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Abstract 

The construction industry substantially contributes to the economic growth of a coun-
try. However, it records a large number of workplace injuries and fatalities annually due 
to its hesitant adoption of automated safety monitoring systems. To address this critical 
concern, this study presents a real-time monitoring approach that uses the Internet 
of Things and ensemble learning. This study leverages wearable sensor technology, 
such as photoplethysmography and electroencephalography sensors, to continuously 
track the physiological parameters of construction workers. The sensor data is pro-
cessed using an ensemble learning approach called the ChronoEnsemble Fatigue 
Analysis System (CEFAS), comprising deep autoregressive and temporal fusion trans-
former models, to accurately predict potential physical and mental fatigue. Compre-
hensive evaluation metrics, including mean square error, mean absolute scaled error, 
and symmetric mean absolute percentage error, demonstrated the superior predic-
tion accuracy and reliability of the proposed model compared to standalone models. 
The ensemble learning model exhibited remarkable precision in predicting physical 
and mental fatigue, as evidenced by the mean square errors of 0.0008 and 0.0033, 
respectively. The proposed model promptly recognizes potential hazards and irregu-
larities, considerably enhancing worker safety and reducing on-site risks.

Keywords: Smart construction sites, Internet of things, Ensemble learning, Fatigue 
monitoring, Safety management, Multivariate time series forecasting

Introduction
The construction industry is a global economic driver, substantially contributing to the 
gross domestic product of both developed and emerging economies [1]. Despite its eco-
nomic importance, the industry is burdened with a high incidence of workplace acci-
dents and safety hazards [2], establishing it as one of the most hazardous sectors [3]. 
Notably, these accidents are not only detrimental in terms of human cost but also lead 
to consequential declines in productivity, increased repair costs, and delays in project 
schedules [4–6]. Construction workers routinely perform physically demanding tasks 
[7–10], which increases their risk for chronic illnesses, cardiovascular diseases, and 
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other health issues [8, 10–12]. In addition to the high injury rate, their poor lifestyle 
habits and physical conditions further exacerbate health risks [13]. The Bureau of Labor 
Statistics data [14] highlights these issues, positioning construction as one of the sec-
tors with the highest fatal occupational injury rates in the USA. Factors contributing to 
construction accidents include inadequate site management, the absence of necessary 
safety precautions, environmental hazards, unsafe behavior, and physical exhaustion [15, 
16]. Among these, unsafe worker behavior and fatigue majorly contribute to accident 
incidence [10–12, 17–21]. Moreover, attention lapses due to fatigue and heavy workload 
when operating construction equipment are key precursors to accidents [22, 23].

Furthermore, the dynamic and hazardous nature of construction sites, coupled with 
the high prevalence of mental and physical fatigue among workers, constitutes a signifi-
cant risk factor for accidents and injuries. The incidence of fatigue among construction 
personnel is alarmingly high, ranging from 10 to 40% across various trades [21, 24, 25], 
with 20–40% of different craft workers consistently surpassing the widely recognized 
physiological limits for manual labor [24]. This high prevalence can be attributed to 
the physically strenuous nature of construction tasks, which often involve long hours, 
shiftwork, and challenging environmental conditions [26, 27]. Higher levels of mental 
and physical fatigue were significantly correlated with greater musculoskeletal pain [28]. 
This indicates that fatigue not only increases the risk of accidents but also exacerbates 
physical discomfort and potential long-term musculoskeletal damage. Occupational 
fatigue is recognized as a major safety and health concern, particularly among workers at 
higher risk of injuries and illnesses due to inescapable tiring conditions. More than 43% 
of laborers suffer from sleep deprivation, notably those who work nights or have long, 
irregular shifts, contributing to fatigue [29]. The pervasive nature of fatigue in this sec-
tor is further evidenced by its association with a third of all occupational injuries, akin 
to impairment levels experienced under the influence of alcohol [26]. A 12-h workday 
is linked to a 37% higher risk of sustaining injuries [30, 31]. Additionally, when compar-
ing day shifts to evening and night shifts, the incidence of accidents is 18% higher and 
30% higher, respectively [32]. Fatigue has been empirically linked to impaired physical 
and cognitive function, leading to an increased risk of incidents as well as injuries [21, 
33]. Construction workers with severe fatigue have been found to have 1.77 times higher 
odds of experiencing occupational injuries compared to those without fatigue [25]. Fur-
thermore, 7.7% of non-fatal injuries among Colorado’s construction workers were shown 
to be related to fatigue [34]. In a study of 328 construction workers and 69 incidents, 
fatigue-related impairment was associated with a significantly elevated incident rate of 
9.6 vs. 0.8 incidents per 1000 person-hours worked [13]. Mental fatigue, especially prev-
alent among roles that entail high cognitive demands, leads to decrements in cognitive 
performance. This is marked by a substantial rise in the time it takes to detect hazards 
and an increase in the instances of missed detections by operators as subjective mental 
fatigue levels rise [26, 27]. The failure to detect hazards has been identified as a leading 
cause of accidents involving construction equipment, with 50% of fatal accidents being 
related to equipment operation [27]. The probability ratios for reporting a vehicle acci-
dent and a near-miss incident after a long work shift, as opposed to a standard-length 
shift, are 2.3 and 5.9, respectively [35]. The economic consequences of fatigue-related 
accidents are substantial, as they not only affect productivity—costing employers 
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between $1200 to $3100 per employee annually—but also result in an estimated annual 
cost of $136.4 billion in the United States alone due to health-related lost productive 
work time [29, 36]. The precise assessment of fatigue’s direct influence on construction 
safety is challenging to quantify, largely attributed to the lack of established real-time 
fatigue monitoring methodologies. This deficiency highlights the imperative need for 
the development of fatigue monitoring technologies to mitigate the risks associated with 
mental and physical fatigue and ensure the safety and well-being of construction work-
ers [37].

Smart technologies have revolutionized sectors such as healthcare; however, their 
adoption in construction is surprisingly limited [12, 38]. In light of these concerns, the 
primary research question guiding this study is as follows: how can the integration of the 
Internet of Things (IoT) and ensemble learning methodologies enhance real-time fatigue 
monitoring in the construction industry? This study aims to address this question by 
providing an innovative, technology-driven solution to improve safety measures and 
mitigate health risks in the construction industry.

Related work
Overview of wearable technology in the construction industry

Wearable technology that incorporates components such as computers, software, elec-
tronics, and sensors seamlessly embedded in clothing or accessories that can be easily 
worn on the body (e.g., smart glasses, watches, or garments) has recently garnered con-
siderable attention across a multitude of industries due to its capability to monitor and 
analyze real-time biological, health, and safety parameters [39, 40]. The most prominent 
application of such devices is in the healthcare sector, where wearable health devices 
integrated with sophisticated biosensor systems enable the perpetual surveillance of an 
individual’s physiological parameters, which include, but are not limited to, heart rate 
(HR), heart-rate variability (HRV), blood volume pressure (BVP), and dermal tempera-
ture, thereby providing instantaneous feedback [12, 21, 41].

To harness these opportunities for proactive safety management, various wear-
able sensing technologies have been extensively researched. This research includes the 
deployment of motion sensors such as inertial measurement units and an array of physi-
ological sensors comprising heart-rate monitors, electrodermal activity sensors, skin 
temperature measurement devices, eye-tracking systems, and brainwave-monitoring 
apparatuses. These technologies aim to enhance safety measures by providing real-time 
data on workers’ physical and mental states. Wearable technology has also been applied 
in the construction industry to improve the safety and health of construction workers. 
Applications in construction include monitoring physical activities such as walking, run-
ning, and lifting through embedded motion sensors and utilizing physiological sensors 
for continuous health status monitoring to identify potential risks like fatigue [8, 42, 43].

Moreover, wearable technology combined with sophisticated data analytical methods, 
such as machine learning and deep learning algorithms, can be used to analyze large 
amounts of data acquired by wearable devices and extract meaningful insights for safety 
and health management in the construction sector [2, 3, 44]. For instance, machine 
learning algorithms can predict fatigue risk based on physiological data collected by 
wearable devices [45, 46]. This prediction capability can help prevent fatigue-related 
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accidents, thereby enhancing the overall safety of construction workers. However, the 
adoption of wearable technology in construction faces challenges related to data accu-
racy, worker privacy, and comfort, which necessitate the development of robust data 
analysis techniques and addressing worker concerns to promote its usage [47–49]. To 
overcome these challenges, advanced wearable systems that combine multiple sensors 
and data analysis techniques have been widely researched. These systems comprehen-
sively and accurately monitor the safety and health of construction workers [38–40, 50, 
51]. For instance, a wearable system that integrates motion and physiological sensors 
was recently proposed to simultaneously monitor the physical activities and physiologi-
cal status of construction workers [8].

In conclusion, while wearable technology has demonstrated immense potential 
for enhancing the safety and well-being of construction personnel, further research is 
required to overcome the existing challenges and realize its full potential. In this regard, 
integrating wearable technology with the latest data analytics methods, such as ensem-
ble learning, is a promising avenue for future research.

Wearable technology for fatigue detection

Construction work is labor-intensive and involves performing strenuous tasks over 
extended periods, which causes fatigue and affects the mental and physical health of 
construction workers while considerably increasing the risk of on-site accidents [7, 10, 
18–21]. This necessitates the development of reliable fatigue detection systems for the 
construction industry. Fatigue detection traditionally relies on self-reported fatigue 
measures or the supervision of a site manager but yields inaccurate and biased results 
due to subjectivity [18]. Real-time fatigue detection, which is pivotal in proactive acci-
dents, presents a significant challenge due to its inherent difficulty. Wearable technology 
is utilized for this purpose. The devices, which are equipped with an array of sensors, 
such as heart-rate sensors and brainwave monitors, can continuously monitor workers’ 
physiological status and detect signs of fatigue [45, 52]. Deep learning algorithms are 
used to analyze sensor data, predict fatigue risk, and deliver timely warnings to prevent 
accidents [53]. The integration of machine learning techniques with wearable technol-
ogy allows for fatigue detection, enhancing the timeliness of interventions and helping to 
prevent fatigue-related accidents [20, 52, 54].

Photoplethysmography sensor

A photoplethysmography (PPG) sensor is a noninvasive technology that measures car-
diovascular parameters such as HR and changes in blood volume. Wearable devices con-
taining PPG sensors, such as smartwatches, have been used for fatigue detection in the 
construction industry [20, 22]. The sensor detects variations in blood volume changes 
with each heartbeat, which are affected by physiological changes that occur during 
fatigue [21]. This technology is easy to use, unobtrusive, and can continuously moni-
tor fatigue, among other advantages. However, PPG sensors may produce inaccurate 
readings due to motion artifacts, environmental light interference, and variable sensor 
placement [23]. PPG sensors measure the HR, BVP, and HRV, which are associated with 
fatigue [19]. HR denotes the frequency of heartbeats in a minute, whereas HRV refers 
to the fluctuation in the intervals between consecutive heartbeats. A lower HRV and a 
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higher HR are indicative of fatigue [20]. HR can be calculated directly from the time 
intervals between successive heartbeats. HRV is typically calculated using the root mean 
square of the successive differences to analyze the intervals between normal-to-normal 
(NN) intervals.

Electroencephalography sensor

Electroencephalography (EEG) sensors monitor brain activity through the scalp and are 
often used in sleep studies to identify changes in different sleep stages, including the 
onset of fatigue [21, 55]. Research indicates that EEG correlation patterns shift mark-
edly across sleep stages, with significant interhemispheric synchrony during non-REM 
sleep, particularly in the theta and alpha bands, which are indicative of fatigue [56, 57]. 
Additionally, a reduction in EEG complexity from awake states to deeper non-REM 
stages was found, suggesting a potential analog for physiological fatigue detection [58]. 
These findings align with similar transitions observed during general anesthesia, where 
shifts in alpha frequency could indicate recovery phases, drawing parallels with sleep 
transitions that may predict fatigue recovery in real-world scenarios [59]. Addition-
ally, with increasing sleep deprivation, higher synchrony among EEG channels across 
various brain regions was observed, suggesting that increased connectivity serves as a 
compensatory mechanism to maintain cognitive functions despite fatigue [60]. In the 
construction industry, EEG sensors can directly detect changes in brainwave patterns in 
real-time to indicate the onset of fatigue [21]. Although these sensors are valuable tools, 
their usage can be challenging due to their susceptibility to noise, the need for special-
ized expertise for data interpretation, and concerns related to comfort and practicality 
of use in an active work environment [61]. The brainwave frequencies associated with 
fatigue states are theta (4–7 Hz) and alpha (8–12 Hz) waves. An increase in theta and 
alpha wave activities is indicative of fatigue [62]. These frequencies can be calculated 
directly from the EEG sensor data using the fast Fourier transform.

Different sensor combinations

To improve fatigue detection accuracy, different types of sensors can be combined in 
wearable devices [63]. For instance, cardiovascular and emotional changes associated 
with fatigue can be comprehensively monitored by combining PPG and electroder-
mal activity sensors [7, 21]. Similarly, physiological changes caused by fatigue can be 
detected by integrating EEG and skin temperature sensors [21]. However, the develop-
ment and calibration of systems that integrate multiple sensors present challenges in 
terms of complexity, power consumption, and potential data redundancy [64]. Further-
more, privacy and comfort-related concerns might increase when multiple sensors are 
involved, potentially affecting worker acceptance [48] of the technology.

As each sensor type and combination offers unique strengths and limitations for 
fatigue detection in the construction industry, their combination can be used to over-
come the associated challenges and enhance accuracy and reliability [18, 21]. Using a 
combination of different sensors in wearable devices, various fatigue-associated metrics, 
such as HR, HRV, and theta and alpha waves [65], can be simultaneously measured to 
monitor a worker’s fatigue level comprehensively and reliably.
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Computational approaches for fatigue detection

The integration of computational methods in fatigue detection has seen a surge. While 
individual machine learning models have carved a path for innovative fatigue assess-
ment, they are not without their challenges. Analytical approaches leveraging machine 
learning or simple statistical techniques, including logistic and linear regression, have 
been used to explore the data derived from wearable sensors and classify fatigue levels 
in construction workers [20, 21]. Various computational algorithms, including decision 
trees, boosted trees, support vector machines (SVM), random forest (RF), and artificial 
neural networks [54, 66], have been used for fatigue detection. However, these methods 
pose challenges, such as overfitting and feature selection [66]. One study utilized physio-
logical parameters such as heart rate, breathing rate, and skin temperature, measured by 
textile-based wearable sensors. The method incorporated penalized logistic regression 
and multiple linear regression models, as well as supervised and unsupervised machine 
learning approaches, including Artificial Neural Network (ANN), to develop a real-time 
fatigue assessment system; however, the study’s lack of generalizability beyond bar bend-
ers questions its broader applicability. The method also suffered from a high quantity of 
motion artifacts, and the lack of correlation with blood lactate levels also posed addi-
tional limitations [20].

Another approach involved a non-invasive method using a wearable respiration sen-
sor and random forest classifier, which showed high accuracy and was less affected by 
motion artifacts. Even so, there was potential variability in sensor performance, and 
the study heavily relied on a subjective questionnaire for labeling, which could intro-
duce bias [7]. Deep learning algorithms applied in the study [18] for motion capture and 
biomechanical analysis were hindered by environmental complexities and the depend-
ency of high-quality RGB cameras, which could potentially compromise the accuracy of 
the model under less ideal conditions. A study [10] assessed workers’ physical demand 
through physiological signals captured by wearable biosensors, employing a Gaussian 
kernel support vector machine for classifying physical demand levels. The limitations 
highlighted the need for validation on a larger, more diverse subject pool and the bias of 
subjective fatigue assessments. Another study [67] developed an automatic biomechani-
cal workload estimation method using computer vision and smart insoles with pressure 
sensors, but the error rate of the load estimation exceeded 15%, and the noise along with 
signal artifacts affecting accuracy were not examined; thus, there is a potential for inac-
curacies in real-world construction environments. A study also employed EMG and 
IMU sensors along with a recurrent neural network for continuous fatigue monitoring. 
The focus of this study is on work severity classification rather than determining real-
time physical fatigue. Despite the good results, the potential variability in individual 
worker characteristics such as work experience, age, and health status can affect the sys-
tem’s accuracy. Furthermore, continuously monitoring fatigue levels for multiple tasks 
performed in short intervals can be challenging [68]. Wang et  al. [69] implemented a 
wearable EEG system for monitoring attention and vigilance; however, the system’s 
effectiveness can vary with individual workers. A different research involved monitoring 
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different physiological parameters such as heart rate and breathing rate, but the study 
was limited by the small sample size, which may not represent a broader population of 
construction workers [70]. A study [71] looked at wearable-device-based data for meas-
uring construction workers’ psychological status, but the initial combined data modeling 
may not be sufficiently accurate for all individuals. In addition, the K-means clustering 
algorithm was adapted to classify the physical data into only three distinct classes. [72] 
used a wristband-type wearable health device to collect heart rate data and measure 
the physical demands of construction personnel. The study, however, does not account 
for all individual, environmental, and mental factors affecting physical demands, which 
could influence the results. Wearable eye-tracking technology can also be used to evalu-
ate the impact of mental fatigue on hazard detection abilities. Yet, the study was only 
conducted in a controlled lab environment with only a few participants. Additionally, 
the use of wearable tracking technology may not capture mental fatigue accurately [42].

Ensemble learning operates on the principle of leveraging a collection of “weak 
learners,” which are individual models trained to address the same issue, to formulate 
a stronger predictive model through their aggregation. Weaker learners can be com-
bined to develop a model that yields precise and robust results [73, 74]. One study 
investigated these ensemble classifiers for physical exertion modeling along with other 
models including K-nearest neighbor (KNN), SVM, and DT. However, the experiments 
were only conducted in a controlled environment that did not reflect the complexity of 
actual construction work, focusing on a single task [19]. In another study, boosted trees, 
bagged trees, and RUSBoosted trees were proposed for fatigue classification. The predic-
tion accuracy of the individual models was compared to the ensemble methods, result-
ing in enhanced fatigue detection accuracy for the ensemble models. Even so, the overall 
prediction accuracy was only 82.60%, 79.10%, and 80.60% for the boosted trees, bagged 
trees, and RUSBoosted trees, respectively. The study was limited by the reliability of sub-
jective Borg’s RPE scale for fatigue assessment [21]. Ensemble learning was also used 
to analyze human activity data gathered by smartphone sensors. Results revealed that 
ensemble learning can enhance the accuracy of human activity recognition, providing 
more reliable results than several stand-alone algorithms [50].

The computational approaches using standalone models, while promising, still face 
challenges such as overfitting, feature selection, bias, lack of generalizability, and the 
nascent stage of application in wearable devices for safety and health monitoring in the 
construction industry [3, 9, 66, 74]. Ensemble learning, which combines predictions of 
machine learning models trained on different sets of sensor data, has shown potential 
for higher fatigue detection accuracy [21, 50]. However, selecting appropriate models for 
the ensemble and combining their predictions remains a challenge.

Challenges in fatigue detection

The aim to develop an effective fatigue assessment approach for construction workers 
has led to the development of various computational and non-computational fatigue 
detection methods. In spite of the improvements, each approach comes with its own 
unique set of challenges and limitations. One challenge is the accurate detection and 
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assessment of fatigue [7, 10, 18–21, 67, 68, 71, 75]. In addition, noise and signal artifacts 
can affect the accuracy of wearable sensing technology [72, 75]. There is also a scarcity 
of studies that have directly examined the relationship between changes in physiological 
metrics and physical fatigue in construction workers [57].

Approaches utilizing wearable sensors to measure physiological parameters such as 
heart rate, breathing rate, and skin temperature face several limitations. The measure-
ments suffer from the high quantity of movement artifacts, affecting the accuracy dur-
ing the actual construction tasks [20], and environmental influences that skew the data 
[21, 51]. These wearable sensors can also cause discomfort or distraction to construction 
workers, affecting the adoption of these technologies [48]. Furthermore, several experi-
ments were conducted only in controlled laboratory settings, not reflecting actual con-
struction site conditions [27]. Variations in sensor placement can lead to significant data 
discrepancies, questioning the reliability of the measurements [2, 44]. Some studies also 
suffer from a lack of generalizability [69].

Machine learning models, such as regression models and neural networks, are not 
immune to overfitting and feature selection issues, which can affect their generalizabil-
ity and real-world application [20]. The necessity for large datasets to train these mod-
els often poses an obstacle, as does the variability in individual responses to fatigue [7]. 
Privacy concerns related to continuous physiological monitoring also cannot be over-
looked [19]. The generalizability of findings is a recurrent concern, with studies often 
limited to specific tasks or controlled environments that do not mirror the complexities 
of actual construction sites [7, 10, 18–21]. Fatigue detection systems struggle with speci-
ficity, frequently being unable to differentiate between fatigue and other physiological 
states, which is crucial for accurate assessments [76]. Technologies such as 3D motion 
capture and deep learning networks require optimal conditions for operation, and their 
performance is limited by the quality of the equipment and the algorithms’ robustness 
[18]. The higher accuracy of fatigue classification often requires multiple sensor data, yet 
using multiple sensors adds complexity to the system [21].

This study aims to address the following challenges, contributing toward more effec-
tive fatigue monitoring in the construction sector:

1. The development of an IoT sensor and ensemble learning-based ChronoEnsemble 
Fatigue Analysis System (CEFAS), which enables the monitoring of both physical 
and mental fatigue. The sensors can be effortlessly integrated into safety helmets and 
worn on the wrist. This integration into everyday safety gear ensures that the work-
ers can comfortably perform their duties while their fatigue levels are continuously 
monitored.

2. The ensemble learning model extracts data from various sensors and applies sophis-
ticated learning algorithms to predict physical and mental fatigue (PF and MF) not 
only in real-time but also proactively. Since people often do not realize when they 
are fatigued, early detection is crucial. By identifying the signs of fatigue before they 
become apparent, the model enables preventative measures to be taken, significantly 
reducing the risk of accidents, unsafe behaviors, and injuries in the construction sec-
tor.
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3. A deep ensemble learning model is developed for accurately and reliably detecting 
MF and PF. Unlike traditional machine learning methods that categorize fatigue into 
discrete classes, this model provides a continuous and precise measure of fatigue. 
The ensemble approach can also handle noisy data, reduce overfitting, and improve 
feature selection.

4. To address the lack of openly available datasets suitable for training deep learning 
models in this domain, we assembled an exhaustive dataset in laboratory settings. 
This dataset contains physiological signal measurements recorded by photoplethys-
mography and electroencephalography sensors. The dataset provided a solid founda-
tion for training and testing the deep ensemble learning model.

In summary, the proposed approach can considerably enhance the health and safety 
outcomes for construction personnel and contribute to a safer and healthier work 
environment in the construction industry. Through these contributions, we aspire to 
advance the current state-of-the-art in fatigue detection, ensuring safer work envi-
ronments and improved worker well-being. The remainder of this paper is organized 
as follows: “Methodology” discusses the methodology, including the methodological 
process, dataset building, ensemble model, and prototype implementation. “Results 
and discussion” highlights the results and discusses the evaluation of the proposed 
approach. “Conclusions and future work” explores the limitations and future scope of 
the proposed approach and concludes the study.

Methodology
Herein, a deep ensemble learning-based fatigue detection approach is proposed for 
construction workers. The research combined PPG and EEG sensor data with an 
ensemble learning model to monitor and predict physical fatigue and mental fatigue 
in real-time. Through meticulous data collection, preprocessing, transformation, 
and the implementation of sophisticated models such as DeepAR and TFT, the study 
endeavors to accurately forecast fatigue levels. The methodological procedure is out-
lined below.

Methodological process

First, the research problem, i.e., the necessity for an enhanced safety management 
system in the construction industry, was identified. Then, the use of wearable tech-
nology, biosensor systems, and ensemble learning was analyzed by an exhaustive 
literature review. This study was meticulously constructed to ensure a comprehen-
sive methodology for data accumulation and analysis. The methodological process is 
shown in Fig.  1. Following an exhaustive literature review on wearable technology, 
biosensor systems, and ensemble learning, we systematically selected appropriate 
wearable devices, such as PPG and EEG sensors, accompanied by a microcontroller. 
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Subsequent to this selection, data was collected using these wearable sensors. The 
collected data were preprocessed to construct a robust and usable dataset, which was 
used to train the developed ensemble learning model.

After the training phase, the performance of the model was thoroughly analyzed 
using various evaluation metrics to evaluate the efficacy of the proposed approach. 
Lastly, a prototype was developed and validated under real-time conditions. Each 
phase of this methodological process was executed with meticulous attention to the 
research objectives and ethical considerations intrinsic to the study.

Dataset formulation and refinement

The dataset used for training the ensemble learning model comprises physiological 
metrics recast into a time-series configuration. This transformation is vital for the 
proficient employment of the deep autoregressive (DeepAR) and temporal fusion 
transformer (TFT) models designed to manage the time-series data. Various physi-
ological metrics, including HR, BVP, HRV, and EEG signals, were systematically col-
lected from 11 participants, comprising males with a mean age of 25.33 years and a 
standard deviation of 1.21 and females with a mean age of 29.4 years and a standard 
deviation of 6.19. Table 1 lists the details of the participants.

Prototype assembly

Raw EEG , PPG signals

Ensemble learning
training and testing

Ensemble training

Ensemble testing

Performance 
evaluation

MSE

MASE

MAPE

sMAPE

ND

MSIS

Dataset preparation

RMSE
Data preprocessing

1. Data cleaning:
- Hampel filter
- Median filter
2. Signal filtration
- Savitzky–Golay filter
- Moving average filter
- Baseline removal techniques

Data normalization

DeepAR 
training

TFT 
training

DeepAR
testing

TFT 
testing

Building the ensemble 
learning model

Dataset
Training Testing

Data collection
Data segmentation

Feature extraction
EEG PPG

Fig. 1 Methodological process overview

Table 1 Mean age, mean height, mean weight, and standard deviation of parameters and the 
count of participants by gender

Gender Mean age (years) Mean 
height 
(cm)

Mean 
weight 
(kg)

Std. age Std. height Std. weight Count

Male 25.33 174.5 67.92 1.21 5.61 10.14 6

Female 29.4 159.2 55 6.19 7.98 11.73 5
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Data was acquired within a specified timeframe to ensure continuous and uninter-
rupted collection. The data were combined into a temporally annotated dataset using 
meticulous procedures, such as data acquisition, preprocessing, transformation, and 
segmentation, to ensure its robustness and suitability for subsequent analysis.

Data acquisition protocol

The initial preparations were completed in approximately 10  min. Before data col-
lection, instruments were rigorously checked to ensure their operational readiness. 
Participants were acquainted with the objectives and protocols of the study and given 
an informed consent form for endorsement. The volunteers filled out a comprehen-
sive demographic and health-related questionnaire. This step ensured that the partici-
pants met the inclusion criteria of the study and identified any potential exclusions.

Baseline data were acquired in 20  min. The mental fatigue of participants was 
assessed using scales such as the Stanford sleepiness scale, the Swedish occupational 
fatigue inventory (SOFI) [77], and the multidimensional fatigue inventory (MFI) 
[78]. Then, a 10-min resting-state EEG focused on the prefrontal cortex (PFC) was 
recorded using the Muse 2 headband. The HR and HRV were simultaneously doc-
umented. A standardized reaction time test was then administered via a dedicated 
computational interface to gauge mental alertness. This was followed by the PF induc-
tion phase, lasting 60 min. Participants began with a 30-min cycling task, segmented 
by intensities: low (10  min), medium (10  min), and high (10  min). Reaction times 
were evaluated after each segment. Then, they performed a 10-min jump rope exer-
cise, followed by ball tasks such as squat throws and wall passes, for another 10 min. 

Preparations, 
questionnaire 

Fatigue 
assessment

Resting-state 
measurement

Cycling
(low intensity)

Cycling
(medium 
intensity)

Cycling
(high intensity)

Experimental timeline (minutes)

10 min 10 min 10 min 30 min

Break Break

Jumping rope
Ball tasks

Resting-state 
measurement

5 min 5 min10 min 10 min 10 min

Reaction time 
measurement

Fatigue 
assessment

10 min

Reaction time 
measurement

Reaction time 
measurement

Reaction time 
measurement

Reaction time 
measurement

Preliminary 
analysis

Fig. 2 Experimental procedure of the fatigue assessment
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A 5-min recuperative interval was provided between each activity, and reaction times 
were assessed after each exercise.

Post-exertion data were acquired for 40 min. Participants re-administered the Stanford 
sleepiness scale, SOFI, and MFI to gauge the shifts in mental fatigue. A follow-up 10-min 
resting-state PFC EEG was then performed. The post-activity PPG and EEG signals were 
recorded. Lastly, a reaction-time test was conducted to detect any changes in cognitive 
responsiveness. The data collation and preliminary analysis were completed in approxi-
mately 10 min. All sensor data was curated and structured into a dataset. We ensured a 
consistent mapping of participant IDs across various metrics, including subjective rat-
ings, EEG recordings, cardiovascular metrics, reaction times, and physical performance 
indicators. Figure 2 depicts the experimental procedure for the assessment.

Data preprocessing

The original physiological data extracted from sensors was processed in several stages to 
ascertain its appropriateness for the ensemble learning model. Missing data points, out-
liers, and erroneous readings, which could distort the model performed, were cleaned 
using data visualization and statistical analysis. The multi-stage processing involved sev-
eral filters and techniques, each addressing different types of noise and artifacts. Firstly, 
the Hampel filter was deployed to correct for sensing failures and outliers typically 
resulting from transient spikes and artifacts. This filter operates by examining each data 
point relative to its neighbors, replacing those deviating by more than a threshold—set 
three times the median absolute deviation—with the median of surrounding values, thus 
protecting the integrity of physiological signals. Additionally, a third-order one-dimen-
sional median filter was utilized to ensure data integrity. Unlike traditional linear filters, 
the median filter preserves the fidelity of the temporal sequence by replacing each data 
point with the median of a predefined window of neighboring points and mitigating the 
influence of singular aberrant values or spikes that may distort the true signal. This non-
linear filtering approach was particularly adept at maintaining the edge features of sig-
nals, essential for the accurate characterization of time-dependent physiological states 
in both EEG and PPG data. Additionally, data-cleaning techniques were used to remove 
spikes and aberrant readings. For smoothing the signals while conserving significant fea-
tures like peak heights and troughs, we employed the Savitzky-Golay filter. By fitting a 
polynomial to the moving window of data points, this filter refines the waveform with-
out distorting its essential morphology. This step was critical for subsequent analytical 
steps such as feature extraction. We also incorporated a moving average filter to address 
short-term fluctuations due to random signal noise. By computing the mean within a 
moving window, this filter effectively mitigates the impact of transient noise while allow-
ing the underlying trend of the data to be discerned with greater clarity.

Furthermore, baseline removal techniques were used to remove the direct current 
(DC) component and standardize the signal within a normal range. This enhances the 
signal quality for subsequent analytical steps. For EEG signals, we addressed the issue of 
baseline wander due to slow drifts by applying a high-pass filter with a cutoff frequency 
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lower than the frequencies of interest. This effectively removed the drifts while leaving 
the higher frequency brain wave components intact. In PPG signals, baseline wander is 
often attributable to respiration, body movements, and other physiological variations. 
To rectify this, we considered using techniques like ensemble empirical mode decompo-
sition (EEMD), which adaptively removes baseline trends based on the signal’s intrinsic 
oscillatory modes. These baseline removal techniques were crucial for compensating for 
low-frequency non-stationarities, potentially induced by sensor movements or attach-
ment issues. By standardizing the signals and aligning them closer to their zero reference 
line, we facilitated a consistent interpretation of the physiological data, which proved 
significantly beneficial when comparing temporal segments across individual subjects.

Data segmentation

Signal segmentation followed the preprocessing step. The primary challenge was to deter-
mine the optimal window size for fatigue detection, for which window sizes of 1–20 s, with 
1-s increments, were tested. After determining the optimal window size, the cleaned and 
filtered data were segmented into overlapping windows corresponding to the optimal size. 
Feature extraction was first performed for data transformation. Features from PPG sig-
nals were retrieved, considering time and frequency domains, to compile a comprehensive 
dataset for analysis. Statistical measures, such as mean, variance, and standard deviation, 
were computed for various physiological parameters derived from the sensor data. Then, 
feature selection was performed using techniques such as the backward-elimination wrap-
per method. As the feature set was extensive, dimensionality reduction methods, such as 
principal component analysis, were used. Lastly, data transformation was performed using 
the Z-normalization technique to scale the selected features to a standardized range, such 
as [0, 1]. Similar steps were followed for EEG processing, emphasizing filtering and artifact 
removal, visual assessment, feature extraction from frequency bands, and data segmenta-
tion. The specifics of the final dataset are given in Table 2.

Proposed system architecture

To accurately predict PF and MF, a robust and complex system that uses DeepAR and TFT 
models is used. DeepAR, a probabilistic forecasting model developed by Amazon, uses 
long short-term memory (LSTM) cells to proficiently capture typical dynamics within time 
series and incorporates time-dependent covariates influencing the target variables. Con-
versely, the TFT model, designed for multivariate time-series forecasting, uses self-attention 
mechanisms, LSTM components, and gating mechanisms to decipher complex temporal 
dynamics within various time series. Both models accurately capture different dependen-
cies and patterns within the dataset; therefore, an ensemble model is incorporated into the 
system. This model combines DeepAR and TFT prediction; it avoids overfitting of data and 

Table 2 Details of the dataset

Dataset size No. of variables Variables Time frame Source

 ~ 79,200 s 11 HRV, HR, BVP, Gamma, 
Beta, Alpha1, Alpha2, 
Theta, Delta, PF, MF

11 × 2 h frequency = “1S” Self-collected using EEG 
and PPG sensors
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ensures robustness and excellent prediction performance. Thus, this system architecture 
can handle diverse and heterogeneous time-series data, which is essential for predicting PF 
and MF.

DeepAR model

DeepAR, a probabilistic forecasting model developed by Amazon, is aptly designed to han-
dle multiple time series exhibiting common seasonal patterns and characteristics [79]. As 
shown in Fig. 3, the architecture leverages recurrent neural networks, namely the LSTM 
cells, as the foundation for the model architecture.

For the probabilistic forecast of an input vector xt at time t , the hidden state of the LSTM, 
denoted as ht , is computed using Eq. (1).

The likelihood p
(
yt |θ

)
 of observing a value yt at a time t is parameterized by a neural 

network, as shown in Eq. (2).

where θ represents the model parameters and NN denotes the neural network that maps 
the hidden state of the LSTM to the parameters of a chosen distribution. The training 
objective of DeepAR is to maximize the log-likelihood of the observed data, as shown in 
Eq. (3).

DeepAR proficiently captures typical dynamics within a time series and comprehen-
sively analyzes seasonality and trend patterns. Further, the model is equipped to incor-
porate time-dependent covariates that may influence the target variable. The LSTM 
architecture learns from the past values of the time series to predict future values. More-
over, the model outputs a probability distribution over the prospective values, enabling 
the quantification of uncertainty within the forecasts.

The implementation process of the DeepAR model is explained in Algorithm  1, in 
which the target variables denote the PF and MF scores. As such, the model employs 
additional covariates—HRV, HR, gamma, beta, alpha1, alpha2, theta, and delta brain 
waves—to augment the forecasting of PF and MF scores. During training, the archi-
tecture potentially deciphers the relationship between these covariates and the target 
variables. The model estimates uncertainty by generating a full distribution of probable 
outcomes—an advantageous feature for estimating fluctuating fatigue levels. The model 
also accurately captures intricate temporal dependencies in physiological signals and 
fatigue scores. Multiple time series were generated concurrently for all participants, i.e., 
multiple measurements were gathered from multiple individuals.

(1)ht = LSTM(xt , ht−1; θ).

(2)p
(
yt |θ

)
= Distribution,

(3)L(θ) =
∑

t
log

(
p
(
yt |θ

))
.
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Algorithm 1 DeepAR algorithm

TFT model

The TFT model (Fig. 4) was particularly developed for forecasting multivariate time series 
using self-attention mechanisms, LSTM components, and gating mechanisms [80]. This 
model deciphers complex temporal dynamics, including both local and long-term depend-
encies within multiple time series. An integral attribute of the TFT model is its ability to 
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execute quantile forecasts, which enables it to predict outcomes across a continuum of 
probabilistic quantiles. These prediction intervals represent the range of values within 
which the actual fatigue scores are expected to fall with a certain probability, thereby gener-
ating a distributional forecast that encapsulates a spectrum of fatigue levels, each associated 
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with a specific quantile, rather than yielding a discrete point estimate. The ability to forecast 
across multiple quantiles is indispensable in the field of construction safety management, 
providing a nuanced understanding of potential fatigue scenarios. Such a probabilistic 
approach is instrumental in formulating comprehensive risk mitigation strategies by quan-
tifying the uncertainty inherent in fatigue predictions.

The TFT model employs attention mechanisms to weigh the importance of different 
steps. Given an input sequence X = {x1,x2, . . . , xt} , the self-attention mechanism com-
putes a weighted sum of the inputs, as shown in Eq. (4).

where the attention weight αti is determined using Eq. (5).

The score function can be a dot product or other similarity measure between input 
vectors. The TFT model also employs gating mechanisms to control the flow of informa-
tion, as shown in Eq. (6).

Here, σ is the sigmoid activation function, and Wg and bg are the gating parameters. Its 
capability to assign varied weights to different points in the time series according to their 
relevance enhanced the model’s proficiency in understanding intricate interdependen-
cies between variables across different temporal contexts.

The TFT model can adeptly handle diverse and heterogeneous time-series data. This 
is a characteristic of our custom dataset, where training is performed on a multitude of 
time series, each demonstrating unique attributes and distributions. Three types of fea-
tures are distinctive to the TFT model: time-dependent data with known future inputs, 
time-dependent data known only up to the present, and static or categorical variables. 
These features allow the model to flexibly integrate various types of auxiliary informa-
tion for the forecasting and modeling of multivariate time series. The TFT model is vital 
for our CEFAS model as it captures the local and long-term temporal dependencies 
between MF and PF scores and physiological variables, including HRV, HR, and gamma, 
beta, alpha1, alpha2, theta, and delta brain waves. These physiological signals display 
complex temporal dynamics, necessitating the development of a model that can accu-
rately interpret data beyond the capabilities of traditional LSTM and RNN models. The 
TFT model can accommodate an array of signal types and ranges, including continuous 

(4)At =
∑t

i=1
αtixi,

(5)αti =
exp(score(xt , xi))∑t
j=1exp

(
score

(
xt , xj

)) .

(6)Gt = σ
(
Wgxt + bg

)
.
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variables such as HRV and HR. Algorithm 2 illustrates the computational steps of the 
TFT model.

Algorithm 2 TFT algorithm

TFT Algorithm

1. Let X be the input time-series data.

2. Preprocess the time-series data.

a. Normalize the time-series data to a suitable scale, typically between 0 and 1.

b. If necessary, transform the time series to be stationary (mean and variance do not 

change over time).

c. Split the time series into training and test sets.

3. Define the TFT model.

a. Initialize the model with a specified number of layers and hidden units in each layer.

b. Define the data processing layers:

i.Variable selection networks to identify relevant features.

ii.Gated linear units (GLUs) for input processing.

iii.Temporal processing layers, including positional encoding and temporal convolutional layers.

c. Define the Transformer-style self-attention mechanism.

d. Define the gated skip connections to facilitate information flow.

e. Define the output layer to predict the future values of the time series.

4. Train the TFT model.

a. Pass the training set through the TFT model.

i.Process the input data through the variable selection networks, GLUs, and temporal 

processing layers.

ii.Pass the processed data through the self-attention mechanism and gated skip connections.

iii.Predict the future values of the time series with the final output layer.

b. Calculate the loss between the predicted values and the actual values.

c. Backpropagate the loss through the model and update the model parameters.

5. Test the TFT model.

a. Pass the test set through the trained TFT model.

b. Calculate the loss between the predicted values and the actual values in the test set.

6. If the loss is acceptable, the model is ready for forecasting. 

Else, adjust the model parameters (number of layers, hidden units, etc.) and go back to step 3.

7. For forecasting:
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dataset

70

30

XGBoost Ensemble physical 
fatigue forecast

Ensemble mental 
fatigue forecast

Training 
dataset

Testing 
dataset

DeepAR

Temporal 
Fusion 

Transformer
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fatigue 
forecast

Physical 
fatigue 
forecast

Fig. 5 Schematic of the ensemble learning model topology
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Ensemble model

The ensemble model uses a sophisticated machine learning technique that leverages 
the strengths of the base models [73, 74], DeepAR and TFT, to analyze time-series 
datasets and generate more accurate forecasts for PF and MF. Herein, the time-series 
dataset was first used to train the base models, DeepAR and TFT, which then sepa-
rately created forecasts for PF and MF. Then, a two-step meta-learning process was 
initiated: the PF forecasts generated by the base models were used as inputs for one 
meta learner, and the mental fatigue forecasts were channeled into another meta 
learner. This dual meta-learning strategy allowed for a more refined final forecast. In 
the ensemble learning architecture, forecasts from base models, DeepAR and Tempo-
ral Fusion Transformer, are integrated using XGBoost meta-learners to yield refined 
ensemble predictions for both physical and mental fatigue, thereby mitigating overfit-
ting risks as opposed to a single deep learning model. For contradictory forecasts, the 
meta-model can ensure a consensus among these different predictions. The ensemble 
learning model is illustrated in Fig. 5.

The eXtreme gradient boosting (XGBoost) algorithm [81] sophistically adopts the 
gradient boosting algorithm to enhance the efficiency of expansive machine learn-
ing tasks. It originates from the theoretical framework of the decision tree algorithm, 
systematically refining model predictions through iterative learning from previous 
errors. Given a differentiable loss function L

(
y, ŷ

)
 , where y is the true value and ŷ  is 

the predicted value, XGBoost constructs an additive model as shown in Eq. (7).

where ft(x) is the decision tree and t is the number of iterations. The primary objective 
is to select ft that minimizes the overall loss, as shown in Eq. (8).

where �
(
ft
)
 is the regularization term that imposes a penalty on the model complexity 

and prevents overfitting. It incorporates both L1 (Lasso) and L2 (Ridge) regularization, 
rendering the model more robust to potential overfitting. In terms of computational 
efficiency, XGBoost is designed for parallel and distributed computing, ensuring rapid 
model training. The implementation of the ensemble model is given in Algorithm  3, 
wherein XGBoost is utilized as the meta-learner.

(7)ŷ
(t)
i = ŷ

(t−1)
i + ft(xi),

(8)obj(t) =
∑n

i=1
L,
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Algorithm 3 Proposed ensemble learning algorithm

7

Experimental setup

The experimental setup uses a distinct combination of wearable technologies and an 
ensemble learning model for comprehensive fatigue monitoring. The research was con-
ducted in a high-performance computational environment powered by an AMD Ryzen 
3990X 64-core processor and an NVIDIA GeForce RTX 3090 integrated CPU, comple-
mented by 256 GB of RAM and a 1 TB SSD single drive. This system ensures the seam-
less execution of complex algorithms and the efficient handling of large datasets, thereby 
laying a solid groundwork for the analytical processes. Multiple sensors, including the 
Muse 2 headband electroencephalography sensor and MAX30102 heart-rate and pulse 
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oximetry sensor, were integrated to capture physiological signals. The setup is shown in 
Fig. 6.

To streamline data collection and processing, a Bluno Beetle Bluetooth low-energy 
(BLE) microcontroller is incorporated into the wearable device because it is lightweight 
and offers high power and programmability. This setup was proposed for real-time mon-
itoring of individuals’ health status. Moreover, it was easy and comfortable to use, which 
is a critical factor in ensuring its sustained application in construction environments.

Prototype development

The prototype was developed via a structured pathway by integrating wearable tech-
nologies and an ensemble learning model in five critical steps. First, a high-perfor-
mance computational environment was established. Then, the Muse 2 headband and 
MAX30102 sensor were integrated into the system for EEG readings and heart rate 
and pulse oximetry monitoring, respectively. A microcontroller was then installed to 
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Fig. 6 Experimental setup and process

Table 3 Configuration and use of sensors and microcontroller in the prototype

Sensor type Configuration Use in prototype

Muse 2 headband (EEG 
sensor)

Positioning Forehead Captures electroencephalog-
raphy data to monitor mental 
fatigue

Sampling rate 256 Hz

Sample depth 12-bit

Connection method Wireless communication via 
Bluetooth

MAX30102 sensor Positioning Wrist Monitors HR and pulse oxime-
try, providing data on PF and 
overall health status

Connection method two-wire setup with the 
microcontroller

Sampling rate 10 Hz

Bluno Beetle BLE Microcon-
troller

Connection method Bluetooth BLE (BT 4.0) Facilitates the streamlined 
collection of data from the 
wearable sensor

Dimensions 28.8 mm × 33.1 mm

10 g

Microcontroller ATmega328 operating at a 
clock frequency of 16 MHz
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streamline data collection and capture physiological signals in real-time. The first stage 
leveraged the ensemble learning model to process the acquired data, facilitating the 
extrapolation of PF and MF scores from the sensor-derived data.

Sensors and microcontroller The developed prototype comprised various sensors. The 
Muse 2 headband electroencephalography sensor was used to obtain EEG signals from 
TP9, AF7, AF8, and TP10 channels. The MAX30102 heart-rate and pulse oximetry sensor 
was placed in the wristband to record PPG signals.

The Bluno Beetle BLE microcontroller was also integrated into the wristband configu-
ration to regulate the collection and processing of sensor data. This microcontroller, spe-
cifically tailored for wearable technology applications, is lightweight and offers enhanced 
power and programmability; therefore, it is used herein. A lithium-ion battery was also 
used as a compact and dependable power solution. The Bluno Beetle BLE wirelessly 
transmits the collected data to the computer, providing flexibility in data management 
and processing. Operating as a Bluetooth master or slave, this module permitted the 
wristband to engage in wireless serial port communication. With a transmission range 
extending up to 10 m, this BLE technology enables the real-time transmission of sen-
sor data to a smartphone, allowing the wearer to manage the wristband through a user 
interface. These sensors and modules (Table 3) constitute a complex network that can 
accurately capture and process physiological signals. A comprehensive fatigue score can 
be determined to ultimately enhance the safety and health of the wearers.

Prototype validation

The prototype was verified comprehensively to affirm its functionality in real-time 
operational conditions. The prototype was subjected to testing, wherein sensor data was 
obtained. The fatigue predictions generated by the proposed model were compared with 
the established fatigue scoring benchmarks. The performance of the ChronoEnsemble 
Fatigue Analysis System was evaluated using metrics such as mean square error (MSE), 
mean absolute scale error (MASE), mean absolute percentage error (MAPE), symmetric 
mean absolute percentage error (sMAPE), normalized deviation (ND), and mean scaled 
interval score (MSIS). Prototype validation revealed its salient outcomes, such as high 
correlation coefficients between the model-predicted outcomes and the actual fatigue 
scores, as well as the precise tracking of PF and MF fluctuations in real-time conditions. 
The ensemble model effectively identified the fatigue scores within the sensor data, indi-
cating its proficiency in recognizing and responding to the complex combination of 
physiological signals that contributed to fatigue. The validation process was predomi-
nantly focused on performance metrics, but it was instrumental in detecting areas that 
required potential enhancements, thereby ensuring its continuous development.

Results and discussion
Performance evaluation metrics

The efficacy of the ensemble model was assessed using performance metrics such as 
MSE, RMSE, MASE, MAPE, sMAPE, ND, and MSIS. The MSE denotes the mean of 
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the squared discrepancies between the predicted and true values, indicating the error 
variance of the model. MSE is calculated as follows (Eq. (9)).

where y and ŷ denote the actual and predicted values, respectively.
The RMSE is a standard metric used in supervised learning to measure the accuracy 

of predictive models. To determine the RMSE, the residual for each observation, defined 
as the discrepancy between the predicted and observed values, is determined. Then, the 
squared norm of each residual is computed. The mean of these squared residuals is then 
calculated, and its square root is calculated to obtain the RMSE. True measurements for 
each predicted data point are required for calculating the RMSE. The RMSE is repre-
sented in Eq. (10):

where n denotes the total number of observations, y denotes the true values, and ŷ 
denotes the predicted values corresponding to the observations.

The MASE is a metric used to compare the prediction accuracies of different methods. 
It is computed by normalizing the mean absolute error by the mean absolute difference 
of successive actual values, thus facilitating model comparisons. It is mathematically 
expressed in Eq. (11).

where n is the total number of observations; y and ŷ are the true and predicted values at 
a specific t time point, respectively; y[t] and y[t − 1] are the actual values at time t and 
t − 1 , respectively.

The MAPE is the average of the absolute percentage discrepancies between the pre-
dicted and actual values, as shown in Eq. (12). It is used as a measure of the prediction 
accuracy of a forecasting model.

where n is the number of observations in the dataset and y and ŷ denote the true and 
predicted values, respectively, at a particular time point.

The sMAPE is a symmetric version of MAPE (Eq.  (13)), wherein the mean absolute 
percentage discrepancy is normalized by the sum of the predicted and absolute values of 
the actual value. It also addresses some issues encountered with the MAPE.

(9)MSE =
1

n

∑∣∣∣
(
y− ŷ

)2∣∣∣,

(10)RMSE =

√
∑ (

y− ŷ
)2

n
,

(11)MASE =

1
n

∑∣∣y− ŷ
∣∣

1
n−1

∑∣∣y[t]− y[t − 1]
∣∣ ,

(12)MAPE =
1

n
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∣∣∣∣ ∗ 100
)
,
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2

n

∑
(
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where n denotes the total number of observations in a dataset and y and ŷ denote the 
actual and predicted values at a specific time point, respectively.

The ND (Eq.  (14)) scales the disparity between the predicted and true values by the 
range of the actual values:

where y and ŷ denote the true and predicted values at a distinct time point, respectively.
The MSIS considers the average width of the predicted interval normalized by 

the mean absolute discrepancy between the predicted and actual values, as shown in 
Eq. (15). In other words, it considers the average width of the predicted interval normal-
ized by the mean absolute error.

(14)ND =

∑∣∣y− ŷ
∣∣

∑ ∣∣y
∣∣ ,

(15)MSIS =
1

n

∑
(upperbound − lowerbound)

∑∣∣y− ŷ
∣∣ ,
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where the lower and upper bounds refer to the bounds of the prediction interval, n is the 
number of observations in the dataset, y is the true value at a specific time point, and ŷ is 
the predicted value at a specific time point.

Model performance

The ensemble learning model is comprehensively evaluated here. Its performance was 
analyzed in terms of accuracy, precision, and resilience to variations and deviations 
using several evaluation metrics. The results were juxtaposed with those of the DeepAR 
and TFT models to confirm the superior efficacy of the proposed model over these stan-
dalone models.

The forecasts of physical and mental fatigue on the test dataset by DeepAR, as illus-
trated in Fig.  7a, b, exhibit notable fluctuations. In Fig.  7a, the physical fatigue score 
seems to be relatively stable over a short period of time, as the observation lies within 
the 95% prediction interval. However, the broad prediction intervals suggest that the 
model only captures a general trend, and there is uncertainty in the forecasts. Although 
the mental fatigue score is decreasing over time (Fig. 7b), the predictions lie below the 
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observations. Thus, the model systematically underestimates the mental fatigue score. 
In Fig. 7b, the prediction intervals are also relatively wide, indicating uncertainty again. 
This highlights the challenges that standalone models might encounter when attempt-
ing to understand intrinsic data patterns. The Temporal Fusion Transformer, shown in 
Fig. 7c, d, provides forecasts with a more consistent downward trajectory. The model’s 
median prediction closely follows the observations, and the model provides narrower 
prediction intervals compared to the DeepAR predictions, which is indicative of its 
ability to manage temporal correlations well and higher confidence in the forecasts. 
Figure  7e, f capture the outcomes from CEFAS, representing the ensemble learning 
predictions. As shown in Fig.  7e, f, the ensemble model is able to forecast the physi-
cal as well as the mental fatigue precisely and give stable predictions over time. For the 
mental fatigue forecasts, the CEFAS slightly underestimates the fatigue score. The tight 
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prediction intervals suggest the model’s confidence in the predictions for both PF and 
MF. Overall, the CEFAS produces a more stable prediction by balancing the errors from 
the DeepAR and TFT models. The combined inputs of the ensemble model led to a 
reduction in variance.

The visual evaluation of the forecasts on the training dataset is illustrated in Fig. 8. 
The observations within Fig. 8a, b show significant variation from the actual values, 
even when the forecasts were made on the training dataset. This could indicate the 
DeepAR model’s sensitivity to the immediate past and potential overfitting to noise 
within the data. The prediction intervals also indicate a high level of uncertainty in 
the physical fatigue levels. The physical fatigue scores in Fig. 8a oscillate with a nar-
rower band, suggesting fewer volatile traits, whereas the mental fatigue scores in 
Fig.  8b display wider swings, underscoring that the model is unable to capture the 
mental fatigue scores precisely due to the inherent nature of mental fatigue dynam-
ics. TFT (Fig. 8c, d) provides a more confident forecast for both physical and mental 
fatigue prediction with a strong trend and narrow intervals, which indicates that it 
clearly understands the temporal dynamics of the data. The ensemble learning model 
(Fig. 8e) shows even narrower intervals for physical fatigue scores than either of the 
base models, which demonstrates the capability of the ensemble to synthesize infor-
mation and correct over- or under-estimations by individual models when it is neces-
sary. As shown in Fig. 8f, the narrow intervals of the prediction denote the ensemble 
model’s ability to learn predictive cues from both DeepAR and TFT models. The 
ensemble effectively integrates the DeepAR and TFT models’ traits to capture the 
probabilistic nature of the data and to understand complex temporal patterns.

A comparative analysis of the physical fatigue forecasting performance was conducted, 
as illustrated in Fig.  9. The MSE and RMSE values were determined to evaluate the 
physical fatigue prediction accuracy of the proposed model. The ensemble model, repre-
sented by the CEFAS, consistently registers lower MSE values of 0.0007 for PF (Fig. 9a). 
Such outcomes can be attributed to the ensemble’s iterative refinement process, inher-
ent to gradient boosting mechanisms. The DeepAR model, registering an MSE value of 
0.0698 for PF, potentially suggests its inherent limitations in deciphering certain intri-
cate data dynamics.

The TFT model, while achieving an MSE of 0.0639 for PF, marginally surpassing 
the DeepAR, still does not approach the precision of the ensemble model’s results. 
The result likely stems from the ensemble’s ability to combine and optimize diverse 
model strengths, mitigating individual weaknesses and enhancing overall precision. 
With RMSE metrics of 0.0277 for PF, as illustrated in Fig. 9b, the proposed approach 
effectively amalgamates various analytical perspectives, emphasizing its capability of 
producing consistent forecasting results. The RMSE values achieved by the DeepAR 
model, 0.2642 for PF, reveal potential limitations in its alignment, as a higher RMSE 
indicates a greater discrepancy between the predicted values and actual observations. 
Meanwhile, TFT, despite a commendable RMSE of 0.2642, doesn’t attain the preci-
sion observed in the ensemble forecasts.

In the context of sMAPE (Fig.  9c), the ensemble model’s result of 0.0054 for PF 
articulates robustness across diverse scales. TFT, while outperforming DeepAR 
with a MASE value of 0.056576 for PF, may indicate a proclivity towards overfitting 
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temporal patterns. DeepAR’s escalated MASE metric of 0.1531 for PF elucidates its 
broader inefficacies in addressing scaled discrepancies. The MASE values underscore 
the proposed approach’s advanced forecasting capabilities and its ability to minimize 
percentage and scaled errors.

In terms of sMAPE, as reflected in Fig. 8d, the 0.0008 value for PF signifies that the 
predicted values are exceptionally close to the actual observations as compared to the 
standalone models. The low sMAPE value of the ensemble model emphasizes its con-
sistency in handling the intricacies of the data and capturing underlying data patterns. 
TFT’s performance, indicated by a sMAPE of 0.3740 for PF, suggests intermittent chal-
lenges in deciphering unpredictable data trajectories. DeepAR, with its considerably 
higher sMAPE value of 0.9258 for PF, reiterates its vulnerabilities in symmetric error 
capture.
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The ensemble model, boasting MSIS metrics (Fig. 9e) of 0.0012 for PF and an ND value 
(Fig. 9f ) of 0.0008 for PF prediction, proves its expansive comprehension and reliability 
of its prediction intervals. The MSIS values suggest that the ensemble model’s predic-
tions are more reliable, given the narrow intervals they operate within. The ensemble 
model exhibits the lowest ND scores, indicating the model’s increased resilience to vari-
ations and exemplary alignment with the actual observations. The minimal deviation 
proves that the ensemble model is not only accurate on an absolute scale but also con-
sistently accurate relative to the actual data’s range.

TFT’s metrics, encompassing an MSIS value of 0.0375 and an ND of 0.0536 for PF, 
while surpassing DeepAR, elucidate occasional limitations in capturing data nuances. In 
comparison with the standalone models, the significantly lower ND values of the ensem-
ble model underline its superior prediction fidelity, as it manages to maintain constant 
alignment with the actual data.

Figure 10 shows a comparative analysis of forecasting the performance metrics for the 
three models. The lower MSE value (Fig. 10a) indicates a closer fit between the observed 
values and the prediction. The CEFAS has the lowest value for MF prediction with 
0.0033, which is due to its potential to correct the errors in the base models’ forecasts 
and minimize the sum of squared deviations. As seen in the figure, TFT also performs 
well with an MSE value of 0.0044, as the model can leverage temporal patterns effec-
tively. The DeepAR’s high MSE of 0.0639 suggests that the model is unable to capture the 
complexity of mental fatigue as effectively as the others.

Similarly, the RMSE (Fig. 10b) values confirm the previous results, with CEFAS show-
ing the highest accuracy with a value of 0.0577. There is a substantial difference between 
the MASE scores (Fig.  10c) of the base models and the ensemble model. The MASE 
value of 0.0016 for CEFAS indicates that the absolute errors from the CEFAS forecasts 
are much smaller than those from the naïve model. This is because the gradient boosting 
nature of the XGBoost meta-learner enables the capture of nonlinear relationships and 
interactions between the features, thus effectively predicting mental fatigue levels. The 
TFT model uses attention mechanisms to weigh different parts of the time-series data 
differently, potentially allowing it to focus on more relevant past information when pre-
dicting future points, as proven by a low 0.0054 MASE score. The DeepAR MASE value 
is the highest with 0.0657, which implies that for specific nuances of the mental fatigue 
data, its method for forecasting is less efficient than the ensemble learning model.

The sMAPE (Fig. 10d) values suggest CEFAS is the most accurate, with the lowest per-
centage error of 0.0016, indicating its strong predictive capabilities and robustness to 
outliers in mental fatigue forecasting. TFT also performs well with a value of 0.0045, 
showcasing its efficient time-series modeling, likely due to its attention mechanisms. 
DeepAR’s higher 0.0528 sMAPE value implies the model is less precise in this context, 
potentially due to the complex nature of mental fatigue that may not align well with 
DeepAR’s probabilistic autoregressive approach.

The MSIS (Fig. 10e) measures the accuracy of prediction intervals. CEFAS’s very low 
MSIS value of 0.002408 indicates its interval forecasts are both narrow and accurate, 
reflecting high confidence in its predictions. TFT has a higher MSIS score of 0.037529, 
suggesting its prediction intervals are less precise than CEFAS’s but still relatively 



Page 30 of 37Kim et al. Journal of Big Data          (2024) 11:115 

Ta
bl

e 
4 

Co
m

pa
ra

tiv
e 

an
al

ys
is

 o
f a

ve
ra

ge
 p

er
fo

rm
an

ce
 m

et
ric

s 
be

tw
ee

n 
th

e 
pr

op
os

ed
 m

od
el

 a
nd

 e
xi

st
in

g 
pr

ed
ic

tio
n 

m
et

ho
ds

SO
N

FI
N

: S
el

f-
O

rg
an

iz
in

g 
N

eu
ra

l F
uz

zy
 S

ys
te

m
, G

EL
M

: G
ra

ph
 re

gu
la

riz
ed

 E
xt

re
m

e 
Le

ar
ni

ng
 M

ac
hi

ne
, D

A
N

N
: D

om
ai

n-
Ad

ve
rs

ar
ia

l N
eu

ra
l N

et
w

or
k,

 A
D

D
A

: A
dv

er
sa

ria
l D

is
cr

im
in

at
iv

e 
D

om
ai

n 
Ad

ap
ta

tio
n,

 D
Re

sN
et

: D
ee

p 
Re

si
du

al
 N

et
w

or
k,

 D
G

-D
A

N
N

: D
om

ai
n 

G
en

er
al

iz
at

io
n 

us
in

g 
D

om
ai

n 
Ad

ve
rs

ar
ia

l N
eu

ra
l N

et
w

or
ks

, L
ST

M
-C

ap
sA

tt
: L

on
g 

Sh
or

t-T
er

m
 M

em
or

y 
w

ith
 C

ap
su

le
 A

tt
en

tio
n,

 F
ed

LS
TM

: F
ed

er
at

ed
 L

on
g 

Sh
or

t-T
er

m
 M

em
or

y,
 F

ed
G

RU
: 

Fe
de

ra
te

d 
G

at
ed

 R
ec

ur
re

nt
 U

ni
t, 

D
N

N
SN

: D
ou

bl
e-

la
ye

re
d 

N
eu

ra
l N

et
w

or
k 

w
ith

 S
ub

ne
tw

or
k 

N
od

es
, D

A
E:

 D
ee

p 
Au

to
En

co
de

r, 
A

N
N

: A
rt

ifi
ci

al
 N

eu
ra

l N
et

w
or

k,
 L

ST
M

: L
on

g 
Sh

or
t-T

er
m

 M
em

or
y,

 P
SO

-S
VR

: P
ar

tic
le

 S
w

ar
m

 
O

pt
im

iz
at

io
n-

Su
pp

or
t V

ec
to

r R
eg

re
ss

io
n,

 B
iL

ST
M

: B
id

ire
ct

io
na

l L
ST

M
, B

iG
RU

: B
id

ire
ct

io
na

l G
RU

, C
A

E:
 C

on
vo

lu
tio

na
l A

ut
oE

nc
od

er
, C

N
N

: C
on

vo
lu

tio
na

l N
eu

ra
l N

et
w

or
k,

 R
N

N
: R

ec
ur

re
nt

 N
eu

ra
l N

et
w

or
ks

Re
fs

.
M

et
ho

d
PF

M
F

M
SE

RM
SE

M
A

SE
M

A
PE

sM
A

PE
N

D
M

SI
S

[8
2]

SO
N

FI
N

Ye
s

Ye
s

–
0.

36
0

–
–

–
–

–

[8
3]

G
EL

M
Ye

s
Ye

s
–

0.
07

12
–

–
–

–
–

[8
4]

A
N

N
Ye

s
N

o
–

0.
85

7
–

0.
01

28
–

–
–

[8
5]

M
ul

tim
od

al
 D

A
E

N
o

Ye
s

–
0.

09
4 
±

 0
.0

17
–

–
–

–
–

[8
6]

D
A

N
N

N
o

Ye
s

–
0.

14
27

–
–

–
–

–

[8
6]

A
D

D
A

N
o

Ye
s

–
0.

14
05

–
–

–
–

–

[8
7]

D
Re

sN
et

N
o

Ye
s

–
0.

14
20

 ±
 0

.0
40

2
–

–
–

–
–

[8
7]

D
G

-D
A

N
N

N
o

Ye
s

–
0.

14
70

 ±
 0

.0
44

4
–

–
–

–
–

[8
8]

LS
TM

-C
ap

sA
tt

N
o

Ye
s

–
0.

10
89

 ±
 0

.0
69

6
–

–
–

–
–

[8
9]

Fe
dL

ST
M

Ye
s

Ye
s

0.
4

0.
61

24
–

0.
24

99
–

–
–

[8
9]

Fe
dG

RU
 

Ye
s

Ye
s

0.
38

64
0.

60
26

–
0.

26
42

–
–

–

[9
0]

D
N

N
SN

N
o

Ye
s

–
0.

09
–

–
–

–
–

[9
1]

Re
gr

es
si

on
Ye

s
N

o
–

0.
10

–
–

–
–

–

[9
1]

A
N

N
Ye

s
N

o
–

0.
24

–
–

–
–

–

[9
2]

LS
TM

Ye
s

N
o

–
0.

07
34

–
0.

05
77

–
–

–

[9
2]

Bi
LS

TM
Ye

s
N

o
–

0.
07

35
–

0.
05

85
–

–
–

[9
2]

G
RU

 
Ye

s
N

o
–

0.
07

39
–

0.
05

85
–

–
–

[9
2]

Bi
G

RU
 

Ye
s

N
o

0.
07

82
–

0.
06

07
–

–
–

[9
3]

PS
O

-S
VR

Ye
s

N
o

–
–

–
0.

11
53

–
–

–

[9
3]

EL
M

Ye
s

N
o

–
–

–
0.

19
77

–
–

–

[9
4]

Re
gr

es
si

on
 w

ith
 M

M
D

 a
nd

 G
RU

 
N

o
Ye

s
–

0.
27

–
–

–
–

–

[9
5]

C
A

E 
+

 C
N

N
 +

 R
N

N
N

o
Ye

s
–

0.
08

–
–

–
–

–

C
EF

A
S

En
se

m
bl

e 
le

ar
ni

ng
 m

od
el

Ye
s

Ye
s

0.
00

21
0.

04
27

0.
00

12
0.

00
12

0.
00

12
0.

00
12

0.
00

18



Page 31 of 37Kim et al. Journal of Big Data          (2024) 11:115  

informative. DeepAR’s much higher MSIS of 0.588216 implies its prediction intervals 
are quite wide, indicating less certainty in its forecasts.

In terms of the ND of the forecasts (Fig.  10f), a lower score means a model’s predic-
tions are closer to actual values. CEFAS’s lowest ND score of 0.001605 indicates it has the 
smallest deviation from the actual observations in predicting MF, likely due to its efficient 
handling of complex patterns in the data. TFT has a slightly higher ND score of 0.004416, 
showing good but less precise predictions than CEFAS. DeepAR’s highest ND score of 
0.053653 suggests it is less accurate and less effective in capturing the data dynamics related 
to mental fatigue. The tight alignment between the predictions and the observations sug-
gests that the ensemble model is robust, translating to increased resilience against data vari-
ations, which is crucial for time-series forecasting tasks where the data can exhibit intricate 
temporal patterns.

Table 4 presents a comprehensive comparative analysis of the proposed ensemble model, 
CEFAS, against various state-of-the-art methods for fatigue prediction. The proposed 
CEFAS model demonstrates superior performance across multiple metrics compared to 
existing prediction methods, exhibiting an average MSE of 0.0021, RMSE of 0.0427, and 
MAPE of 0.0012.

Among the compared methods, the Self-Organizing Neural Fuzzy System (SONFIN) [82] 
and: Graph regularized Extreme Learning Machine (GELM) [83] are capable of predicting 
both PF and MF. However, their RMSE values of 0.360 and 0.0712, respectively, are higher 
than those of CEFAS, indicating lower prediction accuracy. Similarly, the ANN [84] and the 
regression method with Maximum Mean Discrepancy (MMD) and Gated Recurrent Unit 
(GRU) [94] have RMSE values of 0.857 and 0.27, respectively, which are significantly higher 
than CEFAS.

Several deep learning-based methods, such as the Multimodal Deep AutoEncoder (DAE) 
[85], Domain-Adversarial Neural Network (DANN) [86], Adversarial Discriminative 
Domain Adaptation (ADDA) [86], Deep Residual Network (DResNet) [87], and Domain 
Generalization using Domain Adversarial Neural Networks (DG-DANN) [87], focus solely 
on predicting mental fatigue. While these models exhibit lower RMSE values compared 
to the traditional machine learning methods, they still underperform when compared to 
CEFAS. The Long Short-Term Memory with Capsule Attention (LSTM-CapsAtt) [88], Fed-
erated Long Short-Term Memory (FedLSTM) [89], and Federated Gated Recurrent Unit 
(FedGRU) [89] models incorporate temporal information for fatigue prediction. However, 
their RMSE values range from 0.1089 to 0.6124, indicating lower accuracy.

Other notable methods include the Double-layered Neural Network with Subnetwork 
Nodes (DNNSN) [90], regression [91], ANN [91], LSTM [92], Bidirectional LSTM (BiL-
STM) [92], GRU [92], Bidirectional GRU (BiGRU) [92], Particle Swarm Optimization-Sup-
port Vector Regression (PSO-SVR) [93], and Extreme Learning Machine (ELM) [93]. While 
these methods show promise in predicting either physical or mental fatigue, their perfor-
mance metrics are not as competitive as CEFAS.

In conclusion, the proposed CEFAS ensemble learning model demonstrates state-of-
the-art performance in predicting both physical and mental fatigue, outperforming a wide 
range of existing methods across multiple evaluation metrics. This remarkable perfor-
mance, which signifies a substantial improvement over individual base learners, encourages 



Page 32 of 37Kim et al. Journal of Big Data          (2024) 11:115 

the continued exploration and application of ensemble models for time-series forecasting, 
particularly in the context of fatigue prediction.

Conclusions and future work
In this study, the validity and effectiveness of ensemble learning models in process-
ing IoT sensor data for real-time mental fatigue and physical fatigue monitoring were 
evaluated. Furthermore, the correlations between the prediction capabilities of different 
models and the improvement in their prediction accuracy were determined after their 
integration into an ensemble learning-based ChronoEnsemble Fatigue Analysis System. 
This study was performed in two stages. First, a study was conducted to verify the reli-
ability, accuracy, and improvement potential of the proposed ensemble learning model 
in processing and analyzing sensor data. Second, a study was conducted using real sen-
sor data to determine the precision and reliability of the proposed model for predicting 
fatigue states. During the assessment, the CEFAS algorithm was used for predicting PF 
and MF. In physical fatigue prediction, the algorithm yielded MSE and RMSE values of 
0.0007 and 0.0277, respectively. In mental fatigue prediction, the algorithm yielded MSE 
and RMSE values of 0.0033 and 0.0577, respectively. These evaluation metrics high-
lighted the efficacy of the algorithm, indicating excellent prediction accuracy. The results 
from real-world datasets demonstrated that the ensemble model that uses the DeepAR 
and TFT models as the base learners and XGBoost as the meta learner yields reliable 
real-time predictions based on sensor data.

While our findings offer significant insights into the use of IoT and ensemble learning 
for fatigue monitoring, they are subject to certain limitations that must be considered. 
Firstly, the dataset used for training and validating CEFAS was limited to 11 partici-
pants. Although the ensemble model demonstrated high precision in predicting fatigue, 
a larger and more diverse dataset would enhance the generalizability of our approach. 
Secondly, our methodology relies solely on wearable sensor data, which can introduce 
potential biases related to sensor placement, individual physiological variances, and 
environmental impacts. Despite implementing a range of preprocessing steps—includ-
ing baseline removal and various filtering methods—to standardize inputs and mitigate 
noise from multiple sources, these procedures do not completely eliminate variabili-
ties induced by environmental conditions and individual differences. Additionally, our 
experimental protocols were conducted under controlled conditions to maximize the 
reliability and validity of our findings; however, applying these results to the dynamic 
environments of actual construction sites may necessitate further adaptations through 
extensive field validations and experiments.

Future research should explore the potential of integrating additional models to 
enhance forecasting accuracy. Moreover, the model’s performance may vary with dif-
ferent sensor configurations due to its reliance on data from a specific set of sensors. 
Thus, future studies should utilize a diverse array of sensor data to confirm the mod-
el’s applicability. An additional objective for future research is to expand the dataset to 
include a larger and more diverse participant pool, along with various construction set-
tings. Integrating these limitations, the study illustrates that while the current ensemble 
learning model yields reliable real-time predictions for fatigue monitoring, these future 



Page 33 of 37Kim et al. Journal of Big Data          (2024) 11:115  

advancements could further support real-time risk assessment, particularly in hazard-
ous work environments.

The present study predominantly focused on the ensemble model and its application 
in predicting MF and PF; therefore, the future research directions pointed out herein are 
crucial for improving its applicability. The continued validation of the prediction results 
in other domains using extensive IoT sensor data, in addition to exploring its wide 
potential applications, will be essential to exploring the full potential of the ensemble 
learning model.
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