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Abstract 

Background: The tumor microenvironment (TME) provides a region for intricate 
interactions within or between immune and non-immune cells. We aimed to reveal 
the tissue architecture and comprehensive landscape of cells within the TME of colo-
rectal cancer (CRC).

Methods: Fresh frozen invasive adenocarcinoma of the large intestine tissue from 10× 
Genomics Datasets was obtained from BioIVT Asterand. The integration of microarray-
based spatial transcriptomics (ST) and RNA sequencing (RNA-seq) was applied to char-
acterize gene expression and cell landscape within the TME of CRC tissue architecture. 
Multiple R packages and deconvolution algorithms including MCPcounter, XCELL, EPIC, 
and ESTIMATE methods were performed for further immune distribution analysis.

Results: The subpopulations of immune and non-immune cells within the TME 
of the CRC tissue architecture were appropriately annotated. According to ST and RNA-
seq analyses, a heterogeneous spatial atlas of gene distribution and cell landscape 
was comprehensively characterized. We distinguished between the cancer and stro-
mal regions of CRC tissues. As expected, epithelial cells were located in the cancerous 
region, whereas fibroblasts were mainly located in the stroma. In addition, the fibroblasts 
were further subdivided into two subgroups (F1 and F2) according to the differentially 
expressed genes (DEGs), which were mainly enriched in pathways including hallmark-
oxidative-phosphorylation, hallmark-e2f-targets and hallmark-unfolded-protein-response. 
Furthermore, the top 5 DEGs, SPP1, CXCL10, APOE, APOC1, and LYZ, were found to be 
closely related to immunoregulation of the TME, methylation, and survival of CRC 
patients.

Conclusions: This study characterized the heterogeneous spatial landscape of various 
cell subtypes within the TME of the tissue architecture. The TME-related roles of fibro-
blast subsets addressed the potential crosstalk among diverse cells.
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Background
Colorectal cancer (CRC) is a common malignancy and is the second leading cause 
of cancer-related mortality worldwide. According to an estimation, more than 1.9 
million new CRC cases and 935,000 deaths occurred in 2020 [1]. Among CRC cases, 
early onset disease (at < 50 years of age) accounts for 10%, and its incidence is increas-
ing, particularly in high-income countries. Screening for CRC is now recommended 
beginning at 45  years of age [2]. CRC can be characterized by symptoms including 
changes in bowel habits, abdominal pain, and sometimes blood in the stool [3]. The 
prognosis of CRC has improved due to advancements in treatment, including sur-
gery, chemotherapy, and radiation therapy. However, tumors often develop resistance 
to treatment because of intratumoral heterogeneity and clonal evolution. CRC has 
served as a genetic and biological paradigm for the evolution of solid tumors. Gen-
otyping of tumor tissues according to supportive information provided by somatic 
genetic alterations has become a routine examination in clinical practice [4, 5].

Tumor microenvironment (TME) denotes the non-cancerous cells and components 
surrounding the tumor cells, including malignant cells, fibroblasts, tumor vasculature, 
lymphocytes, dendritic cells, and molecules produced and released by them [6, 7]. 
TME has contributed to revealing and comprehending the roles of non-genetic and 
non-cellular intrinsic factors in cancer development [8]. Constant cross-talk between 
tumor cells and the TME plays decisive roles in tumor proliferation, progression, 
metastasis, and response to therapies [9]. Accordingly, the TME is now considered a 
therapeutic target in cancer, attracting increasing research and clinical investigation.

Owing to the technological development of next-generation sequencing- and imag-
ing-based approaches, spatial transcriptomics (ST) can now be used to comprehen-
sively elucidate the expression levels of all or selected genes throughout the tissue 
space. Biological insights into a range of disease contexts can be achieved by integrat-
ing ST and single-cell RNA sequencing (scRNA-seq) [10, 11]. Emerging studies have 
investigated the spatial heterogeneity in pancreatic ductal adenocarcinoma [12], bone 
marrow niche organization [13], liver [14], squamous cell carcinoma [15], mamma-
lian spermatogenesis [16], breast cancer [17], lung cancer [18], prostate cancer [19], 
dorsal root ganglia [20], cervical squamous cell carcinoma [21], esophageal squa-
mous cell carcinoma [22], and colorectal cancer [23]. Although previous studies have 
focused on the spatial heterogeneity of the TME in colorectal cancer, cancer-associ-
ated fibroblasts (CAF) have received much attention because comprehensive insights 
into diverse subpopulations are insufficient and more supportive data are needed.

Given these considerations, we conducted an analysis to characterize the heteroge-
neous spatial landscape of various subpopulations within the TME of CRC tissues by 
integrating ST and RNA-seq. Subsets of fibroblasts were identified to reveal potential 
crosstalk among diverse cells. This comprehensive landscape and cellular architecture 
may provide novel insights into the advancement of CRC management in the future.
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Methods
Patients and sample collection

In this study, spatial gene expression data were acquired by visiting the 10 × Genom-
ics Datasets (https:// www. 10xge nomics. com). Spatial imaging data and feature/bar-
code matrix HDF5 (filtered) documents were investigated from “Space Ranger 1.2.0: 
Human Colorectal Cancer: Whole Transcriptome Analysis (Visium Spatial Targeted 
Demonstration (v1 Chemistry))”. Freshly frozen invasive adenocarcinoma of the 
large intestine tissue was obtained from BioIVT Asterand. The tissue was classified 
as T4aN0M0 (stage IIB) according to the 8th edition of the staging system issued by 
the American Joint Committee on Cancer (AJCC) and Union for International Cancer 
Control (UICC). The available 10 × genomics data used for validation study was 5 µm 
section from Human Intestinal Cancer named Human Intestine Cancer (FPPE). The 
FFPE tissue was purchased from BioIVT Asterand Human Tissue Specimens. All data 
analyzed in this study were available from the aforementioned open-access website; 
therefore, ethics approval and informed consent were waived by the National Cancer 
Center in China.

Tissue image preparation

The tissue was embedded and cryosectioned as described in the Visium Spatial Pro-
tocols Tissue Preparation Guide (Demonstrated Protocol CG000240). Tissue sections 
of 10  µm were placed on Visium Gene Expression slides, fixed, and stained follow-
ing methanol fixation, hematoxylin and eosin (H&E) staining, and imaging for vis-
ible spatial protocols (CG000160). H&E images were acquired using a Nikon Eclipse 
Ti2-E microscope with the following settings: (a) color camera, (b) 10× objective; (c) 
Numerical Aperture:0.45, and (d) exposure:20  ms. The detailed description of the 
data process in this section was applied in the user guide (https:// cdn. 10xge nomics. 
com/ image/ upload/ v1660 261286/ suppo rt- docum ents/ CG000 238_ Visiu mSpat ialTi 
ssueO ptimi zatio nUser Guide_ RevE. pdf ).

Gene expression library preparation and sequencing

The Visium Gene Expression library (T1T2-E8) was prepared as described in the 
Visium Spatial Reagent Kit User Guide (CG000239 Rev D). Sequencing data were 
processed using Space Ranger. The specific parameters were as follows: (a) sequenc-
ing instrument: Illumina NovaSeq 6000, flow cell HHYWHDSXY (lanes 1–4); (b) 
sequencing depth: 112,228 mean reads per cell; (c) sequencing configuration: paired-
end (28 × 90), Dual-Indexed Sequencing. Read 1: 28 cycles (16  bp barcode, 12  bp 
UMI); i7 index: 10 cycles; i5 index: 10 cycles; Read 2: 90 cycles (transcript); (d) Slide: 
V10A13-206; (e) Area: C1. The key metrics were as follows: (a) spots detected,3,138; 
(b) median genes per spot,3,538; (c) Median UMI counts per spot:8,906. The detailed 
description of the data process in this section was applied in the user guide (https:// 
cdn. 10xge nomics. com/ image/ upload/ v1660 261286/ suppo rt- docum ents/ CG000 239_ 
Visium_ Spati al_ Gene_ Expre ssion_ User_ Guide_ Rev_F. pdf ).

https://www.10xgenomics.com
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000238_VisiumSpatialTissueOptimizationUserGuide_RevE.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000238_VisiumSpatialTissueOptimizationUserGuide_RevE.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000238_VisiumSpatialTissueOptimizationUserGuide_RevE.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000239_Visium_Spatial_Gene_Expression_User_Guide_Rev_F.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000239_Visium_Spatial_Gene_Expression_User_Guide_Rev_F.pdf
https://cdn.10xgenomics.com/image/upload/v1660261286/support-documents/CG000239_Visium_Spatial_Gene_Expression_User_Guide_Rev_F.pdf
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Processing of RNA sequencing data

The RNA-seq data were processed and visualized using the R packages Seurat, ggplot2, 
cowplot, dplyr, and hdf5r [24]. The SCTransform function was used to normalize the 
data (assay = “Spatial”). Dimensionality reduction clustering was then performed using 
RunPCA, RunUMAP, and RunTSNE functions (dims = 1:30). The cell types were anno-
tated according to the previously reported cell type gene markers as follows: EPCAM-
Epithelial, PECAM1-Endothelial, COL3A1-Fibroblasts, AIF1-Macrophage, CD79A-B 
cell, JCHAIN-Plasma cell, CD4-T cell, AKT3 and AXL-NK cells, and PTPRC-Immune 
cells. Fibroblasts were further extracted and classified into new clusters of c0, c1, c2, c3, 
c4, and c5, using the FindClusters function (resolution = 0.4). It should be claimed that 
the new c0-c4 were different from c0-c17 in the beginning of the study. Based on the 
results of the differential expression analysis, we classified fibroblasts into F1 (c1) and F2 
(c0, c2, c3, and c4). The heatmap of differentially expressed genes (DEGs) were visualized 
using the DoHeatmap function. The FindAllMarkers function was performed to iden-
tify the top five DEGs between F1 and F2 clusters (min.pct = 0.25, logfc.threshold = 0.25, 
test.use = "wilcox"). The R packages irGSEA and UCell were applied to conduct Gene 
Set Enrichment Analysis (GSEA) of RNA-seq data from patients with colorectal can-
cer[25]. The gene set enrichment score was calculated using the irGSEA score function 
(assay = “Spatial”, seeds = 123, ncores = 1, min.cells = 3, min.feature = 0, msigdb = T, spe-
cies = “Homo sapiens”, category = “H”, kcdf = “Gaussian”).

Spatial transctiptomic analysis

The R packages Seurat, dplyr, and hdf5r were used for spatial transcriptomic (ST) analy-
sis [24]. Tissue images were loaded using the Read10X_h5 function of Seurat. We visual-
ized the count and features of gene expression using the VlnPlot function of R packages 
ggplot2 and cowplot. The structure of the tissue section was divided into cancer and 
stromal regions after being read by pathology experts. The spatial locations of epithelial 
cells, plasma cells, fibroblasts, B cells, T cells, endothelial cells, and NK cells were ana-
lyzed and visualized using the DimPlot function. We conducted ST analysis based on 
the method of multimodal intersection, which made a combination of gene expression 
modal and spatial architecture modal of colorectal cancer tissue sections. After identi-
fying the top five DEGs (tDEGs), the spatial location of expression of these genes was 
determined using the SpatialFeaturePlot function (alpha = c (0.5, 1)). In addition, the 
immunohistochemical (IHC) and fluorescent staining images of these genes, which were 
available in the Human Protein Atlas (HPA) database (https:// www. prote inatl as. org/), 
were also displayed to demonstrate the intracellular expression sites of these genes.

Immunological, methylation, function enrichment and survival related analyses

In this section, mRNA transcriptomic data of colorectal cancer were investigated from 
cohorts within The Cancer Genome Atlas (TCGA) database. The standardized pan-can-
cer dataset TCGA TARGET GTEx (PANCAN, N = 19,131, G = 60,499) was downloaded 
from the UCSC (https:// xenab rowser. net/). Gene expression data for colon adenocar-
cinoma/rectum adenocarcinoma esophageal carcinoma (TCGA-COAD/READ) were 
selected for subsequent analysis. Furthermore, we extracted the expression data of the 

https://www.proteinatlas.org/
https://xenabrowser.net/
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tDEGs in each sample and transformed each expression value into log2 (x + 0.001). The 
mcpcounter, XCELL, EPIC, and ESTIMATE methods in the R package IOBR was used 
to estimate the population assumption of tumor-infiltrating immune and spatial cell 
populations [26]. Additionally, gene markers of immunoregulatory pathways, includ-
ing chemokines, receptors, MHC, immunoinhibitors, and immunostimulators, were 
extracted to calculate Pearson’s correlation with tDEGs. We performed a similar cor-
relation analysis using the expression values of the tDEGs and RNA-moderated genes 
(m1A, m5C, and m6A). Mutation data (MuTect2) were processed and visualized using 
the R packages, maftools and ComplexHeatmap [27, 28]. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were con-
ducted using the R packages clusterProfilerorg and org.Hs.eg.db [29]. The least abso-
lute shrinkage and selection operator (LASSO) regression algorithm and multivariate 
Cox regression analysis were used to construct a prognostic model of survival using the 
R package glmnet [30]. The log-rank test was used to compare differences in survival 
between groups. Time-ROC analysis was used to compare the predictive accuracy of the 
risk score. The Spearman correlation between the model and immune cells was analyzed 
using the R package ggstatsplot.

Statistical analysis

All analyses in this study were conducted using R software for Windows. In the immune 
infiltrating analysis, we extracted the expression data of the tDEGs in each sample and 
transformed each expression value into log2 (x + 0.001) after filtering all normal sam-
ples. Then, Spearman’s correlation was calculated in each subgroup [31]. In the simi-
lar method, Pearson correlation was performed for methylation and immune regulation 
analysis [32]. The chi square test was utilized to evaluate the difference in gene mutation 
frequency in each group of samples [33]. Considering the survival analysis, we took the 
first step to convert counts data to TPM and normalize the data log2 (TPM + 1), keeping 
samples with clinical information at the same time. For Kaplan–Meier curves, p-values 
and hazard ratio (HR) with 95% confidence interval (CI) were generated by log-rank 
tests and univariate cox proportional hazards regression, which were used to compare 
differences in survival between the groups [34]. The timeROC analysis was conducted to 
further compare the predictive accuracy. LASSO with tenfold cross-validation was used 
for feature selection [35]. Statistical analyses with two sides were performed, and all the 
difference with P < 0.05 was considered statistically significant.

Results
Analysis of identity and density of gene expression distribution

The design of this study is briefly summarized and illustrated in Fig. 1A. After the RNA-
seq profiling data, 18 clusters (cluster 0 to cluster 17) were identified automatically by 
Seurat. The gene expression and gene number of these clusters showed a wide range of 
changes according to the violin plots (Fig. 1B, D). We further explored the spatial loca-
tion of the density of gene expression distribution. As shown, there were more genes 
enriched in cancer regions with relatively high expression compared with stromal 
regions (Fig. 1C, E). Additionally, the mitochondrial gene was not detected in the tissue, 
which indicated the high quality of the RNA-seq data (Fig. S1).



Page 6 of 20Li et al. Journal of Big Data          (2024) 11:132 

Annotation of celltypes within RNA‑seq

In this section, UMAP is applied to demonstrate 18 clusters (Fig.  2A). The spatial 
location of these clusters was well marked and provided a comprehensive display of 
the colorectal cancer tissue (Fig. 2B). According to the gene markers for certain cell 
clusters reported previously, we annotated the cell groups based on the expression of 
marker genes (MGs) as follows: EPCAM-Epithelial, PECAM1-Endothelial, COL3A1-
Fibroblasts, AIF1-Macrophage, CD79A-B cells, JCHAIN-Plasma cells, CD4-T cells, 
AKT3 and AXL-NK cells, and PTPRC-Immune cells. Subsequently, we revealed the 
TSNE map of the corresponding cell types and genes in proper order (Fig. 2C–L). A 
bubble plot was then used to demonstrate the average expression and expressed per-
centage of MGs in clusters of 0 to 17 (Fig. 2M). The level of MGs in these clusters was 
also displayed using a violin plot (Fig. S2). The top three most prominently expressed 
genes in each cluster were investigated and displayed using a heatmap plot. From this 

Fig. 1 Flow chart and pre-analysis of colorectal cancer (CRC). A The simple flow chart of study design. B, 
C Expression in various identities and spatial architecture. D, E Gene count in various identities and spatial 
architecture
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analysis, we could clearly distinguish the various gene modules expressed in different 
clusters (Fig. 2N).

The integration of rank‑based gene set enrichment analysis

Pathology experts were consulted to determine the cancerous and stromal regions 
of the tissue. As shown in Fig. 3A, the relatively dark areas surrounded by red dotted 
lines were identified as regions of colon cancer, whereas the lighter areas without red 

Fig. 2 Annotation of celltypes within RNA-seq. A UMAP visualization of RNA-seq. B Spatial location of 
identities within CRC. C–L TSNE plots of diverse gene markers. M Average expression levels of gene markers 
in identities. N Top 3 genes with significantly different expression in each identity
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dotted lines were stromal regions. The distribution of annotated cell clusters was rep-
resented comprehensively, including epithelial cells, plasma cells, fibroblasts, B cells, T 
cells, endothelial cells, and NK cells within the tissue architecture (Fig. 3B). In combi-
nation with tissue imaging, a large number of epithelial cells were located in the cancer 
region, while fibroblasts were mainly located in the stroma, which was in line with our 
expectations. We then determined the DEGs with increased or decreased expression or 

Fig. 3 The integration of rank-based gene set enrichment analysis. A Distribution of cancer and stromal 
regions. B Spatial architecture of celltypes within CRC. C Analysis of genes with significantly different 
expression. D UCell’s distribution map of celltypes in inflammatory pathway. E–G PCA, tSEN and UMAP maps 
of inflammatory pathway. H, I Ucell score maps of inflammatory pathway. J Correlation analysis of pathway in 
clusters
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no significant difference within the aforementioned clusters using AUCell, UCell, sing-
score, and ssgsea (Fig. 3C). Furthermore, we investigated the correlation between these 
clusters and the inflammatory response using UCell. The density distribution of UCell 
within the aforementioned clusters is shown in Fig. 3D. In addition, PCA, tSEN, and 
UMAP methods were applied to show the results of the dimension reduction analy-
sis (Fig. 3E–G). The UCell scores of hallmark-inflammatory-response in these clusters 
were calculated and are shown in Fig. 3H, I. Subsequently, we explored the correlation 
between clusters and a variety of HALLMARK pathways using the robust rank aggrega-
tion (RRA) method, which can comprehensively evaluate the results of difference analy-
sis and screen out gene sets that are significantly enriched in most gene set enrichment 
analysis methods. According to the results, the top 3 relevant pathways were hallmark-
oxidative-phosphorylation, hallmark-e2f-targets and hallmark-unfolded-protein-
response (Fig. 3J).

Analysis of fibroblasts subpopulation in CRC tissue

Fibroblasts are important components of RNA sequencing results. The UMAP plot 
is shown and the fibroblasts are circled by a dotted line (Fig. 4A). From the visualiza-
tion of the PCA and UMAP results, fibroblasts were classified into subpopulations F1 
and F2 (Fig. 4B, C). To verify if immune cells were mixed in the F1 and F2, we dem-
onstrated the expression of the gene makers of each cell type in extracted fibroblasts 
(c0-c4), indicating no mixture of immune cells was involved (Fig S3). We then explored 
the spatial location of the two fibroblast subtypes F1 and F2 within CRC tissue. The 
F1 subtype was mainly located in the stromal region, whereas a portion of the F2 sub-
type was located in the cancer region (Fig. 4D). To investigate the differences and het-
erogeneity in biological genetics, we analyzed differentially expressed genes (DEGs). 
According to the results of DEGs, there were five top genes with the most differential 
expression between F1 and F2 after weighted analysis, with the top five differentially 
expressed genes (tDEGs) identified, including SPP1, CXCL10, APOE, APOC1, and LYZ 
(Fig.  4E). The expression of tDEGs in the 18 identities mentioned above was visual-
ized (Fig. S4A–E). tDEGs were enriched in identity 13 (Fig S4F). We further showed 
the spatial landscapes of the expression of these five genes and compared them with 
those of the original CRC tissue. We found that the tDEGs were mainly expressed in 
the stromal region of the tissue (Fig.  4F–K). Additionally, the UMAP plots of tDEGs 
are shown (Fig.  4L–P). To further validate these findings, we applied another sample 
of large intestine CRC named Human Intestine Cancer (FPPE) from 10 × genomics 
database. The information of CRC samples and datasets used in the study was sum-
marized in Table S1. The gene expression and gene number of the clusters of validation 
sample showed a wide range of changes according to the violin plots (Fig. S5A, C). We 
further explored the spatial location of the density of gene expression distribution. As 
shown, there were more genes enriched in cancer regions with relatively high expres-
sion compared with stromal regions (Fig. S5B, D). In further study of validation, we 
demonstrated the spatial distribution of tDEGs expression. It revealed that tDEGs were 
mainly enriched in the stromal area of the CRC tissue, which was consistent with previ-
ous findings (Fig. S5E–J).
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Immunoassay and methylation analyses of tDEGs

Immune infiltration analysis was performed to investigate the relationship between 
the tDEGs and various types of immune cells. Based on the COAD and COADREAD 
cohorts, we found that tDEGs were closely related to the immune infiltration of the 
tumor microenvironment (TME) within CRC (all P < 0.05). In addition to the fibroblasts, 
tDEGs were mainly related to cytotoxic lymphocytes and monocytic lineage according 
to the results (all P < 0.05) (Fig. 5A). Additionally, 150 gene markers of immunoregula-
tory pathways, including chemokines (41 gene markers), receptors (18 gene markers), 
MHC (21 gene markers), immunoinhibitors (24 gene markers), and immunostimulators 
(46 gene markers) were extracted to calculate the Pearson correlation with the tDEGs. 
The results showed that tDEGs play important roles in the immunoregulatory path-
ways of the TME in CRC. There was a strong correlation between tDEGs and immu-
noregulation of the TME (all P < 0.05) (Fig. 5B). Considering the important regulatory 

Fig. 4 Analysis of fibroblasts subpopulation in CRC tissue. A Fibroblasts in UMAP visualization. B, C PCA and 
UMAP of fibroblasts clustered into F1 and F2. D The spatial location of F1 and F2. E Top five differentially 
expressed genes (tDEGs) identified by differential analysis F–J Spatial expression of SPP1, CXCL10, APOE, 
APOC1 and LYZ. K Original CRC tissue. L–P UMAP plots of SPP1, CXCL10, APOE, APOC1 and LYZ
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role of methylation on cell function and pathways, we extracted the expression of tDEGs 
and gene markers of three types of RNA modification methods, including m1A (10 
gene markers), m5C (13 gene markers), and m6A (21 gene markers). We further clas-
sified the gene markers of methylation into writers, readers, and erasers, according to 
their functions. The correlation between tDEGs and methylation regulation was com-
prehensively demonstrated in this analysis (Fig. 5C). Then, Xcell, EPIC, and ESTIMATE 
methods were performed to investigate immune infiltration. All these methods revealed 
that tDEGs were closely related to the TME of colorectal cancer tissue architecture. The 
detail data was provided as Tables S1, S2, S3.

Function enrichment analysis of the DEGs between F1 and F2

Gene Ontology (GO) analysis was conducted to elucidate the roles of the DEGs in cellu-
lar components (CC), molecular functions (MF), and biological processes (BP). Accord-
ing to the analysis, DEGs were mainly involved in extracellular structure organization of 

Fig. 5 Immunoassay and methylation analyses of tDEGs. A Correlation analysis between tDEGs and TME 
components. B Correlation analysis between tDEGs and regulatory factors of TME. C Correlation analysis 
between tDEGs and modification including m1A, m5C and m6A
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BP, collagen-containing extracellular matrix of CC, and extracellular matrix structural 
constituents of MF (Fig. 6A). Gene Set Variation Analysis (GSVA) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analysis were performed. DEGs were 
mainly enriched in antigen processing and presentation, Epstein-Barr virus, phago-
some, human T-cell leukemia virus 1 infection, and metabolic pathways (Figs.  6B, C). 
The results of the GO and KEGG analyses are summarized in Table S2. Furthermore, we 
integrated the results of functional enrichment analysis and visualized the connection 
between them in one plot (Fig. 6D).

Fig. 6 Function enrichment analysis of the DEGs between F1 and F2. A Gene Ontology (GO) analysis of 
the DEGs. B, C Gene Set Variation Analysis (GSVA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis. D Connection plot of function enrichment analysis
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Potential survival prediction module and immunologic correlation analysis

To investigate the impact of tDEGs on the survival of patients with CRC, we established 
a risk score based on the expression of tDEGs using the Least Absolute Shrinkage and 
Selection Operator (LASSO). The overall survival (OS) trend that changed with the 
increase in the risk score is shown (Fig. 7A). The Kaplan–Meier survival analysis of CRC 
patients with high- and low-risk scores was performed, indicating that the OS of patients 
with high-risk scores was poorer (HR = 1.896, 95%CI:1.266–2.839, P < 0.01) (Fig.  7B). 

Fig. 7 Potential survival prediction module and immunologic correlation analysis. A Correlation plot of risk 
score and OS-panel. B Kaplan–Meier survival analysis of OS-panel. C ROC curve of OS-panel. D–F Heatmaps 
of correlation between immune check points and APOE, CXCL10 and SPP1. G–L Spearman analyses of 
correlation between OS-panel and B cell, T cell CD4+, T cell CD8+, neutrophil, macrophage and myeloid 
dendritic cell. *P < 0.05, **P < 0.01, **P < 0.001, ***P < 0.0001
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Then, a receiver operating characteristic (ROC) curve was established to evaluate the 
accuracy and specificity of the prediction for 1-year, 3-year, and 5-year OS (Fig.  7C). 
In addition, the trends of progression-free survival (PFS) and disease-specific survival 
(DSS) change with risk score (PFS panel and DSS panel) were also demonstrated (Fig. 
S6A, D). Similar Kaplan–Meier and ROC curves for PFS and DSS were obtained (PFS: 
HR = 2.385, 95%CI:1.637–3.477, P < 0.01; DSS: HR = 2.717, 95%CI:1.575–4.687, P < 0.01) 
(Fig. S6B, C; E–F). Furthermore, we investigated the relationship between genes in the 
OS panel (gene panel: APOE, CXCL10, and SPP1) and eight gene markers related to 
immune checkpoints. It showed that CRC patients with low OS-panel expression were 
more correlated with immune checkpoints (Fig. 7D–F). The waterfall diagram of tumor 
mutational burden (TMB) was used to explore the heterogeneity of genes within the OS 
panel (Fig. S7A–C). Spearman analysis was applied to explore the correlation between 
the OS panel and immune infiltration within the TME, including B cells,  CD4+ T cells, 

Fig. 8 Histocyte level analysis of tDEGs. A–C Immunohistochemical staining (IHC) of SPP1, APOE and 
LYZ. D–E Intracellular distribution and fluorescence staining of SPP1. F–G Intracellular distribution and 
fluorescence staining of APOE. H–I Intracellular distribution and fluorescence staining of LYZ
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 CD8+ T cells, neutrophils, macrophages, and myeloid dendritic cells. Consequently, 
there was a significant positive correlation between the OS panel and  CD4+ T cells 
(P = 4.9e−05, Spearman = 0.19, 95%CI: [0.10, 0.28]), macrophages (P = 7.41e−11, Spear-
man = 0.30, 95%CI: [0.21, 0.38]), and myeloid dendritic cells (P = 9e−3, Spearman = 0.12, 
95%CI: [0.03, 0.21]), while B cells had a significant negative correlation (P = 3e−2, Spear-
man = − 0.10, 95%CI: [− 0.19, − 0.01]) (Fig. 7G–L).

Histocyte level analysis of tDEGs

For a deeper exploration of tDEGs, we searched the Human Protein Atlas (HPA) data-
base (https:// www. prote inatl as. org) for histological and subcellular-level informa-
tion which was available. Immunohistochemical staining images demonstrated the 
spatial location of SPP1, APOE, and LYZ in CRC tissue (Fig. 8A–C). According to the 
HPA database, SPP1 was detected in the Golgi apparatus and predicted to be secreted 
(Fig.  8D). The cell atlas showing fluorescent staining of subcellular structures demon-
strated the spatial distribution of the SPP1 protein, nucleus, and microtubules (Fig. 8E). 
APOE was detected in vesicles and predicted to be secreted (Fig.  8F). Fluorescent 
staining of the APOE protein, nucleus, and microtubules is shown (Fig. 8G). LYZ was 
detected in the Golgi apparatus, actin filaments, and nucleoplasms (Fig. 8H). Subcellular 
fluorescent staining also demonstrated the distribution characteristics of the LYZ pro-
tein and microtubules (Fig. 8I).

Discussions
In this study, we revealed the tissue architecture of stage IIB CRC and thoroughly char-
acterized the heterogeneous spatial landscape of diverse subpopulations within the TME 
by integrating ST and RNA-seq. The expression landscape of all or selected genes at var-
ious spatial locations in the cancer and stromal regions, obtained through consultation 
with pathologists, was visualized. The identification of different fibroblast subtypes (F1 
and F2) may address the potential interactions within the TME underlying CRC prolif-
eration, progression, and metastasis. Immunoassay, methylation, and functional enrich-
ment analyses of tDEGs further characterized the biological heterogeneity between F1 
and F2, elucidating the roles of tDEGs in the TME. These findings reveal the tissue archi-
tecture and provide novel insights into the management of CRC.

Carcinomas are intricate heterocellular structures comprising epithelial cancer cells, 
stromal fibroblasts, and diverse immune cell populations. Interactions between these 
TME and cells facilitate cancer progression and influence the effectiveness of the exist-
ing therapies. The TME contributes to systemic inflammation, increases oxidative stress 
and fibrosis, and affects the cachectic state of CRC patients through inflammatory fac-
tors, including tumor necrosis factor alpha (TNFα) and certain chemokines such as 
interleukin IL-1 and IL-6 [36, 37]. In this study, we annotated epithelial cells and related 
cells within the TME and illustrated the spatial distribution of diverse cell types. Our 
analysis revealed that the TME in CRC tissues is predominantly located in the stro-
mal region. An important aspect of the interaction between various components is the 
inflammatory response pathway that is activated within the TME. We investigated the 
intricate interplay between epithelial cells and various components of the TME and the 
inflammatory response pathways. A significant number of genes exhibited differential 

https://www.proteinatlas.org


Page 16 of 20Li et al. Journal of Big Data          (2024) 11:132 

expressions in response to these factors. According to the analysis of rank-based gene 
set enrichment, several genes that showed differential expression in various components 
were functionally enriched in the oxidative phosphorylation pathway. It has been shown 
that inhibition of oxidative phosphorylation (OXPHOS) can resist the hypoxic state in 
TME, thereby reducing the inhibitory effect on immune effector cells, increasing oxy-
genation of hypoxic tumor areas and reactivating the immune response. The prognostic 
improvement of OXPHOS inhibitors has been observed in cancer immunotherapy and 
radiation therapy [38]. Meanwhile, a previous study investigated the immune subtypes 
(C1–C6) of CRC and identified novel TME profiles. Among these, C2 exhibits greater 
activation of pathways associated with immune system function, apoptosis, DNA repair, 
mTOR signaling, and oxidative phosphorylation [39]. These findings contribute to our 
understanding of the interplay between various pathways and components within the 
TME of CRC.

To investigate the transformation of stromal cells in the TME by CRC cells, a study 
conducted single-cell sequencing and discovered that somatic cell copy number 
alterations (SCNAs) are widespread in immune cells, fibroblasts, and endothelial 
cells in both TME and normal tissues within each individual. Moreover, the percent-
age of fibroblasts with SCNAs was considerably greater in tumors (11.1–47.7%) than 
in adjacent normal tissues (1.1–10.6%) [40]. This led to our interest in fibroblasts 
in the TME of CRC. Fibroblasts can be divided into two parts, F1 and F2, accord-
ing to the FindClusters function. Analysis of spatial transcriptomics revealed that 
F1 was mainly expressed in the stroma, whereas a portion of F2 was expressed in 
the cancer region of CRC. We identified a large number of genes that exhibited sig-
nificantly different expression levels between F1 and F2 plants. Among these genes, 
SPP1, APOE, CXCL10, APOC1, and LYZ had the highest weights in the weighted 
analysis and were the top 5 differentially expressed genes (tDEGs). Spatial transcrip-
tomics was performed to reveal the genetic and spatial heterogeneity of these two 
groups, demonstrating that tDEGs were mainly expressed in the stromal region of 
CRC tissue. An emerging study revealed a positive correlation between tumor-spe-
cific FAP (+) fibroblasts and SPP1 (+) macrophages, which were tightly localized, 
as demonstrated by immunofluorescence staining and spatial transcriptomics [41]. 
This interaction may be regulated by TGF-β and interleukin-1, which promote the 
formation of bridging protein structures that facilitate immunological rejection and 
restrict T-cell infiltration. Interestingly, they observed that patients with high FAP or 
SPP1 expression levels exhibited limited therapeutic benefits from anti-PD-L1 ther-
apy. These findings suggest that disrupting the interaction between FAP (+) fibro-
blasts and SPP1 (+) macrophages may represent a promising therapeutic strategy to 
improve immunotherapy. APOE was found to be associated with lipid homeostasis 
and inflammation in the normal brain and could be a therapeutic target for Alzhei-
mer’s disease [42, 43]. According to previous studies, CXCL10 is a novel therapeutic 
target for autoimmune diseases including inflammatory intestinal disease, multi-
ple sclerosis, and rheumatoid arthritis [44]. In addition, CXCL10 is involved in the 
metastasis of colon cancer through activation of the PI3K/Akt pathway by CXCR3, 
leading to inhibition of GSK-3β phosphorylation and upregulation of Snail expres-
sion, thereby regulating epithelial mesenchymal transition in colon cancer cells [45]. 
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APOC1 is considered a biomarker that indicates the prognosis of various cancer 
types [46–49]. A series of studies have revealed an association between LYZ and dis-
eases, including temporal lobe epilepsy and ulcerative colitis [50, 51].

RNA methylation modification is a key mechanism of epigenetic regulation in the 
immune response and tumorigenesis, and research on RNA methylation has become 
a hot topic in recent years. The four major RNA  adenosine modifications include 
m(6)A, m(1)A, alternative polyadenylation, and adenosine-to-inosine RNA editing 
[52]. In this study, we examined the correlation between tDEGs and RNA methyla-
tion modifications including m1A, m5C, and m6A. tDEGs were shown to be strongly 
associated with changes in RNA methylation, suggesting a crucial role in regula-
tion within the TME of CRC. Furthermore, we present landscapes that illustrate 
the immunomodulatory regulation and components within the TME, demonstrat-
ing the intricate immune interactions between tDEGs and the TME. Survival analy-
sis, immunohistochemistry, and fluorescence staining further enriched the clinical 
translational significance and basic researching insight of the tDEGs and provided 
a deeper understanding at the molecular level. In the survival analysis, the receiver 
operating characteristic (ROC) value was observed to be lower than 0.7, indicating 
the predictive performance was not strong, nevertheless, this was one attempt at the 
clinical translational application of tDEGs and predicting survival status was not the 
key point of the study. In the Kaplan–Meier analysis, it revealed a significant differ-
ent survival of High- and Low-score groups with P < 0.002, demonstrating a strong 
performance in predicting long-term survival. In general, more translational appli-
cations based on tDEGs in various areas are warranted in the feature.

Despite the use of relatively advanced ST analysis techniques in this study, which 
integrated multiple analytical methods to illustrate the spatial architecture of CRC 
and reveal the potential interactions of several TME components, there are still 
some limitations. First, due to database resource limitations, the sample included 
in this study was small, which may have led to an underrepresentation of the study. 
We believe that more patients will be enrolled in the study based on these findings. 
Second, immune-related cellular interactions within the TME were derived by cell 
sequencing, thus obtaining expression for correlation analysis as well as pathway 
analysis, lacking direct demonstration from pathway experiments. Third, although ST 
arrays can provide spatial transcriptomic data, their coverage and resolution are lim-
ited. Owing to the size of the ST array, it may not be possible to cover the entire tissue 
of interest. Additionally, the resolution may vary around single-cell level (1–10 cell) 
across different spots on the array. Furthermore, transcriptomic data are only acces-
sible within each spot and information may be lost between adjacent spots. However, 
the development of ST technology offers the potential for higher resolutions and 
shorter intervals between spots in the future. This may enable researchers to capture 
the transcriptional profiles of individual cells within complex tissues more accurately.

Conclusions
This study characterized the tissue architecture of CRC by integrating RNA-seq and 
ST analyses, demonstrating spatial heterogeneity and potential cross-talk within 
the TME. Various landscapes have revealed a strong association between tDEGs, 
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immunological regulation, and RNA methylation modification. The findings showing 
a comprehensive tissue structure and cellular landscape provide novel insights into 
the mechanism of CRC progression and the discovery of novel therapeutic targets.
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