URG Flags, Fwd Header Length, Bwd Header
Length, Min Packet Length, Max Packet Length,Bwd Avg Bulk Rate,Packet Length Std, Packet Length
Variance,FIN Flag Count, SYN Flag Count, ECE Flag Count, Down/Up Ratio, Average Packet Size, Avg
Fwd Segment Size, Avg Bwd Segment Size, Fwd Header Length.1, Fwd Avg Bytes/Bulk, Subflow Fwd
Packets, Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active
Std, Active Max, Active Min,Idle Mean, Idle Std, Flow Duration, Total Fwd Packets, Flow IAT Mean,
Flow IAT Std, Fwd URG Flags, Fwd Packet Length Mean, Fwd Packet Length Std, RST Flag Count, Bwd
Packet Length Max, Bwd Packet Length Min, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Pack-
ets/Bulk, Subflow Bwd Packets, Subflow Bwd Bytes, Subflow Fwd Bytes,Init_Win_bytes_forward, Bwd
Packet Length Std,Flow Bytes/s, PSH Flag Count, ACK Flag Count

Table 6  Features selected through the MI-boruta approach

Dataset Quantity Features selected by the MI-Boruta approach

D1 27 Dur, Proto, Dmean, Ct_srv_dst, Ackdat, Ct_dst_src_itm, Dpkts, ct_state_ttl, Stcpb, Ct_srv_
src,Sload, Ct_dst_itm,Smean, Dinpkt, Sttl, Rate, Sloss, Ct_src_dport_itm, Sjit, Sbytes, Tcprtt,
Dload, Synack, Spkts, Dbytes, Ct_dst_sport_itm, djit

D2 37 Destination Port,Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet
Length Max, Fwd Packet Length Min, Bwd Packet Length Max, Bwd Packet Length Min,
Bwd Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Bwd Header Length,
Min Packet Length, Packet Length Std, Packet Length Variance, Average Packet Size, Avg
Fwd Segment Size, Avg Bwd Segment Size, Fwd Header Length.1, Subflow Bwd Packets,
Subflow Bwd Bytes, Active Min,Init_Win_bytes_forward, Init_Win_bytes_backward,
min_seg_size_forward, Active Max, Active Mean, Idle Mean, Flow Duration, Total Back-
ward Packets, Fwd Packet Length Mean, Fwd Packet Length Std, Flow IAT Std,Fwd Header
Length, Max Packet Length, Packet Length Mean, Subflow Fwd Bytes

Page 14 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

Ensemble learning classifier

Ensemble learning classifiers combine two or more machine learning algorithms to
attain better performance in contrast to using individual algorithms. The approach
of ensemble learning can be classified into three categories: boosting, bagging,
and stacking. The boosting method, which was first discussed by Schapire [67] in
1990, involves intensive training of models on misclassified data during the train-
ing phase. Eventually, the model with the highest accuracy is selected as the clas-
sifier for the test data. The bagging approach, developed in 1996 by Breiman [68],
involves using homogeneous models to predict the class of test data. Initially, the
predictions of the selected homogenous models are recorded. Then, the class that
is predicted by the majority of models is assigned to the test data. Wolpert [69]
introduced the stacking approach, also known as stacked generalization, in 1992.
This method is considered an effective strategy as it provides a general framework
to combine numerous ensemble algorithms. It involves two levels of learning, where
the initial (base) learners are trained using a training dataset in level 0, and meta-
learning takes place in level 1. The base learners generate a new dataset for the
meta-learner, and this new dataset is used to train the meta-learner. The trained
meta-learner is then used to classify the test set. Unlike boosting and bagging
ensembles that typically use the same type of model, stacked ensemble can integrate
different types of models. Therefore, selecting the optimal base learner is a crucial
part of the stacking approach, and several base learners should be selected for the
training dataset instead of a single one.

Overall, stacked ensemble learning provides several advantages over bagging and
boosting methods:

•	 Improved predictive accuracy: Stacked ensembles can achieve higher predictive
accuracy than individual models or other ensemble techniques, such as bagging
and boosting. This is due to the combination of diverse base models in the stacked
ensemble, which can capture different aspects of the data and reduce bias and var-
iance [69].

•	 Better robustness: Stacked ensemble learning can reduce the risk of overfitting and
increase the robustness of the model by incorporating a meta-learner that combines
the outputs of the base models. The meta-learner can identify and correct errors
made by the base models, leading to better generalization performance [70].

•	 Flexibility: Unlike bagging and boosting, which typically use the same type of model,
stacked ensembles can integrate different types of models, including both linear
and non-linear models. This allows for more flexibility in model selection and can
improve performance on complex datasets [71].

To leverage the advantages of stacked ensembles, we will employ them in this paper by
using random forest, CatBoost, and XGBoost algorithms as base learners and multilayer
perceptron (MLP) as the meta-learner. As we discuss later in the paper, using stacked
ensembles enables us to reduce the variance of prediction errors, as well as to improve
robustness by minimizing prediction dispersion [72].

Page 15 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Random forest algorithm

Breiman’s random forest (RF) [73] is an ensemble-based classification method that con-
structs multiple classification trees by drawing bootstrap samples from the original data.
Each tree then casts a vote on how to categorize a new item. The final decision is made
based on the majority vote. RF offers several advantages, such as the ability to predict
important variables, low classification errors, the capability to handle imbalanced data-
sets, efficient handling of big data sets with thousands of variables, addressing overfit-
ting, and maintaining accurate classification across various datasets. These advantages
make RF a powerful and versatile classification method.

XGBoost algorithm

eXtreme Gradient Boosting (XGBoost) [74] is an ensemble learning method that is
based on the gradient boosting decision tree (GBDT) algorithm. The Xgboost supports
linear classifiers and uses traditional CART (Classification And Regression Trees) as the
base classifier. It enhances prediction accuracy by utilizing Taylor expansion for the cost
function and incorporating second derivatives. The XGBoost algorithm utilizes an addi-
tive training technique to optimize the objective function, where the optimization pro-
cess of each subsequent step relies on the results of the previous step. The principles of
the XGBoost algorithm are as follows:

1.	 XGBoost employs an additive training technique to optimize the objective function,
which means that the optimization process of latter steps relies on the optimization
result of the previous steps. The tth objective function of the model is expressed by the
following equation:

where l represents the loss term of the tth round, � is the regularization term, and C rep-
resents a constant term. The value of �(ft) is shown in Eq. 5

where both γ and � are customization parameters of XGBoost. In general, increasing the
values of these two parameters simplifies the tree structure, effectively addressing the
problem of overfitting.

2.	 Perform a second-order Taylor expansion on Eq. 4 This process is shown in
Eq. 6where g is the first derivative, and h is the second derivative. gi and hi can be
described as the following:

(4)obj(t) =
∑n

i=1
l
(
yi, ŷ

t−1
i

)
+ ft(xi))+�(ft)+ C

(5)�
(
ft
)
= γ.Tt + �

1

2

T∑

j=1

w2
j

(6)obj(t) =
∑n

i=1

[
l
(
yi, ŷ

t−1
i

)
+ gift(xi)+

1

2
hif

2
t +�(ft)+ C

]

(7)gi = ∂
ŷt−1
i

l
(
yi, ŷ

t−1
i

)

Page 16 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

3.	 Substitute (5), (7), and (8) into (6) and take the derivative. Then, solutions can be
obtained from (9) and (10) as follows:

In these equations, w∗
j refers to the weights solution, and obj∗ represents the score of

the loss function. The smaller this score, the better the structure of the tree.

Categorical boosting (Catboost) algorithm

Catboost is a machine learning classifier based on the gradient boosting decision tree
framework and is available as an open-source library [75]. This classifier offers several
advantages, including (1) the ability to handle categorical data using statistical methods,
(2) optimization of extensive input parameters to reduce overfitting, (3) reduction of the
loss function in each iteration to improve model generalization, (4) faster performance
than other boosting algorithms thanks to the implementation of symmetric trees, (5)
only requiring a small number of parameters, and (6) suitability for large datasets with
low latency requirements.

Multilayer perceptron algorithm

MLP is a feed-forward artificial neural network that is constructed with three or more
layers. The first layer is the input layer, the last layer is the output layer, and the middle
layer has one or more hidden layers. Each layer contains a set of neurons or nodes. MLP
learns a function f (x) : Rm → Ro by training on a dataset using the backpropagation
learning method. Here, m represents the number of input dimensions, and o represents
the number of output dimensions. In an MLP, each layer can be characterized by the fol-
lowing equivalent equations:

In the above equations, φ is the activation function, W is the weight vector, X is the
input vector, and b is the bias. For this study, we used MLP as the meta-learner, consist-
ing of one hidden layer with 200 neurons

(8)hi = ∂2
ŷt−1
i

l
(
yi, ŷ

t−1
i

)

(9)w∗
j = −

∑
gi∑

hi + �

(10)obj∗ = −
1

2

T∑

j=1

(∑
gi
)

∑
hi + �

2

+ γ. T

(11)y = φ

(
n∑

i=1

WiX + b

)

(12)y = φ

(
WTX + b

)

Page 17 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Stacked ensemble classifier

This section describes a proposed stacking ensemble classifier consisting of base clas-
sifiers (level 0) and meta-classifiers (level 1). The input training dataset (D) for the base
classifiers is composed of selected features from MI-Boruta. The predictions from level
0 serve as input for level 1. Overfitting issues during training are addressed by imple-
menting a k-fold cross-validation method. The training data (D) is partitioned into k dis-
joint subsets of equal size ( D1,D2,D3, . . . ,Dn ), with one of the k-subsets used for testing
and the remaining subsets ( k − 1/k ) used for training the classifiers. In this study, the
base classifiers (level 0) include RF, XGB, and Catboost, and are trained using five-fold
cross-validation. The meta-classifier (level 1) utilizes the MLP algorithm to combine the
results of the three base classifiers and generate the final predicted output. Table 7 shows
the parameters of the stacked ensemble model. Algorithm 2 outlines the general algo-
rithm for stacking ensemble classifiers.

Algorithm 2  Stacked Ensemble Classifier

Performance evaluation

In this section, we evaluate our proposed model using different performance metrics, such
as accuracy, recall, precision, F1 score, and the AUCROC curve. These metrics are derived
from a confusion matrix, which is a two-dimensional table that compares the predicted and

Table 7  Experimental model parameters

Model Parameters

RF
XGBoost
Catboost
MLP

n_estimators = 200, criterion = ”entropy”, max_depth = 60
n_estimators = 600, max_depth = 31, objective = ”binary:logistic" for binary classification and
objective = "multi:softprob" for multi-classification
n_estimators = 500, loss_function = ”Logloss” for binary classification and
loss_function = ”MultiClass” for multi-classification
one hidden_layer_sizes with 200 neurons

Page 18 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

actual classes and distinguishes the outcomes of the classification. The confusion matrix is
based on the following four values:

•	 True Negative (TN): both the original data as well as the predicted data are false.
•	 True Positive (TP): both the original data as well as the predicted data are true.
•	 False Negative (FN): original data are true, but the predicted data are false.
•	 False Positive (FP): original data are false, but the predicted data are true.

Accuracy is the ratio of instances that have been correctly classified to the total number
of instances. This can be defined as:

Recall, also referred to as the detection rate (DR), true positive rate (TPR), or sensitivity, is
the percentage of total true positive (TP) cases divided by the total number of true positive
(TP) and false positive (FN) cases. It is calculated as illustrated in the following formula:

Precision is the percentage of total true positive (TP) cases divided by the total number of
true positive (TP) and false positive (FP) cases. The following formula represents precision:

F1 score is the harmonic mean of recall and precision defined by the following equation:

The False Positive Rate (FPR) shows the percentage of normal traffic detected as an
attack. The FPR is calculated as:

The False Negative Rate (FNR) is the percentage of attacks detected as normal traffic.
FNR is calculated as:

Error Rate (ER) is calculated using the following equation:

Finally, the Area Under the Curve (AUC) is a parameter used for evaluating the perfor-
mance of a machine learning model at all categorization thresholds. It is characterized
by the false positive and true positive rates on the X and Y axes, respectively. When the

(13)accuracy =
TP + TN

TP + TN + FP + FN

(14)Recall = DR = TPR =
TP

TP + FN

(15)Precision =
TP

TP + FP

(16)F1 = 2×

(
Precision× Recall

Precision+ Recall

)

(17)FPR =
FP

FP + TN

(18)FNR =
FN

TP + FN

(19)ER =
FP + FN

TP + TN + FP + FN

Page 19 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

curve is close to the top left corner, the model performs better. Conversely, the model
performs poorly if the curve is closer to the baseline. AUC is obtained using the follow-
ing formula:

Experimental results and discussion
In this section, we evaluate the performance of our proposed stacked ensemble classifier
with various individual classification algorithms, as well as with state-of-the-art meth-
ods. It deserves to mention that model development and evaluation were performed
using Python on a machine with the following specifications:

•	 Operating system: Windows 11 (64-bit)
•	 CPU: Ryzen7 5800 h
•	 RAM: 32 GB
•	 HDD: 1 TB SSD
•	 VGA: RTX3070 8 GB

Comparison with individual classifiers

We assessed the performance of our stack ensemble classifier by comparing it to several
individual classification algorithms (such as RF, XGBoost, Catboost, and MLP) using the
same MI-Boruta feature selection technique. Our study employed a multi-classification
approach and evaluated the accuracy and F1 score using two confusion matrices. Fig-
ure 4 provides a summary of the model’s performance relative to the individual clas-
sification algorithms. According to Fig. 4a, our stack ensemble classifier outperformed
the individual algorithms on both the UNSW-BN15 and CICIDS2017 datasets, with an
accuracy of 84.88 and 99.92% for D1 and D2, respectively. Similarly, as shown in Fig. 4b,
our model achieved a higher F1-score than the individual classification algorithms on
both datasets, with scores of 84.15 and 99.92% for D1 and D2.

We recorded the computation time of each base classifier and the stacked ensemble
for UNSWNB-15 and CICIDS2017 datasets, which have different sizes. The computa-
tion times of UNSWNB-15 were 0.14 s, 0.24 s, 0.28 s, 0.03 s, and 0.68 s for RF, Catboost,
XGBoost, MLP, and stacked ensemble respectively. The computation times of CIC-
IDS2017 were 1.21 s, 3.29 s, 2.44 s, 0.43 s, and 7.21 s for RF, Catboost, XGBoost, MLP,
and stacked ensemble respectively. As expected, the stacked ensemble takes more time
than individual classification models in both datasets.

Comparison with the state‑of‑the‑art methods

In this section, we present a comparative analysis of our proposed model’s performance
with earlier research on binary and multi-class classification using D1 and D2. The evalu-
ation metrics are presented in Tables 8, 9, 10. Table 8 shows the binary classification
performance of our proposed model and other recent IDS studies for D1. Similarly,

(20)AUC =

∫ 1

0

TPRd(FPR)

Page 20 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

Table 9 shows the performance of our model and recent IDS studies for binary classifica-
tion using D2. Table 10 compares the multi-class classification performance of our model
with that of recent IDS studies for both datasets.

According to the information presented in these tables, our proposed model has a bet-
ter overall performance than prior studies. For binary classification of D1, our model’s
accuracy is 95.34%, recall is 94.64%, precision is 92.62%, F1 score is 93.62%, FPR is 4.2%,
and the AUC is 95.19% (Fig. 5a). For multi-class classification of D1 using a subset of
27 features (which denotes a simpler model), the accuracy is 84.88%, recall is 84.88%,
precision is 84.93%, and F1 score is 84.15%. Table 11 presents the performance results
of the proposed model for each class of D1. For D2, the accuracy for binary classification
is 99.925%, recall is 99.926%, precision is 99.979%, F1 score is 99.953%, FPR is 0.08%,
and the AUC is 99.922% (Fig. 5b). For multi-class classification of D2 using a subset of
37 features, the accuracy is 99.92%, recall is 99.92%, precision is 99.92%, and F1 score is
99.92%. Table 12 presents the performance results of the proposed model for each class
of D2.The confusion matrices for binary and multi-class classification of both datasets
are shown in Figs. 6 and 7.

Fig. 4  Performance comparison of classifiers for the two datasets

Page 21 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Ta
bl

e 
8 

Co
m

pa
ris

on
 o

f e
va

lu
at

io
n

m
et

ric
s

be
tw

ee
n

ou
r p

ro
po

se
d

m
od

el
 a

nd
 re

ce
nt

 ID
S

st
ud

ie
s

fo
r b

in
ar

y
cl

as
si

fic
at

io
n

on
 th

e
U

N
SW

-N
B1

5
da

ta
se

t (
be

st
 v

al
ue

s
ar

e
de

no
te

d
in

bo

ld
)

Re
f

Fe
at

ur
e

se
le

ct
io

n
m

et
ho

d
Cl

as
si

fic
at

io
n

m
et

ho
d

A
cc

ur
ac

y
(%

)
Re

ca
ll

(%
)

Pr
ec

is
io

n
(%

)
F 1 s

co
re

 (%
)

FP
R

(%
)

FN
R

(%
)

ER
 (%

)
AU

C​

[3
5]

PI
O

D
T

91
.3

89
.7

N
/A

90
.4

5.
2

N
/A

N
/A

N
/A

[2
4]

IG
M

LP
76

.9
6

77
79

.8
N

/A
20

.6
N

/A
23

.9
5

N
/A

[4
6]

Li
gh

tG
BM

D
N

N
88

.3
4

87
.5

4
N

/A
88

.1
4

12
.4

6
N

/A
N

/A
N

/A

[7
6]

G
TO

-B
SA

KN
N

71
.0

1
81

.5
4

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

[7
7]

U
M

A
P

RF
92

.6
91

N
/A

90
.5

N
/A

N
/A

N
/A

85

[7
8]

N
/A

Ba
gg

in
g-

G
BM

94
.6

6
92

.9
4

92
.2

1
92

.6
4.

38
N

/A
N

/A
99

.1
[5

1]
Se

le
ct

s
k

be
st

 fe
at

ur
es

 a
cc

or
d-

in
g

to
 th

e
hi

gh
es

t s
co

re
s

St
ac

ki
ng

 e
ns

em
bl

e
(D

T,
 R

F,
XG

oo
st

)
94

94
N

/A
N

/A
6

N
/A

N
/A

96

[7
9]

N
/A

St
ac

k
en

se
m

bl
e

(D
N

N
, G

BM
)

92
.8

3
N

/A
N

/A
N

/A
8.

91
N

/A
N

/A
N

/A

Th
is

 s
tu

dy
M

I-B
or

ut
a

St
ac

ke
d

en
se

m
bl

e
(R

F,
 X

G
Bo

os
t,

Ca
tb

oo
st

, M
LP

)
95

.3
46

94
.6

45
92

.6
23

93
.6

23
4.

2
5.

3
4.

8
95

.1

Page 22 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

Ta
bl

e 
9 

Co
m

pa
ris

on
 o

f e
va

lu
at

io
n

m
et

ric
s

be
tw

ee
n

ou
r p

ro
po

se
d

m
od

el
 a

nd
 re

ce
nt

 ID
S

st
ud

ie
s

fo
r b

in
ar

y
cl

as
si

fic
at

io
n

on
 t

he
 C

IC
ID

S2
01

7
da

ta
se

t
(b

es
t

va
lu

es
 a

re
 d

en
ot

ed
 in

bo

ld
)

Re
f

Fe
at

ur
e

se
le

ct
io

n
m

et
ho

d
Cl

as
si

fic
at

io
n

m
et

ho
d

A
cc

ur
ac

y
(%

)
Re

ca
ll

(%
)

Pr
ec

is
io

n
(%

)
F 1 S

co
re

 (%
)

FP
R

(%
)

FN
R

(%
)

ER
 (%

)
AU

C​

[3
0]

RF
H

ar
d

vo
tin

g
(N

B,
 L

R,
 D

T)
88

.9
2

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

[7
6]

G
TO

-B
SA

KN
N

98
.7

91
5

97
.2

64
4

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

[5
3]

G
ra

di
en

t B
oo

st
 T

re
es

 w
ith

 m
et

a-
tr

an
sf

or
m

er
XG

Bo
os

t
99

.8
6

99
.7

5
99

.6
9

99
.7

2
0.

2
0.

17
0.

14
99

.7
2

[8
0]

Fe
at

ur
e

fu
si

on
 te

ch
ni

qu
e

ba
se

d
on

 g
ra

di
en

t
im

po
rt

an
ce

 e
nh

an
ce

m
en

t
Re

sN
et

-1
8

99
.7

8
99

.7
9

99
.8

2
99

.8
0

N
/A

N
/A

N
/A

N
/A

[8
1]

G
ai

n
ra

tio
 a

nd
 P

ea
rs

on
’s

co
rr

el
at

io
n

RF
99

.8
30

2
99

.8
83

9
99

.9
04

4
99

.8
94

2
0.

38
72

N
/A

N
/A

N
/A

[8
2]

N
/A

St
ac

ki
ng

 (M
LP

, L
ST

M
, D

N
N

, C
N

N
)

98
.7

97
.6

95
.9

96
.7

1
N

/A
N

/A
99

.9

[7
9]

N
/A

St
ac

k
(D

N
N

, G
BM

)
99

.6
5

N
/A

N
/A

N
/A

1.
67

N
/A

N
/A

N
/A

Th
is

 s
tu

dy
M

I-B
or

ut
a

St
ac

ke
d

en
se

m
bl

e
(R

F,

XG
bo

os
t,

Ca
tb

oo
st

, M
LP

)
99

.9
25

99
.9

26
99

.9
79

99
.9

53
0.

08
0.

07
0.

07
99

.9
22

Page 23 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Conclusion
With the widespread use of the Internet, network security has become a crucial
aspect in distributed systems. While previous studies have used different machine
learning algorithms to improve the performance of intrusion detection systems (IDS),
they still face several challenges in achieving optimal performance. To address this,
we presented an effective IDS model that utilizes a hybrid feature selection method
and an ensemble learning technique on two well-known intrusion detection bench-
mark datasets. Our approach started by proposing an MI-Boruta algorithm to select
the best features from the datasets. Then, we used a stacked ensemble classifier,
comprising random forest, XGBoost, and Catboost as base learners and multilayer

Table 10  Comparison of evaluation metrics between our proposed model and recent IDS studies
for multi-classification for both datasets (best values are denoted in bold)

Ref Dataset Feature
selection
method

Classification
method

Accuracy
(%)

Recall (%) Precision
(%)

F1 Score (%)

[50] D1 TS RF 83.12 N/A N/A N/A

[47] D1 IGRF-RFE MLP 84.24 0.8424 0.8360 0.8285

[83] D1 NRS-SSA Adaptive
ensemble
(DT, KNN, RF,
XGBoost)

81.54 81.54 82.7 79.7

[77] D1 UMAP RF 81.6 80 N/A 80

[84] D1 N/A Ensemble
(Group convo-
lution network
snapshot
ensmble)

79.03 80.01 81.21 80.61

This study D1 MI-Boruta Stacked
ensemble (RF,
XGboost, Cat-
boost, MLP)

84.88 84.88 84.93 84.15

[30] D2 RF Hard voting
(NB, LR, DT)

88.96 N/A N/A N/A

[85] D2 Boruta ET 99.8 99.8 N/A N/A

[53] D2 Gradient
Boost Trees
with meta-
transformer

XGBoost 99.90 99.90 99.90 99.90

[86] D2 Chi-squared Triple layered
hybrid
(weighted
DNN,
CNN + LSTM,
XGBoost)

98.46 98.21 86.42 98.1

[82] D2 N/A Stacking (MLP,
LSTM, DNN,
CNN)

98.7 98.7 98.7 98.6

This study D2 MI-Boruta Stacked
ensemble (RF,
XGboost, Cat-
boost, MLP)

99.92 99.92 99.92 99.92

Page 24 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

perceptron as the meta-learner, for classification. Our experimental results indicated
excellent performance in binary and multi-class classification for both datasets. Spe-
cifically, the accuracy of binary classification was 95.34%, with 94.64% recall, 92.62%

Fig. 5  The Area under the ROC Curve for D1 and D2

Page 25 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

precision, 93.62% F1 score, and a 4.2% false positive rate. For multi-class classifica-
tion, the accuracy was 84.88%, with 84.88% recall, 84.93% precision, and 84.15% F1
score, using a subset of 27 features from the UNSW-NB15 dataset. In particular, our
model achieved the highest accuracy for binary and multi-class classification on CIC-
IDS2017, with a binary classification accuracy of 99.92%, 99.92% recall, 99.97% preci-
sion, 99.95% F1 score, and 0.08% FPR. For multi-class classification, the accuracy was
99.92%, with 99.92% recall, 99.92% precision, and 99.92% F1 score, using a subset of
37 features from D2. Furthermore, our proposed stacked ensemble classifier outper-
formed individual classification methods in terms of accuracy and F1 score. Finally,
comparisons with state-of-the-art methods demonstrated that our model provides a
competitive advantage in the intrusion detection domain.

Our study has several implications for future research in the field of intrusion detec-
tion. First, the proposed hybrid feature selection method and stacked ensemble clas-
sifier have demonstrated good results in detecting intrusions in widely used datasets

Table 11  Performance results of D1 for multiclass classification

Attack type Precision Recall F1 score

Normal 93.19 93.45 93.19

Reconnaissance 92.27 75.51 83.05

Fuzzers 72.26 67.82 69.97

Analysis 76.63 15.32 25.54

Exploits 66.74 88.27 76.01

Backdoor 49.6 26.60 24.63

DoS 56.12 32.34 41.03

Generic 99.42 98.42 98.92

Shellcode 66.56 73.84 70.01

Worms 71.87 65.71 68.65

Table 12  Performance results of D2 for multiclass classification

Attack type Precision Recall F1 score

BENIGN 99.97 99.93 99.95

DDoS 99.97 99.96 99.97

FTP-Patator 100 99.93 99.96

DoS 99.83 99.96 99.89

Bot 98.63 73.91 84.5

Heartbleed 100 100 100

Infiltration 100 100 100

PortScan 99.34 99.98 99.66

SSH-Patator 100 100 100

Web Attack 99.06 97.47 98.26

Page 26 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

Fig. 6  Confusion matrices for binary classification of D1 and D2

Page 27 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

Fig. 7  Confusion matrix for multi-class classification of D1 and D2

Page 28 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

such as UNSW-NB15 and CICIDS017. Therefore, further research could explore the
effectiveness of these techniques in other datasets to further evaluate their general-
izability. Second, while the proposed model outperformed state-of-the-art methods
in terms of accuracy and F1 score, there is still room for improvement in terms of
reducing false positives and false negatives. Future research could investigate how to
further improve the model’s performance by fine-tuning its parameters or develop-
ing new algorithms to address these issues. Third, the proposed model used a com-
bination of RF, XGBoost, and Catboost as base learners with MLP as a meta-learner.
Future research could explore the effectiveness of other machine learning algo-
rithms as base or meta-learners to enhance the model’s performance. Finally, while
the proposed model achieved good results in both binary and multi-classification, it
would be interesting to investigate how to improve the performance in specific types
of attacks or in more complex scenarios such as detecting attacks in real-time or in
highly dynamic environments.

One limitation of our study is its lack of explainability. The model’s decisions and pre-
dictions cannot be easily interpreted and understood, making it challenging to identify
the root causes of errors or biases. This may limit the paper’s practical applications in
sensitive domains where interpretability is essential, such as healthcare or finance.

Abbreviations
RF	� Random forest
BN	� Bayes net
RT	� Random tree
DT	� Decision tree
LR	� Logistic regression
KNN	� K-nearest neighbor
SVM	� Support vector machine
ELM	� Extreme learning machine
XGBoost	� EXtreme gradient boosting
Adaboost	� Adaptive boosting
GBM	� Gradient boosting machine
LightGBM	� Light gradient boosting machine
RT	� Random tree
DS	� Decision stump
ET	� Extra tree
IG	� Information gain
PIO	� Pigeon-inspired optimizer
PSO	� Particle swarm optimization
BOA	� Bat optimization algorithm
GWO	� Grey wolf optimization
RFE	� Recursive feature elimination
CS	� Cuckoo search
SFS	� Sequential forward selection
GTO	� Gorilla troops optimizer
BSA	� Bird swarms algorithm
UMAP	� Uniform manifold approximation and projection
NRS	� Neighborhood rough set
SSA	� Salp swarm algorithm
TS	� Tabu search
RNN	� Recurrent neural network
LSTM	� Long short-term memory
MLP	� Multilayer perceptron
ANN	� Artificial neural network
CNN	� Convolutional neural network
DNN	� Deep neural network
AE	� Autoencoder
DAE	� Denoising autoencoder
VAE	� Variational autoencoder
DNN	� Deep neural network

Page 29 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

GRU​	� Gated recurrent units
Bi-LSTM	� Bidirectional long-short term memory
BPNN	� Back propagation neural network
RBFN	� Radial basis function network
GBM	� Gradient boosting machine

Author contributions
A.M.A. and H.M.Z wrote the manuscript. A.M.A. was the lead in data preprocessing, model building, and evaluation.
M.N.B. supervised the study and was a major contributor in model building and evaluation. All authors read and
approved the final manuscript.

Data availability
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Received: 24 August 2023 Accepted: 27 August 2024

References
	1.	 Leszczyna R, Wallis T, Wróbel MR. Developing novel solutions to realise the European energy—information sharing &

analysis centre. Decis Support Syst. 2018;122:2019. https://​doi.​org/​10.​1016/j.​dss.​2019.​05.​007.
	2.	 Zhang H, Chari K, Agrawal M. Decision support for the optimal allocation of security controls. Decis Support Syst.

2018;115:92–104. https://​doi.​org/​10.​1016/j.​dss.​2018.​10.​001.
	3.	 Zadeh A, Jeyaraj A. A multistate modeling approach for organizational cybersecurity exploration and exploitation.

Decis Support Syst. 2022;162(August):113849. https://​doi.​org/​10.​1016/j.​dss.​2022.​113849.
	4.	 Li S, Iqbal M, Saxena N. Future industry internet of things with zero-trust security. Inf Syst Front. 2022. https://​doi.​

org/​10.​1007/​s10796-​021-​10199-5.
	5.	 Ge M, Syed NF, Fu X, Baig Z, Robles-Kelly A. Towards a deep learning-driven intrusion detection approach for inter-

net of things. Comput Netw. 2021. https://​doi.​org/​10.​1016/j.​comnet.​2020.​107784.
	6.	 Derhab A, Belaoued M, Mohiuddin I, Kurniawan F, Khan MK. Histogram-based intrusion detection and filtering

framework for secure and safe in-vehicle networks. IEEE Trans Intell Transp Syst. 2022;23(3):2366–79. https://​doi.​org/​
10.​1109/​TITS.​2021.​30889​98.

	7.	 Safaldin M, Otair M, Abualigah L. Improved binary gray wolf optimizer and SVM for intrusion detection system
in wireless sensor networks. J Ambient Intell Humaniz Comput. 2021;12(2):1559–76. https://​doi.​org/​10.​1007/​
s12652-​020-​02228-z.

	8.	 Kumar P, Dwivedi YK, Anand A. Responsible artificial intelligence (AI) for value formation and market performance
in healthcare: the mediating role of patient ’ s cognitive engagement. Inf Syst Front. 2021. https://​doi.​org/​10.​1007/​
s10796-​021-​10136-6.

	9.	 McLeod A, Dolezel D. Cyber-analytics: modeling factors associated with healthcare data breaches. Decis Support
Syst. 2018;108:57–68. https://​doi.​org/​10.​1016/j.​dss.​2018.​02.​007.

	10.	 Khammassi C, Krichen S. A GA-LR wrapper approach for feature selection in network intrusion detection. Comput
Secur. 2017;70:255–77. https://​doi.​org/​10.​1016/j.​cose.​2017.​06.​005.

	11.	 Elhag S, Fernández A, Bawakid A, Alshomrani S, Herrera F. On the combination of genetic fuzzy systems and pair-
wise learning for improving detection rates on intrusion detection systems. Expert Syst Appl. 2015;42(1):193–202.
https://​doi.​org/​10.​1016/j.​eswa.​2014.​08.​002.

	12.	 Liang W, Xiao L, Zhang K, Tang M, He D, Li KC. Data fusion approach for collaborative anomaly intrusion detection in
blockchain-based systems. IEEE Internet Things J. 2022;9(16):14741–51. https://​doi.​org/​10.​1109/​JIOT.​2021.​30538​42.

	13.	 Jiang K, Wang W, Wang A, Wu H. Network intrusion detection combined hybrid sampling with deep hierarchical
network. IEEE Access. 2020;8(3):32464–76. https://​doi.​org/​10.​1109/​ACCESS.​2020.​29737​30.

	14.	 Mukhopadhyay A, Chatterjee S, Bagchi KK, Kirs PJ, Shukla GK. Cyber risk assessment and mitigation (CRAM) frame-
work using logit and probit models for cyber insurance. Inf Syst Front. 2019;21(5):997–1018. https://​doi.​org/​10.​1007/​
s10796-​017-​9808-5.

	15.	 Tchernykh A, Schwiegelsohn U, Ghazali Talbi E, Babenko M. Towards understanding uncertainty in cloud computing
with risks of confidentiality, integrity, and availability. J Comput Sci. 2019. https://​doi.​org/​10.​1016/j.​jocs.​2016.​11.​011.

	16.	 Stampar M, Fertalj K. “Artificial intelligence in network intrusion detection. 2015 38th Int Conv Inf Commun Technol
Electron Microelectron. 2015. https://​doi.​org/​10.​1109/​MIPRO.​2015.​71604​79.

	17.	 Muhuri PS, Chatterjee P, Yuan X, Roy K, Esterline A. Using a long short-term memory recurrent neural network
(LSTM-RNN) to classify network attacks. Inf. 2020;11(5):1–21. https://​doi.​org/​10.​3390/​INFO1​10502​43.

	18.	 Wan J, et al. An efficient impersonation attack detectionmethod in fog computing. Comput Mater Contin.
2021;68(1):268–81. https://​doi.​org/​10.​32604/​cmc.​2021.​016260.

	19.	 Pranto MB, Ratul MHA, Rahman MM, Diya IJ, Bin Zahir Z. Performance of machine learning techniques in
anomaly detection with basic feature selection strategy-a network intrusion detection system. J Adv Inf Technol.
2022;13(1):36–44. https://​doi.​org/​10.​1272/​jait.​13.1.​36-​44.

https://doi.org/10.1016/j.dss.2019.05.007
https://doi.org/10.1016/j.dss.2018.10.001
https://doi.org/10.1016/j.dss.2022.113849
https://doi.org/10.1007/s10796-021-10199-5
https://doi.org/10.1007/s10796-021-10199-5
https://doi.org/10.1016/j.comnet.2020.107784
https://doi.org/10.1109/TITS.2021.3088998
https://doi.org/10.1109/TITS.2021.3088998
https://doi.org/10.1007/s12652-020-02228-z
https://doi.org/10.1007/s12652-020-02228-z
https://doi.org/10.1007/s10796-021-10136-6
https://doi.org/10.1007/s10796-021-10136-6
https://doi.org/10.1016/j.dss.2018.02.007
https://doi.org/10.1016/j.cose.2017.06.005
https://doi.org/10.1016/j.eswa.2014.08.002
https://doi.org/10.1109/JIOT.2021.3053842
https://doi.org/10.1109/ACCESS.2020.2973730
https://doi.org/10.1007/s10796-017-9808-5
https://doi.org/10.1007/s10796-017-9808-5
https://doi.org/10.1016/j.jocs.2016.11.011
https://doi.org/10.1109/MIPRO.2015.7160479
https://doi.org/10.3390/INFO11050243
https://doi.org/10.32604/cmc.2021.016260
https://doi.org/10.1272/jait.13.1.36-44

Page 30 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

	20.	 Ozkan-Okay M, Samet R, Aslan O, Gupta D. A comprehensive systematic literature review on intrusion detection
systems. IEEE Access. 2021;9:157727–60. https://​doi.​org/​10.​1109/​ACCESS.​2021.​31293​36.

	21.	 Wu C, Li W. Enhancing intrusion detection with feature selection and neural network. Int J Intell Syst.
2021;36(7):3087–105. https://​doi.​org/​10.​1002/​int.​22397.

	22.	 Iwendi C, Khan S, Anajemba JH, Mittal M, Alenezi M, Alazab M. The use of ensemble models for multiple class and
binary class classification for improving intrusion detection systems. Sensors. 2020;20(9):1–37. https://​doi.​org/​10.​
3390/​s2009​2559.

	23.	 Kurniabudi DS, Darmawijoyo MY, Idris BB, Bamhdi AM, Budiarto R. CICIDS-2017 dataset feature analysis with informa-
tion gain for anomaly detection. IEEE Access. 2020;8:132911–21. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30098​43.

	24.	 Mebawondu JO, Alowolodu OD, Mebawondu JO, Adetunmbi AO. Network intrusion detection system using super-
vised learning paradigm. Sci Afr. 2020. https://​doi.​org/​10.​1016/j.​sciaf.​2020.​e00497.

	25.	 Mebawondu OJ, Popoola OS, Ayogu II, Ugwu CC, Adetunmbi AO. Network intrusion detection models based on
naives bayes and c4.5 algorithms. Proc 2022 IEEE Niger 4th Int Conf Disruptive Technol Sustain Dev NIGERCON 2022.
2022. https://​doi.​org/​10.​1109/​NIGER​CON54​645.​2022.​98030​86.

	26.	 Ahsan M, Gomes R, Chowdhury MM, Nygard KE. Enhancing machine learning prediction in cybersecurity using
dynamic feature selector. J Cybersecurity Priv. 2021;1(1):199–218. https://​doi.​org/​10.​3390/​jcp10​10011.

	27.	 Rashid MM, Kamruzzaman J, Ahmed M, Islam N, Wibowo S, Gordon S. Performance enhancement of intrusion
detection system using bagging ensemble technique with feature selection. 2020 IEEE Asia-Pac Conf Comput Sci
Data Eng. 2020. https://​doi.​org/​10.​1109/​CSDE5​0874.​2020.​94116​08.

	28.	 Zheng X, Wang Y, Jia L, Xiong D, Qiang J. Network intrusion detection model based on Chi-square test and stacking
approach. 2020 7th Int Conf Inf Sci Control Eng. 2020. https://​doi.​org/​10.​1109/​ICISC​E50968.​2020.​00185.

	29.	 Oriola O. A stacked generalization ensemble approach for improved intrusion detection. Int J Comput Sci Inf Secur.
2020;18(5):62–7.

	30.	 Abbas A, Khan MA, Latif S, Ajaz M, Shah AA, Ahmad J. A new ensemble-based intrusion detection system for inter-
net of things. Arab J Sci Eng. 2021;47(2):1805–19. https://​doi.​org/​10.​1007/​s13369-​021-​06086-5.

	31.	 Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82. https://​doi.​
org/​10.​1016/j.​aca.​2011.​07.​027.

	32.	 Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014;40(1):16–28. https://​doi.​
org/​10.​1016/j.​compe​leceng.​2013.​11.​024.

	33.	 Mirlashari M, Rizvi SAM. Feature selection technique-based network intrusion system using machine learning. 2020
IEEE World Conf Appl Intell Comput. 2022. https://​doi.​org/​10.​1109/​AIC55​036.​2022.​98488​61.

	34.	 Sharma NV, Yadav NS. An optimal intrusion detection system using recursive feature elimination and ensemble of
classifiers. Microprocess Microsyst. 2021;85:104293. https://​doi.​org/​10.​1016/j.​micpro.​2021.​104293.

	35.	 Alazzam H, Sharieh A, Sabri KE. A feature selection algorithm for intrusion detection system based on Pigeon
inspired optimizer. Expert Syst Appl. 2020. https://​doi.​org/​10.​1016/j.​eswa.​2020.​113249.

	36.	 Zhang L, Xu C. A intrusion detection model based on convolutional neural network and feature selection. 2022 5th
Int Conf Artif Intell Big Data. 2022. https://​doi.​org/​10.​1109/​ICAIB​D55127.​2022.​98203​84.

	37.	 Imran M, Khan S, Hlavacs H, Khan FA, Anwar S. Intrusion detection in networks using cuckoo search optimization.
Soft Comput. 2022;26(20):10651–63. https://​doi.​org/​10.​1007/​s00500-​022-​06798-2.

	38.	 Ogundokun RO, Awotunde JB, Sadiku P, Adeniyi EA, Abiodun M, Dauda OI. An enhanced intrusion detection system
using particle swarm optimization feature extraction technique. Procedia Comput Sci. 2021;193:504–12. https://​doi.​
org/​10.​1016/j.​procs.​2021.​10.​052.

	39.	 Alzubi QM, Anbar M, Sanjalawe Y, Al-Betar MA, Abdullah R. Intrusion detection system based on hybridizing a modi-
fied binary grey wolf optimization and particle swarm optimization. Expert Syst Appl. 2022;204:117597. https://​doi.​
org/​10.​1016/j.​eswa.​2022.​117597.

	40.	 Narayanasami S, et al. Biological feature selection and classification techniques for intrusion detection on BAT. Wirel
Pers Commun. 2021. https://​doi.​org/​10.​1007/​s11277-​021-​08721-8.

	41.	 Dwivedi S, Vardhan M, Tripathi S. Building an efficient intrusion detection system using grasshopper opti-
mization algorithm for anomaly detection. Cluster Comput. 2021;24(3):1881–900. https://​doi.​org/​10.​1007/​
s10586-​020-​03229-5.

	42.	 Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell. 1997. https://​doi.​org/​10.​1007/​978-3-​642-​39038-
8_​27.

	43.	 Guyon I, Barnhill JWS. Gene selection for cancer classification using support vector machines. Lect Notes Comput
Sci. 2008;5139:62–72. https://​doi.​org/​10.​1007/​978-3-​540-​88192-6_8.

	44.	 Kasongo SM, Sun Y. Performance analysis of intrusion detection systems using a feature selection method on the
UNSW-NB15 dataset. J Big Data. 2020. https://​doi.​org/​10.​1186/​s40537-​020-​00379-6.

	45.	 Tang C, Luktarhan N, Zhao Y. An efficient intrusion detection method based on LightGBM and autoencoder. Sym-
metry. 2020;12(9):1–16. https://​doi.​org/​10.​3390/​sym12​091458.

	46.	 Wang Z, Liu J, Sun L. EFS-DNN: an ensemble feature selection-based deep learning approach to network intrusion
detection system. Secur Commun Netw. 2022. https://​doi.​org/​10.​1155/​2022/​26939​48.

	47.	 Yin Y, et al. IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15
dataset. J Big Data. 2023. https://​doi.​org/​10.​1186/​s40537-​023-​00694-8.

	48.	 Rajadurai H, Gandhi UD. A stacked ensemble learning model for intrusion detection in wireless network. Neural
Comput Appl. 2020;34(18):15387–95. https://​doi.​org/​10.​1007/​s00521-​020-​04986-5.

	49.	 Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data
Eng. 2005;17(4):491–502. https://​doi.​org/​10.​1109/​TKDE.​2005.​66.

	50.	 Nazir A, Khan RA. A novel combinatorial optimization based feature selection method for network intrusion detec-
tion. Comput Secur. 2021;102:102164. https://​doi.​org/​10.​1016/j.​cose.​2020.​102164.

https://doi.org/10.1109/ACCESS.2021.3129336
https://doi.org/10.1002/int.22397
https://doi.org/10.3390/s20092559
https://doi.org/10.3390/s20092559
https://doi.org/10.1109/ACCESS.2020.3009843
https://doi.org/10.1016/j.sciaf.2020.e00497
https://doi.org/10.1109/NIGERCON54645.2022.9803086
https://doi.org/10.3390/jcp1010011
https://doi.org/10.1109/CSDE50874.2020.9411608
https://doi.org/10.1109/ICISCE50968.2020.00185
https://doi.org/10.1007/s13369-021-06086-5
https://doi.org/10.1016/j.aca.2011.07.027
https://doi.org/10.1016/j.aca.2011.07.027
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1109/AIC55036.2022.9848861
https://doi.org/10.1016/j.micpro.2021.104293
https://doi.org/10.1016/j.eswa.2020.113249
https://doi.org/10.1109/ICAIBD55127.2022.9820384
https://doi.org/10.1007/s00500-022-06798-2
https://doi.org/10.1016/j.procs.2021.10.052
https://doi.org/10.1016/j.procs.2021.10.052
https://doi.org/10.1016/j.eswa.2022.117597
https://doi.org/10.1016/j.eswa.2022.117597
https://doi.org/10.1007/s11277-021-08721-8
https://doi.org/10.1007/s10586-020-03229-5
https://doi.org/10.1007/s10586-020-03229-5
https://doi.org/10.1007/978-3-642-39038-8_27
https://doi.org/10.1007/978-3-642-39038-8_27
https://doi.org/10.1007/978-3-540-88192-6_8
https://doi.org/10.1186/s40537-020-00379-6
https://doi.org/10.3390/sym12091458
https://doi.org/10.1155/2022/2693948
https://doi.org/10.1186/s40537-023-00694-8
https://doi.org/10.1007/s00521-020-04986-5
https://doi.org/10.1109/TKDE.2005.66
https://doi.org/10.1016/j.cose.2020.102164

Page 31 of 32Alsaffar et al. Journal of Big Data (2024) 11:133 	

	51.	 Rashid M, Kamruzzaman J, Imam T, Wibowo S, Gordon S. A tree-based stacking ensemble technique with
feature selection for network intrusion detection. Appl Intell. 2022;52(9):9768–81. https://​doi.​org/​10.​1007/​
s10489-​021-​02968-1.

	52.	 Mushtaq E, Zameer A, Khan A. A two-stage stacked ensemble intrusion detection system using five base classifiers
and MLP with optimal feature selection. Microprocess Microsyst. 2022;94:104660. https://​doi.​org/​10.​1016/j.​micpro.​
2022.​104660.

	53.	 Mokbal F, Dan W, Osman M, Ping Y, Alsamhi S. An efficient intrusion detection framework based on embedding
feature selection and ensemble learning technique. Int Arab J Inf Technol. 2022;19(2):237–48. https://​doi.​org/​10.​
34028/​iajit/​19/2/​11.

	54.	 Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15
network data set). Mil Commun Inf Syst Conf. 2015. https://​doi.​org/​10.​1109/​MilCIS.​2015.​73489​42.

	55.	 Moustafa N, Slay J. The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data
set and the comparison with the KDD99 data set. Inf Secur J. 2016;25(1–3):18–31. https://​doi.​org/​10.​1080/​19393​555.​
2015.​11259​74.

	56.	 Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. Conf Inf Syst Secur Priv. 2018. https://​doi.​org/​10.​5220/​00066​39801​080116.

	57.	 T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning: data mining, inference, and prediction,”
Springer Sci. Bus. Media, 2009.

	58.	 Yoshua B, Ian G, Aaron C. Deep learning. Cambridge: MIT Press; 2015.
	59.	 Ganapathy S, Kulothungan K, Muthurajkumar S, Vijayalakshmi M, Yogesh L, Kannan A. Intelligent feature selec-

tion and classification techniques for intrusion detection in networks: a survey. Eurasip J Wirel Commun Netw.
2013;271(1):1–16. https://​doi.​org/​10.​1186/​1687-​1499-​2013-​271.

	60.	 Liu H, Zhou M, Liu Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA J Autom
Sin. 2019;6(3):703–15. https://​doi.​org/​10.​1109/​JAS.​2019.​19114​47.

	61.	 Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Net-
works. 1994;5(4):537–50. https://​doi.​org/​10.​1109/​72.​298224.

	62.	 Vergara JR, Estévez PA. A review of feature selection methods based on mutual information. Neural Comput Appl.
2014;24(1):175–86. https://​doi.​org/​10.​1007/​s00521-​013-​1368-0.

	63.	 W. Li, “Mutual Information Functions Versus Correlation Functions in Binary Sequences,” vol. 60, pp. 249–252, 1989,
https://​doi.​org/​10.​1007/​978-1-​4757-​0623-9_​35.

	64.	 Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat Softw. 2010;36(11):1–13. https://​doi.​org/​10.​
18637/​jss.​v036.​i11.

	65.	 Anand N, Sehgal R, Anand S, Kaushik A. Feature selection on educational data using Boruta algorithm. Int J Comput
Intell Stud. 2021;10(1):27. https://​doi.​org/​10.​1504/​ijcis​tudies.​2021.​113826.

	66.	 Kursa MB, Jankowski A, Rudnicki WR. Boruta—a system for feature selection. Fundam Inform. 2010;101(4):271–85.
https://​doi.​org/​10.​3233/​FI-​2010-​288.

	67.	 Schapire RE. The strength of weak learnability. Mach Learn. 1990;5(2):197–227. https://​doi.​org/​10.​1023/A:​10226​
48800​760.

	68.	 Bbeiman L. Bagging predictors LEO. Kluwer Acad Publ Boston Manuf Netherlands Bagging. 1996;24:123–40. https://​
doi.​org/​10.​3390/​risks​80300​83.

	69.	 Wolpert DH. Stacked generalization. Neural Netw. 1992;5:241–55.
	70.	 Sagi O, Rokach L. Ensemble learning: a survey. Wiley Interdiscip Rev Data Min Knowl Discov. 2018;8(4):1–18. https://​

doi.​org/​10.​1002/​widm.​1249.
	71.	 Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem:

bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern. 2012;42(4):463–84.
	72.	 Džeroski S, Ženko B. Is combining classifiers with stacking better than selecting the best one? Mach Learn.

2004;54(3):255–73. https://​doi.​org/​10.​1023/B:​MACH.​00000​15881.​36452.​6e.
	73.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
	74.	 Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data

Min. 2016. https://​doi.​org/​10.​1145/​29396​72.​29397​85.
	75.	 L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: Unbiased boosting with categorical

features,” Adv. Neural Inf. Process. Syst., pp. 6638–6648, 2018.
	76.	 Kareem SS, Mostafa RR, Hashim FA, El-Bakry HM. An effective feature selection model using hybrid metaheuristic

algorithms for iot intrusion detection. Sensors. 2022;22(4):1–23. https://​doi.​org/​10.​3390/​s2204​1396.
	77.	 Du X, Cheng C, Wang Y, Han Z. Research on network attack traffic detection hybridalgorithm based on UMAP-RF.

Algorithms. 2022;15(7):1–17. https://​doi.​org/​10.​3390/​a1507​0238.
	78.	 Louk MHL, Tama BA. Dual-IDS: a bagging-based gradient boosting decision tree model for network anomaly intru-

sion detection system. Expert Syst Appl. 2023;213(PB):119030. https://​doi.​org/​10.​1016/j.​eswa.​2022.​119030.
	79.	 Nkenyereye L, Tama BA, Lim S. A stacking-based deep neural network approach for effective network anomaly

detection. Comput Mater Contin. 2020;66(2):2217–27. https://​doi.​org/​10.​32604/​cmc.​2020.​012432.
	80.	 Juan Fu J, Lan Zhang X. Gradient importance enhancement based feature fusion intrusion detection technique.

Comput Netw. 2022;214:109180. https://​doi.​org/​10.​1016/j.​comnet.​2022.​109180.
	81.	 Tayde MV, Adhao RB, Pachghare V. Ensemble based feature selection technique for flow based intrusion detection

system. 2022 IEEE 7th Int Conf Converg Technol. 2022. https://​doi.​org/​10.​1109/​I2CT5​4291.​2022.​98244​25.
	82.	 Lazzarini R, Tianfield H, Charissis V. A stacking ensemble of deep learning models for IoT intrusion detection. Know-

Based Syst. 2023;279:110941. https://​doi.​org/​10.​1016/j.​knosys.​2023.​110941.
	83.	 Yang Z, Liu Z, Zong X, Wang G. An optimized adaptive ensemble model with feature selection for network intrusion

detection. Concurr Comput Pract Exp. 2022. https://​doi.​org/​10.​1002/​cpe.​7529.

https://doi.org/10.1007/s10489-021-02968-1
https://doi.org/10.1007/s10489-021-02968-1
https://doi.org/10.1016/j.micpro.2022.104660
https://doi.org/10.1016/j.micpro.2022.104660
https://doi.org/10.34028/iajit/19/2/11
https://doi.org/10.34028/iajit/19/2/11
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1186/1687-1499-2013-271
https://doi.org/10.1109/JAS.2019.1911447
https://doi.org/10.1109/72.298224
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1007/978-1-4757-0623-9_35
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1504/ijcistudies.2021.113826
https://doi.org/10.3233/FI-2010-288
https://doi.org/10.1023/A:1022648800760
https://doi.org/10.1023/A:1022648800760
https://doi.org/10.3390/risks8030083
https://doi.org/10.3390/risks8030083
https://doi.org/10.1002/widm.1249
https://doi.org/10.1002/widm.1249
https://doi.org/10.1023/B:MACH.0000015881.36452.6e
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3390/s22041396
https://doi.org/10.3390/a15070238
https://doi.org/10.1016/j.eswa.2022.119030
https://doi.org/10.32604/cmc.2020.012432
https://doi.org/10.1016/j.comnet.2022.109180
https://doi.org/10.1109/I2CT54291.2022.9824425
https://doi.org/10.1016/j.knosys.2023.110941
https://doi.org/10.1002/cpe.7529

Page 32 of 32Alsaffar et al. Journal of Big Data (2024) 11:133

	84.	 Wang A, Wang W, Zhou H, Zhang J. Network intrusion detection algorithm combined with group convolution
network and snapshot ensemble. Symmetry. 2021. https://​doi.​org/​10.​3390/​sym13​101814.

	85.	 He H, Huang G, Zhang B, Qin L. Research on boruta-ET-based anomalous traffic detection model. Secur Commun
Networks. 2022;2022:8. https://​doi.​org/​10.​1155/​2022/​91692​66.

	86.	 Harini R, Maheswari N, Ganapathy S, Sivagami M. An effective technique for detecting minority attacks in NIDS using
deep learning and sampling approach. Alexandria Eng J. 2023;78(June):469–82. https://​doi.​org/​10.​1016/j.​aej.​2023.​
07.​063.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/sym13101814
https://doi.org/10.1155/2022/9169266
https://doi.org/10.1016/j.aej.2023.07.063
https://doi.org/10.1016/j.aej.2023.07.063

	Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning
	Abstract
	Introduction
	Related work
	Methodology
	Data description
	UNSW-NB15 dataset (D1)
	CICIDS2017 dataset (D2)

	Data preprocessing
	Data filtration
	Data numeralization
	Data normalization

	Feature selection
	Mutual information
	Boruta algorithm
	A MI-boruta algorithm for feature selection

	Ensemble learning classifier
	Random forest algorithm
	XGBoost algorithm
	Categorical boosting (Catboost) algorithm
	Multilayer perceptron algorithm
	Stacked ensemble classifier

	Performance evaluation

	Experimental results and discussion
	Comparison with individual classifiers
	Comparison with the state-of-the-art methods

	Conclusion
	References

