
Machine learning and deep learning models
based grid search cross validation for short‑term
solar irradiance forecasting
Doaa El‑Shahat1, Ahmed Tolba1, Mohamed Abouhawwash2* and Mohamed Abdel‑Basset1

Introduction
Climate change (CC) [1, 2] has emerged as a global issue of paramount importance
due to its devastating impact on the existence of all forms of life on Earth. It can pose
significant threats to biodiversity loss as well as human health and food production
[3] owing to increased heat and humidity [4]. Hence, Intergovernmental Panel on

Abstract

In late 2023, the United Nations conference on climate change (COP28), which
was held in Dubai, encouraged a quick move from fossil fuels to renewable energy.
Solar energy is one of the most promising forms of energy that is both sustain‑
able and renewable. Generally, photovoltaic systems transform solar irradiance
into electricity. Unfortunately, instability and intermittency in solar radiation can lead
to interruptions in electricity production. The accurate forecasting of solar irradiance
guarantees sustainable power production even when solar irradiance is not present.
Batteries can store solar energy to be used during periods of solar absence. Addition‑
ally, deterministic models take into account the specification of technical PV systems
and may be not accurate for low solar irradiance. This paper presents a comparative
study for the most common Deep Learning (DL) and Machine Learning (ML) algo‑
rithms employed for short‑term solar irradiance forecasting. The dataset was gathered
in Islamabad during a five‑year period, from 2015 to 2019, at hourly intervals with accu‑
rate meteorological sensors. Furthermore, the Grid Search Cross Validation (GSCV)
with five folds is introduced to ML and DL models for optimizing the hyperparameters
of these models. Several performance metrics are used to assess the algorithms, such
as the Adjusted R2 score, Normalized Root Mean Square Error (NRMSE), Mean Absolute
Deviation (MAD), Mean Absolute Error (MAE) and Mean Square Error (MSE). The statisti‑
cal analysis shows that CNN‑LSTM outperforms its counterparts of nine well‑known
DL models with Adjusted R2 score value of 0.984. For ML algorithms, gradient boosting
regression is an effective forecasting method with Adjusted R2 score value of 0.962, beat‑
ing its rivals of six ML models. Furthermore, SHAP and LIME are examples of explainable
Artificial Intelligence (XAI) utilized for understanding the reasons behind the obtained
results.

Keywords: Solar radiation, Deep learning, Machine learning, Hybrid models, XAI

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

El‑Shahat et al. Journal of Big Data (2024) 11:134
https://doi.org/10.1186/s40537‑024‑00991‑w

Journal of Big Data

*Correspondence:
saleh1284@mans.edu.eg

1 Department of Computer
Science, Faculty of Computers
and Informatics, Zagazig
University, Zagazig 44519, Egypt
2 Department of Mathematics,
Faculty of Science, Mansoura
University, Mansoura 35516,
Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00991-w&domain=pdf

Page 2 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

CC (IPCC) has called for urgent decisions to mitigate the consequences of CC [5].
Fossil fuels encompass hydrocarbons and their derivatives, containing oil, coal and
gas. Fossil fuels are one of the key factors of CC [6]. Until now, fossil fuels have been
a primary source of non-renewable energy. Unfortunately, the combustion of fossil
fuels results in greenhouse gases and carbon dioxide emissions into the atmosphere.
When the sunlight penetrates the Earth’s atmosphere, these emissions trap the heat
and keep it from escaping back to space, which leads to global warming in the long
term. Global warning can seriously destroy life on our planet.

Due to the aforementioned detrimental impacts of fossil fuels, about 197 countries
at the 28th Conference of Parties (COP28) agreed to gradually shift from traditional
fossil fuels to renewable energy sources [7]. Also, there has been a concerted effort to
harness the power of renewable energy technologies, such as solar [8], wind [9], hydro
[10], and geothermal energy [11], which offer cleaner and more sustainable options
for energy production. Moreover, the field of renewable energies has received increas-
ing political and research attention to overcome CC and the energy crisis. Solar
energy is regarded as one of the most ubiquitous renewable energy sources, as the sun
is abundant throughout the year. Solar energy has many uses [12], such as water heat-
ing [13], food drying [14], heating buildings [15], irrigation [16], water distillation [17]
and waste recycling [18].

With the help of Photovoltaic (PV) systems [19, 20], the solar irradiance is transformed
into electricity. Solar energy is considered a source of clean energy as it does not pro-
duce greenhouse gas emissions or other air pollutants during the electricity generation.
The irregular presence of solar irradiance and the fluctuating environmental weather
conditions (humidity, cloud cover, temperature, wind speed, and wind direction) affect
the operational process, management, and stability of PV grids, which in turn affect the
amount of electricity production. Therefore, predicting solar irradiance in the future
based on historical observations to maintain the availability of solar energy is commonly
known as Solar Irradiance Forecasting (SIF).

SIF is considered one of the most challenging issues. In businesses and industries,
major decisions, including production, purchasing, and marketing can depend on fore-
casting. When the solar irradiance is not present, it is accumulated in batteries for future
utilization. Hence, the more accurate prediction of solar irradiance helps to provide per-
manent electricity by using the solar energy stored in batteries during the intervals of
solar irradiance absence. The forecast horizon [21] is the time period into the future over
which the forecast is made, while the forecast resolution represents the scale or size of
the frame at the forecast horizon. There are numerous categories of forecasting horizons
[22, 23], as shown in Fig. 1. The figure presents some useful applications that are appro-
priate for each forecast horizon.

The domain of solar irradiance forecasting has garnered growing attention by many
researchers over the past few decades. The literature outlines several methodologies
that can be divided into three categories: deterministic [24], ML or statistical [25, 26],
deep learning [27, 28], and hybrid methods [29, 30]. However, deterministic techniques
have certain drawbacks when predicting short-term forecasts [31]. Unlike these deter-
ministic methods, ML and DL algorithms are considered more accurate to predict solar
irradiance.

Page 3 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Short-term solar irradiance forecasting [32] is a challenging task that needs to be
urgently solved to cope with the electricity production of many companies and facto-
ries. There is also the necessity of having a clean, renewable source of energy that can
preserve our environment from pollution and global warming. All the aforementioned
reasons motivate us to perform a comparative study to investigate the accuracy of many
existing forecasting methods. Our work’s primary contribution can be mentioned as
follows:

• This study investigates the performance of various deep learning algorithm employed
for predicting short-term solar irradiance, such as artificial neural network, Convolu-
tional Neural Network (CNN), Long Short Term Memory (LSTM), recurrent neural
network, temporal convolutional network, gated recurrent unit, echo state networks,
residual neural network and the hybrid model CNN-LSTM.

• Also, another comparison among many ML algorithms will be conducted for tack-
ling the solar irradiance forecasting, including linear regression, stochastic gradient
descent regression, random forest, least absolute shrinkage and selection operator,
gradient boosting regression, decision tree regression and K-nearest neighbor regres-
sion.

• The GSCV with fivefold cross validation is suggested for hyperparameter tuning for
all ML and DL models.

• The dataset was collected from Islamabad over five years, from 2015 to 2019, at
hourly intervals using precise meteorological instruments.

• Several statistical analyses are performed, such as Adjusted R2 score, NRMSE, MAD,
MSE and MAE to examine the performance of different algorithm.

• SHAP and LIME are examples of XAI that is responsible for interpreting and under-
standing the reasons behind getting specific results.

The main organization of the paper is shown as follows. Sect. "Literature Review"
introduces a literature review of the recent algorithms developed for predicting the solar
irradiance. Sect. "Time series analysis" illustrates the time series analysis and the process

Very short-term forecasting
•

•

•

•

•

•

•
•

Fig. 1 Categorization of forecast horizons

Page 4 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

flow that is adopted by all ML and DL models in this paper. Sect. "Materials and meth-
ods" presents the structure of nine DL algorithms in addition to seven ML algorithms. In
Sect. "Results analysis and discussion", the results are covered and discussed. Lastly, the
conclusions and recommendations for further research are offered in Sect. "Conclusions
and future works".

Literature review
Solar irradiance prediction is a challenging task that has garnered the attention of many
researchers. Various advanced methods have proven their outperformance in predict-
ing solar irradiance using ML and DL algorithms, aiming at maximizing solar energy
production. Artificial Neural Network (ANN) is one of the most common DL model
employed for SIF [33–36]. Integrating fuzzy logic with the ANN [37] improves the fore-
casting accuracy by 3.2% compared to the standalone ANN. Typically, fuzzy logic deter-
mines the correlation between features. Another study by Kumar and Kalavathi [38]
proved that the ANN model outperforms the Adaptive Neuro-Fuzzy Inference System
(ANFIS) model to predict PV power output.

Moreover, Qing and Niu [39] suggested an hour-ahead SIF in desert locations, con-
sidering the frequent dust storms. The MLP model outperforms other models, such as
support vector regression, K-nearest neighbor, and decision tree regression, in terms
of accuracy. The results of backpropagation ANN [40] show that predicting PV irra-
diance is better and more accurate compared to the Autoregressive Moving Average
(ARMA). A comparative study [41] using six ML algorithms inferred that ANN is the
most effective and predictive model out of the six algorithms. Gairaa et al. [42] aimed to
forecast hourly global solar irradiation for time horizons from h + 1 to h + 6, using two
approaches: multiple linear regression and ANN models.

Long short-term memory (LSTM) networks, which belong to the type of Recurrent
Neural Networks (RNN), can learn about long-term dependencies while escaping the
issue of gradient vanishing. LSTM [43] is another DL model proposed for the SIF prob-
lem and achieves better outcomes than support vector regression. Additionally, the
LSTM model in [44] considers the interdependence between hours of the same day. The
LSTM model [45] performs hyper-parameter tuning to find the optimal values of the
parameters. After that, further data is added to see how it affects the improved model.
In [46], LSTM is enhanced to predict the short-term and long-term solar irradiance
for real-world data. Michael et al. [47] proposed a novel forecast model incorporating
LSTM with Bayesian optimization and LSTM with a drop-out structure. To apply the
LSTM model’s predictions for solar radiation estimation, K-means and the red/blue ratio
classify image pixels into clouds or the sky [48].

Researchers have adopted various models for SIF, including support vector machine
[49], random forest [50], K-Nearest Neighbor [51], gated recurrent unit [52], echo state
network [53], and temporal convolution network [54]. In this study [55], deep learning
based on MLP, GRU, LSTM, CNN and CNN-LSTM models uses monthly data to esti-
mate solar radiation. CNN outperforms other models with a MSE for global horizontal
irradiance of 12.68 W/m2. The hybridization of the ML models offers a potent technique
that exploits the strengths of various models. ALHM [56] is a hybrid forecast method

Page 5 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

that combines the ANN with a support vector machine, which has proven to be more
accurate for five minutes ahead and daily forecasts.

Also, CNN is incorporated with LSTM [57], such that CNN is used to extract spatial
features and LSTM is used to extract temporal features from historical solar irradiance.
The work of Kumari and Toshniwal [58] proposed the LSTM-CNN by using LSTM to
get the temporal features from time-series data of solar irradiance and then CNN to get
the spatial features. Gao et al. [59] suggested integrating CNN-LSTM with CEEMDAN,
which extracts features from constitutive series in historical data, in order to reliably
predict solar irradiance. In [60], the hybrid model CNN-LSTM-MLP is mixed with the
error correction and the VMD method to achieve the one-hour ahead solar irradiance
forecasting. Also, Malakouti et al. [61] proposed the CNN-LSTM model for predict-
ing the wind power, which demonstrated more accurate results. Guermoui et al. [62]
developed an enhanced hybrid model for multi-hour ahead DNI forecasting. In [63], the
authors applied the adjusted Boland–Ridley–Lauret (BRL) model was applied on two
time scales, daily and hourly components.

Time series analysis
Time series analysis is a technique for analyzing data gathered over periods of time. In
time series analysis, data comprises a set of observations or samples recorded at regular
intervals throughout a predetermined time frame, as opposed to being recorded at ran-
dom intervals. Time series analysis usually needs a lot of data points to guarantee con-
sistency and reliability. Time series data is commonly used in forecasting, which predicts
future data based on previous data. Figure 2 demonstrates the process flow and steps of
analyzing the time series model for Global Horizontal Irradiance (GHI) data.

After gathering the solar irradiance data from photovoltaic grids, data preprocessing
and feature extraction are performed to eliminate any noise, zero, and null values from
this data. The next step conducts data normalization to eliminate biased findings and
generate features that are on a comparable scale. There are two separate sets of data: the
training set and the testing set. The model is trained with the chosen training set, and
its performance is checked with a testing set. The final step discusses various statistical
analyses done to investigate the performance of the trained models.

Materials and methods
Artificial Intelligence (AI) [64] encompasses methods that enable machines, especially
computer systems, to imitate human intelligence in order to perform various tasks. ML
is a part of AI that contains advanced techniques that allow machines to learn from data.
Furthermore, DL is a branch of ML that uses neural networks for complex data pro-
cessing. This section will introduce various ML algorithms employed for solving the SIF
problem. Also, we will present the most famous algorithms used for tackling the prob-
lem in the field of DL. Figure 3 depicts a general view of AI, ML, and DL. Figure 4 exhib-
its the nine DL algorithms and seven ML algorithms that will be examined in our study.

Deep learning algorithms

The subsection delves into the most prominent deep learning models that are highly sug-
gested for SIF, including Artificial Neural Network (ANN) [65], Multilayer Perceptron

Page 6 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Beams

PV array

Step 1: Data acquisition

Step 2: Data preprocessing

Remove noise processed data split data

Step 3: Feature extraction and learning

Step 4: Model evaluations Solar radiation prediction model evaluations

Test data

Fig. 2 The process flow of the time series model

Fig. 3 General view of artificial intelligence, machine learning, and deep learning

Page 7 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

(MLP) neural network [66], Convolutional Neural Network (CNN) [67], Recurrent
Neural Network (RNN) [68], Long Short Term Memory (LSTM) [69], Temporal Con-
volutional Network (TCN) [70], Gated Recurrent Unit (GRU) [71], Echo State Networks
(ESN) [72], Residual Neural network [73], and finally the hybrid model CNN-LSTM
[74]. The main structure and details about these DL algorithms will be explained below.

Artificial neural network

The ANN [75, 76] is a computational model consisting of linked neurons arranged into
input, hidden, and output layers, designed to simulate the operations of the human
brain, as seen in Fig. 5. It is highly recommended for recognizing patterns and forecast-
ing tasks [77]. The input layer is mainly the first layer that receives initial data from the
real world. ANN can contain one or more hidden layers. Data is passed from the input
layer to the hidden layer, which processes it using learning methods and an activation

Fig. 4 Classification of solar irradiance forecasting models

Input layer

Output layer

Hidden layer

Fig. 5 Architecture of ANN

Page 8 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

function. Furthermore, the output layer is the last layer of ANN, consisting of a specific
number of nodes representing the output values.

Convolutional neural network

Similar to other forms of ANNs, CNNs [67, 78] are composed of interconnected artifi-
cial neurons through weights and arranged in layers. It is typically designed to learn and
extract features from visual data or images. Through the use of convolutional layers,
pooling layers, CNNs can learn from raw pixel data. By using CNN on time series data
for forecasting, it becomes possible to effectively capture temporal relationships and
extract important features. Additionally, CNN can interpret the incoming data as a
sequence of one-dimensional signals. The CNN utilizes one-dimensional convolutions
and pooling procedures to learn local patterns and detect temporal correlations within
the data.

CNN comprises many layers like convolution layer, flatten layer, pooling layer, and
output layer. For clarity, Fig. 6 displays the architecture of CNN. The convolution layer is
usually called the feature extractor layer since it gets the best features of the image and
time series data by sliding the filter over the next receptive field of the same data. The
CNN employs the Rectified Linear Unit (ReLU) activation function for setting all nega-
tive values to be zero using the following equation (see Fig. 7):

The pooling layer helps to lessen the spatial volume of data after the convolution layer.
There are many pooling methods, such as average pooling, max pooling, and L2-norm
pooling. The max pooling approach chooses the highest value within the window, as can
be seen in Fig. 8. It can be found after a convolution layer or between two of them but
not after the fully connected layer to lessen the computational cost. The flatten layer is
located between the CNN and the ANN, and its function is to convert the output of the
CNN into an input that the ANN can process to learn complex patterns and make pre-
dictions. Finally, the output layer obtains the final output.

(1)f (x) = max(0, x)

Convolution
layer

Convolution
layer

Pooling
layer

Pooling
layer

Input
data

Flatten
layer

Input
layer

Output
layer

DNI
DHI
T_amb
RH
WS
WS_std
WD
WD_ std
BP

Feature extraction
Fully connected
layer - regression

Dense
layer

CNN ANN

Fig. 6 Architecture of CNN

Page 9 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Recurrent neural network

Unlike other neural networks architectures, RNN [79] enables bidirectional information
flow through both forward and backward propagation. RNNs are suggested for handling
sequence and time series data [80], such as audio, sensor data [81], and text [82]. The RNN
consists of three layers: an input layer (x), a recurrent hidden layer (h), and an output layer
(O), as shown in Fig. 9. It can be modeled mathematically as follows [83]:

(2)ht = fRNN (U × xt +W × ht−1 + b)

Fig. 7 Graphical representation of the ReLU activation function

5 10 50 15 20 13 16 1

10 50 20 16

Max pooling = 2

Fig. 8 Max pooling technique

Fig. 9 Architecture of RNN cell

Page 10 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

where xt and ht are is the input and the hidden states at the current time step t . Further-
more, ht−1 refers to the hidden state at the previous time step. The variable ŷt refers to
predicted output at a time step t . The parameters U , W , and V are the weight vectors
for input, hidden, and output layers, respectively. The symbol fRNN indicates the used
activation function and b indicates the bias term. The σ is the sigmoid activation func-
tion. The feedback loop in its current hidden layer enables the RNN to keep the memory
of past information. This short-term memory makes the network to analyze previous
inputs when producing output and revealing the relationships between data points that
are far from each other (Table 1).

Table 2 encounters various types of RNN according to the number of input/out-
put layers. Also, the table mentions the best suited application for each type of RNN.
RNNs work by applying back propagation through time. In this manner, weights for
the current and previous inputs are updated by propagation of the error from the
last time step to the first one. An advantage of RNN is that the model size does not
increase with the size of the input. Long time steps cause weight gradients to vanish,
becoming small numbers close to zero. Thus, the network does not learn and isn’t
suitable for long-term dependencies.

(3)ŷt = σ(Vht)

Table 1 Types of RNN

Type of RNN Description Applications

One to one Single input and single output Predicting the next word

One to many Single input and multiple outputs Image caption

Many to one multiple inputs and single output Sentimental analysis and forecasting

Many to many multiple inputs and multiple outputs Machine translation

Table 2 Specifications of the used weather data

Variables Description Unit Instrument used for collection

Unnamed: 0 Contain index of samples – –

datetime Date and time for 55 months from year
2015–2020

Hour –

GHI Global horizontal irradiance w/m2 K&Z CMP21 pyranometer

DHI Diffuse horizontal irradiance w/m2 K&Z CMP21 pyranometer

DNI Direct normal irradiance w/m2 K&Z CHP1 pyrheliometer

T_amb Ambient temperature ◦
c Campbell CS215

RH Relative humidity % Campbell CS215

WS Wind speed m/s NRG 40H anemometer

WS_gust WS maximum within the time interval m/s NRG 40H anemometer

WD Wind direction from North to East ◦
w NRG 200 wind direction sensor

WD_std WD standard deviation ◦
w ‑

BP Barometric Pressure Atmosphere (atm) Campbell CS100

dni_dev DNI deviation ‑ ‑

cleaning cleaning ‑ ‑

Page 11 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Long short term memory

LSTM can tackle the vanishing gradient problem faced by RNN, since it depends on gates
mechanism by introducing input, output, and forget gates [83]. Figure 10 shows the LSTM
cell structure. These gates control which information is retained throughout the network.
The forget gate (ft) seeks to forget and delete any irrelevant information from the LSTM
cell in a specific time step, as can be seen in Fig. 11. The input gate (it) adds and updates
new information while the output gate (Ot) returns the updated information. The math-
ematical model of LSTM cell is defined as follows:

where the parameters wi , wc , wf , wo , Ui , Uf , Uc and UO represent weight vectors. xt , ht
and ct indicate the input, hidden state and cell state at a time step t . ht−1 and ct−1 indi-
cate the previous hidden state and the previous cell state at a time step t − 1 . Moreover,
ĉt determines the candidate memory whereas the symbol ⊙ determines the element wise
dot product. bf , bc , bO and bi are considered bias terms. σ and tanh refers to the sigmoid
and the tanh activation functions.

(4)ft = σ(wf xt + Uf ht−1 + bf)

(5)ĉt = tanh(wcxt +Ucht−1 + bc)

(6)it = σ(wixt +Uiht−1 + bi)

(7)ct = ft ⊙ ct−1 + it ⊙ ct

(8)Ot = σ(w0xt +U0ht−1 + b0)

(9)ht = Ot ⊙ tanh(ct)

tanh

tanh

Otĉtitft

ct

ht

Memory ct-1

Hidden state ht-1

Input xt
Forget gate Input gate Output gate

Fig. 10 Architecture of LSTM cell

Forget gate Input gate Output gate
Fig. 11 The function of main LSTM gates

Page 12 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Gated recurrent unit

Rather than LSTM, GRU is another network that handles the vanishing gradient prob-
lem by introducing the reset and update gate. Despite being similar to LSTM, GRU has
few advantages. Since GRU has fewer variables than LSTM, its architecture is simpler
and more compact. The structure of the GRU cell is given in Fig. 12. These gates deter-
mine which information is retained throughout the network. The mathematical model
of the GRU cell can be formulated as:

where rt and zt indicate both the reset gate and the update gate. wr , wz,wh , Ur , Uz and Uh
refer to the weight vectors for input and hidden states. br , bz and bh represent bias terms.
ht and ĥt are the hidden state and the candidate one at a time step t where as ht−1 is the
previous hidden state. σ and tanh are the sigmoid and the tanh activation functions.

Temporal convolutional network

TCNs [84, 85] are a powerful tool for handling sequence data, and it offers several
benefits over traditional sequence models, such as RNN and LSTM. Figure 13 exhib-
its the architecture of TCN. TCNs are parallelizable networks and they can avoid
gradient issues (vanishing gradients and exploding gradients). Also, they can handle
sequences of varying lengths even long-term and short-term which makes it a versa-
tile choice for many time series and sequence-based tasks. Unlike other convolutional
networks, TCN employs the causal and dilated convolutions to handle the increased
network depth for longer inputs [86]. The dilation factor (d = 1, 2, 4) is generally dou-
bled at each layer. TCNs use 1D convolutional layer, where each layer in the network

(10)rt = σ(wrxt + Urht−1 + br)

(11)zt = σ(wzxt + Uzht−1 + bz)

(12)ĥt = tanh(whxt + Uhht−1 + bh)

(13)ht = zt ⊙ ht−1 + (1− zt)⊙ ĥt

Pairwise multiplication Pairwise addition One minus

Zt
rt

htHidden state ht-1

tanh

Input xt

Reset gate Update gate

Fig. 12 Architecture of GRU cell

Page 13 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

sees all previous layers’ outputs. The TCN model also contains a residual block struc-
ture, similar to ResNet [87, 88], for making a skip connection and to facilitate training
of deep networks and prevent vanishing gradient descent.

Echo state networks

ESN [89, 90] is a type of RNN. It consists of an input layer (ut), a reservoir layer (wres)
and an output layer (yt), as depicted by Fig. 14. The reservoir layer comprises a large
number of recurrently connected nodes. In the figure, win refers to the connection
weights between input and hidden layers. Additionally, wout indicates the connection
between the hidden layer and the output layer. The connection weights between the
input layer and the reservoir layer remain unchanged once they have been initialized
[91]. Only the weights of the output layer can be trained that simplifies the training
process reducing computational complexity. ESN is beneficial for time series fore-
casting because it can successfully extract temporal dynamics and nonlinear patterns
from data.

Output

d=4

Hidden 2

d=2

Hidden 1

d=1

Input
Fig. 13 Architecture of TCN

tu wres

ty

Input Neuronal reservoir output

win

wout

Fig. 14 Architecture of ESN

Page 14 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Residual neural network

Residual networks [92] are characterized by skipping connections or jumping over
some layers (see Fig. 15). The residual connection performs an identity mapping to
x , then the element-wise addition will be done x + F(x) . After that, the ReLU acti-
vation function will be applied to x + F(x) . If x and F(x) has the same dimension,
the element-wise addition will be used. Otherwise, the identity mapping with a linear
transformation will be done as w.x + F(x) , where w is a weight matrix. They allow gra-
dients to directly flow through a network, without passing through non-linear activa-
tion functions that make neural networks to fall into the gradient vanishing problem.

CNN‑LSTM

A CNN-LSTM [93] is a hybrid model that incorporates CNN layers at the beginning
of CNN-LSTM model to extract relevant features from input data. These features
are then passed to the subsequent LSTM layers for interpreting the features across
time steps [94]. The architecture of the CNN-LSTM model is depicted in Fig. 16,

Fig. 15 Residual connection

Convolution
layer

Pooling
layer

Input Flatten
layer

Input
layer

Output
layer

DNI
DHI
T_amb
RH
WS
WS_std
WD
WD_std
BP

LSTM

LSTM

LSTM

LSTM

…

Dense
layer

Fully connected layer

Fig. 16 Architecture of the hybrid CNN‑LSTM model

Page 15 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

containing a fully connected layer of large number of neurons, organized in three lay-
ers: input, dense and output.

Machine learning algorithms

This subsection presents some of the most popular ML algorithms like linear regression
[95], Stochastic Gradient Descent (SGD) regression [96], Least Absolute Shrinkage and
Selection Operator (LASSO) [97], random forest [98], gradient boosting regression [99],
decision tree regression [100] and K-Nearest Neighbor (KNN) regression [101]. These
regression models are regarded as popular tool for statistical analyses and they will be
explained below.

Linear regression

Linear regression [102, 103] is a particular type of supervised ML algorithm employed
for tackling regression issues and estimating the correlation between two both variables.
It postulates a linear relationship between the independent variable (feature) and the
dependent one (target) with the objective of finding the best fit line that expresses the
relationship. The line is found by lessening the sum of squared differences between the
real values and predicted ones. The generalized formulation for linear regression is:

where ŷ indicates the predicted value.X denotes the matrix of input features. β defines
a vector of weights or coefficients.b is the intercept term (bias).Xnew refers to the new
data. ŷnew is the new predicted Value. The used weights vector for linear regression is
β = [134.77742582, 135.5658808, 32.3798911, -13.60180839, 14.06928621, -18.5702262,
-1.53548565, 46.40629438, 11.85316545], while the intercept value (b) is equal to
315.6134357765278.

Stochastic gradient descent regression

One of the supervised ML algorithms that may be used to tackle regression issues is
called SGD regression [104]. The iteratively updating of the model weights using a small
random portion of the training data instead of the entire draining data makes SGD a
common choice for large-scale regression tasks.

Least absolute shrinkage and selection operator

LASSO regression [105] is regarded as an extension of Ordinary Least Square (OLS).
With OLS, the estimates may suffer from high variance and lack of interpretation due
to the presence of large number of predictors [106]. Hence, LASSO comes to handle
the aforementioned drawbacks of OLS. It is used for regression problems with more

(14)ŷ = Xβ + b

(15)β = (XTX)−1XTy

(16)b = mean(y)−mean(Xβ)

(17)ŷnew = Xnewβ + b

Page 16 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

accurate prediction. The main objective of LASSO regression is to discover the values of
the coefficients that reduce the summation of the squared differences between the actual
values and predicted values [107]. LASSO function adds a penalty term to the loss func-
tion of OLS equal to the absolute value of the weights associated with each feature vari-
able. The loss function for LASSO regression can be expressed as below:

where m and p refers to the number of observations and dimensionality of features.
α is a hyperparameter that indicates the strength of the regularization.wj are the
assigned weights for LASSO. L1 regularization moves any weight values to zero to
allow other coefficients to take non-zero values. yi denotes the ith actual value and ŷij
represents the ith predicted value of feature j . The used LASSO weights vector in our
work is [134.78748341, 135.60866578, 32.32577104, −13.64606087, 12.66907409,
−17.07588968, −1.32131259, 46.09668833, 11.72830064] and LASSO Intercept is equal
to 315.6143943704034.

Random forest

Random forest [108] is an ensemble technique that has the ability for solving both
regression and classification problems with the use of multiple decision trees. It supports
the bagging technique where each decision tree is trained on a random subset of the
training data. It has gained a significant popularity in recent years because of its impres-
sive performance, simplicity in implementation and little processing requirements [109].
It is used to deal with bias-variance trade-offs for reducing the variance of a prediction
model.

Random forests [110, 111] involve creating multiple decision trees during training and
then outputting the average prediction (in the case of regression) of the individual trees.
Each tree is trained on a random subset of the data and features, which helps to reduce
overfitting and improve generalization. The pooling of multiple trees helps stabilize pre-
dictions and increase accuracy. Additionally, this approach provides better interpretabil-
ity and faster training times in many practical applications. The random forest approach
contains three parameters to adjust:

• Number of estimators represents the number of trees. Increasing the number of esti-
mators can lead to higher accuracy, but it is computationally expensive.

• Maximum features indicate the number of features for making a split decision.
• Maximum depth of a tree indicates how deep the tree can grow. The deeper the tree,

the more complex it is.

Gradient boosting regression

Gradient boosting regression [112] is a supervised ML problem based on the idea of an
ensemble method derived from a decision tree. It seeks to minimize the loss function
of the gradient boosting regression model through the addition of many weak learners

(18)LASSOloss = OLSloss + Penalty_term =

m∑

i=1

(yi −

p∑

j=1

ŷijwj)
2 + α

p∑

j=1

|wj|

Page 17 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

using gradient descent. Theses decision trees are built in a greedy approach with split
points that minimize the function loss.

Decision tree regression

A decision tree regression is a ML algorithm that aims to predict a continuous target
that partitions the features/variables into regions and passing predictions to each region
based on feature values. It works by constructing a tree-based structure by recursively
splitting the feature space based on input values. The leaves reflect the values of target
variables values, while the branch lines represent the combinations of input variables
that result in these values [113]. It predicts continuous target variables by traversing the
tree and assigning values to unseen data points.

KNN regression

KNN is another ML algorithm that is highly recommended for regression and classifi-
cation tasks. The model constructs its prediction based on finding the K nearest data
points to a particular input by averaging the observations in the same neighborhood or
choosing the majority class [26]. The distance between the neighbors and the given data
can be calculated using Euclidean distance. The Euclidean distance (ED) between two
points x = (x1, x2, ..., xd) and y = (y1, y2, ..., yd) in a d-dimensional space is calculated as:

The KNN is built by K neighbors and each of the neighbors is assigned a weight based
on its distance to the query point. The closer a neighbor, the higher its weight is. The
weight of the ith neighbor (wi) is given by:

EDx,yi is the distance between the query point x and its ith neighbor yi . The predicted
value (̂y) for the query point is the weighted average of the target values of its nearest
neighbors that can be computed by:

yk is the target value of the kth neighbor, where k = 1, 2, ...,K .

Interpretable results

Explainable Artificial Intelligence (XAI) allows anyone to understand the logic or rea-
sons produced by the ML model. It aims to develop AI systems that demonstrate more
transparency in their decision-making processes. The level of interpretability of a model
directly correlates with the ease of understanding the underlying justifications for certain

(19)EDx,y =

√√√√√
d∑

j=1

(xj − yj)2

(20)wi =
1

EDx,yi

(21)ŷ =

K∑

k=1

wk .yk

K∑

k=1

wk

Page 18 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

judgments or projections. The ML model is more interpretable than another if its expla-
nations are more understandable to a person than the choices made by the other model.
Understanding the underlying reasoning behind a model’s prediction is crucial for the
widespread adoption of prediction in many applications.

Shapley additive explanations

SHapley Additive exPlanations (SHAP) [114] utilizes the principles of game theory to
elucidate the predictions of any ML model by quantifying the impact of each feature
on the prediction output. The SHAP method identifies the primary features that influ-
ence the model’s forecast. SHAP approximates the original model to a specific input and
reduces the impact of missing features as follows:

where g represents the explanation model. z′ ∈ {0, 1}m is a binary variable where 1 indi-
cates that the simplified features are same as the original and 0 indicates that the features
are not the same as the original. Moreover, ϕj refers to the attribute effect for the jth fea-
ture such that j = 1, ...,m and m determines the number of simplified features.

Local interpretable model‑agnostic explanation

The Local Interpretable Model-Agnostic Explanation (LIME) [115] serves as a
"explainer" to elucidate the prediction outcome for individual data samples. The LIME
output consists of interpretations that depict the contribution of each feature to the pre-
diction for a specific sample, serving as a means of providing local interpretability.

Results analysis and discussion
This section will explore the solar irradiance dataset and the results of different models
from ML and DL on this data. SubSect. "Environment setup" will present the configu-
ration of the experimental environment in which our tests are conducted. The charac-
teristics of the solar irradiance dataset are outlined in the following subSect. "Dataset
description". SubSect. "Dataset distribution" explains the distribution of data. The pre-
processing steps and feature selection are discussed in subSect. "Data preprocessing and
feature selection". An illustration of the data that has been divided into training, testing,
and validation may be seen in subSect. "Data split". SubSect. "Hyperparameters tuning"
introduces the GSCV to optimize the hyperparameters of various ML and DL models.
SubSect. "Evaluation metrics of algorithms for solar irradiance forecasting" presents the
models evaluation for checking their performance. Finally, the results of DL and ML
models are discussed and statistically analyzed in subSect. "Results for deep learning
models" and subSect. "Results for machine learning algorithms", respectively.

Environment setup

For fair comparison among all algorithms, they are implemented and run on the same
data taken from Kaggle website. All algorithms are trained with GPU NVidia Tesla P100
and RAM of 16 GB. They are developed using Python environment of Version 3.10.12.

(22)g(z′) = ϕo +

m∑

j=1

ϕjzj′

Page 19 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Dataset description

This study utilizes global horizontal solar irradiance data acquired in Islamabad, located
at 33.64°N, 72.98°E and 500 m above sea level with meteorological parameters. The data
was gathered over five years from 2015 to 2019 taken at hourly intervals by employing
accurate meteorological devices. The weather data contains 14 columns. The dataset
comprises 41256 samples. The characteristics and specifications of the data are listed in
Table 2.

Dataset distribution

To understand the distribution of data, we employ several statistical measures, including
mean (Mean) and standard deviation (Std) that are calculated as in Eq. (23) and Eq. (24),
respectively. Furthermore, box plots [116] are utilized to summarize data distributions,
detect any skewness, identify outliers, and make comparisons between distributions.
They offer five measures, including the minimum (Min), first quartile, median, third
quartile, and maximum (Max) of the data values, that help to identify data spread and
identify potential anomalies.

xi is the ith observation in data, where 1 ≤ i ≤ n . n indicates the number of observations.
Table 3 introduces the statistical analysis of data distribution. From the table, the dataset
has different distributions, where some variables have a wide range of values with sig-
nificant variations, such as GHI and DNI, while other variables have smaller ranges and

(23)
Mean =

n∑
i=1

xi

n

(24)
Std =

√√√√√
n∑

i=1

xi −Mean

n

Table 3 The statistical analysis on the solar irradiance dataset distribution

Dataset Measure

Count Mean Std Min First quartile Second quartile Third quartile Max

GHI 41256 197.59 278.98 0.00 0.00 7.00 375.00 1040.00

DNI 41256 177.70 301.89 0.00 0.00 0.00 313.00 2777.00

DHI 41256 88.43 127.92 0.00 0.00 5.00 152.00 843.00

T_amb 41256 21.90 8.49 1.00 14.90 22.80 28.40 45.30

RH 41256 59.02 20.83 10.00 42.00 59.00 76.00 100.00

WS 41256 1.78 1.38 0.00 0.70 1.50 2.60 13.20

WS_gust 41256 4.19 2.47 0.00 2.40 3.60 5.40 31.00

WD 41256 175.18 108.24 0.00 70.00 186.00 275.00 360.00

WD_std 41256 13.04 10.08 0.00 4.60 12.00 19.50 82.20

BP 41256 944.77 9.57 881.00 940.00 946.00 951.00 1002.00

dni_dev 41256 −9.59 20.74 −100.00 −16.20 0.00 0.00 100.00

cleaning 41256 0.01 0.12 0.00 0.00 0.00 0.00 1.00

Page 20 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

lower variations, such as T_amb, RH, WS, WS_gust, WD, WD_std, and BP. The vari-
ables dni_dev and cleaning have a substantial number of zero values.

Principal Component Analysis (PCA) is a statistical technique used to reduce the
dimensionality of a dataset while retaining the variation in the data. This is particularly
useful when dealing with high-dimensional data to make it easier to visualize and ana-
lyze, without losing significant information. From Fig. 17, it is evident that the cumu-
lative explained variance plateaus after 9 components. This means that while PCA can
reduce the dimensions, the first 9 components or features already capture most of the
variability in the data. Since our data originally contains 9 features, which is the total
number of features in the original dataset, would not provide any dimensionality reduc-
tion benefits.

Furthermore, Fig. 18 displays the importance of each feature. A higher importance
value means that the specific feature will have a larger effect on the model that is being
used to predict the target value GHI. The input DHI values have a significant effect on
the target GHI with an importance value of 1.441757. Moreover, Fig. 19 shows the rela-
tionship between each feature and the other features. Figure 20 depicts the entropy [117]
for the data samples over time, which takes a value from 0 to 1. A higher entropy value
indicates a more uncertain or random distribution, whereas a lower entropy value corre-
sponds to a more predictable or deterministic distribution. By inspecting the figure, we
can see that most entropy values lies in the interval from 0.4 to 0.8. When the entropy is
moving toward 1, it means that the dataset has a random distribution, which puts more
challenges in predicting the solar irradiance.

Data preprocessing and feature selection

Data preprocessing and feature selection ensure data quality, data normalization,
and noise reduction. Data distribution shows that dni_dev and cleaning features

Fig. 17 PCA reduction technique for the weather data

Page 21 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

have many zero values. Hence, dni_dev and cleaning is dropped from data, as well as
unnamed: 0 is dropped as it contains the index of samples. Also, the contribution and
correlation of these features to the output is weak, thus deleting them will be advan-
tageous. From the Person correlation plot in Fig. 21, the darker degree of red and

Fig. 18 The importance of each feature of the weather data

Fig. 19 The relationship between each feature and the other features

Page 22 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

blue colors indicates a strong correlation, while the brighter one indicates weak cor-
relation. Finally, the remaining features that will be taken into consideration are GHI,
DNI, DHI, T_amb, RH, WS, WS_gust, WD, WD_std and BP.

The analysis reveals that a large number of values, approximately 19,403 from GHI
are equal to zero. Indeed, the zero values represent night values, and it is clear that
they are zero owing to the absence of solar radiation. Thus, it is advisable to clean the
data at night from 19:00 to 5:00 in the morning and only utilize data from the daylight
period when solar radiation is present. Zero values will be dropped to 4236 after this
process.

Since there are several data distributions—wide range and small range—data nor-
malization is crucial for eliminating bias results, creating features of a comparable
scale, enhancing ML algorithm stability and convergence, improving model accuracy
and generalizability by minimizing outliers, and improving efficiency by minimizing
complexity and storage needs. The standard scalar normalization (z) of data can be
calculated by:

Fig. 20 Entropy for the data samples over time

Fig. 21 The heatmap correlation of the features

Page 23 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

where xi refers to the ith value from data to be normalized. Mean and Std are computed
as in Eq. (24) and Eq. (25), respectively.

From the statistical analysis of the data nature, input data contains DNI, DHI, T_amb,
RH, WS, WS_gust, WD, WD_std and BP that has a high correlation with the target data
(GHI) with a window size of 4 for neural networks. The window size in a neural net-
work is crucial for effectively capturing local information, compressing information,
extracting attributes at different scales, and achieving a balance between local and global
information.

Data split

After the normalization step, the data split phase starts, as depicted in Fig. 22. For ML
algorithms, the data is divided into training and testing sets for the standard training
and evaluation process. However, for DL algorithms, it is common to split the data into
training, testing, and validation sets. We use the training set to train the DL model, the
testing set to assess its performance, and the validation set for hyperparameter tuning
and model selection. This helps in choosing the best hyperparameters for the model and
comparing the performance of different models due to the complexity of DL algorithms
compared to ML ones. The validation set is unnecessary for ML algorithms because they
have simple model architectures in contrast to DL models that have more complicated
structures.

For the DL algorithms the data is divided into three sets: training, validation and test-
ing, with 70%, 15%, and 15%, respectively as adopted by many previous studies [43, 118–
120]. For ML approaches, the data is divided into two sets: training and testing, with
20,000 records of the data for the training process and 5,785 records for the testing pro-
cess [36].

Hyperparameters tuning

GSCV [121, 122] is a powerful technique for optimizing the hyperparameters of DL
models. Cross-validation is a crucial method used to build better-fitting models by train-
ing and testing on all parts of the training dataset. The grid search with fivefold cross-
validation [123, 124] is utilized on the training and validation sets and the testing set
is kept away for final evaluation. The number of folds can be increased or decreased. A
higher number of folds value may lead to a less biased model, and more complex model.

(25)z =

√
xi −Mean

Std

Fig. 22 Data split for DL and ML algorithms

Page 24 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

A lower number of folds value may like the simple train-test split method. fivefold cross
validation [125, 126] is adopted in many previous works. In GSCV, the training set is
partitioned into five equal-sized folds or parts. During the five iterations, one fold is
used for testing while the remaining folds are used for training. This process is repeated
until all folds have been used for testing.

Figure 23 depicts the used grid search with fivefold cross-validation for DL algorithms.
For fair comparison among all DL algorithms, it has been taken into account that the
models are trained and validated on the same parts of the data, as can be seen by the
figure. Also, the grid search cross-validation is performed on the training set for bet-
ter hyperparameters tuning, as can be illustrated in Fig. 24. Moreover, each algorithm is
trained and tested on the same parts of the data, as in the figure.

Evaluation metrics of algorithms for solar irradiance forecasting

Various performance measures are employed for evaluating all the models, includ-
ing Mean Squared Error (MSE), R2 score, Adjusted R2 score, Median Absolute Devia-
tion (MAD), Root Mean Squared Error (RMSE), Normalized Root Mean Squared Error
(NRMSE) and Mean Absolute Error (MAE). MSE is a primary performance metric that
measures the average of the squares of errors and computed by:

n indicates the number of the samples and yi indicates the ith actual value, where
i = 1, ..., n . ŷi represents the ith predicted value. R2 score is a statistical indicator that
indicates how closely is the regression predictions from the actual data points. The 1.0
value means that the regression predictions completely fit the actual data. When the R2

(26)
MSE =

n∑
i=1

(yi − ŷi)
2

n

…

Fig. 23 Grid search cross‑validation for DL algorithms

Page 25 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

score value moves from one to zero, the predictions move away from the actual data. R2
score can be calculated by:

y represents the mean of all the values. R2 score measures the overall fit of the model to
the data and has a tendency to increase when additional independent variables are added
to the model, even if they have little or no explanatory power. This can lead to overfit-
ting, while adjusted R2 score considers the goodness-of-fit while taking into account the
number of predictors and avoids overfitting. It can be computed as:

where k represents the number of independent variables in the model. RMSE is a com-
mon performance metric measures the average difference between predicted values and
real values. A lower RMSE indicates a superior model and more accurate predictions.
The lower RMSE determines that there is a small difference between the real and the
predicted values. RMSE can be formulated mathematically as follows [127]:

The Normalized RMSE (NRMSE) is an extension for RMSE which is more suitable for
different scales of data and can be calculated as follows:

(27)R2(%) = 1−

n∑
i=1

(ŷi − yi)
2

n∑
i=1

(yi − yi)
2

× 100

(28)AdjustedR2 = 1−

⌈
(1− R2)(n− 1)

(n− k − 1)

⌉

(29)
RMSE(w/m2) =

√√√√√
n∑

i=1

(yi − ŷi)2

n

…

Fig. 24 Grid search cross‑validation for ML algorithms

Page 26 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

ymax and ymin determine the maximum and minimum actual values. Another metric to
evaluate the models is Mean Absolute Deviation (MAD). MAD is mainly defined as the
median difference between the observations (actual values) and model output (predic-
tions). It can be expressed as:

Median is the midpoint of a data collection; half of the data points have values lower
than or equal to it, and half have values higher or equal to it. MAE is defined as the aver-
age variance between the real and predicted values and computed using Eq. (32) [127].

Results for deep learning models

In this subsection, we will investigate the performance of many DL algorithms for tack-
ling SIF problem. To ensure a fair comparison among all DL algorithms, they were
trained under identical environmental circumstances. We used Keras API of version
2.12.0 which is a Python framework for deep learning to implement all our selected DL
models. Keras is built on top of TensorFlow and offers a comprehensive set of tools for
constructing and optimizing neural networks. The loss function for each model is also
determined by squaring the mean error, as shown in Eq. (26). The Adam optimizer is uti-
lized with all DL except for the DNN model, we use rmse optimizer. Table 4 records the
best learning rate values obtained by the grid search cross validation for each DL model.
The batch size is defined as 32, indicating the quantity of samples processed prior to
updating the model. Moreover, the window size is equal to 4. The architecture of various
DL models is stored in Table 5.

The number of epochs is set to 100, where it represents the number of complete iter-
ations through the training dataset. Early stopping is triggered if a fault arises during

(30)NRMSE =
RMSE

ymax − ymin

(31)MAD = Median(|yi − ŷ|)

(32)MAE(w/m2) =
1

n
×

n∑

i=1

|yi − ŷi|

Table 4 Learning rate for each DL model

DL model Learning rate

Residual NN 0.01

ESN 0.1

TCN 0.001

LSTM 0.001

GRU 0.001

Simple RNN 0.001

CNN‑LSTM 0.001

ANN 0.01

CNN 0.001

MLP 0.1

Page 27 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

training or if there is no improvement in the model’s validation performance for a spe-
cific period of epochs (patience = 5). The parameter patience represents the number of
epochs with no improvement. The kernel size for CNN and CNN-LSTM is equal to 3.
Additionally, the ReLU activation function is utilized by the hidden layer, whilst the lin-
ear activation function is utilized by the output layer. Furthermore, a lower dropout rate
is set to 0.2 in order to prevent overfitting.

Table 6 records the results of various DL models, including ANN, CNN, RNN,
LSTM, GRU, TCN, ESN, Residual NN, MLP and CNN-LSTM. We employ many
performance metrics to assess the model’s quality, such as the number of parame-
ters, the R2 score,AdjustedR2score , MSE, RMSE, NRMSE, MAE and MAD. The bold
font in the table indicates the best results obtained by the existing models. From the
results, we can see that CNN-LSTM comes in the first rank by achieving the maxi-
mum Adjusted R2 score value of 0.984, which means the regression predictions are

Table 5 The architecture of different DL models

Model Architectures Model Architectures

Residual NN Input layer (4,9)
Residual Block consist of (
Dense layer (unit = 64, activation = relu),
Dense layer (unit = 9, activation = relu),
Adding Second Dense with input layer,
Dense layer (unit = 64, activation = relu))
Flatten layer
Output layer (unit = 1, activation = lin‑
ear)

CNN‑LSTM Input layer (4,9)
Conv1D (filters = 128, kernel_size = 3,
padding = same, activation = relu)
Conv1D (filters = 128, kernel_size = 3,
padding = same, activation = relu)
Dropout (0.3)
MaxPooling1D (pool_size = 1)
LSTM (64, return_sequences = True)
LSTM (64)
Output layer (unit = 1, activation = linear)

MLP Input layer (4,9)
Dense layer (unit = 50, activation = relu)
Flatten layer
Output layer (unit = 1, activation = lin‑
ear)

ESN Input layer (4,9)
ESN layer (256, return_sequences = True,
use_norm2 = True)
Flatten layer
Output layer (unit = 1, activation = linear)

ANN Input layer (4,9)
Dense layer (unit = 32, activation = relu)
Dropout (0.1)
Dense layer (unit = 32, activation = relu)
Dense layer (unit = 32, activation = relu)
Dropout (0.1)
Flatten layer
Output layer (unit = 1, activation = lin‑
ear)

CNN Input layer (4,9)
Conv1D (filters = 64, kernel_size = 3, pad‑
ding = same, activation = relu)
Conv1D (filters = 64, kernel_size = 3, pad‑
ding = same, activation = relu)
Dropout (0.5)
MaxPooling1D (pool_size = 1)
Flatten layer
Dense layer (unit = 100, activation = relu)
Output layer (unit = 1, activation = linear)

GRU Input layer (4,9)
GRU layer (32, return_sequences = True)
Dropout (0.1)
GRU layer (32, return_sequences = True)
Dropout (0.1)
GRU layer (32, return_sequences = True)
Dropout (0.1)
Output layer (unit = 1, activation = lin‑
ear)

Simple RNN Input layer (4,9)
Simple RNN layer (32, return_
sequences = True)
Dropout (0.1)
Simple RNN layer (32, return_
sequences = True)
Dropout (0.1)
Simple RNN layer (32, return_
sequences = True)
Dropout (0.1)
Output layer (unit = 1, activation = linear)

LSTM Input layer (4,9)
LSTM layer (32,return_sequences = True)
LSTM layer (16, activation = relu)
Output layer (unit = 1, activation = lin‑
ear)

TCN Input layer (4,9)
TCN layer (nb_filters = 256, return_
sequences = True, dilations = [1, 2, 4, 8,
16, 32])
Flatten layer
Output layer (unit = 1, activation = linear)

Page 28 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

more closely aligned with the actual data than other comparing models. Also, CNN-
LSTM obtains the minimum values for NRMSE = 0.036 and MSE = 1265.721, and the
second minimum values for MAE = 16.461 and MAD = 8.498. The CNN achieved
the second ranking compared to its counterparts with Adjusted R2 score of 0.982. On
the other side, TCN comes in third rank with Adjusted R2 score = 0.981 and has the
largest number of parameters with value of 2,176,257. Moreover, RNN comes in the
fourth rank with Adjusted R2 score = 0.978, followed by LSTM, Residual NN, GRU,
ANN, MLP and ESN. The number of parameters affects the model’s complexity. MLP
has the least number of parameters equal to 701.

Figure 25 displays the rank of each model using five performance metrics, includ-
ing the Adjusted R2 score, MSE, NRMSE, MAE, and MAD. It can be seen that the
CNN-LSTM model achieves the best results compared to their rivals. Furthermore,
ESN has the worst performance. Figure 26 shows the sum of ranks over the previous
five metrics to give a general view on the model ranking for solar radiance forecast-
ing. The rank of DL models from the best to the worst comes as follows: CNN-LSTM,
TCN, CNN, RNN, GRU, LSTM, Residual NN, MLP, ANN and ESN.

Figure 27 describes the hybrid CNN-LSTM model for predicting solar irradi-
ance. The figure depicts that the model contains two convolution layers, one drop-
out layer, one pooling layer, two LSTM layers and one dense layer. Presentation of

Table 6 The results of the DL models for solar irradiance forecasting

Bold indicates the best results

Model # Parameters Adjusted R2 score MSE RMSE NRMSE MAE MAD

Residual NN 2,122 0.976 2107.720 45.910 0.044 24.486 14.410

ESN 69,121 0.843 13,768.036 117.337 0.113 73.917 52.860

TCN 2,176,257 0.981 1676.784 40.949 0.039 20.869 10.208

LSTM 8,529 0.976 2095.702 45.779 0.044 23.252 12.001

GRU 16,833 0.975 2211.138 47.023 0.045 19.759 8.931

RNN 5,537 0.978 1947.132 44.126 0.042 21.679 10.323

CNN‑LSTM 135,361 0.984 1382.722 37.185 0.036 15.090 6.932
ANN 2,561 0.970 2663.559 51.610 0.050 29.851 16.256

CNN 39,945 0.982 1542.367 39.273 0.038 22.112 15.339

MLP 701 0.946 4777.664 69.121 0.066 38.351 24.398

Fig. 25 The rank of each DL model using adjusted R2 score, MSE, NRMSE, MAE and MAD metrics

Page 29 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Fig. 26 The sum of ranks of each DL model

Fig. 27 CNN‑LSTM model summary

Page 30 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

the CNN-LSTM model’s training and validation loss curves can be found in Fig. 28.
According to the figure, the CNN-LSTM has varying numbers of epochs for the dif-
ferent folds due to the implementation of the early stopping parameter. This model
terminated the training process if the loss in both training and validation did not
change during model fitting. It is clear that the loss values of the training set and the
validation set for all folds are in good agreement with one another. This suggests that
the predictions made by the proposed model are in line with the actual data, and that
there is neither overfitting nor underfitting present. Figure 29 depicts the predictions
of CNN-LSTM model compared to the actual ones for the first 100 time steps.

Results for machine learning algorithms

This section examines the performance of several ML models, such as linear regres-
sion, SGD regression, LASSO, gradient boosting regression, random forest, decision
tree regression, and KNN regression. Table 7 contains the best parameters values of dif-
ferent parameters associated with each ML model that are found using the grid search
cross validation technique. By inspecting the table, we display the various values of each
parameter for all ML models. Also, the best hyperparameters values are recorded. We

Fig. 28 The loss curve for training and validation set for all five folds of CNN‑LSTM model

Page 31 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

used Sci-kit API of version 1.2.2 which is a Python framework for ML to implement all
our selected ML models.

Table 8 presents a comparison among numerous ML algorithms, including linear
regression, SGD regression, LASSO, random forest, gradient boosting regression, deci-
sion tree regression and KNN regression. The table shows that the gradient boosting
regression gets the best results for most of the performance metrics. Gradient boost-
ing regression has the highest Adjusted R2 score with a value of 0.962, which puts it
at the top of the algorithms. It also obtains the minimum values for MSE = 3415.02,
NRMSE = 0.058 and MAE = 29.33. KKN regression attains the second highest value of
the Adjusted R2 score, which is 0.945. Moreover, linear regression comes in the third
rank with an Adjusted R2 score value of 0.893.

Figure 30 displays the ranking of the existing seven ML approaches according to five
distinct evaluations: Adjusted R2 score, MSE, NRMSE, MAE, and MAD. We can observe
that gradient boosting regressions attains the first ranking in five metrics, while SGD
shows the worst performance. Also, Fig. 31 displays the ranking of several algorithms
based on the total sum of rankings for all performance metrics. A lower sum of ranks
indicates that the ML model performs better. The gradient boosting regression has
a minimum value of the sum of ranks with a value of 5. Then, KNN comes in at the
next rank after gradient boosting regression. SGD reserves the last rank with a value
of 26, which demonstrates poor performance. Moreover, Fig. 32 depicts the predictions
obtained by gradient boosting regression for the first 100 time steps, which has proven
that the predicted values of gradient boosting regression are closely aligned with the
actual values.

To explain the previous results obtained by ML models and the outperformance of
gradient boosting regression, XAI with SHAP and LIME are introduced. Mean absolute
SHAP values are often shown as bar plots that order features according to their impor-
tance, as seen in Fig. 33. The ordering of features and the respective magnitudes of the
mean absolute SHAP values are the most important factors to consider. Here, we can
see that DHI is the most influential feature contributing to the GHI output, whereas the
least informative feature contributing to the GHI output is WS_gust.

Fig. 29 CN‑LSTM predictions

Page 32 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Table 7 The best hyperparameters values found by grid search cross validation of each ML model

Algorithm name Parameter name Parameter values Best parameter value

Linear regression Intercept [True, False] True

Copy_X [True, False] True

N_jobs [−1, 1] −1

Weights (β) [134.77742582, 135.5658808,
32.3798911, −13.60180839,
14.06928621, −18.5702262,
−1.5354856,
46.40629438, 11.85316545]

SGD regression Alpha
Random state
Max iter
Tol

[0.1, 0.001, 1]
[33]
[1000, 2000]
[1e‑3, 1e‑4]

0.1
33
1000
1e‑3

LASSO Alpha
Random state
Max iter

[0.1, 1.0, 10.0]
33
[1000, 2000]

0.1
33
1000

Weights [134.78748341, 135.60866578,
32.32577104,
−13.64606087, 12.66907409,
−17.07588968,
−1.32131259, 46.09668833,
11.72830064]

Random forest regression Max depth of tree
Number of estimators
Random state
Max Features
Bootstrap

[2, 3]
[50, 100]
33
[1.0, ’sqrt’, ’log2’]
[True, False]

3
100
33
1.0
True

Gradient boosting regression Max depth of tree
Number of estimators
Random state
Learning rate

[2, 3]
[50, 100]
33
[0.1, 0.5, 1.5]

3
100
33
0.5

Decision tree regression Max depth of tree
Random state
Criterion

[2, 3, 5]
33
[’squared_error’, ’friedman_mse’,
’absolute_error’]

5
33
squared_error

KNN regression K‑neighbors
Weights
Algorithm

[3, 5, 7]
[’uniform’, ’distance’]
[’auto’, ’ball_tree’, ’kd_tree’,
’brute’]

7
distance
auto

MLP Regressor Activation
Solver
Alpha
Hidden layers

[’relu’, ’tanh’]
[’adam’, ’sgd’]
[0.0001, 0.001, 0.01, 0.1]
[(50), (100), (200), (200, 100),
(200, 100, 50)]

relu
adam
0.0001
(200, 100, 50)

Table 8 The results of ML algorithms

Bold font indicates the best results

Model Adjusted R2
Score

MSE RMSE NRMSE MAE MAD

Linear regression 0.810 16,891.74 129.968 0.129 78.57 51.972

SGD regression 0.810 16,926.44 130.102 0.129 79.41 52.277

LASSO 0.810 16,894.36 129.978 0.129 78.53 51.934

Random forest 0.810 16,894.36 129.978 0.129 78.53 51.934

Gradient boosting regression 0.962 3415.02 58.438 0.058 29.33 15.626
Decision tree regression 0.893 9543.61 97.691 0.097 56.25 28.930

KNN regression 0.945 4907.74 70.055 0.069 39.04 20.329

Page 33 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

The bar plot in Fig. 33 did not tell us how the underlying values of each feature
relate to the model’s predictions. Figure 34 illustrates how the features contribute to
the model’s predictions. Each feature of the data is represented by a row in the plot.

Fig. 30 The rank of each ML model using Adjusted R2 score, MSE, NRMSE, MAE and MAD metrics

Fig. 31 The sum of ranks of each ML model

Fig. 32 Gradient boosting regression predictions

Page 34 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

The horizontal x-axis indicates the SHAP values. The blue color refers to lower values
of the feature, whereas the red color refers to higher values of this feature. The feature
that has a wide spread of SHAP values, has a greater contribution to the model’s pre-
dictions. The feature values that are assembled around zero have a minimal impact on
the model’s predictions. From the plot, we can see that the lower values of DHI have
negative SHAP values, whereas the higher values of DHI have positive SHAP values.
Also, DHI has a wide spread of SHAP values, which reflects the significant effect on

Fig. 33 Mean absolute values of the SHAP for all features

Fig. 34 Summary of beeswarm plot ranked by mean absolute SHAP value

Page 35 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

the model’s predictions. LIME plot in Fig. 35 shows that DHI and DNI have the most
impact for output.

Conclusions and future works
Various DL and ML algorithms were employed for SIF. This paper presents a compari-
son for the most common nine DL algorithms, such as ANN, CNN, LSTM, GRU, RNN,
TCN, ESN, CNN-LSTM MLP and residual NN. Another experiment is conducted to
compare among seven of the existing algorithms, containing linear regression, SGD
regression, LASSO, random forest, decision tree regression and KNN regression. The
GSCV is employed to find the best hyperparameter values for all DL and ML models.
The dataset was gathered from Islamabad over five years at hourly intervals using accu-
rate meteorological instruments. Moreover, we measure the effectiveness of each model
using various metrics like MSE, Adjusted R2 score, RMSE, MAE and MAD. Additionally,
SHAP and LIME are used in our study to provide an explanation and comprehension
for the acquired result of the best model. For deep learning algorithms, the statistical
analysis shows that CNN-LSTM outperforms its counterparts, whereas gradient boost-
ing regression achieves a superior results compared to other ML models.

Hybridization can be a powerful tool, as hybrid models can achieve better results than
individual ones. Hence, in the future, we hope to develop a hybrid model for solar irra-
diance forecasting. Hyperparameter tuning strategies seek to find the optimal values of
parameters that lead to improved performance and the learning process of ML algo-
rithms. Other hyperparameter tuning can be a future direction through the integration
of metaheuristic techniques to optimize the parameter values [128, 129]. Possible future
directions to enhance the work would revolve mainly around different time horizons:
short-term, medium-term, and long-term, to study the effectiveness of the proposed
model. This study is interested in solar irradiance forecasting, and we aim at investigat-
ing other challenging problems, such as wind forecasting [130], PV power forecasting
[131] and price forecasting [132].

Fig. 35 LIME plot

Page 36 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

Author contributions
Doaa El‑Shahat and Ahmed Tolba: Investigation, Methodology, Resources, Visualization, Software, Writing—original draft,
Writing—review & editing. Mohamed Abouhawwash: Conceptualization, Methodology, Visualization, Software, Writ‑
ing—review & editing. Mohamed Abdel‑Basset: Conceptualization, Methodology, Resources, Visualization, Validation,
Supervision, Writing—review & editing.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with
The Egyptian Knowledge Bank (EKB).

Data availability
https:// www. kaggle. com/ datas ets/ ahmdt olba/ solar data‑ islam abad/ data. No datasets were generated or analysed dur‑
ing the current study.

Declarations

Ethics approval and consent to participate
The author confirms the sole responsibility for this manuscript. The author read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Received: 27 February 2024 Accepted: 26 August 2024

References
 1. Steg L. Psychology of climate change. Annu Rev Psychol. 2023;74:391–421.
 2. Eckardt NA, et al. Climate change challenges, plant science solutions. Plant Cell. 2023;35(1):24–66.
 3. Mirón IJ, Linares C, Díaz J. The influence of climate change on food production and food safety. Environ Res.

2023;216: 114674.
 4. Matthews T. Humid heat and climate change. Prog Phys Geog Earth Environ. 2018;42(3):391–405.
 5. Lee, H., et al., Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assess‑

ment report of the intergovernmental panel on climate change. 2023.
 6. Sain K. Climate change and fossil fuels: impacts, challenges and plausible mitigation. J Geol Soc India.

2023;99(4):454–8.
 7. Ozdemir I, et al., COP28. 2023.
 8. Nijsse FJ, et al. The momentum of the solar energy transition. Nat Commun. 2023;14(1):6542.
 9. Nassar YF, et al. Carbon footprint and energy life cycle assessment of wind energy industry in Libya. Energy Con‑

vers Manage. 2024;300: 117846.
 10. Kamran M. Hydro energy renewable energy conversion systems. Amsterdam: Elsevier; 2021.
 11. Soltani M, et al. Environmental, economic, and social impacts of geothermal energy systems. Renew Sustain

Energy Rev. 2021;140: 110750.
 12. Obaideen K, et al. Solar energy: Applications, trends analysis, bibliometric analysis and research contribution to

sustainable development goals (SDGs). Sustainability. 2023;15(2):1418.
 13. Chinnasamy S, Arunachalam A. Experimental investigation on direct expansion solar‑air source heat pump for

water heating application. Renew Energy. 2023;202:222–33.
 14. Madhankumar S, et al. A review on the latest developments in solar dryer technologies for food drying process.

Sustain Energy Technol Assess. 2023;58: 103298.
 15. Kurbonov K. Use of renewable energy sources for heating buildings. Open Access Repos. 2023;4(03):349–54.
 16. Kumar SS, et al. Solar powered water pumping systems for irrigation: a comprehensive review on developments

and prospects towards a green energy approach. Mater Today Proc. 2020;33:303–7.
 17. Tuly S, et al. Effects of design and operational parameters on the performance of a solar distillation system: a

comprehensive review. Groundw Sustain Dev. 2021;14: 100599.
 18. Niyommaneerat W, Suwanteep K, Chavalparit O. Sustainability indicators to achieve a circular economy: a case

study of renewable energy and plastic waste recycling corporate social responsibility (CSR) projects in Thailand. J
Clean Prod. 2023;391: 136203.

 19. Morey M, et al. A comprehensive review of grid‑connected solar photovoltaic system: architecture, control, and
ancillary services. Renew Energy Focus. 2023;45:307–30.

 20. Guermoui M, et al. A comprehensive review of hybrid models for solar radiation forecasting. J Clean Prod.
2020;258: 120357.

 21. Akhter MN, et al. Review on forecasting of photovoltaic power generation based on machine learning and
metaheuristic techniques. IET Renew Power Gener. 2019;13(7):1009–23.

 22. Bassous GF, Calili RF, Barbosa CH. Development of a low‑cost data acquisition system for very short‑term photo‑
voltaic power forecasting. Energies. 2021;14(19):6075.

 23. Nie Y, et al. Open‑source sky image datasets for solar forecasting with deep learning: a comprehensive survey.
Renew Sustain Energy Rev. 2024;189: 113977.

 24. Morf H. A validation frame for deterministic solar irradiance forecasts. Renew Energy. 2021;180:1210–21.

https://www.kaggle.com/datasets/ahmdtolba/solardata-islamabad/data

Page 37 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

 25. Voyant C, et al. Machine learning methods for solar radiation forecasting: a review. Renew Energy.
2017;105:569–82.

 26. Demir V, Citakoglu H. Forecasting of solar radiation using different machine learning approaches. Neural Comput
Appl. 2023;35(1):887–906.

 27. Ajith M, Martínez‑Ramón M. Deep learning algorithms for very short term solar irradiance forecasting: a survey.
Renew Sustain Energy Rev. 2023;182: 113362.

 28. Kumari P, Toshniwal D. Deep learning models for solar irradiance forecasting: a comprehensive review. J Clean
Prod. 2021;318: 128566.

 29. Liu J, et al. Hourly stepwise forecasting for solar irradiance using integrated hybrid models CNN‑LSTM‑MLP com‑
bined with error correction and VMD. Energy Convers Manage. 2023;280: 116804.

 30. Lu Y, et al. Predicting surface solar radiation using a hybrid radiative transfer‑machine learning model. Renew
Sustain Energy Rev. 2023;173: 113105.

 31. Lara‑Benítez P, et al. Short‑term solar irradiance forecasting in streaming with deep learning. Neurocomputing.
2023;546: 126312.

 32. Ferkous K, et al. A novel learning approach for short‑term photovoltaic power forecasting‑a review and case stud‑
ies. Eng Appl Artif Intell. 2024;133: 108502.

 33. Feng J, Wang W, Li J. An LM‑BP neural network approach to estimate monthly‑mean daily global solar radiation
using MODIS atmospheric products. Energies. 2018;11(12):3510.

 34. Praynlin, E. and J.I. Jensona. Solar radiation forecasting using artificial neural network. In 2017 Innovations in Power
and Advanced Computing Technologies (i‑PACT). 2017. IEEE.

 35. Pazikadin AR, et al. Solar irradiance measurement instrumentation and power solar generation forecasting based
on Artificial Neural Networks (ANN): a review of five years research trend. Sci Total Environ. 2020;715: 136848.

 36. Haider SA, et al. Deep learning and statistical methods for short‑and long‑term solar irradiance forecasting for
Islamabad. Renew Energy. 2022;198:51–60.

 37. Sivaneasan B, Yu C, Goh K. Solar forecasting using ANN with fuzzy logic pre‑processing. Energy Proc.
2017;143:727–32.

 38. Kumar KR, Kalavathi MS. Artificial intelligence based forecast models for predicting solar power generation. Mater
Today Proc. 2018;5(1):796–802.

 39. Lima M, et al. MLP back propagation artificial neural network for solar resource forecasting in equatorial areas.
Renew Energy Power Qual J (RE&PQJ). 2018;1:175–80.

 40. Laopaiboon, T., et al. Hour‑ahead solar forecasting program using back propagation artificial neural network. in
2018 international conference and utility exhibition on green energy for sustainable development (ICUE). 2018.
IEEE.

 41. Ledmaoui Y, et al. Forecasting solar energy production: a comparative study of machine learning algorithms.
Energy Rep. 2023;10:1004–12.

 42. Gairaa K, et al. Contribution of ordinal variables to short‑term global solar irradiation forecasting for sites with low
variabilities. Renew Energy. 2022;183:890–902.

 43. Alzahrani A, et al. Solar irradiance forecasting using deep neural networks. Proc Comput Sci. 2017;114:304–13.
 44. Qing X, Niu Y. Hourly day‑ahead solar irradiance prediction using weather forecasts by LSTM. Energy.

2018;148:461–8.
 45. Ashfaq Q, et al. Hour‑ahead global horizontal irradiance forecasting using long short term memory network. In

2020 IEEE 23rd International Multitopic Conference (INMIC). 2020. IEEE.
 46. Lee D, Kim K. Recurrent neural network‑based hourly prediction of photovoltaic power output using meteorologi‑

cal information. Energies. 2019;12(2):215.
 47. Michael NE, et al. Short‑term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short‑

Term Memory neural network. Appl Energy. 2022;324: 119727.
 48. Eşlik AH, Akarslan E, Hocaoğlu FO. Short‑term solar radiation forecasting with a novel image processing‑based

deep learning approach. Renew Energy. 2022;200:1490–505.
 49. Bae KY, Jang HS, Sung DK. Hourly solar irradiance prediction based on support vector machine and its error analy‑

sis. IEEE Trans Power Syst. 2016;32(2):935–45.
 50. Huertas Tato J, Centeno Brito M. Using smart persistence and random forests to predict photovoltaic energy

production. Energies. 2018;12(1):100.
 51. Chen C‑R, Three Kartini U. K‑nearest neighbor neural network models for very short‑term global solar irradiance

forecasting based on meteorological data. Energies. 2017;10(2):186.
 52. Kong X, et al. Multi‑step short‑term solar radiation prediction based on empirical mode decomposition and gated

recurrent unit optimized via an attention mechanism. Energy. 2023;282: 128825.
 53. Seepanomwan, K. Better Multi‑step Time Series Prediction Using Sparse and Deep Echo State Network. In 2023

8th International Conference on Control and Robotics Engineering (ICCRE). 2023. IEEE.
 54. Song, Z. and L.E. Brown. Multi‑dimensional evaluation of temporal neural networks on solar irradiance forecasting.

In 2019 IEEE Innovative Smart Grid Technologies‑Asia (ISGT Asia). 2019. IEEE.
 55. Azizi N, et al. Deep learning based long‑term global solar irradiance and temperature forecasting using time series

with multi‑step multivariate output. Renew Energy. 2023;206:135–47.
 56. Wang Y, et al. Adaptive learning hybrid model for solar intensity forecasting. IEEE Trans Industr Inf.

2018;14(4):1635–45.
 57. Zang H, et al. Short‑term global horizontal irradiance forecasting based on a hybrid CNN‑LSTM model with spati‑

otemporal correlations. Renew Energy. 2020;160:26–41.
 58. Kumari P, Toshniwal D. Long short term memory–convolutional neural network based deep hybrid approach for

solar irradiance forecasting. Appl Energy. 2021;295: 117061.
 59. Gao B, et al. Hourly forecasting of solar irradiance based on CEEMDAN and multi‑strategy CNN‑LSTM neural

networks. Renew Energy. 2020;162:1665–83.
 60. Huang X, et al. Hybrid deep neural model for hourly solar irradiance forecasting. Renew Energy. 2021;171:1041–60.

Page 38 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

 61. Malakouti SM, et al. Predicting wind power generation using machine learning and CNN‑LSTM approaches. Wind
Eng. 2022;46(6):1853–69.

 62. Guermoui M, et al. Enhancing direct normal solar irradiation forecasting for heliostat field applications through a
novel hybrid model. Energy Convers Manage. 2024;304: 118189.

 63. Guermoui M, Boland J, Rabehi A. On the use of BRL model for daily and hourly solar radiation components assess‑
ment in a semiarid climate. Euro Phys J Plus. 2020;135(2):1–16.

 64. Zhuhadar LP, Lytras MD. The application of AutoML techniques in diabetes diagnosis: current approaches, perfor‑
mance, and future directions. Sustainability. 2023;15(18):13484.

 65. Abiodun OI, et al. State‑of‑the‑art in artificial neural network applications: a survey. Heliyon. 2018. https:// doi. org/
10. 1016/j. heliy on. 2018. e00938.

 66. Mfetoum IM, et al. A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in
Central Africa with meteorological insights. Sci Rep. 2024;14(1):3572.

 67. Albawi, S., T.A. Mohammed, and S. Al‑Zawi. Understanding of a convolutional neural network. In 2017 interna‑
tional conference on engineering and technology (ICET). 2017. IEEE.

 68. Kasongo SM. A deep learning technique for intrusion detection system using a recurrent neural networks based
framework. Comput Commun. 2023;199:113–25.

 69. Staudemeyer RC, ER Morris, 2019 Understanding LSTM‑‑a tutorial into long short‑term memory recurrent neural
networks. arXiv preprint arXiv: 1909. 09586.

 70. Tandale SB, Stoffel M. Recurrent and convolutional neural networks in structural dynamics: a modified attention
steered encoder–decoder architecture versus LSTM versus GRU versus TCN topologies to predict the response of
shock wave‑loaded plates. Comput Mech. 2023. https:// doi. org/ 10. 1007/ s00466‑ 023‑ 02317‑8.

 71. Zarzycki K, Ławryńczuk M. Advanced predictive control for GRU and LSTM networks. Inf Sci. 2022;616:229–54.
 72. Yao X, et al. Echo state network with multiple delayed outputs for multiple delayed time series prediction. J Frank‑

lin Inst. 2022;359(18):11089–107.
 73. Li H. Short‑term wind power prediction via spatial temporal analysis and deep residual networks. Front Energy

Res. 2022;10: 920407.
 74. Ghimire S, et al. Deep learning CNN‑LSTM‑MLP hybrid fusion model for feature optimizations and daily solar radia‑

tion prediction. Measurement. 2022;202: 111759.
 75. Abraham A. Artificial neural networks handbook of measuring system design. Hoboken: Wiley; 2005.
 76. Yegnanarayana B. Artificial neural networks. PHI Learning Pvt. Ltd.: Delhi; 2009.
 77. Vaka M, et al. A review on Malaysia’s solar energy pathway towards carbon‑neutral Malaysia beyond Covid’19

pandemic. J Clean Prod. 2020;273: 122834.
 78. Gu J, et al. Recent advances in convolutional neural networks. Pattern Recogn. 2018;77:354–77.
 79. Medsker LR, Jain L. Recurrent neural networks. Des Appl. 2001;5(64–67):2.
 80. Wang J, et al. NGCU: a new RNN model for time‑series data prediction. Big Data Res. 2022;27: 100296.
 81. Uddin MZ, et al. A body sensor data fusion and deep recurrent neural network‑based behavior recognition

approach for robust healthcare. Inform Fusion. 2020;55:105–15.
 82. Bani‑Almarjeh M, Kurdy M‑B. Arabic abstractive text summarization using RNN‑based and transformer‑based

architectures. Inf Process Manage. 2023;60(2): 103227.
 83. Zhang W, et al. Prediction high frequency parameters based on neural network. IOP Conf Ser Mater Sci Eng. 2019.

https:// doi. org/ 10. 1088/ 1757‑ 899X/ 631/5/ 052035.
 84. Lee K, Ray J, Safta C. The predictive skill of convolutional neural networks models for disease forecasting. PLoS

ONE. 2021;16(7): e0254319.
 85. He Y, Zhao J. Temporal convolutional networks for anomaly detection in time series. J Phys Conf Ser. 2019. https://

doi. org/ 10. 1088/ 1742‑ 6596/ 1213/4/ 042050.
 86. Ji Q, et al. Short‑term prediction of the significant wave height and average wave period based on VMD‑TCN‑LSTM

algorithm. EGUsphere. 2023;2023:1–27.
 87. Sarwinda D, et al. Deep learning in image classification using residual network (ResNet) variants for detection of

colorectal cancer. Proc Comput Sci. 2021;179:423–31.
 88. Ronald M, Poulose A, Han DS. iSPLInception: an inception‑ResNet deep learning architecture for human activity

recognition. IEEE Access. 2021;9:68985–9001.
 89. Jaeger H. Echo state network. Scholarpedia. 2007;2(9):2330.
 90. Gallicchio C, Micheli A, Pedrelli L. Design of deep echo state networks. Neural Netw. 2018;108:33–47.
 91. Zheng K, et al. Long‑short term echo state network for time series prediction. IEEE Access. 2020;8:91961–74.
 92. Alaeddine H, Jihene M. Deep residual network in network. Comput Intell Neurosci. 2021;2021:1–9.
 93. Livieris IE, Pintelas E, Pintelas P. A CNN–LSTM model for gold price time‑series forecasting. Neural Comput Appl.

2020;32:17351–60.
 94. Rajagukguk RA, Ramadhan RA, Lee H‑J. A review on deep learning models for forecasting time series data of solar

irradiance and photovoltaic power. Energies. 2020;13(24):6623.
 95. James G, et al. An introduction to statistical learning: with applications in python. Cham: Springer; 2023.
 96. Alrababeh NM, BaniMustafa AM. Regression for predicting effort in object‑oriented software projects. SSRN Elect J.

2022. https:// doi. org/ 10. 2139/ ssrn. 41412 36.
 97. Li Y, Lu F, Yin Y. Applying logistic LASSO regression for the diagnosis of atypical Crohn’s disease. Sci Rep.

2022;12(1):11340.
 98. Borup D, et al. Targeting predictors in random forest regression. Int J Forecast. 2023;39(2):841–68.
 99. Velthoen J, et al. Gradient boosting for extreme quantile regression. Extremes. 2023;26(4):639–67.
 100. Rathore SS, Kumar S. A decision tree regression based approach for the number of software faults prediction. ACM

SIGSOFT Soft Eng Notes. 2016;41(1):1–6.
 101. Goyal R, Chandra P, Singh Y. Suitability of KNN regression in the development of interaction based software fault

prediction models. Ieri Procedia. 2014;6:15–21.

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
http://arxiv.org/abs/1909.09586
https://doi.org/10.1007/s00466-023-02317-8
https://doi.org/10.1088/1757-899X/631/5/052035
https://doi.org/10.1088/1742-6596/1213/4/042050
https://doi.org/10.1088/1742-6596/1213/4/042050
https://doi.org/10.2139/ssrn.4141236

Page 39 of 39El‑Shahat et al. Journal of Big Data (2024) 11:134

 102. James G, et al. Linear regression. In: James G, Witten D, Hastie T, Tibshirani R, Taylor J, editors., et al., An introduction
to statistical learning With applications in python. Cham: Springer; 2023. p. 69–134.

 103. Groß J. Linear regression. Berlin: Springer, Berlin Heidelberg; 2003.
 104. Jastrzębski, S., et al., Three factors influencing minima in sgd. arXiv preprint, 2017.
 105. Ranstam J, Cook J. LASSO regression. J Br Surgery. 2018;105(10):1348–1348.
 106. Chatterjee T, Chowdhury R. Improved sparse approximation models for stochastic computations in Handbook of

neural computation. Amsterdam: Elsevier; 2017.
 107. Tang N, et al. Solar power generation forecasting with a LASSO‑based approach. IEEE Internet Things J.

2018;5(2):1090–9.
 108. Rigatti SJ. Random forest. J Insur Med. 2017;47(1):31–9.
 109. Babar B, et al. Random forest regression for improved mapping of solar irradiance at high latitudes. Sol Energy.

2020;198:81–92.
 110. Munshi, A. and R. Moharil. Solar radiation forecasting using random forest. In AIP Conference Proceedings. 2022.

AIP Publishing.
 111. Villegas‑Mier CG, et al. Optimized random forest for solar radiation prediction using sunshine hours. Microma‑

chines. 2022;13(9):1406.
 112. Zemel R, Pitassi T. A gradient‑based boosting algorithm for regression problems. Adv Neu Inform Proc Syst. 2000.

https:// doi. org/ 10. 3389/ fnbot. 2013. 00021.
 113. Voyant C, et al. Prediction intervals for global solar irradiation forecasting using regression trees methods. Rene

Energy. 2018;126:332–40.
 114. Lundberg SM, Lee S‑I. A unified approach to interpreting model predictions. Adv Neu Inform Proc Syst. 2017.

https:// doi. org/ 10. 1093/ bioadv/ vbad0 16.
 115. Zafar MR, Khan N. Deterministic local interpretable model‑agnostic explanations for stable explainability. Machi

Learn Knowled Ext. 2021;3(3):525–41.
 116. Benjamini Y. Opening the box of a boxplot. Am Stat. 1988;42(4):257–62.
 117. Ding, R., et al., Evaluation of landslide susceptibility in mountainous areas of Changji city at the northern foot of

Tianshan Mountain based on coupled model of weight of evidence and Shanon’s entropy. 2022.
 118. Mellit A, Pavan AM, Lughi V. Deep learning neural networks for short‑term photovoltaic power forecasting. Renew

Energy. 2021;172:276–88.
 119. Phan Q‑T, et al. A novel forecasting model for solar power generation by a deep learning framework with data

preprocessing and postprocessing. IEEE Trans Ind Appl. 2022;59(1):220–31.
 120. Boubaker S, et al. Deep neural networks for predicting solar radiation at Hail Region. Saudi Arabia Ieee Access.

2021;9:36719–29.
 121. Chadha A, Kaushik B. A hybrid deep learning model using grid search and cross‑validation for effective classifica‑

tion and prediction of suicidal ideation from social network data. N Gener Comput. 2022;40(4):889–914.
 122. Malakouti SM, Menhaj MB, Suratgar AA. The usage of 10‑fold cross‑validation and grid search to enhance ML

methods performance in solar farm power generation prediction. Cleaner Eng Technol. 2023;15: 100664.
 123. Bates S, Hastie T, Tibshirani R. Cross‑validation: what does it estimate and how well does it do it? J Am Stat Assoc.

2024;119(546):1434–45.
 124. Berrar D. Cross‑validation. Amsterdam: Elsevier; 2019.
 125. Satria, A., O.S. Sitompul, and H. Mawengkang. 5‑Fold cross validation on supporting k‑nearest neighbour accura‑

tion of making consimilar symptoms disease classification. In 2021 International Conference on Computer Science
and Engineering (IC2SE). 2021. IEEE.

 126. Yadav, S. and S. Shukla. Analysis of k‑fold cross‑validation over hold‑out validation on colossal datasets for quality
classification. In 2016 IEEE 6th International conference on advanced computing (IACC). 2016. IEEE.

 127. Hodson TO. Root‑mean‑square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci
Model Dev. 2022;15(14):5481–7.

 128. Dong Y, et al. Predicting dissolved oxygen level using Young’s double‑slit experiment optimizer‑based weighting
model. J Environ Manage. 2024;351: 119807.

 129. Vaisakh T, Jayabarathi R. Analysis on intelligent machine learning enabled with meta‑heuristic algorithms for solar
irradiance prediction. Evol Intel. 2022;15(1):235–54.

 130. Wang H‑Z, et al. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl Energy.
2017;188:56–70.

 131. Khelifi R, et al. Short‑Term pv power forecasting using a hybrid TVF‑EMD‑ELM strategy. Int Trans Elect Energy Syst.
2023;2023(1):6413716.

 132. Zhao Y, Li J, Yu L. A deep learning ensemble approach for crude oil price forecasting. Energy Econ. 2017;66:9–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1093/bioadv/vbad016

	Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting
	Abstract
	Introduction
	Literature review
	Time series analysis
	Materials and methods
	Deep learning algorithms
	Artificial neural network
	Convolutional neural network
	Recurrent neural network
	Long short term memory
	Gated recurrent unit
	Temporal convolutional network
	Echo state networks
	Residual neural network
	CNN-LSTM

	Machine learning algorithms
	Linear regression
	Stochastic gradient descent regression
	Least absolute shrinkage and selection operator
	Random forest
	Gradient boosting regression
	Decision tree regression
	KNN regression

	Interpretable results
	Shapley additive explanations
	Local interpretable model-agnostic explanation

	Results analysis and discussion
	Environment setup
	Dataset description
	Dataset distribution
	Data preprocessing and feature selection
	Data split
	Hyperparameters tuning
	Evaluation metrics of algorithms for solar irradiance forecasting
	Results for deep learning models
	Results for machine learning algorithms

	Conclusions and future works
	References

