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Abstract 

The morphology and distribution of airway tree abnormalities enable diagnosis 
and disease characterisation across a variety of chronic respiratory conditions. In 
this regard, airway segmentation plays a critical role in the production of the outline 
of the entire airway tree to enable estimation of disease extent and severity. Further-
more, the segmentation of a complete airway tree is challenging as the intensity, scale/
size and shape of airway segments and their walls change across generations. The 
existing classical techniques either provide an undersegmented or oversegmented 
airway tree, and manual intervention is required for optimal airway tree segmenta-
tion. The recent development of deep learning methods provides a fully automatic 
way of segmenting airway trees; however, these methods usually require high GPU 
memory usage and are difficult to implement in low computational resource environ-
ments. Therefore, in this study, we propose a data-centric deep learning technique 
with big interpolated data, Interpolation-Split, to boost the segmentation performance 
of the airway tree. The proposed technique utilises interpolation and image split 
to improve data usefulness and quality. Then, an ensemble learning strategy is imple-
mented to aggregate the segmented airway segments at different scales. In terms 
of average segmentation performance (dice similarity coefficient, DSC), our method (A) 
achieves 90.55%, 89.52%, and 85.80%; (B) outperforms the baseline models by 2.89%, 
3.86%, and 3.87% on average; and (C) produces maximum segmentation performance 
gain by 14.11%, 9.28%, and 12.70% for individual cases when (1) nnU-Net with instant 
normalisation and leaky ReLU; (2) nnU-Net with batch normalisation and ReLU; and (3) 
modified dilated U-Net are used respectively. Our proposed method outperformed 
the state-of-the-art airway segmentation approaches. Furthermore, our proposed tech-
nique has low RAM and GPU memory usage, and it is GPU memory-efficient and highly 
flexible, enabling it to be deployed on any 2D deep learning model.
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Introduction
Abnormal dilatation of the airways is a key feature in the diagnosis of idiopathic pul-
monary fibrosis (IPF) patients. Disease extent and severity in IPF can be assessed by the 
visual analysis of high-resolution CT images by radiologists. This approach, however, is 
subjective and time-consuming. Automated airway tree analysis [1, 2] is an alternative 
method that enables an objective quantitative assessment of airway damage and disease 
severity in IPF. The key component of airway tree analysis is establishing the 3D geom-
etry of the airway tree, and the standard approach to obtaining the airway tree is image 
segmentation.

Airway segmentation is an active research area [3]. The goal is to produce a complete 
airway tree, including the trachea, bronchi, bronchioles, and terminal bronchioles. The 
segmentation task is challenging as the intensity, scale/size, and shape of airway seg-
ments and their walls change across generations. Classical segmentation methods such 
as the Frangi filter [4, 5] and the region-growing method [6] were first used to segment 
the airway tree. The Frangi enhancement filter constructs a Hessian matrix to extract 
tubular-like tissues (i.e., airways) and remove non-tubular tissues (i.e., lung). This 
approach shows promise for airway segmentation. However, the segmented airway tree 
is limited to the first few branching airway generations (i.e., between the 1st and 6th 
generations). Furthermore, it requires tuning the parameters (α, β and σ) manually for 
extracting the optimal airway tree. This process is time-consuming and not user-friendly 
for clinicians. Employing a region-growing algorithm is another approach to segment-
ing the airway tree. A seed point is first placed at the trachea, then the region is grown 
by adding neighbouring voxels with a predefined intensity. The algorithm stops when 
no more voxels can be added. There are several drawbacks to this approach. Intensity 
thresholding is used to select voxels, but it causes leakage (over-segmentation) when an 
aggressive threshold is used. Conversely, the airway is undersegmented when a conserv-
ative threshold is used. Therefore, the completeness of the airway tree produced by this 
approach is limited.

Recent advances in deep learning provide new opportunities for segmentation. It uti-
lises data and GPU technology and offers a fast and fully automatic method to perform 
segmentation. Deep learning (DL) can be divided into two branches: (1) model-centric 
and (2) data-centric. Model-centric deep learning focuses on the model architecture and 
keeps the data unchanged. Popular models have been developed to tackle the segmenta-
tion challenge. For example, SegNet [7] and HRNet [8] are proposed for general segmen-
tation. U-Net [9] and V-Net [10] are deployed for medical image segmentation. These 
models produce good segmentation, though they require high GPU memory usage. 
On the other hand, data-centric deep learning focuses on the data and keeps the model 
unchanged. Data augmentation [11] is an example of manipulating the source data to 
produce more varied samples. It uses geometrical transformations (i.e., flip, rotate, and 
crop) to modify the images. The model’s performance can be improved by training on 
a dataset with richer features. Active learning [12] is another example of a data-centric 
technique. It aims to select the most useful data for labelling and permits the user to 
interact with the deep learning model to complete the data annotation. This technique 
improves the efficiency of the annotation task. Furthermore, a data-centric deep learning 
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approach is particularly attractive as it requires low GPU memory usage and is straight-
forward to implement.

Interpolation has been widely used in image processing. The mechanism of interpo-
lation involves resampling; several interpolating functions have been used for image 
resampling [13], i.e., the nearest neighbour function, the linear function, and the cubic 
B-spline function. Interpolation has also been used in image augmentation [14]. It is 
applied to either input space or feature space. The purpose of this technique is to diver-
sify the training samples by manipulating features in the input or feature spaces and, 
hence, improve the generalisation. Furthermore, it can be used to fill in the blank part of 
the image after image manipulation [15], i.e., rotation. Cropping is used in conjunction 
with interpolation to achieve the desired results. Existing techniques such as random 
scaling, random cropping, and random cropping with scaling can increase the variability 
of the training images. For example, use RandomResizedCrop from PyTorch. It crops the 
image randomly, and the sub-image is subsequently upscaled to the original image size 
by interpolation. The drawback of this approach is that the random cropping can miss 
the important features in the image, and the up-scaling can increase the blurring and 
edge effects on the sub-image. To resolve these issues, a novel technique, Interpolation-
Split, is proposed in this study. It performs systematic up-scaling, followed by system-
atic splitting on the image. In the context of airway segmentation, this new approach 
can ensure all airways are captured and utilised. Further, it minimises blurring and edge 
effects when interpolation is performed.

Additionally, no study focuses on a purely data-centric approach for airway segmenta-
tion. Therefore, in this study, we propose a 2D data-centric deep learning method for the 
automated segmentation of airway trees on HRCT images. The proposed technique is 
evaluated by comparing the segmentation performance with three baseline models: 2D 
nnU-Net with instant normalisation (IN) plus leaky ReLU, 2D nnU-Net with batch nor-
malisation (BN) plus ReLU, and 2D modified dilated U-Net.

The main contributions of this study are:

•	 The first study to propose a 2D data-centric deep learning method with interpolation 
that segments the airways on HRCT images.

•	 The proposed technique utilises interpolation and image split to improve data useful-
ness and quality.

•	 The study combines big interpolated data (972,655 samples) and a data-centric deep 
learning method to boost airway segmentation performance.

•	 An ensemble learning strategy is implemented to aggregate the segmented airway 
segments at different scales.

•	 The proposed technique has low RAM and GPU memory usage, is GPU memory-
efficient, and is highly flexible to be deployed in any 2D deep learning model.

The organisation of the rest of the paper is structured as follows: Section II reviews 
the latest and relevant research work regarding airway segmentation. The methods and 
methodology of the proposed work are presented in Section III. The computational 
results are shown in Section IV. Section V discusses the research findings and addresses 
the potential implications, limitations, and future research directions. Finally, Section VI 
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summarises and concludes the key findings, contribution, and potential impact of the 
proposed work.

Related work
The studies related to model-centric deep learning in airway segmentation are summa-
rised below. A convolutional neural network (CNN)-based leak detection method to 
improve airway segmentation was proposed by Charbonnier et al. [16]. Yun et al. [17] 
presented a 2.5D CNN for airway segmentation. This approach achieved about 90% DSC 
accuracy. A 3D U-Net to detect topological leaks was employed by Nadeem et al. [18]. 
The intensity threshold was adjusted on the probability map, and a freeze-and-growth 
algorithm was used to correct the leaks. Qin et al. [19] developed a simple-yet-effective 
deep learning method for this task. It utilised a context-scale fusion strategy to improve 
the connectivity between airway segments. The DSC of this approach is 93% on a public 
dataset. A three-dimensional multi-scale feature aggregation network was proposed by 
Zhou et al. [20] to handle the difference in scale of substructures during airway tree seg-
mentation. This method produced results with 86.18% DSC and 79.31% true positive rate 
(TPR). Further, a simple and low-memory 3D U-Net was developed by Garcia‑Uceda 
et al. [21]. It processed large 3D image patches in a single pass within the network, cre-
ating a robust and efficient analysis. Zheng et  al. [22] proposed WingsNet with group 
supervision to deal with class imbalances between airway and non-airway regions. They 
identified the gradient erosion and dilation problem and designed a group supervision to 
enhance the training of the network. A general union loss was also developed to tackle 
the intra-class imbalance issue through distance-based weights and element-wise focus 
on the hard-to-segment regions. The branch detection rate of the proposed method is 
80.5%. A coarse-to-fine segmentation framework was deployed by Guo et al. [23]. It uti-
lised a multi-information fusion convolution neural network (Mif-CNN) and a CNN-
based region growing for main airway and small branch segmentation. The DSCs of this 
work were 93.5% and 95.8% for private and public datasets respectively. Wang et al. [24] 
developed a spatially fully connected tubular network with a novel radial distance loss 
for 3D tubular-structure segmentation. The method provided better airway tree segmen-
tation than the baseline U-Net model. A joint 3D U-Net-Graph Neural Network-based 
method was presented by Juarez et al. [25]. It used graph convolutions to improve airway 
connectivity. Wu et al. [26] proposed a long-term slice propagation method for airway 
segmentation. The method achieved 92.95% DSC. A novel label refinement method was 
developed by Chen et  al. [27] to correct the structural errors in airway segmentation. 
It produced airway segmentation with DSC between 79 and 81%. Wang et al. [28] pro-
posed NaviAirway, which finds finer bronchioles with a bronchiole-sensitive loss func-
tion and a human-vision-inspired iterative training strategy. Zhao et al. [29] developed 
Group Deep Dense Supervision for small bronchiole segmentation. This method has a 
high sensitivity for detecting fine-scale branches and outperforms state-of-the-art meth-
ods by a large margin (+ 12.8% in branch detection and + 8.8% in tree detection). More 
recently, Weng et al. [30] developed a post-processing approach that leverages a data-
driven method to repair the topology of disconnected pulmonary tubular structures 
(i.e., airways). Wang et al. [31] proposed an anatomy-aware multi-class airway segmen-
tation method enhanced by topology-guided iterative self-learning. A semi-supervised 
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pulmonary airway segmentation with a two-stage feature specialisation mechanism was 
presented by Gu et al. [32]. Yu et al. [33] proposed AirwayFormer that uses the latent 
relationships within the tree structure and airway nomenclature for airway segmentation 
and labeling. Støverud et al. [34] introduced a airway segmentation benchmark dataset 
with challenging pathology and presented a multiscale fusion design for automatic air-
way segmentation. Hu et al. [35] developed a large-kernel attention network with dis-
tance regression and topological self-correction for airway segmentation. Their methods 
achieved superior performance on BAS and ATM22 Challenge datasets. Carmo et  al. 
[36] developed an end-to-end segmentation method (MEDPSeg) for pulmonary struc-
tures and lesions in CT images. The method utilised hierarchical polymorphic multitask 
learning and outperformed several existing methods. A connectivity-aware pulmonary 
airway segmentation was proposed by Zhang et al. [37]. It includes a connectivity-aware 
surrogate module that balances the training progress within-class distribution and a 
local-sensitive distance module that identifies the breakage and minimises the variation 
of the distance map between the prediction and ground-truth. Yuan et al. [38] proposed 
an end-to-end multi-scale airway segmentation framework based on pulmonary CT 
images. It employed a 2D full-airway SegNet (2D FA-SegNet) and 3D airway RefineNet 
to improve the airway segmentation. Their proposed method showed the highest DSC 
of 0.931. Zhao et al. [39] presented a skeleton-level annotation (SkA) method tailored 
to the airway, which simplifies the annotation workflow while enhancing annotation 
consistency and accuracy, preserving the complete topology. Furthermore, a skeleton-
supervised learning framework was proposed to achieve accurate airway segmentation. 
To summarise the literature review, we provide a summary of the latest state-of-the-art 
approaches with their advantages and challenges for airway segmentation in Table 1.

Methods and methodology
Clinical data

The clinical data (n = 30) contained healthy subjects, patients with heart disease, and 
patients with IPF. It included a healthy subject and six patients with heart disease or 
IPF from the EXACT09 dataset [40], six healthy, never-smoking subjects, and 17 IPF 
patients from University College London Hospital. The study was carried out in accord-
ance with the recommendations of University College London Research Ethics Commit-
tee, with written informed consent from all subjects. The data including source images 
and their ground-truth masks, were further divided into training (66%) and validation 
(34%) sets. Table 2 shows the subject/patient information in the validation set. The num-
ber of samples (source images) for training and validation is shown in Table 3.

Data pre‑processing

The data were preprocessed in three steps: (1) ImageJ was used to convert the source 
images from DICOM format to TIFF format. (2) The images were subsequently normal-
ised by using the following settings to emphasise lung tissue visualisation: W = 1500 HU, 
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L = -500 HU. (3) The intensity of the normalised images was rescaled in the range 0 to 
255 HU. The annotation of the ground-truth mask was performed on a 3D Slicer.

The overview of the proposed method

The overview of our proposed method is shown in Fig. 1. It is comprised of four main 
components: (1) Interpolation-Split (2) Deep learning model training (3) Deep learn-
ing model prediction (4) Ensemble learning strategy. The details of each component 
are described in the following paragraphs.

Interpolation‑Split

The algorithm and the workflow

The algorithm of Interpolation-Split is shown below, while the workflow and the 
details of Interpolation-Split are as follows: The CT image and its mask are zoomed in 
at various scales. The zoomed-in CT images and masks are produced by interpolation 
and split. The original CT images are up-sampled by bi-linear interpolation, while 
the original masks are up-sampled by nearest neighbour interpolation. Then, the 
interpolated image is split into sub-images with fixed dimensions (512 × 512). Here, 

Table 2  The subject/patient information in the validation set

Subject/patient Status

case 1 Healthy

case 2 Healthy

case 3 Patient with IPF

case 4 Patient with heart disease

case 5 Patient with IPF

case 6 Patient with IPF

case 7 Healthy

case 8 Patient with IPF

case 9 Patient with IPF

case 10 Patient with heart disease

Table 3  The number of samples (source images) for training and validation

Interpolation ratio (ir) Training set Validation set

1 (original dataset) 7552 3891

2 30,208 15,564

4 120,832 62,256

8 483,328 249,024

Total 641,920 330,735
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an interpolation ratio (ir) is defined to control the zoom-in scale. For example, the 
dimension of the interpolated image (1024 × 1024) is doubled from the original image 
(512 × 512) when ir is set to 2. Then, the interpolated image is split into four sub-
images (512 × 512). The interpolation and split mechanism (i.e., ir2) is demonstrated 
in Fig. 2. Further, the effect of the interpolated ratio (ir = 2, 4, and 8) is investigated. It 
should be noted that no interpolation and split is performed for ir = 1.

Fig. 1  The overview of our proposed method
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The pseudo-code of Interpolation-Split.

Mathematical model and numerical analysis

A mathematical model is introduced to study the fundamental properties of our pro-
posed method. The focus is on the interpolation of CT images, as the existing technique 
could add artefacts to the upsampled CT images. In our proposed work, bilinear inter-
polation is employed to upsample the CT images; it can be treated as linear interpolation 
in the lateral direction, followed by linear interpolation in the axial direction. Therefore, 
bilinear interpolation is our mathematical model. It can be expressed as follows:

The objective is to estimate unknown point f(S) given four known points, f(P11), f(P21), 
f(P12), and f(P22).

where

(1)f (S) = f
(
x, y

)
=

y2 − y

y2 − y1
f
(
x, y1

)
+

y− y1

y2 − y1
f
(
x, y2

)

Fig. 2  The interpolation and split mechanism
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The coordinates of points S, C1, C2, P11, P21, P12 and P22 are shown in Fig. 3A.
A 4 × 4 synthetic image (Fig.  3B) was used to numerically investigate the intensity 

change between the existing technique and the proposed method. (1) Existing tech-
nique: the 4 × 4 synthetic image was split into four 2 × 2 synthetic images (Fig. 3C), and 
then each 2 × 2 synthetic image was upsampled to 4 × 4 image by using the mathemati-
cal model. Finally, the upsampled (4 × 4) images were merged together to form an 8 × 8 
grayscale image. (2) Interpolation-Split: the 4 × 4 simulated image was upsampled by a 
factor of two using the mathematical model. An 8 × 8 grayscale image was produced. 
The intensity across the lateral and axial directions was analysed for both images.

Blurring and edge effects

The blurring and edge effects in CT images were investigated and compared between 
the existing technique and Interpolation-Split. A slice was selected from each case, 
and then a set of sub-images was created using the existing technique and Interpola-
tion-Split. (1) Existing technique: a single image (512 × 512) was cropped into 64 sub-
images (8 × 8), then each sub-image was up-scaled to the original size (512 × 512). (2) 
Interpolation-Split: a single image (512 × 512) was up-scaled to 4096 × 4096 (ir8), then 
the interpolated image was split into 64 sub-images (512 × 512). Four sub-images from 
each case were selected for comparison. In total, 120 paired sub-images were produced. 
Diagonal Laplacian [41] was employed to measure the sharpness of the sub-image. Fur-
ther, a paired t-test was used to evaluate whether there is any statistical significance in 

(2)f
(
x, y1

)
= f (C1) =

x2 − x

x2 − x1
f (P11)+

x − x1

x2 − x1
f (P21)

(3)f
(
x, y2

)
= f (C2) =

x2 − x

x2 − x1
f (P12)+

x − x1

x2 − x1
f (P22)

Fig. 3  A The coordinate system of bilinear interpolation B Synthetic image (4 × 4) C Four synthetic images 
(2 × 2)
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sharpness between the sub-images produced by the existing technique and Interpola-
tion-Split. A p-value < 0.05 was considered significant for statistical analysis. The analysis 
was performed on SPSS (version 27, IBM).

Selected models for performance evaluation

Three state-of-the-art models were selected for evaluating our proposed method. These 
2D models are (A) nnU-Net with instant normalisation and leaky ReLU; (B) nnU-Net 
with batch normalisation and ReLU; and (C) modified dilated U-Net.

nnU‑Net

nnU-Net [42] is a deep learning based semantic segmentation method. It offers auto-
matic configuration including pre-processing, network architecture, training and post-
processing for any segmentation task. In this study, two network configurations—instant 
normalisation with leaky ReLU and batch normalisation with ReLU—were chosen to 
evaluate our Interpolation-Split method.

Modified dilated U‑Net

The airway was segmented using a modified dilated U-Net. A dilated U-Net is an 
extended model of the original U-Net [9] and adopts an encoder-decoder architecture. 
The encoding path captures features from images, and the decoding path localises these 
features. A sequential dilation module [43] is employed in the bottleneck layer, and this 
improves global context capture and maintains the resolution of the feature map. Fur-
thermore, the dilated U-Net was modified by introducing batch normalisation and drop-
out. These modifications improve the model’s stability and segmentation performance. 
The schematic diagram of the modified dilated U-Net and the sequential dilation mod-
ule are shown in Figs. 4 and 5.

Deep learning model training and implementation

The proposed models (per ir) were trained and implemented on a high-performance 
cluster with deep learning frameworks installed. Specifically, PyTorch (v2.0.1), Tensor-
flow (v1.1.4), and Keras (v2.2.4) were executed on Linux (Rocks 7.0/CentOS 7.9.2009). 
Furthermore, various computing machines with Intel/AMD multi-core CPU chipsets 
and Nvidia GPU cards were used to complete the training.

nnU-Net provided an automatic configuration for model training. The configuration 
includes fixed, rule-based, and empirical parameters. The setting of fixed parameters is 
shown in Table 4.

The trained models for modified dilated U-Net were produced by employing the Adam 
optimiser, ReduceLROnPlateau, and early stopping. The setting of parameters is shown 
in Table 5.

Deep learning model prediction

The prediction (per ir) was done using the trained models above. The unseen source 
images were interpolated and split to form the inputs for model prediction. When the 
prediction was complete, the initial predicted masks were merged and down-sampled 
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Fig. 4  The network architecture of the modified dilated U-Net

Fig. 5  The sequential dilated convolution module
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(nearest neighbour) to the final mask with size 512 × 512. The workflow of the predic-
tion mechanism (i.e., ir2) is shown in Fig. 6.

The loss function and the evaluation metric

The loss function, combined loss, was used to train the deep learning model. The 
combined loss function includes binary cross entropy (BCE) loss and dice similar-
ity coefficient (DSC) loss. The BCE is used to calculate the difference between the 
two probability distributions (foreground vs. background), while the DSC is used to 
measure the similarity between predicted segmentation and ground-truth segmen-
tation. It should be noted that DSC is also employed to evaluate the segmentation 

Table 4  The setting of fixed parameters for models (nnU-Net) training

SGD with Nesterov momentum (μ = 0.99) optimiser

Learning rate (Poly learning rate schedule, initial) 0.01

Epochs 1000 
epochs × 250 
mini-batches

Table 5  The setting of parameters for models (modified Dilated U-Net) training

Adam optimiser

Learning rate (initial) 10–3

Epochs 200

ReduceLROnPlateau

 Factor 10–1

 Patience 3

 Min_lr 10–5

Early stopping

 Patience 10

Fig. 6  The workflow of prediction mechanism
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performance. Mathematically, the loss function and the evaluation metric can be rep-
resented by the following equations (Eqs. 4–7).

where y is the ground-truth label, ŷ is the predicted mask, and n is the total number of 
pixels.

Ensemble learning strategy

The baseline model (ir1) has the ability to segment the airway from the trachea to 
6–8 airway generations, while those 9 or above airway generations are missed. An 
ensemble learning strategy is proposed to overcome the segmentation limitation. By 
increasing ir (i.e., ir2, ir4, and ir8), the optimal segmented airway is shifted towards 
the airway with a smaller diameter or higher generation. Then, the optimally seg-
mented airways with various ir are aggregated. Finally, the airway tree with higher 
generations (9 or above) is produced.

The segmented masks from ir = 1, 2, 4, and 8 are aggregated to form a combined 
mask. This is done by applying a union operation to all mask sets. Finally, the largest 
connected component of an airway in the combined mask is extracted, and hence the 
final segmented mask is produced. The workflow of this ensemble learning strategy 
(i.e., ir1 + ir2 + ir4 + ir8) is shown in Fig. 7.

(4)BCE loss = −
1

n

∑n

i=0
((yi × logŷi)+

(
1− yi

)
× log

(
1− ŷi

)
)

(5)DSC =

(
2×

∣∣y ∩ ŷ
∣∣

∣∣y
∣∣+

∣∣̂y
∣∣

)
=

2
∑n

i=0(yi × ŷi)∑n
i=0yi +

∑n
i=0ŷi

(6)DSC loss = 1− DSC = 1−

(
2
∑n

i=0(yi × ŷi)∑n
i=0yi +

∑n
i=0ŷi

)

(7)Combined Loss = (0.5× BCE loss)+ (0.5× DSC loss)

Fig. 7  The workflow of ensemble learning strategy
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Comparative study with state‑of‑the‑art airway segmentation algorithms

The airway segmentation performance of our proposed method was compared with two 
state-of-the-art airway segmentation algorithms, namely the Lung CT Analyzer (LCTA) 
and AeroPath. LCTA is a semi-automatic grow-cut airway segmentation algorithm that 
uses thresholding and growing from seeds to identify the airway tree and lungs. In terms 
of airway segmentation, a seed point is placed within the trachea, and then region-grow-
ing is performed to obtain the largest connected airway tree. Aeropath, on the other 
hand, is a fully automatic deep learning algorithm for airway segmentation. It utilises 
an attention-gated U-Net (AGU-Net) [44] for learning airway features. The model was 
trained from the ATM22 challenge dataset, which included 300 large-scale CT scans 
with detailed pulmonary airway annotation.

Results
Numerical analysis from mathematical model

The upsampled image (8 × 8) produced by existing technique and Interpolation-Split 
were shown in Fig. 8A and Fig. 8B, respectively. Visually, our proposed method produced 
a better image that allows smooth intensity change across lateral and axial directions, 
while the existing technique produced less smooth image where an intensity discontinu-
ity was observed at the boundary between two adjacent 4 × 4 upsampled images.

Figure 9 shows the intensity change across the lateral and axial directions. In the axial 
direction, first column, our proposed method produced an upsampled image with lin-
early decreasing intensity, while the existing technique produced an upsampled image 
with piecewise linear decreasing intensity, and the intensity is higher at the first few 
axial positions while the intensity is lower at the last few axial positions. Notably, there 
is a sharp drop in intensity change at the fourth and fifth axial positions, which is at 
the boundary between two adjacent 4 × 4 upsampled images. A similar property was 
observed for the other columns.

Regarding lateral direction, a sharp drop in intensity change was observed in the 
upsampled image produced by the existing technique, while smooth intensity change 
was observed in the upsampled image produced by Interpolation-Split. Interestingly, the 
existing technique tends to produce darker pixels across deeper rows.

Evidently, the mathematical model proves that our proposed method produces a better 
and smoother upsampled image than the existing technique. The sharp drop in intensity 

Fig. 8  A Upsampled image (8 × 8) by Existing Technique B Upsampled image (8 × 8) by Interpolation-Split
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Fig. 9  The intensity change across the lateral and axial direction by Existing Technique and 
Interpolation-Split
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in the upsampled image produced by the existing technique may cause missing pixels, 
i.e., expecting a bright pixel while a dark pixel is produced.

Blurring and edge effects

The mean sharpness of sub-images (n = 120) was 1.62 ± 0.43 produced by Interpolation-
Spilt and 1.59 ± 0.42 produced by the existing technique (p < 0.001). Our proposed tech-
nique produced less blurry images than the existing technique. An example of the edge 
effect was demonstrated in Fig. 10. Our Interpolation-Split produced a better sub-image 
with a minimal edge effect.

Airway segmentation performance

Table 6 shows the airway segmentation performance by using state-of-the-art models: 
nnU-Net with IN and leaky ReLU, nnU-Net with BN and ReLU, and modified dilated 
U-Net. Our proposed data-centric method provides better airway segmentation com-
pared to a baseline model (ir1) for all models. On average, our Interpolation-Split 

Fig. 10  Edge effect A The sub-image produced by existing technique and a missing tissue (green arrow) was 
seen on the edge, B The sub-image produced by Interpolation-Split and a smoother tissue boundary (green 
arrow) was seen

Table 6  Airway segmentation performance in percentage

DSC nnU-Net (IN + leaky ReLU) nnU-Net (BN + ReLU) modified dilated U-Net

Baseline ir1 + ir2 + ir4 + ir8 Baseline ir1 + ir2 + ir4 + ir8 baseline ir1 + ir2 + ir4 + ir8

case 1 87.06 86.85 86.65 86.86 85.27 86.10

case 2 82.33 83.14 81.89 83.29 81.56 81.81

case 3 77.96 81.23 78.01 81.58 78.99 81.40

case 4 86.50 88.29 87.24 88.60 83.20 86.75

case 5 88.07 88.17 87.23 87.50 79.71 85.21

case 6 96.58 98.06 93.70 95.48 88.69 93.28

case 7 92.38 94.09 86.39 92.40 78.56 79.80

case 8 97.00 97.35 88.31 97.19 91.13 94.55

case 9 83.47 97.58 82.04 91.32 72.59 76.80

case 10 85.22 90.74 85.12 90.93 79.57 92.27

Average ± SD 87.66 ± 6.12 90.55 ± 6.06 85.66 ± 4.27 89.52 ± 4.96 81.92 ± 5.39 85.80 ± 6.04
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(ir1 + ir2 + ir4 + ir8) with nnU-Net with IN and leaky ReLU has the highest DSC 
(90.55%), while the DSC of nnU-Net with BN and ReLU and modified dilated U-Net 
is 89.52% and 85.80% respectively.

The airway segmentation results of cases 6 and 9 are shown in Figs.  11 and 12. 
For the DSC of case 6, our method achieves 98.06%, 95.48%, and 93.28% for nnU-
Net (IN + leaky ReLU), nnU-Net (BN + ReLU), and modified dilated U-Net respec-
tively. Regarding the DSC of case 9, our method achieves 97.58%, 91.32%, and 76.80% 
for nnU-Net (IN + leaky ReLU), nnU-Net (BN + ReLU), and modified dilated U-Net 
respectively. Visually, the trachea and bronchi are well segmented in both cases. The 
majority of bronchioles are better segmented by our method.

Airway segmentation performance gain

The airway segmentation performance gain (expressed as a percentage) by 
using our method is reported in Table  7. On average, our Interpolation-Split 
(ir1 + ir2 + ir4 + ir8) with modified dilated U-Net has the highest average per-
formance gain (3.87%), while the average performance gains of nnU-Net with BN 
and ReLU and nnU-Net with IN and leaky ReLU are 3.86% and 2.89% respectively. 
Notably, for the highest segmentation performance gain of individual cases, our 

Fig. 11  The airway segmentation of case 6 by our method for nnU-Net (IN + leaky ReLU), nnU-Net 
(BN + ReLU) and modified dilated U-Net
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method achieves 14.11% (case 9), 9.28% (case 9), and 12.70% (case 10) for nnU-Net 
(IN + leaky ReLU), nnU-Net (BN + ReLU), and modified dilated U-Net respectively.

Figure  13 shows the comparison of airway segmentation between our method 
(ir1 + ir2 + ir4 + ir8) and the baseline model (ir1) for cases 6 and 9. It is clear that 
our method segments more bronchioles than the baseline model. Furthermore, our 
method improves the airway wall segmentation in case 9.

Fig. 12  The airway segmentation of case 9 by our method for nnU-Net (IN + leaky ReLU), nnU-Net 
(BN + ReLU) and modified dilated U-Net

Table 7  Airway segmentation performance gain/loss in percentage

Performance gain/loss nnU-Net (IN + leaky ReLU) nnU-Net (BN + ReLU) modified dilated U-Net
Baseline vs 
ir1 + ir2 + ir4 + ir8

Baseline vs 
ir1 + ir2 + ir4 + ir8

Baseline vs 
ir1 + ir2 + ir4 + ir8

case 1 − 0.22 0.21 0.84

case 2 0.82 1.40 0.25

case 3 3.27 3.56 2.41

case 4 1.79 1.36 3.56

case 5 0.97 0.27 5.50

case 6 1.48 1.78 4.59

case 7 1.70 6.01 1.24

case 8 0.35 8.87 3.42

case 9 14.11 9.28 4.21

case 10 5.51 5.81 12.70

Average ± SD 2.89 ± 4.29 3.86 ± 3.43 3.87 ± 3.54
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Comparative study with state‑of‑the‑art (SOTA) airway segmentation algorithms

Tables  8 and 9 show the individual and overall airway segmentation performance 
of LCTA and AeroPath compared with our proposed method. In general, our pro-
posed method outperformed both SOTA algorithms in most cases except that the 

Fig. 13  The comparison of airway segmentation between our Interpolation-Split (ir1 + ir2 + ir4 + ir8—light 
green / light blue / light brown) and the baseline models (ir1–green / blue / brown) for cases 6 and 9

Table 8  Individual airway segmentation performance in percentage for LCTA, Aeropath, and our 
proposed method

* NA – The segmented airway tree is not available due to algorithmic failure

DSC LCTA​ AeroPath Our proposed method

nnU-Net (IN + leaky 
ReLU)

nnU-Net 
(BN + ReLU)

Modified 
dilated U-Net

case 1 83.65 83.85 86.85 86.86 86.10

case 2 78.31 79.70 83.14 83.29 81.81

case 3 NA* 74.41 81.23 81.58 81.40

case 4 NA* 85.61 88.29 88.60 86.75

case 5 83.92 83.97 88.17 87.50 85.21

case 6 NA* NA* 98.06 95.48 93.28

case 7 NA* 56.06 94.09 92.40 79.80

case 8 NA* NA* 97.35 97.19 94.55

case 9 67.09 NA* 97.58 91.32 76.80

case 10 94.25 NA* 90.74 90.93 92.27
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LCTA performed slightly better than our proposed method in case 10. Furthermore, 
it should be noted that LCTA and AeroPath have five cases and four cases of algo-
rithmic failure, respectively, while our proposed method can produce segmentation 
without any issues. Regarding the overall airway segmentation performance with suc-
cessfully segmented cases, our proposed method has 3–8% and 6–9% performance 
gains compared with LCTA and AeroPath, respectively.

The ablation study of the proposed method

Table 10 shows the ablation study of the proposed method with four interpolation ratios 
applied to nnU-Net (IN + leaky ReLU), nnU-Net (BN + ReLU), and modified dilated 
U-Net. The average segmentation performance gain is improved when segmentation 
with a higher interpolation ratio is aggregated for all models. Further, these results con-
firm that our ensemble learning strategy works well.

Effect of aggregated interpolation ratio (ir)

The plot of average performance gain versus aggregated interpolation ratio is shown in 
Fig.  14. It can be seen that the average performance gain increases initially and levels 
off with a higher aggregated interpolation ratio. It reveals that the optimal aggregated 
interpolation ratio is ir1 + ir2 + ir4 + ir8. Further, this also confirms that using a higher 

Table 9  The average airway segmentation performance in percentage for LCTA, AeroPath, and our 
proposed method

# The average and SD are computed from available segmented airway trees

DSC average ± SD# Our proposed method

nnU-Net 
(IN + leaky 
ReLU)

nnU-Net (BN + ReLU) Modified dilated U-Net

LCTA vs proposed method 81.44 ± 9.88 89.30 ± 5.38 87.98 ± 3.29 84.44 ± 5.70

AeroPath vs proposed 
method

77.27 ± 11.15 86.96 ± 4.51 86.71 ± 3.86 83.51 ± 2.87

Table 10  Ablation study of the proposed method with four interpolation ratios applied to nnU-Net 
(IN + leaky ReLU), nnU-Net (BN + ReLU) and modified dilated U-Net

Model Ablation DSC (Average ± SD)

ir1 ir2 ir4 ir8

nnU-Net (IN + leaky ReLU) ✓ ✓ ✘ ✘ 89.95 ± 5.90

nnU-Net (IN + leaky ReLU) ✓ ✓ ✓ ✘ 90.48 ± 6.01

nnU-Net (IN + leaky ReLU) ✓ ✓ ✓ ✓ 90.55 ± 6.06

nnU-Net (BN + ReLU) ✓ ✓ ✘ ✘ 89.19 ± 4.95

nnU-Net (BN + ReLU) ✓ ✓ ✓ ✘ 89.52 ± 4.94

nnU-Net (BN + ReLU) ✓ ✓ ✓ ✓ 89.52 ± 4.96

modified dilated U-Net ✓ ✓ ✘ ✘ 84.30 ± 5.96

modified dilated U-Net ✓ ✓ ✓ ✘ 85.27 ± 6.42

modified dilated U-Net ✓ ✓ ✓ ✓ 85.78 ± 6.04
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than optimal aggregated interpolation ratio does not necessarily improve segmentation 
performance.

Effect of ensemble learning strategy

The effect of the ensemble learning strategy can be visualised by investigating 3D seg-
mented airway masks. Figure 15 shows the selected 3D masks of airway segmentation 
for nnU-Net (IN + leaky ReLU)—case 3, nnU-Net (BN + ReLU)—case 7 and modified 
dilated U-Net—case 5. For case 3, the segmentation improvement can be observed from 
subsegmental bronchi to bronchioles. Regarding case 7, the segmentation of the bronchi 
is gradually improved from ir1 to ir1 + ir2 + ir4 + ir8. The connection between the lobar 
bronchi has also improved. Further, more higher-generation bronchioles are segmented. 
The segmentation of the trachea is improved for case 5. Additionally, some bronchi are 
better segmented.

Effect of individual interpolation ratio (ir)

The effect of individual interpolation ratios for cases 1, 4, and 5 is illustrated in Fig. 16. 
By observing the segmented airways from ir1 to ir8, more bronchioles are segmented. 
Furthermore, when the highest interpolation ratio (ir = 8) is used, the segmentation of 
the trachea is the worst. In general, more artefacts are observed when a higher interpola-
tion ratio is used.

Blur effect

The blur effect of our method is illustrated in Fig. 17. The blur level increases with an 
increasing interpolation ratio. It is visually evident when the interpolation ratio is set at 
4 and 8. Though the size of the bronchiole is increased after interpolation, the sharpness 

Fig. 14  The plot of average performance gain versus aggregated interpolation ratio
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of the bronchiole wall is reduced. Further, the blur effect is not visually evident when the 
interpolation ratio is set at 2.

Regarding the blur effect of our method, a sharpening filter (Fig. 18) can be used to 
reduce this effect and further improve the segmentation accuracy by about 1%.

Fig. 15  The selected 3D airway segmentation: (Column A) nnU-Net (IN + leaky ReLU)—Case 3, (Column B) 
nnU-Net (BN + ReLU)—Case 7, (Column C) modified dilated U-Net—Case 5
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Memory usage of the proposed method

Table 11 shows the memory usage of the proposed method. The total disk usage of train-
ing data ranges from 3.87  GB to 247.46  GB. However, it is significantly reduced after 
zipping and is between 1.50 GB and 45.40 GB. Regarding validation data, the total disk 
usage is between 1.99 GB and 169.34 GB. After zipping, it is also significantly reduced 
and is between 0.65 GB and 16.27 GB. Furthermore, we only report the maximum Ran-
dom Access Memory (RAM) and GPU memory that are available from the hardware. 
For both training and validation data, the maximum RAM and GPU memory are 8 GB 
and 16GiB respectively.

Discussion
A data-centric deep learning method with big interpolated data has been developed to 
improve airway segmentation on high-resolution CT images. The proposed method can 
be applied to any 2D deep learning model, including standard models such as the U-Net. 
Our study shows that the airway segmentation performance gain is between 0.21% and 
14.11% using our Interpolation-Split. Furthermore, our proposed method outperformed 
the SOTA approaches in airway segmentation.

Fig. 16  Effect of individual interpolation ratio for cases 1, 4 and 5
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The proposed method is good at improving (1) the connectivity between airway seg-
ments, (2) airway wall segmentation, and (3) bronchi and bronchioles segmentation. It 
utilises zoom-in images and aggregates the segmented airways at different scales. The 
zoom-in images are useful for the model to capture the features of the walls of large air-
ways and segment more small airways, which are shape- and scale-/size- dependent [45]. 
Furthermore, the ensemble learning strategy combines the airway segmentation at vari-
ous interpolation ratios and hence improves the connectivity between airway segments.

In this study, we observe that the interpolation ratio affects the airway segmentation. 
Although more small airways are detected and segmented, the large airways, such as 

Fig. 17  The blur effect of our method for cases 1, 4 and 5

Fig. 18  Implementation of sharpening filter on blurred image
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the trachea and primary bronchi, are not segmented well at higher interpolation ratios. 
This implies that an optimal scale/size range of airways exits for a given interpolation 
ratio. The higher interpolation ratio shifts the optimal scale/size range towards smaller 
airways.

It should be noted that the current study uses the threshold (0.5) for binarization. We 
also observe that changing the interpolation ratio affects the threshold. A further study 
is required to investigate the relationship between the optimal threshold and the inter-
polation ratio. We also noted that the sample size increases significantly with higher 
interpolation ratios, and hence the training time increases accordingly. Data parallelism 
can be deployed to speed up the training and maintain computational efficiency.

Our proposed technique requires low RAM (i.e., 8  GB) usage when interpolation is 
performed. The GPU memory requirement is also low (i.e., 16 GiB GDDR6) as the mod-
els have low GPU memory utilisation and the size of the input image is fixed. Further, 
our Interpolation-Split is GPU memory efficient because the GPU memory requirement 
does not increase throughout the pre-processing (including interpolation/split), train-
ing, and validation stages. It only requires disk space to store the original/interpolated 
images; zip compression can be used to compress the images and save the disk space 
when computational resources are low.

In this study, we use a 2D segmentation strategy for 3D CT volume, which is adopted 
from Zhang et al. [46]. Zhang et al. analysed a set of 2D MRI images extracted from 3D 
MRI volumes. Then, these 2D images were fed into the 2D CNN deep learning model 
for multi-modality isointense infant brain image segmentation. Their approach out-
performed existing methods and showed that a deep learning model (2D CNNs) could 
produce more objective and accurate computational results for infant tissue image seg-
mentation. Additionally, 2D CNN has a lower computational cost compared with 3D 
CNN.

It should be noted that a small segmentation performance loss (-0.22%) was observed 
for case 1 when nnU-Net (IN + leaky ReLU) was used. This might be explained by the 
fact that ir1 + ir2 + ir4 + ir8 is not the optimal configuration and leads to degraded seg-
mentation. The optimal configuration for this case is ir1 + ir2, and its segmentation 

Table 11  The memory usage of the proposed method

* The maximum RAM is reported. #The maximum GPU memory is reported

Random access 
memory (RAM)*

GPU memory# Total disk usage Total disk 
usage (with 
ZIP)

Training

 ir1 8 GB 16GiB 3.87 GB 1.50 GB

 ir2 8 GB 16GiB 15.47 GB 4.78 GB

 ir4 8 GB 16GiB 61.87 GB 15.85 GB

 ir8 8 GB 16GiB 247.46 GB 45.40 GB

Validation

 ir1 8 GB 16GiB 1.99 GB 0.65 GB

 ir2 8 GB 16GiB 7.97 GB 1.98 GB

 ir4 8 GB 16GiB 31.88 GB 6.24 GB

 ir8 8 GB 16GiB 169.34 GB 16.27 GB
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performance gain was 0.12%. In general, ir1 + ir2 + ir4 + ir8 is still the optimal configura-
tion for all other cases.

A human tracheobronchial tree has 23 airway generations on average [47, 48]. High-
resolution CT has the ability to image a smaller component of the airway tree, as bron-
chioles with a diameter less than 2 mm are not visible on HRCT. In healthy subjects, up 
to 8 airway generations may be visible on HRCT [49], and the number of visible airway 
generations increases in disease states. The segmentation performance of healthy sub-
jects was compared with that of IPF patients. Notably, our proposed method shows bet-
ter performance gain for IPF patients. This might be explained by the observation that 
more abnormally small airways (between the 9th and 13th airway generations) [50] are 
found in IPF patients. This also reveals that our method improves the segmentation of 
small airways.

In this study, nnU-Net and modified dilated U-Net were chosen as the baseline mod-
els. While our previous study [51] evaluated the segmentation performance on standard 
U-Net, its performance was about 75%. This also demonstrates the benefits and useful-
ness of the proposed technique applied to a more complex model.

Our research has potential implications for airway disease diagnosis through fully 
automatic airway tree segmentation method. It not only improves the airway tree seg-
mentation performance but also the efficiency of airway disease diagnosis. Furthermore, 
employing our research in clinical environments with low computational resources 
could reduce healthcare costs.

Our study has several limitations. First, the subjects and patients were selected retro-
spectively. This might introduce bias in data selection. Second, manual annotation was 
performed to produce ground-truth labels for airway tree segmentation. The annota-
tors might bias the accuracy of the ground-truth labels. Third, the segmentation per-
formance metric, DSC, might provide a biased measurement as the large and small 
airways were examined together. Larger airways segmented well might have resulted in a 
good DSC, even if small airways were segmented poorly. Fourth, CT scanner resolution 
(i.e., slice thickness) is also a factor that limits the scanner’s ability to capture the small 
bronchioles.

The future work aims at extending the current 2D data-centric deep learning method 
to a 3D approach and investigating its segmentation performance and memory effi-
ciency. Furthermore, explanability is another important research direction that provides 
explanations for segmentation decisions, and the decision can be understood by the 
users.

Conclusion
Our study is the first to demonstrate the feasibility of using a data-centric deep learning 
method with big interpolated data to segment the airway tree, resulting in a good seg-
mentation performance gain. We contribute to the research and healthcare communities 
by providing a fully automatic, memory-efficient, and flexible airway tree segmentation 
method. The proposed method not only improves the airway tree segmentation perfor-
mance but also the efficiency of airway disease diagnosis. Furthermore, healthcare costs 
can be saved by adopting our research in clinical environments with limited computa-
tional resources.
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