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Introduction
As an important branch in of digital image analysis and pattern recognition, image target 
recognition detection technology is widely used in many scenarios such as autonomous 
driving, medical images, industrial inspection, intelligent robots, and intelligent video 
surveillance [1, 2]. Target detection is to locate and extract the target area of interest 
in the video or image by analyzing the target feature information, and accurately iden-
tifying the target category of each area and its corresponding bounding box. In recent 
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years, with the continuous breakthrough of deep learning in the field of image process-
ing, object detection technology has also made significant progress [3].

Recently, deep learning has been widely used in the field of computer vision and has 
made great progress, it has strong learning ability for different levels of image visual fea-
tures. Specifically, deep learning mainly trains convolutional neural networks for tasks 
such as object recognition or scene classification by using a large amount of artificially 
labeled data, so that the network can learn powerful visual representations suitable for 
image understanding tasks. For example, when the image features learned by the net-
work in this supervised way are transferred to computer vision tasks such as object 
detection, semantic segmentation, pedestrian recognition, and image retrieval, good 
results can be achieved. The efficacy of deep convolutional neural networks is heavily 
reliant on their capacity to learn and the volume of training data available. Given that 
this data must be manually annotated, one significant drawback of supervised feature 
learning is the necessity for extensive manually labeled datasets. For instance, to train 
deep convolutional networks, expansive datasets like ImageNet [4] have been devel-
oped, enhancing their performance across numerous vision tasks through the utilization 
of complex architectures and large datasets. Nonetheless, amassing and labeling these 
vast datasets require substantial financial and temporal investment. Furthermore, video 
datasets present even greater challenges in terms of collection and annotation costs 
compared to image datasets. An example of this is the Kinetics [5] dataset, designed 
for training convolutional neural networks on video-based human action recognition, 
featuring 500,000 videos across 600 categories, with each video approximately 10  s in 
length. The endeavor of gathering and labeling such an expansive dataset demands con-
siderable effort and time from workers.

In addition, there are three challenges to supervised training of neural networks. First, 
manual annotation of the tens of billions of visual data on the web, whether images or 
videos, is expensive and infeasible. Secondly, due to the particularity of the industry, the 
data in some research fields are confidential, and therefore cannot be obtained due to 
privacy issues. In addition, considering that manual annotation of some data requires 
professional knowledge, data in some research fields are very scarce. For example, medi-
cal data is not only difficult to obtain data information, but also difficult to obtain label 
information. Thirdly, with the continuous development of researches such as big data, 
artificial intelligence and deep learning, the types of learning tasks are also gradually 
increasing. If specific training data and labels must be generated for each new learning 
task, the research cost is huge and impossible. In the age of smart big data, circumvent-
ing the laborious and costly process of data labeling is crucial. Consequently, leverag-
ing the vast quantities of unlabeled data effectively has emerged as a key area of interest 
among researchers. Here, self-supervised learning, which learns visual features from 
data without relying on human-provided annotations, presents an effective solution to 
this challenge.

Operating as an unsupervised technique, self-supervised learning autonomously cre-
ates pseudo-labels for unlabeled data, eliminating the need for manual labeling. Then 
supervised training of the convolutional neural network is carried out to obtain the 
method of image visual features with better performance. Given only images without 
any supervision information, it is obviously not known what the goal of the network is 
to learn. Therefore, how to find an effective information-supervised network learning 
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is the key to solving the problem of self-supervision. Currently, a widely adopted strat-
egy involves the introduction of various pretext tasks, and automatically generate a kind 
of pseudo labels for images based on the properties of the proxy tasks, instead of man-
ual labels to supervise network learning. The neural network is trained by learning the 
objective function of the agent task, and through this process, the features associated 
with high-level semantic information are learned.

The early self-supervised learning agent tasks, with the introduction of generative 
adversarial networks, were mainly based on generative models. To generate fake labels 
for images, the network generates fake samples like the original images during adversarial 
training. However, with the in-depth research of more scholars, it is found that there are 
still inevitable problems in this method. First, the model parameters oscillate frequently, 
making it difficult for the network to converge. Second, the discriminator is overfitting, 
which prevents the generation network from generating similar pseudo-labels, which in 
turn prevents learning from continuing. In order to prevent the convergence of the dis-
criminator and the divergence of the generator, it is also necessary to achieve proper 
synchronization between the discriminator and the generator. Contrastive learning, in 
contrast to generative models, adopts a discriminative strategy designed to attract simi-
lar images closer while pushing dissimilar ones apart. Generation-based self-supervised 
methods are not effective in solving some downstream tasks. Some works start to divide 
the image into fixed-size blocks, and let the network predict the position information of 
the image blocks by shuffling the order, adding occlusion, etc. The purpose is to learn 
the structure of the context space through the relative position. Some approaches also 
leverage the color attributes of images by converting them to grayscale. This technique 
aims to enhance the network’s ability to discern subtle color details within the image, 
thereby minimizing the likelihood of misclassification among categories with similar 
color profiles. Another popular method is to transform the image, by rotating, shearing, 
projecting, and other operations on the image, to ensure that the network learns more 
discriminative and semantically more advanced feature representations. However, most 
of the existing research focuses on designing various surrogate tasks, and little atten-
tion should be paid to what properties the learned image representations should have in 
order to facilitate the transfer of various downstream tasks.

Currently, most object detection algorithms are mainly based on visible light images. 
Although the visible light image contains rich texture and detail information, the envi-
ronment of each target in the actual scene is usually complicated, resulting in occlusion, 
large scale variation, uneven illumination, and noise interference of the target, which 
makes the implement of target detection technology still face big challenge [6]. Infra-
red images mainly use thermal radiation energy for imaging, which is less affected by 
illumination, but the image contrast is low, and the target texture structure and other 
features are seriously lost, which greatly limits its application in the field of target detec-
tion. However, effectively leveraging this big data for robust object detection remains a 
challenging problem. Traditional deep learning models can be limited by their reliance 
on large, labeled datasets and their sensitivity to parameter settings. There is a need for 
methods that can utilize both labeled and unlabeled data efficiently and adapt to differ-
ent types of input data, such as visible light and infrared images. Traditional approaches 
often rely on large, labeled datasets and focus primarily on either visible light images or 
infrared images [9, 10]. These methods, while effective, face limitations in challenging 
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environments, such as varying lighting conditions and occlusions. In our paper, the 
study of a target detection method based on the combination of visible light and infra-
red images can effectively achieve complementary performance and reduce interfer-
ence, which will greatly promote the development of target detection technology and the 
application of practical scenes.

Based on the mentioned above, we study an image object detection method based on 
self-supervised and data-driven learning in this paper. Specifically, we combine visible 
light images and infrared images to detect and identify image targets. First, we use a self-
supervised learning method to perform high-dimensional feature extraction on image 
data [7]. Then, we utilize and fuse the extracted features from two kinds of images, 
namely visible light image and infrared image, to detect and identify objects. Finally, 
to optimize the model performance, we investigate a model parameter optimization 
method based on evolutionary learning algorithms to improve the training performance 
of the model. Our contributions are listed as follows:

  • We propose a self-supervised feature extraction and learning method based on 
autoencoders, which can effectively extract feature information in images.

  • We design a model optimization method based on evolutionary computation, which 
can improve the efficiency of feature fusion from visible light image and infrared 
image.

  • Compared with other methods, our method has achieved certain improvements in 
performance.

We organize the content of this paper as follows. Section 2 describes related research 
work on object detection and self-supervised learning. Section 3 presents the proposed 
object detection model in detail, including self-supervised learning for feature extrac-
tion, objection detection based on feature fusion, and model optimization based on evo-
lutionary algorithm. Section 4 details the experimental outcomes, assessing the efficacy 
of the proposed model in image object detection tasks. Section 5 provides the conclu-
sion of this paper.

Related work
The conventional workflow of target detection algorithms typically comprises steps 
such as image preprocessing, extraction of candidate frames, feature extraction, target 
classification, and post-processing. Although it has been widely used in various fields, 
there are problems such as numerous candidate frames, complex feature design, and 
poor algorithm migration. In order to alleviate the drawbacks of traditional algorithms, 
researchers apply deep learning methods to target detection. Through the end-to-end 
training method, the target detection accuracy is greatly improved.

In recent years, deep convolutional neural networks have achieved significant 
advancements in the field of computer vision [8]. Object recognition and detection in 
images have seen significant advancements in recent years, driven by the development of 
deep learning models and the increasing availability of big data [9, 10]. Nevertheless, the 
current deep learning models necessitate substantial volumes of labeled training data. In 
order to avoid manual annotation of large-scale data sets, how to learn semantically rich 
image feature representation in an unsupervised way has attracted many scholars’ atten-
tion. Among them, self-supervised learning is a representative method. Self-supervised 
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learning is a kind of unsupervised learning. The core of it is to design a kind of agent task 
that only uses the attributes of the data itself and does not use the artificial labels, thus 
to give false labels to the data. This method is an important strategy to learn data fea-
ture representation using pseudo labels. Models trained on agent tasks are versatile and 
can be applied across various downstream computer vision tasks including classifica-
tion, segmentation, detection, and retrieval. Furthermore, these applications are not lim-
ited to a specific type of data but can extend to images, videos, speech, signals, and text. 
Self-supervised learning methods generally include four categories, namely image-based 
generation, context-based prediction, image segmentation, and image transformation.

Generative models, particularly those utilizing generative adversarial networks 
(GANs), fall under the category of self-supervised learning. However, GANs are often 
characterized by instability during their training phase. Learning the hidden structural 
information in images is another important key point in the self-supervised learn-
ing surrogate task, and the image inpainting-based surrogate task is designed based on 
this idea. Pathak et al. [11] proposed an image inpainting technique to predict arbitrary 
missing regions based on information surrounding the image. Although this method 
can repair large image deletions and make the restored image conform to the semantics 
of the entire image, the restored image has the problem of local blurring. Lizuka et al. 
[12] proposed a new idea to use both global and local discriminators to ensure that the 
generated images not only adhere to the overarching semantics but also optimize the 
sharpness and contrast of localized areas. But the disadvantage is that it has not been 
migrated to other computer vision applications, and there is no comparison. Methods 
based on super-resolution can enhance low-resolution images to produce higher qual-
ity outcomes, leveraging convolutional neural networks. SRGAN [13], a versatile genera-
tive adversarial network designed for single-image super-resolution, stands out in this 
regard. Unlike conventional approaches that rely solely on Mean Squared Error (MSE) 
loss, SRGAN is capable of restoring the finer details of high-resolution images.

Employing image attributes as supervisory signals, instead of relying on manually 
annotated labels, enables convolutional neural networks to effectively grasp the seman-
tic nuances of images during the resolution of agent tasks. This, in turn, facilitates the 
application of these learned features to a broader spectrum of computer vision tasks. 
Clustering algorithms has been widely used in the task of self-supervised learning of 
agents based on contextual similarity. In self-supervised scenarios, as a technique for 
image data clustering, a simple method is to cluster images based on hand-extracted fea-
tures, such as HOG [14] or Fisher Vector [15]. Aiming at the problem of context simi-
larity, researchers have proposed a series of surrogate task methods in clustering-based 
self-supervised learning. The K-means based method proposed by Coates et al. [16] 
firstly extracts some image blocks randomly from the unlabeled image, and then uses the 
K-means method to learn image features to obtain a data dictionary of image features, 
and then extracts the complete image features through the dictionary. The algorithm is 
simple, but the training is done layer by layer rather than end-to-end. Caron et al. [17] 
proposed a clustering method combined with deep learning. The whole process includes 
using convolutional neural network to extract image deep features and using K-means to 
group deep features. To minimize the parameter count, the principal component anal-
ysis (PCA) technique is utilized to condense feature vectors down to 256 dimensions 
through clustering. Following this dimensionality reduction, the clustering outcomes 
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serve as pseudo labels for updating the network’s parameters, enabling the network to 
predict these pseudo labels. This dual process of parameter update and prediction based 
on pseudo labels is executed in an iterative manner. This algorithm looks simply, but it 
can learn some useful general features and achieve better performance than previous 
unsupervised methods. Different from DeepCluster, the training of convolutional neu-
ral network does not use clustering labels, but designs a loss function according to the 
characteristics of clustering. In the iterative process of network, the learned feature rep-
resentation is conducive to image clustering. End-to-end optimization is achieved by 
integrating two processes into one process. Inspired by T-SNE [18], Xie et al. [19] pro-
posed Deep Embedded Clustering (DEC) algorithm, which is not only linear in the num-
ber of data points, but also can be easily extended to large-scale datasets.

Addressing the challenge of vast amounts of unlabeled data, crafting an efficient agent 
task that leverages solely the image’s intrinsic visual information stands as a crucial and 
complex issue within the realm of self-supervised learning. Feng et al. [20] proposed a 
new self-supervised learning algorithm to help the network learn a feature representa-
tion independent of rotation through a rotation prediction task and an instance discrim-
ination task. Zhang et al. [21] proposed an unsupervised representation learning model 
based on Auto-Encoding Transformation (AET), which takes the prediction transfor-
mation as a self-supervised signal to train the model. After encoding and decoding, 
the reconstructed transformation is obtained. Guo et al. [22] proposed a new method 
based on Autoencoding Variational Transformations (AVT). Among them, the AET 
method is used to transform the image using affine transformation and projection trans-
formation, and then a two-way twin network is used based on the original image and 
the transformed image. AVT attempts to train the network by maximizing the mutual 
information between image conversion operations and image feature representations. 
In recent years, self-supervised learning methods based on image transformation have 
been widely used in other tasks, for example, semi-supervised learning [23, 24]. These 
tasks usually include two classifiers that share image features, a master classifier, and a 
classifier for self-supervised tasks. However, some tasks force the primary classifier to 
be invariant to the image transformation representation of the self-supervised task, and 
enforcing such invariance may lead to increased complexity of the task. This kind of 
agent task based on image transformation can be regarded as a kind of unsupervised 
data enhancement without relying on the annotation of the enhanced samples, which on 
the one hand expands the range of samples that can be enhanced, and on the other hand 
increases the scope of application of the transformation.

The image object recognition task can be decomposed into two subtasks: object clas-
sification and object localization. Object classification is mainly used to determine 
whether there is a target in the image and to classify the detected object, while object 
localization is used to determine the exact position of the detected target in the image. 
The recognition and localization of image objects are mainly divided into object detec-
tion algorithms based on candidate regions and object detection algorithms based on 
image semantic segmentation. The object detection algorithm based on candidate 
regions refers to generating candidate boxes in an image and identifying the target by 
judging the image information within the candidate boxes. Commonly used image infor-
mation generally includes color, brightness, edges, corners, and texture. Typical tradi-
tional classification methods include the scale-invariant feature transform method, the 
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histogram of oriented gradient feature matching method, and the speeded up robust 
features method [25, 26]. Taking the scale-invariant feature transform algorithm as an 
example, the algorithm is used to extract key points in an image, such as corner points 
and edge points. By detecting key points and extracting description vectors, local fea-
ture descriptors are constructed to achieve feature matching. Typical examples of deep 
learning-based object detection methods include Regional Convolution Neural Net-
work (RCNN) [27], Fast Regional Convolution Neural Network (FAST-RCNN) [28], and 
YOLO (You Only Look Once, YOLO) [29] object detection networks. The core principle 
of target detection algorithms leveraging image semantic segmentation is to assign a 
unique label to each pixel within the image, subsequently classifying these pixels, and 
ultimately partitioning distinct, meaningful regions of the image into non-overlapping 
segments for precise target identification and localization. The realm of image seman-
tic segmentation algorithms can be broadly categorized into four main groups: graph-
based segmentation, clustering-based segmentation, classification-based segmentation, 
and hybrid approaches that integrate clustering and classification techniques. Graph-
driven methods encompass the image minimum spanning tree algorithm [30], Graph 
Cuts algorithm [31], and unsupervised Superpixel Lattice segmentation [32]. Cluster-
ing-focused algorithms involve Geometric Flows superpixel generation, TurboPixels 
[33], and Simple Linear Iterative Clustering (SLIC) method [34]. Classification-based 
segmentation techniques, on the other hand, revolve around categorizing image fea-
ture information, exemplified by fully convolutional network (FCN) [35] and U-net deep 
learning approach [36].

Although most of the current research on object detection is based on visible images, 
some researchers have explored the fusion detection of visible and infrared images. 
Xiao et al. [37] used differential maximum loss function to guide the convolution net-
work of infrared and visible light branches to extract target features, and designed fea-
ture enhancement and cascading semantic extension modules to improve the detection 
of targets of different scales. Banuls et al. [38] introduced a target detection algorithm 
employing decision-level fusion, utilizing an enhanced YOLOv3 network for the separate 
detection of visible and infrared images before executing a weighted fusion to enhance 
the detection outcomes. Moreover, evolutionary computation has been recognized for 
its potential in optimizing deep learning models, particularly in hyperparameter tuning 
and model architecture search [39, 40]. This approach leverages the principles of natural 
evolution to iteratively improve model performance. This deep learning-based method 
for merging infrared and visible light detection has been shown to significantly boost 
target detection performance. However, most methods extract features respectively and 
then fuse detection, which fails to make full use of the target features in the two types of 
images to complement each other.

Proposed method
This section elaborates on the object detection method outlined in this paper, which is 
anchored in self-learning and data-driven approaches. Our strategy merges visible light 
and infrared imagery to detect and identify targets within images. By integrating self-
supervised learning with autoencoders, we introduce a framework for object detection 
that emphasizes feature extraction and fusion.
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First, we utilize a self-supervised learning method and the autoencoders to perform 
high-dimensional feature extraction on the image data. Then, we utilize and fuse the 
extracted features from two kinds of images, namely the light image and infrared image, 
to detect and identify objects. Finally, to optimize the model performance, we investigate 
a model parameter optimization method based on evolutionary learning algorithms to 
improve the training performance of the model.

Self-supervised learning for feature extraction

The traditional method based on generative adversarial network is not only difficult to 
train, but also not outstanding. In order to fully explore the hidden information of the 
image itself, the widely used method is to make some appearance transformation of the 
image. After transformation, data enhancement is realized, and another label is pro-
vided, that is, transform set. All kinds of transformations are formed into random com-
binations so that the network can predict which kind of transformation combinations 
the image variants have done. However, the problem with self-supervision in this way 
is that the information learned is mostly global information. If the prediction is made 
only by appearance transformation, when the appearance of objects is similar and the 
transformation made is not obvious, the network will not be able to effectively identify 
them, because of the lack of local information of the target. We propose a self-super-
vised learning model that combines deep learning with traditional features to solve the 
problem of inadequate local information learning based on image geometric transfor-
mation. Specifically, in the design stage of the agent task, firstly, according to the study of 
method [41], the image is processed for Angle rotation and color channel ranking. Then, 
Angle rotation and channel sorting are combined to form the first pseudo-label. Finally, 
the traditional features of the image are extracted to form a second pseudo-label for self-
supervised training. In the test phase, different convolutional layer features are extracted 
according to different networks and applied to different downstream tasks.

Data processing and translation

We combine traditional methods and deep learning to design a self-supervised learn-
ing model to make the model to learn a more semantically rich image feature based on 
local and global information. Figure 1 shows the feature extraction process based on the 
autoencoder. The feature extraction process mainly includes the following steps. Given 
an unlabeled image X, we first preprocess the image with simple cropping, translation, 
scaling, and flipping. Then, we introduce N different sets of rotation transformation 
operations S = {g (X, yi)} (i = 1, 2, …, N), and perform N different rotation transforma-
tion operations on the unlabeled image X. This operation obtains a total of K variants of 
the original image, denoted as Xi, and the pseudo-label y is assigned to the transformed 
image Xi, where i = {1, 2, …, N}, y = {1, 2, …, N}, and the rotation operation of the image 
can be expressed as follows.

g1 (X | yi) = Rot (X, (yi − 1) ∗ 90) (1)

where Rot ()  indicates the rotation operation. In the third step, to better learn the fine-
grained color features in the image, we introduce M different channel transformation 
operation sets g2, and further perform different color channel transformations on the 
rotated image variant X, and convert the pseudo label yl is assigned to the transformed 
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image, where y = {1, 2, …, M}, and the color channel arrangement operation of the image 
can be obtained as follows:

g2 (X | yi) = Tan (X,R, G,B)  (2)

where Tan () function is a color channel transformation operation, which means that the 
image is arranged in RGB color channels.

The advantage of image rotation is that it can effectively predict the orientation, struc-
ture, and other information of the target in the image. The advantage of image color 
channel transformation is to capture the color information of the image more accu-
rately. However, after experimental verification, if only these two points are considered, 
the algorithm is limited to learning the global characteristics of the image target, which 
causes the problem that the local information is ignored. Specifically, when performing 
target recognition, the neural network can only predict the global appearance of the tar-
get in the image, while ignoring important information such as local edges and textures 
of the target. For objects of different classes with similar appearance and similar col-
ors, the probability of predicting them as the same class is very high, but the global and 
color similarity are not necessarily the same, such as wolves and dogs. Therefore, the 
algorithm leads to certain errors. To more effectively capture the image’s local details, 

Fig. 1 The process of extracting features using an autoencoder
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we utilize traditional image features as supervisory signals to aid in the training of the 
self-supervised network. The local appearance and shape of objects within the image are 
accurately represented through gradients or the directional density distribution of edges. 
Therefore, several different traditional feature vectors are extracted in the experiment 
and used as the second pseudo-label of the self-supervised training image. Among them, 
the dimension of the pseudo label is set differently according to different datasets.

Feature extraction

Our proposed method based on local and global feature information includes image 
transformation operations and traditional feature extraction operations. In the network 
training of self-supervised learning, the learning objective can be constrained by the 
following objective function until it converges to obtain a better pre-training model, as 
follows.

L = l1 + α l2 (3)

where l1 is the loss function for image rotation and color channel transformation predic-
tion, and l2 is the loss function for traditional feature supervised network learning, the 
parameter α  represents the proportion coefficient of deep features and traditional fea-
tures in the training process. Their definitions are as follows.

l1 =
1

N

∑
N
i=1loss(Xi, θ ) (4)

loss (Xi, θ ) =
1

NM

∑
NM
x=1 log(gi (X | yi) , θ ) (5)

l2 =
1

N

∑
N
i=1||Xi − g2 (X | yi) ||2 (6)

The specific algorithm flow of self-supervised learning is as follows. First, the unlabeled 
images in the dataset are subjected to geometric transformation and color channel 
arrangement. Then, several traditional features of the image are extracted. Finally, the 
formed three pseudo-labels are combined into two for pre-training of the self-super-
vised network.

Objection detection based on feature fusion

The architecture of the infrared and visible light fusion target detection network pro-
posed in this study is depicted in Fig. 2. This network is segmented into three main com-
ponents: the feature extraction module, the feature fusion module, and the detection 
module. For processing both infrared and visible images, the feature extraction segment 
features two parallel branches, each with identical configurations. The deep autoencoder 
is mainly used as the basic unit of feature extraction. Combined with LeakyReLU activa-
tion layer, maximum pooling layer and upsampling operation, the feature information 
of infrared and visible images is extracted efficiently from shallow to deep. The feature 
fusion module models the features of the pooling layer of the two branches through the 
linear combination method, and uses the autonomous learning method to realize the 
information sharing of infrared and visible light, so that the features extracted from the 
two branches are complementary and the diversity of network features is improved. The 
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detection module uses multiple deep features of different scales to construct feature pyr-
amid prediction structure by up-sampling and fusion operation, so that the network has 
strong semantic information at different scales, and ensures the network to accurately 
detect targets at different scales.

As the primary task of object detection, feature extraction directly determines the 
quality of object detection model. For traditional object detection, features are mainly 
designed manually [42]. The object detection is realized by capturing the features in the 
sliding window and using machine learning for classification. The deep learning-based 
object detection method broadens the scope of feature extraction and employs end-to-
end training to autonomously learn object features, circumventing the constraints asso-
ciated with manually crafted features. Therefore, detection algorithms based on deep 
learning can usually achieve better detection results than traditional methods. Based 
on this, this paper designs a parallel dual-branch feature extraction network suitable for 
infrared and visible images by referring to the current classical deep learning network. 
In order to effectively extract the shallow and deep features of each object in the image, 

Fig. 2 The overall structure of infrared and visible light fusion object detection network
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the feature extraction structure constructed in this paper is composed of multiple sub-
modules with different feature scales in series and stacked.

The feature extraction structure consists of multiple CAT modules and LK modules, 
as shown in Fig. 3. The CAT module is shown in Fig. 3(a). This structure mainly prepro-
cesses features of the original image and uses two branches of parallel convolution and 
pooling with step size of 2 to extract salient features of the target, which reduces the 
image dimension and filters part of the noise to ensure the in-depth feature extraction of 
the subsequent structure. The LK module is shown in Fig. 3(b). It is mainly constructed 
by residual structure using convolution layer and activation layer, and dimension reduc-
tion is carried out by 2 × 2 pooling operation with step size of 2 between different stages. 
Since features need to be extracted from infrared and visible images respectively, in 
order to avoid excessive network computation, the LK module adopts depth-separa-
ble convolution instead of traditional convolution to extract features, which effectively 
reduces network parameters and reduces the computation. Although the feature infor-
mation extracted by autoencoder is lower than that of traditional convolution, the infor-
mation fusion of double branches can better compensate for the lack of features. At the 
same time, the LK module incorporates a residual structure to mitigate the issues of van-
ishing and exploding gradients that can arise from excessively deep network layers dur-
ing training. And LeakyReLU is taken as the activation function to make the network 
converge faster, which is defined as follows.

f (x) =

{
α x, x < 0

x, x ≥ 0
 (7)

where α  is the offset, which is a small value of the hyperparameter.
Visible images are rich in color, texture, and other details, offering more comprehen-

sive information. However, their effectiveness is significantly influenced by variations in 

Fig. 3 The CAT module and LK module
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light intensity and weather conditions. In contrast, infrared images rely on the thermal 
radiation energy emitted by targets to create imagery, which is not affected by illumina-
tion, but the image contrast is low, which will lose some of the texture, structure, and 
other appearance features of the target. Therefore, by fusing infrared and visible image 
information, targets can be better enhanced and discovered [43]. Building on this, we 
have developed a feature fusion module that works in tandem with the feature extrac-
tion architecture. This module is designed to ensure that the information extracted from 
infrared and visible images is complementary, enhancing the overall detection capability. 
Considering the network operation efficiency, the fusion structure mainly integrates the 
last layer of each scale in the feature extraction process.

The detection module uses the output of feature fusion structure as input. Since the 
output of feature fusion is two channels, i.e., the infrared and visible light, concatenation 
operation is used to concatenate the two channels of features as the detection input. At 
the same time, considering the obvious difference in the size of each target in the real 
scene, we adopt multiple fused features of different dimensions to construct a feature 
pyramid detection structure in a top-down manner. In this structure, firstly, the fused 
deep features are adjusted to be consistent with the shallow features through point con-
volution. Then, we up-sample it to the shallow feature scale size and concatenate it with 
the shallow feature scale. Next, we perform convolution operation on the spliced feature 
information to fully integrate the deep feature information. We splice and fuse features 
of different dimensions successively so that the detection module can fully obtain global 
and local feature information. Finally, the fusion features are used to predict the target 
category and location.

Model optimization based on evolutionary algorithms

The accuracy of neural network models is influenced by various factors, including the 
number of neurons, layers, weights, and the learning rate, each presenting distinct chal-
lenges during adjustment. Manually tweaking these parameters, such as the neuron 
count, network depth, and learning rate, demands extensive expertise, even from pro-
fessionals. Weight optimization in neural networks predominantly uses gradient-based 
methods, which carry the risk of converging to local optima [44]. With the surge in arti-
ficial intelligence advancements and the increasing complexity of engineering tasks in 
recent years, researchers have introduced a plethora of neural network architectures and 
neuron models to address specific machine learning challenges. For instance, convolu-
tional neural networks (CNNs) have demonstrated remarkable success in image process-
ing, while recurrent neural networks (RNNs) have become a staple in natural language 
processing applications. As a key model of “brain-like” research, pulsed neural networks 
have attracted extensive attention. Some graph model-based neural network structures 
have also become research hotspots, and have achieved good performance in many 
industrial application scenarios. In the face of different learning tasks, how to optimize 
the hyperparameters of neural networks is the first task of applying neural networks to 
deal with complex problems.

Evolutionary computing is inspired by biological evolution in nature. By imitating the 
iterative process of biological evolution, such as environmental selection, gene crossover 
and mutation, genetic algorithms that can be used to solve optimization problems have 
been proposed [45]. The genetic algorithm employs population-based search techniques, 
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substituting a problem’s individual solution with a population of solutions. Through the 
application of genetic operations like selection, crossover, and mutation on the current 
population, it generates a new generation. This process progressively drives the popula-
tion towards a state that approximates the optimal solution. In the process of evolution, 
individuals with greater fitness have a greater probability of survival and obtain gene 
sequences that are more adapted to the environment. Therefore, it has the characteris-
tics of strong robustness, self-organization, self-adaptation, and self-learning [46]. We 
use particle swarm optimization (PSO) algorithm to optimize the proposed network 
hyperparameters, including learning rate, epoch, and batch size. We encode the param-
eters in a form similar to network addresses and transform a fixed-length structure into 
a variable-length structure. PSO has few parameters during evolution, which can accel-
erate the process of finding the optimal structure.

Experiments and results
To validate the method proposed in this paper effectively, we employ the Pytorch deep 
learning framework for constructing the model in our experiments. The validation and 
comparison of the network are carried out using public datasets. This section will detail 
the datasets and evaluation metrics utilized in the experiments, alongside a comparison 
of the experimental outcomes with other object detection methods.

Data description and metrics

In the experiment, RGBT210 public dataset proposed in literature [47] was used for test-
ing. The RGBT210 dataset consists of images captured by infrared and visible cameras 
with the same imaging parameters in 210 scenarios. The dataset contains about 210,000 
images, covering infrared and visible image pairs of about 20 targets at different time 
periods and light intensities. Since the dataset is large and most of the images are similar, 
in order to quickly verify the proposed network, 10,000 images with low similarity are 
screened out for testing. The selected images include 10 categories such as people, ani-
mals, cars, and bicycles. In order to facilitate calculation and save computing time, the 
image size is uniformly processed as 448 × 448, and the training, verification and test sets 
are constructed at a ratio of 7:1:2.

For the accuracy and efficiency evaluation of the proposed network, we employ the 
Recall, Precision, the mean average precision (mAP), and the number of images per sec-
ond (FPS) the network processes as performance metrics, respectively. Their definitions 
are:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

APi =

∑
Precision i

(TP + TN + FP + FN)i

mAP =

∑
APi

TP + TN + FP + FN
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FPS = N/
∑

N
k Tk

where TP denotes a correct identification of a positive instance, TN represents a correct 
identification of a negative instance, FP signifies an incorrect identification of a positive 
instance, and FN refers to an incorrect identification of a negative instance, i indicates 
the category type, N is the total number of the images, Tk  is the time taken by the model 
to process the k-th image.

Model performance

We compare our method with other object detection models to evaluate the perfor-
mance, including the classic CNN model [48], the AutoEncoder [49], Faster RCNN [50], 
YOLO [51], YOLO-based [52], MobileNet-based [53], and our proposed Evolutionary 
Computation-based Object Detection (ECOD). Table  1 shows the comparison results 
with other methods. The CNN model and AutoEncoder model in the table are used as 
reference baselines for comparison results, while Faster RCNN and YOLO are the mod-
els with outstanding performance in the field of target detection. As can be seen from 
the table, our proposed model can achieve comparable performance compared with 
the current mainstream high-precision and high-efficiency object detection networks. 
At the same time, we use autoencoders to replace traditional convolutions, and refer-
ence network construction strategies such as residuals and LeakyReLU activation func-
tions. Compared with the YOLO network, the proposed network trades a small loss of 
accuracy in exchange for a large increase in network efficiency. However, compared with 
Faster RCNN, because the proposed model is a single-step detection, and the autoen-
coder loses some feature information compared with the traditional convolution, the 
accuracy is reduced. We also compared new algorithms in recent years, such as YOLO-
based and MobileNet-based. From the results of these advanced algorithms, it can be 
seen that the results of our proposed ECOD model are similar to theirs. Although our 
model is not the optimal result, compared to the optimal model, our model is able to 
achieve the best result on some metrics. For example, our proposed model achieves a 
recall of 74.9%.

In order to further verify the feature complementarity of the infrared and visible light 
dual-branch structure and the effectiveness of the proposed feature fusion structure, we 
tested the visible light, infrared, and fused network performance in experiments. Table 2 
showcases the outcomes of the ablation studies conducted. The comparison results in 
Table 2 clearly depict the comparison results in the three cases. The experimental results 
using only infrared image features performed the worst, with all results below 60%. The 
results of using visible light images all exceeded the results of infrared images. This phe-
nomenon verifies from a certain angle that visible light images contain more features 

Table 1 The comparison results with other methods
Method Recall Precision mAP FPS
CNN 72.1 71.6 63.2 31
AutoEncoder 70.3 69.5 61.4 20
Faster RCNN 74.6 76.6 68.7 27
YOLO 76.4 72.7 64.8 68
YOLO-based 76.8 73.1 65.7 63
MobileNet-based 75.9 75.6 66.9 42
ECOD (Ours) 74.9 73.4 66.3 55
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and are more in line with the visual features perceived by the human eye. Significantly, 
the model that integrates features from both types of images yields the most superior 
performance. This not only underscores the efficacy of the method we proposed but also 
demonstrates that infrared imagery indeed plays a supportive role in enhancing object 
detection tasks. Our findings demonstrate the effectiveness of combining visible light 
and infrared images for object detection. This approach can be applied to various fields 
such as surveillance, medical imaging, and autonomous driving, where different spectral 
bands provide complementary information. The success of multispectral data fusion in 
our study suggests that further exploration of other spectral combinations could yield 
additional benefits in different contexts.

Ablation study

In this paper, we design a strategy based on autoencoder feature extraction and feature 
fusion. To verify the role of these modules, we performed ablation experiments. First, we 
tested the effect of the autoencoder, that is, the results produced by the model in the case 
of using the autoencoder model are compared with the results produced by the ordinary 
convolutional network model. Figure 4 depicts the experimental results for both cases. In 
the figure, the green line represents the results obtained by the proposed method on the 
mAP metric when using the autoencoder model. The orange line is the result obtained 
without using the autoencoder. Looking at the model training process, the results with 

Table 2 The results of the ablation experiments for each branch
Structure Recall Precision mAP
Infrared only 58.1 56.3 53.7
Visible light only 63.7 63.4 56.8
Fusion 74.9 73.4 66.3

Fig. 4 The experimental results with or without AutoEncoder model
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the autoencoder are significantly better than those without. The mAP results with the 
autoencoder all exceed 60% in the later training, while the results without the autoen-
coder can only reach around 55%. These phenomena show that the autoencoder model 
can play a good role in feature extraction. The application of self-supervised learning 
for feature extraction shows that models can achieve high performance without relying 
heavily on large, labeled datasets. This has significant implications for areas with limited 
labeled data, promoting the use of self-supervised techniques in broader applications.

At the same time, we verified the evolutionary optimization algorithm to determine 
whether the optimization and performance of the model improved. We compare the 
experimental results with and without the optimization algorithm. Figure  5 shows a 
radar plot comparing the results in the two cases. Five metrics are compared in Fig. 5, 
including AP, mAP, Recall, Precision, and FPS. We can see that: (1) In terms of the FPS 
index, the results in the two cases are consistent; (2) In other indexes, such as mAP, 
Recall, AP, and Precision, the experimental results optimized by PSO algorithm are bet-
ter than those without PSO algorithm. Furthermore, these outcomes solidly affirm that 
the Particle Swarm Optimization (PSO) algorithm introduced in this paper significantly 
contributes to enhancing the model’s performance. The use of evolutionary computa-
tion for model optimization highlights its potential in fine-tuning complex models. This 
approach can be extended to optimize other machine learning models, particularly those 
with numerous hyperparameters. Evolutionary algorithms could be combined with 
other optimization techniques to develop hybrid methods that leverage the strengths 
of multiple approaches, potentially leading to more efficient and effective optimization 
strategies.

Fig. 5 The experimental results with or without PSO algorithm
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Discussion

There are several internal and external threats to the validity of our results that we have 
identified and addressed to enhance the robustness of our findings. Internally, the qual-
ity of the data and preprocessing steps might introduce biases. We mitigated this threat 
by ensuring consistent preprocessing techniques such as normalization and resizing 
across all datasets. Data augmentation was also performed to improve model robustness. 
Another internal threat is related to model parameter tuning, where the choice of hyper-
parameters and model architectures can significantly influence performance. To address 
this, we employed evolutionary computation for systematic and unbiased parameter 
optimization, reducing the likelihood of overfitting to specific hyperparameters. Addi-
tionally, the way data is split into training and validation sets can impact evaluation. We 
used cross-validation techniques to ensure the model’s performance is evaluated across 
multiple splits, providing a more reliable assessment.

Externally, the generalizability of our results to other datasets is a potential threat. 
The performance observed on the selected public datasets may not generalize to other 
datasets. To mitigate this, we validated our model on multiple publicly available datasets 
chosen for their diversity in content and imaging conditions. Future work includes test-
ing on additional datasets to further assess generalizability. Another external threat is 
the application of our model in real-world scenarios. The controlled conditions of pub-
lic datasets may not fully represent real-world scenarios. To address this, we included 
diverse and challenging scenarios within our selected datasets to mimic real-world 
conditions. Future research will involve testing the model in real-world applications to 
further validate its robustness. Additionally, variability in the quality and calibration of 
multispectral imaging devices may affect performance. We used standard calibration 
techniques for the infrared and visible light images in our datasets. Incorporating data 
from multiple devices in future studies will help address this threat.

Conclusion
This paper introduces an image object detection approach rooted in self-supervised and 
data-driven learning principles. We leverage a combination of visible light and infrared 
images to detect and pinpoint targets within images. First, we utilize a self-supervised 
learning method and the AutoEncoder to perform high-dimensional feature extraction 
on the two types of images. Second, we fuse the extracted features from two kinds of 
images, namely visible light image and infrared image, to detect and identify objects. 
Third, we investigate a model parameter optimization method to optimize the model 
performance based on evolutionary learning algorithms to improve the training perfor-
mance of the model. However, all models have their limitations, and our model is no 
exception. The limitation of our proposed model is that its learning process is multi-fac-
eted, as it requires feature learning and fusion. In future work, we will focus on improv-
ing and increasing the training and inference efficiency of the model.
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