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Abstract 

In recent years, mobile applications have proliferated across domains such as E-bank-
ing, Augmented Reality, E-Transportation, and E-Healthcare. These applications are 
often built using microservices, an architectural style where the application is com-
posed of independently deployable services focusing on specific functionalities. 
Mobile devices cannot process these microservices locally, so traditionally, cloud-based 
frameworks using cost-efficient Virtual Machines (VMs) and edge servers have been 
used to offload these tasks. However, cloud frameworks suffer from extended boot 
times and high transmission overhead, while edge servers have limited computational 
resources. To overcome these challenges, this study introduces a Microservices Con-
tainer-Based Mobile Edge Cloud Computing (MCBMEC) environment and proposes 
an innovative framework, Optimization Task Scheduling and Computational Offloading 
with Cost Awareness (OTSCOCA). This framework addresses Resource Matching, Task 
Sequencing, and Task Scheduling to enhance server utilization, reduce service latency, 
and improve service bootup times. Empirical results validate the efficacy of MCBMEC 
and OTSCOCA, demonstrating significant improvements in server efficiency, reduced 
service latency, faster service bootup times, and notable cost savings. These outcomes 
underscore the pivotal role of these methodologies in advancing mobile edge com-
puting applications amidst the challenges of edge server limitations and traditional 
cloud-based approaches.

Keywords: Mobile edge computing, Cloud, Task scheduling, Microservices, 
Optimization, Container

Introduction
Recently, the proliferation of interconnected gadgets like smartphones, tablets, and 
fitness bands has profoundly impacted modern lifestyles, driving the deployment of 
numerous interconnected devices strategically positioned within specific geographic 
regions for data detection, transfer, and analysis [1, 2]. This surge is fueled by the rapid 
expansion of mobile applications such as augmented reality, e-commerce, gaming, 
healthcare, and social media, collectively contributing to a significant upsurge in data 
generation typically constrained by deadlines. By 2025, global social media users are 
projected to exceed 4.41 billion [3]. These applications rely on extensive computational 
offloading and demand low-latency processing to manage and derive insights from the 
massive influx of data [4]. Task offloading in mobile edge cloud environments intricately 
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manages mobile devices, edge servers, and the public cloud, optimizing computational 
efficiency and user experience. Mobile devices, constrained by processing power and 
battery life, benefit from offloading tasks to nearby edge servers strategically placed near 
end-users, enabling low-latency processing crucial for applications like augmented real-
ity and IoT analytics [5, 6]. However, edge servers face challenges such as finite capacity. 
Conversely, the public cloud offers scalable resources and global reach, providing addi-
tional computational power and storage flexibility but potentially introducing latency 
and increased operational costs. Balancing these layers is essential to optimize resource 
utilization, enhance application performance, and establish robust frameworks capable 
of meeting diverse computational demands in mobile edge cloud computing [7–10].

In literature, several offloading frameworks and algorithms have been proposed 
to tackle the issue of task scheduling, computation offloading, and cost minimization 
[11–15]. However, prior studies employed virtual machines (VMs) as the hosting infra-
structure for the mobile operating system in a cloud environment, utilizing hardware 
virtualization, such as VirtualBox integrated Android X86. One of the main challenges 
of using VMs in a MEC environment is the significant amount of time it takes to set 
up the service and the added burden of virtualization when sharing data. However, the 
applications mentioned above are highly time-sensitive, interactive, and heavily rely on 
the ability to move effortlessly within the infrastructure of the mobile cloud. Recently, 
there has been a growing emphasis on utilizing cloud services and operating systems 
that are container-based. These technologies have garnered significant attention due to 
their ability to provide faster setup times and lower overhead for operating system virtu-
alization [16, 17]. Constructing a mobile cloud utilizing container-based virtualization is 
a highly intriguing concept, although it poses numerous obstacles. Developing a mobile 
runtime using containerization and virtualization techniques has great potential, but 
also presents several difficulties. Initially [18–21] described applications are divided into 
components at a detailed level current mobile cloud services of the monolithic type are 
unable to meet these needs. Furthermore, in the mobile cloud environment, the mobile 
network conditions, such as bandwidth, latency, and signal strength, undergo intermit-
tent changes.

In this paper, we focus on cost-eficient scheduling in mobile edge cloud computing 
in heterogeneous environment. The object is to minimize communication and compu-
tation cost. Mobile applications consist of independent granular sub-tasks, where each 
sub-task operates autonomously with its own specific attributes and data. This granu-
larity allows for efficient workload utilization. Each task is characterized by a vector of 
attributes, including CPU instructions, data size, and execution deadlines. Our consid-
eration of services includes an evaluation based on their cost and performance speed.
Motivation: Smart devices based mobile application increasing progressively. How-

ever these application need thin services to minimize delay. Initially, the MEC paradigm 
relied on heavyweight virtual machines to support user applications, paid for on a pay-
as-you-go basis. Consequently, contemporary MEC paradigms face challenges primar-
ily in cost, interaction, and mobility. Moreover, meeting the requirements of Internet of 
Things applications, such as E-banking (e.g., Transection), demands leveraging a diverse 
array of services from multiple providers. Hence, efficiently and cost-effectively schedul-
ing resources remains a significant challenge in MEC for mobile applications.
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In order to address the aforementioned issues, the study makes the following 
contributions:

• We presented an innovative mobile edge computing MEC system based on micros-
ervices containers MCBMECS, leveraging Docker containers to optimize VM work-
load and boost performance. The benefits of MCBMECS include minimized service 
overhead and faster VM boot times.

• study explores various MEC servers, each with its own distinct characteristics.“ Simi-
larly, different tasks within the application have specific sets of Quality of Service QoS 
requirements. Choosing the right edge server is essential for meeting the require-
ments of a task efficiently. As a solution to this challenge, we present a resource 
matching algorithm that aims to align each server with the unique requirements of a 
given task.

• In our scenario, tasks enter the system in a random manner, following a Poisson pro-
cess. The offloaded tasks are introduced to the system without any predetermined 
order, which requires the need for sequencing. To address this, we employ a rule-
based task sequencing approach, given the importance of the deadline, size, and slack 
time in task prioritization, we have established three rules to effectively organize the 
submitted tasks according to these attributes. There are several rules to consider: 
Lateness Time First LTF, Earliest Due Date EDD and Shortest Size First SSF.

• Scheduling a collection of tasks across a network of MEC servers can be quite chal-
lenging, considering the costs of communication and computation. As a solution to 
this challenge, we present an affordable task offloading strategy. This scheme effi-
ciently assigns tasks to servers in a systematic manner, aiming to minimize costs and 
meet deadlines.

The remaining sections of the paper are structured as follows. In Sect. "Related work", we 
will explore the previous studies that are relevant to the task scheduling problem. Sec-
tion "Proposed architecture for microservices based-mobile edge computing" provides a 
detailed explanation and formal analysis of the problem being investigated. Section "Per-
formance evaluation" provides a detailed explanation of the algorithms OTSCOCA, 
along with their distinct components, are detailed in Sect. "Performance evaluation". The 
performance evaluation is carried out in Section 5,  while Section  serves as the conclu-
sion of the study.

Related work
The studies mentioned in refs. [22–26] examined several frameworks and techniques 
for efficient computation offloading. Their primary objective was to find ways to reduce 
mobile device power consumption by moving computation to the cloud-either the 
public cloud or a local edge cloud. The concept of dynamic computation offloading in 
mobile cloud computing entails making real-time decisions to manage resource limita-
tions. This process involves transferring computationally intensive tasks to an external 
platform, such as cloud computing or edge cloud, aiming to decrease mobile energy 
consumption and enhance the performance of mobile cloud applications in terms of 
response time. Several studies, including those referenced in refs. [27–30] have explored 
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this strategy.The research explored in refs. [4, 27, 31] examines the integration of work-
flow applications and game theory to facilitate real-time decisions regarding task off-
loading in mobile cloud computing. These investigations specifically target challenges 
associated with resource limitations and allocation strategies. The primary objective is 
to transfer computationally intensive tasks to external platforms like cloud computing 
or edge clouds. This approach aims to reduce mobile device energy consumption while 
simultaneously improving the performance metrics of mobile cloud applications, such 
as response time, makespan, and adherence to deadline constraints.

The framework known as CloneCloud was presented in the paper [32], which was 
developed with the intention of improving the battery life as well as the execution per-
formance of mobile devices. During the course of the research, task offloading strate-
gies were utilized in order to move compute-intensive workloads to centralized cloud 
servers. A computational offloading architecture was proposed by ThinkAir [33] that 
allows smartphone applications to move their workload to the cloud. With the use of 
mobile phone virtualization in centralized cloud settings the framework makes it pos-
sible to offload computation at the method level.The objective of the reference [34] is to 
investigate the process of offloading tasks from mobile devices to various cloudlets in 
order to improve the overall cost-effectiveness. In the study lengths of communication 
and computation are taken into consideration along with the costs associated with meet-
ing deadlines. The works examined in references [35, 36] focus on addressing difficulties 
associated with enhancing energy efficiency and cost-effectiveness in task scheduling. 
Their main focus is to improve the lifespan of batteries by transferring computing tasks 
to cloud infrastructures. The research also seeks to reduce resource expenditures, such 
as storage and computing charges, by implementing effective job scheduling in various 
cloud environments.

As the number of mobile devices and apps grows, the practice of computational off-
loading for mobile applications has become increasingly common and extensively 
adopted among mobile cloud service customers [37]. This method allows mobile devices 
with significant computational requirements to offload their tasks to the cloud, where 
they can be processed on mobile cloud servers. Multiple initiatives have been pursued 
in various scientific fields to improve the efficiency of both devices and applications [38]. 
Improving the efficiency of both battery longevity and mobile devices can be accom-
plished by offloading mobile tasks. The objective of such projects is to shift resource-
intensive tasks of applications to mobile cloud support. This aligns with previous studies 
that aimed to enhance mobile application performance, reduce computational expenses, 
and utilize the processing capacity of mobile devices [39]. This strategy gives higher 
importance to factors like energy usage and execution time when scheduling tasks in the 
given context. presented a pricing scheme for MEC services that focuses on coordinating 
service caching decisions and controlling task offloading behavior in cellular networks 
[40]. The goal is to reduce computation and latency costs for all users also made a valu-
able contribution to this effort, focusing on enhancing user benefits through optimizing 
service pricing and task offloading dynamics [41]. The detailed comparison between our 
approach and existing techniques is shown in Table 1.

Based on our best knowledge, efficient microservices offloading can optimize costs 
in mobile edge cloud networks. The MCBMEC framework is an innovative solution 
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specifically developed to optimize the execution of application tasks while minimizing 
costs. Maintaining QoS requires the implementation of the Optimization Task Schedul-
ing and Computational Offloading with Cost Awareness (OTSCOCA) framework. The 
OTSCOCA mechanism guarantees QoS for applications, reduces resource costs, and 
ensures that tasks are completed within predetermined time limits.

Proposed architecture for microservices based‑mobile edge computing
The proposed architecture, referred to as Microservices Container-Based Mobile Edge 
Computing (MCBMEC), is illustrated in Fig. 1. The three layers represented in Figure are 
the Task Scheduling Layer, Mobile Cloud Layer and Mobile Users Layer. In general, tasks 
initiated by mobile users are intended to be transferred to another device for process-
ing. Based on the varied attributes in upcoming interactions, these tasks are sent over 
using the API. Once the API tasks have been processed, they are directed to the task 
scheduling layer, which comprises four primary modules. The function of these modules 
is to receive the tasks that have been offloaded in the task scheduling layer. The MCA 

Table 1 Summary of existing related works

Papers Research issue Background Optimization 
object

Task failure Cost Deadline Resource type

[4] Task assign-
ment and 
migration

Data center 
energy saving

Energy No Yes Yes RL-based

[7] Workload 
assignment

Mobile edge 
cloud

Minimize 
Response Time

No No Yes Vm-based

[30] Task offloading 
abd resource 
allocation

Edge cloud cost No Yes No Vm

[29] Task offloading 
and scheduling

Cloud comput-
ing

cost and 
energy

Yes Yes No Vm

 [27] Task offloading 
decision

Vehicular edge 
computing

cost No Yes Yes RL-based

 [17] Container 
scheduling

Edge cluster 
upgrade

Latency No Yes No RL-based

Ours Task offloading 
and scheduling

Mobile edge 
cloud comput-
ing

Cost Yes Yes Yes Container based

Fig. 1 Proposed MCBMECS system architecture
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functions as the core component that handles the administration and implementation of 
all delegated tasks. The MCA engages in collaboration with the components include the 
system monitor agent, task Sequences and task scheduler handle. MCA, serves as a spe-
cialised interface connecting mobile devices and system resources. Its primary function 
is to collect data from the APIs of mobile devices. This data include various information 
comprises diverse information, encompassing configuration particulars, measurements 
and logs. The MEC virtual network consists of several entities, including the system 
monitoring agent, task scheduling and task sequences which are hosted on MEC servers. 
The performance evaluation and workload management in MCA are facilitated through 
the utilisation of three modules.

Task characterization

The mobile application consists of individual tasks that are detailed and specific. In this 
particular context, the term fine-grained refers to the characteristic of each task hav-
ing its own data stored within the application. These tasks function autonomously and 
require various resources for their completion. Each task is defined by a set of vector 
attributes, which include of the required CPU resources, data size, and a deadline. These 
attributes are taken into account when scheduling tasks on the fog system. The arrival of 
these tasks at the MEC system follow a stochastic process. During the process of sched-
uling, the state of preemption is prohibited.

Resource characterization

Within the context of the cloud paradigm, containers have emerged as a highly efficient 
approach for virtualizing programmes, particularly for deployment on edge servers. Ser-
vices refer to a compilation of discrete and autonomous entities that interact with one 
another via clearly defined APIs. In this study, we examine a heterogeneous edge cloud 
server that employs virtual machines at the highest tier. Additionally, we leverage the 
Docker engine in conjunction with MCBMEC, a framework that enables efficient attach-
ment and detachment of microservice containers within the system.

Runtime microservices in MCBMECS

Microservices architecture, often known as an architectural style, organizes an appli-
cation as a set of independent and self-contained services. Microservices is a software 
development approach that focuses on the creation of runtime software. The present 
study examines the variability inherent in the service-oriented architecture paradigm. 
In the context of a microservices architecture, an application is structured as a sequence 
of services that exhibit loose coupling. Each individual service is accountable for distinct 
and detailed functions, and resources are explicitly stated at the service level.

The MEC server in MSBMEC consists of a single virtual machine that may be provi-
sioned on demand. On the other hand, each virtual machine can host several contain-
erized microservices simultaneously. Each microservice, such as the bank account user 
searching service, represents a business objective and possesses its own set of resources 
and libraries to execute various tasks. As a result, this approach proves to be efficient for 
managing detailed tasks of an application when offloading within the system.
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Problem formulation

In order to define the task scheduling problem in the Mobile edge computing system, 
we begin by creating a model for the input tasks that are offloaded by the users, as 
well as the edge servers that are available. Next, we calculate the resource limitations 
for the task scheduling problem and introduce a comprehensive optimization frame-
work. The tasks T = {t1, t2, . . . tn} that need to be executed are managed according to 
a task scheduling strategy, where N  represents the total count of input tasks. Each 
task ti in the set T  is represented by ti = {Wdi, datai, dci, Sdi} . Here Wdi represents the 
computation workload of ti,Dti denotes the size of the task during transmission,dci 
indicates the task deadline, and Sdi illustrates the task’s storage requirements.

In the Mobile edge computing system, we assume the existence of m heterogene-
ous MEC servers, denoted as M = {m1,m2, . . . ,N }. Each server mj in the set M can 
be represented as mj = {Bw

j , ςj , Smj ,V
j
mec} . Here Bw

j , refers to the measurement of 
the bandwidth linking the centric mobile cloud agent and the mobile cloud server. 
ςj denotes the jth MEC server. Smj represents the overall storage capacity of the 
server. V j

mec denotes the quantity of virtual machine Docker instances that have been 
implemented for microservices, all possessing identical capabilities, within the mec 
server j . Each Virtual machine V j

mec consists of multiple containers and is responsi-
ble for executing numerous microservices to handle offloaded tasks. Every individual 
microservice has the ability to operate independently, utilising its own set of libraries 
and database resources while performing tasks.

In addition, let’s define bwij  as the bandwidth needed for task ti on MEC server mj 
when it is scheduled. Given that server mj state is still active (i.e., ϕj = 1), the cost 
Cj represents the resource costs (e.g., RAM, Storage, Bandwidth) incurred during 
the execution of the offloaded task ti . Table 2 lists the remaining symbols in detail in 

Table 2 Explanation of notations

Notation Description

N  A set of all task applications

M  Number of MEC Servers

Pij  The Task assign to the MEC server mj.

ϕj  Represent the MEC server is On or Off

ti  Represent the ith tasks of application

mj  The jth MEC server in the system

sdi  The storage requirement for task ti
Smj  The jth mec cloud server’s capacity

wdi  The computational data or workload associated with a job ti
Bwj   Represent the ith tasks of application

dci  The task ti has a deadline constraint

bwij   Bandwidth demand increases when a task is scheduled to mj

V
j
mec  The quantity of Docker virtual machines deployed at mj

ςj  The computational speed of all virtual machines within the system mj

Cj  The price of the jth MEC server in the system

datai  Represents Task ti size in terms of data during transmission
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order to save space on the page. By introducing a binary variable pij , we can indicate 
whether or not a task ti is scheduled on mec server mj.

Just like the problem of assignment, each task is carefully assigned to a single mj , Moreo-
ver, each MEC server is assigned a single task at a time. The diagram illustrates the allo-
cation of task ti to mec server mj.

Due to the finite resources available on each server, it is impera+tive to adhere to the 
following task scheduling constraints. Within each server, it is imperative to have an 
adequate amount of storage capacity available in order to effectively store the processed 
tasks. Failure to do so may lead to the unfortunate consequence of data loss pertaining 
to these tasks. Hence, it is imperative that the cumulative storage demand of every task 
allocated to server ej does not surpass the available storage capacity of server ej.

Because of resource constraints, MEC server j has a limited number of virtual machine 
dockers to offer microservices for each task. As a result, the required tasks’ workload 
must not exceed the capability of the deployed virtual machine. This statement is defined 
as follows:

Efficient servers are assigned to each offloaded task j . This is decided upon by the MEC 
agent, who in turn decides the scheduling of task ti . This is how we rank the job comple-
tion on server j

When the processing of task ti is transferred to the MEC server, there is extra communi-
cation involved in this process, and then the task is returned by the MEC server.

The size of a task ti is indicated by dataiin , whereas datajout represents the output of 
The task ti is processed on server j . Furthermore, Bup

mec and Bdown
mec  represent the rates at 

which data is transmitted from the application to server j (uplink) and from server j to 
the application (downlink) throughout the process of offloading and retrieving results. 

(1)Pij =

{

1, ti ← Mj;

0, Otherwise

(2)
N
∑

j=1

pij = 1

(3)
M
∑

i=1

pij ∗ Sdi ≤ Smj

(4)
N
∑

i=1

pij ∗ wdi ≤ V
j
mec .

(5)Tti
e =

M
∑

j=1

Pij ∗
wdi

ςmec
j

(6)RTT =

(

dataiin

B
up
mec

+
data

j
out

Bdown
mec

)
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RTT is the period of time required for data to be transmitted from the application to 
the server and then received back for all jobs. Hence, the calculation of the bandwidth 
requirement for each task is performed using the following method.

The bandwidth need for a task ti can be determined using the following method.

In order to minimise the costs related to each MEC server j , we guarantee the timely 
completion of all jobs according to their particular timeline limits. Afterwards, The 
necessary data transfer capacity between the application and the MEC server can be 
computed.

Because there is a bandwidth limit on each MEC server, the total bandwidth used by all 
scheduled tasks on a server must not exceed its bandwidth constraint.

The Mobile Computing Agent (MCA) acts as a coordinator, establishing communication 
with each MEC server and regularly monitoring them. Each MEC server’s cost is mostly 
based on two things: how well it functions and the necessary resources for implement-
ing microservices for each task that is assigned to it. The cost for a MEC server is not 
revealed. merely by its operating status. MCA charges customers only for the specific 
capabilities they require, rather than the whole cost of the server. The binary variable ϕj 
is used to indicate the on/off state of MEC server j.

MEC cost model

Microservices are discrete autonomous software components that are not standalone com-
putational applications. The components encompassed in this are the cost model, which 
elucidates the method of accessing resources on-demand, guaranteeing connectivity 
according to the framework with regard to commercial applications. Equation 12 depicts 
the cost paradigm for mobile applications based on demand. Specifically focusing on busi-
ness applications. The model performed calculations to determine the processing require-
ments for each application that was chosen for the experiments.

(7)Pij
(

RTT + Te
i

)

≤ dci

(8)bwij ≥
datai

dci
wdi
Rmec
j

(9)bwij =
datai

dci −
wdi
Rmec
j

(10)
N
∑

i=1

pijB
w
ij ≤ Bmic

(11)ϕj =

{

1, mi ← On;
0, Off



Page 10 of 27Mahesar et al. Journal of Big Data          (2024) 11:123 

The ̺j values in Table  3 represent the cost per unit of computational work for each 
unique MEC server.The resource restrictions for each MEC server must now be cal-
culated, eqs.  13 to 25 are used to determine the computed constraints. The resource 
limitations for MEC servers MEC1 to MEC3 are calculated using the formulae below. 
Distribution of resource allocation is necessary to manage expenses, bandwidth needs, 
and processing duties based on microservices across all resources. The decision regard-
ing task offloading is made by the Pij = 0,1 based on the specific criteria listed in Table 2. 
Equation 13 calculates minimum resource capacity Z required for each task based on 
the resources demand. The minimum resource consumption Z is dependent on the On-
Demand ̺j and the state of the MEC Server ̺j . Equation  14 calculates the minimum 
value of Z required for the task at hand. Equ 16 calculates computational time required 
for each task on a given server. Equation 17 is utilized to calculate the performance of the 
ith task in mobile applications based on the data provided in table 3. Equations 18 and 19 
calculate The process of comparing and executing tasks on MEC resources, as well as the 
resources needed to compete against each task. Furthermore, eqs. 20 and 21 calculate 
the jth MEC server’s capacity for resources and set it to a value of 1. This indicates that 
the resource are determine transferred to server of MEC, eqs. 22, 23, and 24 determine 
The required server, bandwidth, and virtual machine (VM) resources for each task based 
on microservices architecture to be transferred to the cloud. The ultimate determination 
calculated pij = 0, 1 in order to obtain offloading task with necessary resources.

(12)Cj = ̺j ∗ pij ∗ T
e
i

(13)min Z =

M
∑

a=1

N
∑

i=1

ϕj .Cj∀ı ∈ N

(14)Subjecttomin Z =

M
∑

a=1

N
∑

i=1

ϕjPij .Cj∀ı ∈ N

(15)Tj,0 =0, ∀{j = 1, . . . ,N }

(16)Tk
j =Tk

j − 1+

N
∑

k=1

pkj T
e
k ∀{i = 1, . . . ,m}

Table 3 MEC servers unit price [42]

MEC server On-demand  ̺ j State

CostPerBw StorageCost CPUCost  ϕj

m1 0.4 0.2 2 1/0

m2 0.5 0.5 4 1/0

m3 0.7 0.6 5 1/0
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Proposed OTSCOCA framework and system

The OTSCOCA framework for Optimisation Task Scheduling and Computational Off-
loading with Cost Awareness includes several components, as depicted in Fig. 2. In the 
first step, mec server resources are matched with each task using a pair-wise approach 
[43]. The task sequence module plays a vital role in organising tasks in a specific order, 
ensuring optimal scheduling by the scheduler. Task ti will be scheduled on server j if 
the condition Pij is met, otherwise it will not be scheduled. This process continues until 
all requested tasks are completed within their specified deadlines in the MCBMEC. The 
MEC servers utilise various components to efficiently process applications and optimise 
scheduling. These components are outlined in Algorithm 1.

(17)Te
ti
=

M
∑

j=1

pij ∗
Wdi

ςj
∀{i = 1, . . . , n}

(18)MEi =

M
∑

i=1

T
j
kpij ∀{i = 1, . . . ,N }

(19)MEi + RTT ≤ dci

(20)
M
∑

j=1

pij = 1 ∀{i = 1, . . . ,N }

(21)
N
∑

i=1

pij = 1 ∀{i = 1, . . . ,M}

(22)
N
∑

j=1

pijsdi ≤ Smj = 1 ∀i ∈ 1, 2, . . .M

(23)
N
∑

i=1

pij ≤ Vjmic = 1 ∀i ∈ 1, 2, . . .M

(24)
N
∑

j=1

pijb
wj
mec ≤ Bmic ∀i ∈ 1, 2, . . .M

(25)pij ={0, 1}
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Algorithm 1 OTSCOCA framework

Fig. 2 OTSCOCA framework
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MEC server resource attaining

Our focus lies on addressing the cost optimization problem in the context of heteroge-
neous MEC servers. To achieve the best results, it is advisable to use the most effective 
MEC server for carrying out all the long sequential operations. The primary objective of 
our microservices application task scheduling is to reduce the computational and pro-
cessing expenses associated with MEC. The process of selecting the MEC server with the 
minimum cost ̺j is a complex task. Equation 26 represents the unit cost ̺j while eq. 27 
depicts the smaller MEC server costs.

In eq. 26 σj represents the size of the MEC server Mj . The server’s cost is determined by 
factors such as its processing power, memory capacity and size of tasks so it can handle. 
The result of evaluating eq.  26 yields the aggregate cost incurred by the chosen MEC 
server. The unit cost ̺j is calculated using eq. 27. The unit cost is calculated based on the 
demand for MEC tasks the demand for MEC virtual machines and the demand for MEC 
bandwidth handling. This concept was developed to facilitate the delegation of tasks 
based on their computed cost.

Upon the completion of successful processing on the servers any surplus resources are 
no longer required and should not be squandered. hmj refers to the remaining resources 
available on the MEC server Mi.Once the assignment scheduling for the initial level is 
finalized one objective of a given task is to optimize the dot product ψi [44] which serves 
as a representation of the products and their fundamental operations. In order to deter-
mine the values of ψi , eqs.  11, 12, 13 and 14 are utilized in the subsequent equations 
exhaustive declarations for the proposed system are illustrated.

The variable γ t∗j represents the allocation of tasks for resource management and sched-
uling on the MEC server Mj . The MEC server system encompasses a variety of types and 
resources. Resource matching is a process that is employed in the MEC server to assign 
the most suitable and highest quality resource for every task taking into consideration 
the diverse and varied characteristics of the resources available. The tasks consist of vec-
tor attributes including task deadline, data size and workload. In contrast the resources 

(26)̺j =
Cj

σj

(27)σj =
MECSmj
∑M

i=1 smj

+
MECVjmic

∑M
i=1 Vjmic

+
MEC

wj
Bmec

∑M
i=1 B

wj
mec

(28)ψ = hmjγ tij

(29)ψ = sdiS
≀

mjq + ν
≀

j q + bwij B
≀

jq

(30)hm
j
= (S

≀

mjq, S
≀

j q,B
≀

jq)

(31)hm
j
= γmj −

∑

γ t∗j
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encompass vector attributes including bandwidth, cost, virtual machine capacity and 
storage. Resource matching is a critical issue that requires attention and resolution. 
The resource matching algorithms chosen for this task are the Techniques to execute 
the multi-criteria decision of resource matching. We utilize Analytic Hierarchy Process-
ing (AHP) [43] and the (TOSS) technique [45]. Algorithm 2 is specifically developed for 
the purpose of matching MEC server resources. The system accepts inputs in the form 
of resources and tasks which are ordered sequentially. The result produced by the algo-
rithm is an array called PList [] which represents the frequent list. The PList[ti , kj ] array is 
populated with the necessary data after the completion of the task’s requirements. This 
data is then stored on the MEC server.

Algorithm 2 includes a step in which the requirements of MEC server are validated 
for each incoming task ti . Assuming the MEC server determines a good match between 
the resources algorithm will return a boolean value of true, otherwise it will return false.
After the successful retrieval of accurate results, we add the corresponding list to the 
frequent list PList [kj , ti] . Step 4 involves iterating through all potential tasks originating 
from mobile devices in order to determine if they align with the diverse requirements of 
the MEC server.

Algorithm 2 Matching resources of MEC servers

MEC server task sequencing

Tasks are entered into the system in a random manner, following a Poisson process. 
Offloaded tasks are submitted to the system without any specific order. As a result, it 
becomes necessary to implement a task sequencing process. Our task sequencing 
method is based on three rules that take into account important factors such as the 
deadline, size, and slack time. Afterwards, we establish three rules to categorize the sub-
mitted tasks according to these characteristics, as outlined below:
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• Earliest Due Date(EDD): We prioritise the tasks in the set based on their deadlines, 
giving higher importance to tasks with smaller deadlines. When deadlines are the 
same, tasks with lower sizes are given greater priority. We evaluate the tardiness of 
tasks using the following methodology.

• Lateness time first (LTF): Tasks are organised according to their lateness time, giving 
priority to those with the shortest lateness time for early scheduling.

• The Shortest Size First (SSF):The order in which tasks are scheduled is based on their 
size, with smaller tasks being prioritised and scheduled before larger ones.

Algorithm 3 Optimising task scheduling for cost-efficient

The MEC cloud system receives offloaded tasks in a random order, and the Mobile 
Computing Agent (MCA) organises them using a first-in-first-out (FIFO) arrangement 
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with task sequencing. The MCA follows a set of sequence rules in a systematic order to 
ensure efficient and cost-effective execution. Figure  3 provides a comprehensive over-
view of the entire process, showcasing the different methods used for task sequencing 
after offloading. Various task sequencing methods result in varying scheduling results. 
Therefore, our goal is to choose the most efficient task sequence for offloaded tasks that 
meets all the necessary requirements and achieves the desired outcome.

Task scheduling

Once the task sequencing and resource matching steps are finished, we are left with an 
initial task scheduling approach. However, this initial scheduling may not be the most 
cost-effective solution for mobile applications. As a result of changes in network con-
ditions and cloud resources the initial solution becomes unstable. Thus, additional 
enhancements are required through creative solutions. For example, let’s look at two 
tasks, t1 and t2 that are scheduled to run on two different cloud servers k1 and k2 which 
have different capabilities. The resource demand attributes for tasks t1 and t2 are as fol-
lows: task t1 has a deadline of 24, a data size of 15mb, and requires 12 units of CPU. On 
the other hand, task t2 has a deadline of 50, a data size of 35mb, and requires 32 units of 
CPU. On the other hand, the resource attributes for servers k1 and k2 are ( Smj : 15, V j

j  : 4, 
Bw
j  : 10) and ( Smj : 20, V j

j  : 8, Bw
j  : 20), respectively.

During the initial scheduling phase task ti is assigned to MEC server k1 and then 
task t2 is allocated to MEC server k2 . As a result the total cost of the application 

Fig. 3 Sequence of the tasks
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includes the expenses of both MEC servers. On the other hand, choosing to perform 
all tasks on MEC server k2 alone has a significant impact on the overall application 
cost highlighting the decrease in computation expenses. During the initial schedul-
ing phase, task ti is assigned to MEC server k1 and then task t2 is assigned to MEC 
server k2 . This leads to the overall application cost which includes the combined 
expenses related to both MEC servers. Nevertheless, if all tasks are designated to 
be executed primarily on MEC server k2 the total cost of the program is determined 
solely by the cost of MEC server k2.

The example provided demonstrates that the MEC server selected by the sched-
uler has low resource execution costs. However, there is a need for further optimi-
zation in the initial scheduling to reduce high costs. MEC servers that are initially 
chosen can often result in significant resource expenses. In order to tackle this issue, 
we present a task scheduling approach that focuses on improving the efficiency of 
chosen MEC servers. The main objective is to rearrange the tasks of the applica-
tion on MEC servers in order to minimize costs starting from the initial scheduling 
phase. The scheduler algorithm optimizes to utilization the MEC servers with higher 
costs, thereby minimizing the additional expenses during the initial stage. In order 
to enhance the cost of the application, we suggest implementing a dedicated task 
scheduling algorithm meticulously crafted to address our specific optimization chal-
lenge. This technique is detailed in Algorithm 2. The algorithm accepts a arranged 
sequence of tasks in need of scheduling on MEC servers with different capabilities. 
Here is a detailed breakdown of the execution process for Algorithm 3.

• In lines 1–5, we define several variables. The MEC servers are organized in a 
descending order following eqs. 27 and 28 which consider ̺j and Cj.

• We collect data on every application task, encompassing their specs and resource 
demands, within lines 7–9.

• The method chooses the lowest-cost MEC server ̺j if there are unscheduled 
jobs in the set T  of application G . The selection of the MEC server for execut-
ing task scheduling for unscheduled tasks relies on the specific resource needs 
and the currently available resources of the MEC server. Afterwards, the algo-
rithm chooses the server mj selecting the MEC server with the most economical 
unit cost from the pool of accessible servers in set M . In case the resources of 
selected MEC server are sufficient to handle the resource requirements of certain 
tasks in the unscheduled tasks set T  then it gives priority to the most important 
task for insertion into server mj . Furthermore, the server mj is excluded from the 
set of possible servers M , as defined by lines 10–19.

• Finding the two MEC servers with the lowest costs in E , the algorithm identifies 
the last one, mg1 and the other mg2 . If the resources on server mg1 are sufficient 
to complete task ti on MEC server mg2 the algorithm will transfer task ti to server 
mg1 and modify the job scheduling variable accordingly. The MEC server mg2 is 
removed from E and its state is updated when all of its jobs are removed. Lines 
20–27 specify E and from there we get a new server with the lowest cost.
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 OTSCOCA time complexity and overhead

The OTSCOCA (The optimization Task Scheduling and Computational Offload-
ing with Cost Awareness) comprises various modules, including Resource Matching, 
Task Sequences, and Task Scheduling. To find the time complexity, we first look at 
all three parts separately, and then we combine them. To begin with, resource match-
ing is expected to be carried out by heterogeneous servers using TOPSIS and AHP 
approaches. The Resource Matching’s time complexity algorithm is determined to be 
0(TxM) . M represents the server resources of the Multi-Criteria Decision Making MEC 
system while T denotes tasks organized an a Matching in pairs. In task sequencing tasks 
are arranged in ascending order based on their deadlines, size and lateness using the 
O(mlogn) algorithm. Here n represents total count of the tasks that have been sorted 
while M refers to the specific method that has been utilized to sort the tasks sequen-
tially order. Task Scheduling: The scheduling of all the MEC servers is based on the 
order arranged in decreasing sequence ̺ j and Cj . The computational complexity assessed 
O(logM) : O(logM)+ N  . The computational complexity refers to the computational effi-
ciency of scheduling tasks on all MEC servers based on the arrangement is determined 
by prioritizing cost and load reduction. Variable n represents number of tasks in the 
swapping process which affects computational complexity of various MEC servers.

Performance evaluation
To assess the efficacy of the recommended OTSCOCA and MCBMECS system, func-
tional outcomes were obtained by conducting experiments through various performance 
evaluations on diverse benchmarks of mobile applications within the system. The experi-
mental setting in this study is divided into separate sections: (i) MCBMECS deployment 
(ii) Calibration of Components and Metric Parameters (iii) Computational Offloading 
Framework evaluation, and (iv) Task Scheduling and Algorithmic Comparison. Table 4 
contains simulation settings, Table 5 presents the resource specifications of MEC servers 
obtained from [42], and Table 6 provides a detailed summary of the workloads gener-
ated for healthcare, augmented reality (i.e., face recognition), 3D games (e.g., Sudoku, 
Queen), and e-commerce applications used in this work.

Table 4 Simulation parameters

Simulation parameter Values

Windows operating system Windows docker engine

Simulation time 16 h

Experiment repetition 140 times

Android phone Redmi Note 11 Pro

Processor X64 bit

Languages Java, XML, JSON

Duration of simulation 90 h

Monitoring of simulation Every 2 h

Application interface One UI 6.0

Method evaluation ANOVA single and multi-factor

Android OS Upside Down Cake

On-Demand EC2
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 Baseline offloading system and algorithm approaches

In order to conduct a comparison with the current approach, the following primary fac-
tors are taken into account when evaluating the obtained results:

• We construct a framework for computational offloading using virtual machines for 
experimental purposes, making use of the existing frameworks [27]. The goal is to 
transfer the entire mobile application to the cloud server.

• A framework for dynamic computational outsourcing is implemented using virtual 
machines, drawing inspiration from the strategies discussed in references [4]. The 
objective is to transfer whole programs to servers with different characteristics when 
sufficient resources are available to meet the demands.

We will now compare the various pre-existing task scheduling methods:

• We utilize well-established and economical fixed task scheduling scheduling meth-
ods [27] throughout the experimental phase, assessing their performance in relation 
to the proposed scheme in terms of application costs.

• During the experimental phase, we apply well-established and cost-effective dynamic 
task scheduling approaches in refs. [29, 30]to evaluate their performance in relation 
to the proposed scheme, specifically in terms of application costs.

• We use well-proven, Efficient, and affordable static task scheduling techniques [28], 
omitting task scheduling during the experimental stage, and evaluate their effective-
ness in comparison to the suggested plan with regard to application expenses.

Performance metrics

The paper’s component calibration involves proposing an experimental approach that 
randomly generates a diverse set of application tasks, as shown in Table 3. The experi-
ment involves testing with four different numbers of applications. To impose deadline 

Table 5 Specifications of MEC servers

Cloud Core MIPS/CORE VMs Storage(GB) Cost

j1 i3 10000 2 1200 0.5

j2 i5 2000 2 2000 0.8

j3 i7 3000 2 5000 0.9

j4 i9 3000 2 10000 0.05

Table 6 Analyzing MEC application workloads

Workload No: of tasks C.Ins.(MI) Data size

Healthcare 900 5.9 600

Augmented reality 730 7.2 700

E-Transport 660 7.9 1100

3D/2D-Game 900 5.3 680



Page 20 of 27Mahesar et al. Journal of Big Data          (2024) 11:123 

constraints for various task forms, the paper establishes task deadlines using the follow-
ing equation.

The earliest completing duration and a particular percentage of the early completion 
time are used to calculate the task’s deadline da,it  . A parameter called is used to control 
the level of strictness for the task deadline. It can be set to values between 0.2 and 1, 
specifically {0.2, 0.4, 0.6, 0.8, or 1}. As a result, every task is assigned one of five different 
deadlines, known as D1 , D2 , D3 , D4 , and D5 . In order to evaluate the algorithm’s per-
formance under various task deadlines, the paper calculates using the formula (31). The 
paper utilizes RPD (Relative Percentage Deviation) statistical analysis to assess the per-
formance of the NOMA, DCC and CTOS algorithms across different task deadlines. This 
analysis evaluates the fluctuations in power consumption across various parameters, 
frameworks and algorithm combinations during the component calibration parameteri-
zation. The RPD estimation is shown in Eq. (32)

Here, Ra represents the optimization objective function.

MCBMECS implementation

A mobile cloud-based application is developed and deployed on Mobile Devices using 
the mobile application developer IDE, specifically android studio. The xiaomi node 12 
2023 mobile model is utilized as an emulator for testing purposes. Figure 4 depicts the 
aforementioned description pertaining to various applications and scenarios. The Edge 
X Foundry is assessed using an open-source framework. The implementation of the 
Microservice Container-Based Mobile Edge Computing System MCBMECS framework 
is comprised of three primary portions. The Mobile Users layer refers to the segment 
of users who access and utilize mobile devices for various purposes. The Mobile Cloud 
Agent Control layer pertains to the component responsible for managing and controlling 
the interactions between mobile devices and the cloud infrastructure. Lastly, the mobile 

(32)da,it = Ra,i + γ + Ra,i

(33)RPD% =
R∗
a + Ra

R∗
a

× 100%.

Fig. 4 Implementation OF MCBMECS
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cloud resources layer denotes the infrastructure and resources available in the cloud that 
are utilized by mobile devices for storage, processing, and other computing tasks.

Through the REST API, the mobile apps assign relating tasks to the MCA Con-
sole. When communicating with the MCA through a gateway interface, requests and 
responses are parsed using the JSON format. The API request is parsed in real-time by 
the console interface. The Mobile Computing Agent is informed by the device services 
about the precise services needed to finish the offloaded task based on task’s attribute. It 
is the job of the mobile cloud monitoring system to keep an eye on the system’s stabil-
ity and run frequent checks on the tasks list. Task sequencing is the process of arrang-
ing tasks in a logical order, while task scheduler is responsible for scheduling tasks to 
be executed on heterogeneous mobile cloud servers. The run time refers to the opera-
tional environment of a system that is based on the specific system scenario. The JVM is 
responsible for executing Java programs with optimal efficiency. The JVM can be likened 
to a virtual machine similar to running in a windows docker session. Using these con-
tainers, autonomous microservices can be instantiated. Through registry services, the 
containers are registered with a server, the mobile edge cloud in order to optimize the 
consumption of all available services. The utilization of REST API facilitates inter-ser-
vice communication between microservices, resulting in reduced overhead.

Computational offloading framework comparison

The new microservices container-based mobile edge computing for compute offloading 
demonstrates a decreased startup time in comparison to established frameworks that 
rely on heavyweight virtual machines. Simultaneously, we have improved the efficiency 
of resource usage in the suggested system. These elements are supported by both experi-
mental and simulation contexts. Figures 5, 6, and 7 demonstrate the enhancements in 
boot uptime, overhead, and resource utilization that have been accomplished by our 
compute offloading approach. The primary determinant influencing these outcomes 
is the inherent lightweight characteristic of containers as opposed to the resource-
intensive virtual machines while executing mobile apps during scheduling. Hence, our 

Fig. 5 Boot-Time
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computational offloading architecture demonstrates itself as a proficient platform for 
executing time-critical applications.

Task sequencing

The rules for sequencing tasks specifically EDD, SPF and SSTF have been optimised 
in our study to arrange tasks for the purpose of scheduling. In Fig. 8a, the plot of the 
devised task sequence protocols along with 95.0% Tukey HSD intervals, indicates that 
the relative percent difference RPD significance of the EDD algorithm is significantly 
lower compared to the SPF and SSTF algorithms, as depicted in Fig. 8b. This discovery 
indicates that tasks that are scheduled using the task sequence generated by the EDD 
rule experience reduced delays in MEC clouds within a heterogeneous environment. As 
a result, we have chosen EDD as the Mob-Cloud job sequencing component. Prioritisa-
tion of tasks is established in our study using the EDD sequence approach. This method 
assigns higher priority to tasks with the shortest deadline compared to other tasks.

Fig. 6 CPU utilization

Fig. 7 Overhead
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Task scheduling

Optimizing task scheduling for cost-effectiveness in mobile applications. The sched-
uling process takes into account the costs associated with applications, such as com-
munication and computation costs, as well as task deadlines, which are the main 
concerns. We evaluate various MEC servers for the job scheduling problem. Our 
objective is to reduce application expenses and ensure their timely completion.

Figures  9 and 10 demonstrate that the proposed OTSCOCA system results in 
reduced application costs for all applications and ensures that they are executed 
within their specified timeframes. We take into account the various time limits speci-
fied in eq. (31). The primary rationale behind this approach is that the proposed strat-
egy systematically enhances Improve solutions iteratively until you get the best result. 
We enhance the task failure ratio in our task scheduling method in comparison to 
the previous research. When an existing baseline is nearing, simply take into account 

Fig. 8 With the average plot for tasks having 95.0% Tukey HSD intervals, the average graph for application 
tasks that arrive at random is displayed. Containers and the virtual machine system are contrasted

Fig. 9 Failed task during scheduling procedure
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Fig. 10 Task failed due to insufficient resources

Fig. 11 Varying deadlines for tasks across different applications
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the original solution. Figures  11 and 12 illustrate that the proposed system exhib-
its a lower failure ratio for tasks after the experiment, in comparison to the baseline 
technique. Therefore, the suggested dynamic OTSCOCA approach is effective in a 
dynamic scenario and enhances cost efficiency while meeting deadlines.

Conclusion

The use of mobile applications has seen a notable rise, catering to a range of purposes 
including E-banking, Augmented Reality, E-Transportation, and E-Healthcare. Con-
ventional cloud-based frameworks that depend on Virtual Machines often encounter 
issues such as long boot times, excessive overhead, and unnecessary costs associated 
with running mobile applications. To tackle these concerns, the study suggests the 
implementation of Microservices Container-Based Mobile Edge Computing Applica-
tions MCBMEC. Our primary objective is to address the task scheduling challenges that 
arise when dealing with a variety of Mobile Edge Servers. In addition, the study pre-
sents the OTSCOCA framework, which enhances task scheduling and computational 
offloading by considering cost factors through sequential processes such as Resource 
Matching, Task Sequencing, and Task Scheduling. The results obtained from the experi-
ments highlight the success of MCBMEC and OTSCOCA, illustrating improved server 

Fig. 12 Obtaining the overall cost of all tasks
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utilization, decreased service latency, and more efficient average service bootup times. 
These enhancements make a substantial impact on reducing expenses. Furthermore, 
the experiments demonstrate the significant improvements achieved by the MCBMEC 
and OTSCOCA methods in terms of server efficiency, service latency reduction, average 
bootup time improvement, and cost optimization.

In future, it is crucial to take into account the security and privacy considerations 
associated with mobile edge computing applications in order to establish reliable and 
trustworthy systems in the future.
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