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Introduction

K-Nearest Neighbors (kNN) is a method in supervised machine learning, originally
developed by Evelyn Fix and Joseph Hodges in 1951 and later refined by Thomas Cover
[1]. This algorithm is extensively utilized across diverse fields such as data mining, rec-
ommendation systems, and the Internet of Things (IoT), playing a pivotal role in the
advent of Industry 4.0. Specifically, in the realm of data mining, kNN is instrumental
in classifying human activities, registering iterative closest points, and recognizing pat-
terns. Additionally, it proves highly reliable in systems aimed at detecting intrusions
and faults. These applications of kNN are thoroughly discussed in Sect. "Applications of
kNN”

The K-Nearest Neighbors (kNN) algorithm operates as a non-parametric, instance-
based learning method, commonly employed in supervised learning tasks, including
classification and regression. Contrasting with model-based learning approaches that
deduce a function from training data to make predictions, kNN is categorized as a lazy
learning algorithm. It formulates predictions by analyzing the data structure in real-
time upon the introduction of new instances, without necessitating a preceding explicit
training phase. The K-Nearest Neighbors (kNN) algorithm operates on the principle of
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likelihood of similarity. It posits that similar data points tend to cluster near each other
in space. Consequently, the prediction for a new data instance is based on its proximity
to existing instances in the training set.

Steps in the kNN algorithm:

«+ Select k: Begin by choosing the number of nearest neighbors to consult. This number,
k, is a critical hyperparameter that you adjust based on your dataset’s specific charac-
teristics. The optimal value of k is essential for the accuracy of the algorithm’s predic-
tions. A smaller k value can make the algorithm sensitive to noise and overly flexible,
whereas a larger k can render it computationally intensive and prone to underfitting.

+ Calculate Distances: Compute the distance between the new instance and all points
in the training dataset. Common metrics for this calculation include Euclidean, Man-
hattan, and Minkowski distances. The selection of a distance metric can significantly
affect the algorithm’s performance, particularly in relation to the dataset’s character-
istics.

+ Identify Nearest Neighbors: Order all points in the training set from nearest to far-
thest from the new point, and select the closest k points.

+ Aggregate Neighbor Responses: For classification tasks, the prediction is typically the
majority label among these k nearest neighbors. For regression, it might be the aver-
age or median of the neighbors’ values.

Choice of parameters and its implications:

+ Selecting k: The choice of k has a profound impact on the model’s behavior. A lower
k can cause the model to overfit, capturing noise instead of representing the true
underlying patterns of the data. On the other hand, a higher k tends to overly smooth
the decision boundary, which can lead to underfitting.

+ Distance Metric: While Euclidean distance is the most commonly utilized, other
metrics like Manhattan or Minkowski might be more suitable in scenarios involving
high-dimensional data or when different scaling or sensitivity to particular dimen-

sions is required.

The recent discourse on K-nearest neighbors (kNN) algorithms has highlighted several

critical issues:

1. Selection of Optimal k: Determining the most appropriate number of neighbors (k)
remains a challenge as it significantly impacts the algorithm’s accuracy and generali-
zation ability.

2. Computational Efficiency: The classic kNN algorithm can be computationally inten-
sive, particularly with large datasets, due to its need to compute distances between
points for each query.

3. High-Dimensional Data Handling: kNN’s performance can deteriorate in high-
dimensional spaces due to the curse of dimensionality, where distances become less
meaningful.

4. Noise and Outlier Sensitivity: The algorithm’s reliance on the nearest neighbors
makes it susceptible to noise and outliers in the data.

Page 3 of 55



Halder et al. Journal of Big Data (2024) 11:113 Page 4 of 55

To address kNN algorithm challenges, scholars have innovated by creating adap-
tive algorithms to dynamically select the optimal k value, enhancing the algorithm’s
sensitivity to the specificities of the data. For computational efficiency, dimensional-
ity reduction techniques have been applied to mitigate the curse of dimensionality.
Advanced distance metrics and weighting schemes improve robustness against noise
and outliers, enhancing the algorithm’s accuracy in high-dimensional spaces. These
adaptations, including variants like Adaptive kNN, Weight adjusted kNN, and Fuzzy
kNN, are particularly pivotal in domains requiring high precision, such as healthcare
diagnostics, showcasing a tailored approach to overcoming kNN’s inherent limita-
tions. We have noticed that a lot of current research focuses on faster, approximated
methods like approximate nearest neighbor (ANN) algorithms [2-6] to handle com-
plex data. These methods are fast but might not always provide the most accurate
results. This implies that the nearest neighbors obtained might not accurately repre-
sent the actual k nearest neighbors. In contrast, we are particularly interested in the
exact KNN methods that ensure the highest level of accuracy in finding the true clos-
est data points. This paper is dedicated to discussing these exact KNN methods, given
their critical importance in scenarios where precision is key. This paper focuses on
two main types of KNN queries: kNN Search and kNN Join, exploring their important
roles, details, and opportunities for improvement. kNN Search aims to find the ‘K’
nearest data points to a specific query point, essential for applications that need quick
and accurate data retrieval. On the other hand, kNN Join finds the ‘K’ closest points
for every query point in the dataset, helping to uncover hidden patterns and relation-
ships in the data, leading to a deeper understanding of the data’s structure and mean-
ing. The research questions we aim to address are as follows:

RQ1: What are the applications and critical issues of kKNN?

RQ2: What are the various state-of-the-art variants of kNN that have emerged
over time?

RQ3: What are the distinct roles, and methodologies for both kNN Search and
kNN Join queries, considering their respective importance in facilitating rapid
data retrieval and uncovering hidden patterns and relationships within datasets?
RQ4: What are the strengths and weaknesses associated with various iterations of
both kNN search and kNN join techniques?

RQ5: How do various R-tree variants, including R-tree, R*-tree, Hilbert R-tree,
PR-trees, KD-tree, Ball-tree, VP tree, and MVP tree, contribute to the efficient
processing of low-dimensional datasets in kNN queries, and what are their com-
parative advantages and limitations?

RQ6: How do parallelization, dimensionality reduction techniques, and partition-
ing methods address the challenges of efficient kNN query processing in high-
dimensional spaces, and what are their comparative advantages and limitations in
overcoming the “curse of dimensionality”?

RQ7: How do we address the challenges faced by traditional kNN methods, and
how do we enhance information extraction, optimize computational efficiency,
integrate ensemble learning, and improve classification accuracy for large-scale
data classification tasks?
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kNN in low-dimensional space: an overview
Basic kNN search approach To determine the k closest neighbors for a given query point,
the foundational kNN Search method is utilized. This technique is frequently referred to
as the brute force (BF) method or the exhaustive search approach. When applying this
method, every data point in the dataset is scanned to identify the k nearest points based
on the distances from the query point to all other data points. The primary drawback of
this approach is its computational intensity. Calculating the Euclidean distance for a sin-
gle kNN query comes at a cost of O(nd), where “n” is the sample count and “d” signifies
the dimensionality of the datasets. When the dataset is substantial, or numerous queries
are pending, the query execution time can become prohibitively long.

kNN join and its advantages Bohm and Krebs were the first to introduce the concept
of kNN Join [7, 8]. This study emerged from the realization that computing the nearest
neighbors for all query points concurrently is significantly faster than doing so individu-
ally. The adoption of kNN Join has amplified the performance of various applications.
Some notable applications include: k-means clustering [9, 10], Outlier detection [11, 12],
kNN classification [13, 14], k distance diagrams, Missing value computation, and oth-
ers [8]. Several research works delve into kNN queries specifically in low-dimensional
space [15—22]. The evolution of R-tree variants reflects the ongoing effort to enhance the
efficient processing of low-dimensional datasets, leading to the proposition of several
versions. The original R-tree [15] divides the minimum bounding rectangle (MBR) to
manage spatial data efficiently. The R*-tree [16] improves upon this by taking overlap
into account when dividing an MBR, reducing overlap and coverage for better perfor-
mance. The Hilbert R-tree [17] further optimizes the grouping of related MBRs based
on Hilbert ordering, which improves query performance. PR-trees [18] handle large data
volumes by using priority rectangles, which help in managing extensive datasets more
effectively. Other notable structures include the KD-tree [19], which is a binary search
tree method designed to expedite the neighbor search process by recursively partition-
ing the data space. The Ball-tree [20] uses a branch and bound approach to optimize
distance computations, effectively managing high-dimensional data. The Vantage Point
Tree (VP tree) [21] addresses complex search issues by organizing data points based on
their distances to a selected vantage point, allowing efficient similarity searches. The
Multi-Vantage Point (MVP) tree [22] builds on this by using multiple vantage points
to divide space into spherical slices, providing a robust distance-based index structure
for similarity searches. These innovations in tree structures and indexing methods sig-
nificantly contribute to the advancement of efficient data retrieval processes in various

dimensions.

kNN in high-dimensional space: an overview

The efficient processing of k-Nearest Neighbors (kNN) queries becomes increasingly
complex with the rise in data dimensionality, often termed as the “curse of dimension-
ality” [23-25]. Traditional indexing algorithms like B-tree and R-tree are optimized
for lower dimensions, but their performance diminishes rapidly as the dimensional-
ity increases. This phenomenon necessitates innovative solutions to facilitate efficient
and speedy kNN queries in high-dimensional spaces. The challenges of high-dimen-
sional kNN queries are significant and multifaceted. Two primary challenges exist:
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first, identifying the k nearest neighbors (kNN), and second, computing distances rap-
idly and efficiently. The complexity of identifying the kNN increases exponentially with
the number of dimensions, making traditional methods less effective. Efficiently com-
puting distances in high-dimensional spaces is equally challenging due to the curse of
dimensionality, which can lead to a rapid increase in computational requirements and
a decrease in performance. These challenges necessitate the development and imple-
mentation of advanced methodologies and optimizations to ensure efficient and accu-
rate KNN query processing. These challenges are compounded by increased dimensions,
necessitating the exploration of novel methodologies and optimizations [26—28]. The
traditional indexing dilemma arises because B-tree and R-tree families, though pro-
ficient in low-dimensional settings, are adversely impacted by increased dimensions.
Consequently, sequential linear scans often become the fastest retrieval method, albeit
inefficient. Strategies for enhancing kNN query processing include parallelization,
dimensionality reduction, and partitioning methods. Parallelization divides the compu-
tational task into segments, enabling concurrent processing on different units [29]. This
approach utilizes clusters, GPUs, or multi-core machines to bolster processing speed
without diminishing computational requirements, and researchers have demonstrated
significant speed enhancements, particularly by exploiting GPUs for parallelized brute-
force searches. Dimensionality reduction (DR) transforms high-dimensional data into
a more manageable, lower-dimensional format [30—33]. Techniques such as Principal
Component Analysis (PCA) are renowned for their efficiency and scalability, accelerat-
ing searches and data processing, and marking a cost-effective solution to the challenges
posed by higher dimensions. Partitioning methods are classified into space-based and
data-based categories. These techniques incorporate diverse tree structures like R-tree,
R*-tree, Ball tree, and KD-tree, each designed for efficient data space segmentation and
distance calculation pruning. Given the inadequacy of traditional tree structures in
high-dimensional settings, innovative models like M-tree, A-tree, and HDR-tree have
emerged [26, 34]. The objective of these adaptations is to optimize kNN query process-
ing amidst the intricate landscape of high-dimensional data.

Survey scope

This article endeavors to conduct an in-depth examination of exact KNN querying tech-
niques, notably kNN Search and kNN Join, within the context of high-dimensional
spaces. This focus arises from the observation that a significant body of recent works
is centered on exact kNN queries amidst high-dimensional datasets. Previous surveys
have either concentrated on kNN techniques within low-dimensional spaces [35-37] or
explored approximate methodologies in high-dimensional environments [38, 39]. Addi-
tionally, while there are MapReduce-based studies that incorporate distributed and par-
allel survey work [40, 41], a void exists in literature that holistically addresses exact KNN
Join methodologies.

Objectives

We aim to fill aforementioned gap by giving a thorough review of the current specific
kNN techniques, looking closely at how they work with complex data. We will organize
these methods into clear categories and compare them side by side, highlighting their
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unique features, how efficient they are, and where they can be best applied. In simpler
terms, we are making a complete guide that breaks down and compares these complex
methods in a way that is easy to understand.

Motivations

The imperative to undertake this survey is rooted in the following considerations:

1. The ubiquity and escalating popularity of KNN queries in high-dimensional spaces,
courtesy of their expansive applicability across myriad domains in recent times.

2. While kNN Search has been the focal point of numerous scholarly contributions, a
comprehensive survey synthesizing exact kNN techniques for high-dimensional data
remains elusive.

3. The literature on kNN Join, although rich with comparative studies on diverse exact
and approximate MapReduce-centric approaches [40, 41], lacks a dedicated survey
spotlighting solely on exact kNN Join methodologies pertinent to high-dimensional
realms.

Contributions
We are exploring advanced ways to use kNN Search and kNN Join for high-dimensional
data. Here is a simplified breakdown of what we have covered:

1. Methodological Overview: We extensively explored exact KNN techniques for high-
dimensional datasets, encompassing 31 search methods and 12 join methods.

2. Analytical Insight: Each method has been critically evaluated, detailing its strengths,
limitations, the evaluation metrics used, and the datasets upon which they were
tested.

3. Resource Provision: For practical engagement, the source code of the kNN methods
has been provided, facilitating direct experimentation and comparative analysis for
readers.

4. Research Horizons: We have identified existing challenges and outlined potential
directions for future investigations in the realm of kNN techniques.

Structure of the article Sect. “Problem definition” lays out the foundational terminology
and outlines the problem we address. In Sect. “Article selection process’, we detail the
criteria and process behind the selection of articles for our study. Sects. “kNN search”
and “kNN join approach” dissect the mechanisms of kNN queries, specifically focus-
ing on kNN Search and kNN Join techniques, through the lens of computing paradigm
classifications. Sect. “Applications of kKNN” discusses the practical applications of kNN.
A comparative analysis of the methodologies discussed is presented in Sect. “Compar-
ative analysis” Sect. “Discussion” contains various perspectives and viewpoints on the
application of k-Nearest Neighbors from other scholars. The document concludes with
Sect. “Conclusion’; summarizing our findings, and Sect. 11, where we identify challenges
and outline future research directions.
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Problem definition
In this section, we provide clear definitions for key terms frequently referenced through-
out this paper.

Definition 1 (kNN search)

Let D be a dataset containing n points in a d-dimensional space, q a query point in the
same space, k the number of nearest neighbors to retrieve, dist(p, q) a function that cal-
culates the distance between point p and query point q. The kNN search problem is to
find a set R containing k points from D such that for each point p € R, there is no other
point p” € D where dist(p, q) > dist(p/, q). In other words, every point in R is among the
k closest points in D to the query point q. Figure 1 shows the example of kNN Search
approach for k=3. Example: Given k=3, the kNN Search method identifies the three

closest points in dataset D to the query point s;.

Definition 2 (kNN join)

Let D1, Dy be two datasets containing n points in a d-dimensional space, k the num-
ber of nearest neighbors to join, dist(p;,p;) a function that calculates the distance
between point p; € D; and query pointp, € Dy. The kNN join problem is to find pairs
of points (p;, py) such thatp; € Dy, there are exactly k points p, € Dy with minimal dis-
tancedist(p;, p,). It means for each point in D1, we find its k closest points inDs. Figure 2
shows the example of kNN Join approach for k=2. Example: Given k=2, the kNN Join
method determines the two closest points from the D; dataset for every point within the
D; dataset.

Definition 3 (distance range)

A distance range is characterized by identifying all pairs of elements from two dis-
tinct datasets, R and S, that fall within a specified distance threshold, 6. In this con-
text, dataset R contains elements {rq,ro,r3,...., 1y} and dataset S consists of elements
{s1,82,83,...Sm}. The pairings from the two sets are determined by the criteria
(r,s) :reR, seS, d(r,s) <0, where d(r, s) denotes the distance between elements r, s,
and 0 represents the user-defined distance threshold. Every pair that satisfies this condi-

tion is included in the result.

s

4 dl dz

query point S1
d4 d8

ds

S2
S3 de d;
ds
S Dataset D Dataset

Fig. 1 Example of kNN Search approach for k=3
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S
4 dl dz
S1
// d4 d d8
3
S2
S3 d6 d7
ds
D, Dataset D, Dataset

Fig. 2 Example of kNN Join approach for k=2

Definition 4 (k-distance join)

The closest point query, equivalently termed as the k-Distance Join, is a method
employed to ascertain the k most analogous pairings across two distinct datasets,
R and S. Here R is defined as R = {r1,ry,r3,....,ry} and S = {s1,52,83,....,Sm}. The k
-Distance Join aims to identify a subset KDJ(R, S) consisting of k pairs, each derived
from the Cartesian product R x S, wherein each pair (rj, sj) € KDJ(R, S) satisfies the
condition that the distance d(rj, sj) is lesser or equal to the distance of any other pair
(ri, sj) is lesser or equal to the distance of any other pair (ry, s;) € R x S. The range of k
is bounded as 1 < k < min(n, m), ensuring the derivation of the closest pairs without
exceeding the total number of elements in either dataset.

Definition 5 (reverse kNN join)

Let R and S be two distinct datasets comprised of points situated within a d-dimen-
sional space, denoted as RY. Let the Euclidean distance function d(ry,sj) measure the
distance between any two given data points r; € R and s; € S. Additionally, consider a
natural number k € N*. Under these conditions, the outcome of a reverse kNN Join
in correlation to a query data point s;j is defined as a subset Rynn (R, sj) C R, which
incorporates data points that count sj as one of their k nearest neighbors. Mathemati-
cally, it can be articulated as: Rinn (R, Sj k) = {ry,r9,13,....,1n} € R.

Definition 6 (dynamic kNN join)

R And S as two datasets consisting of points situated within a d-dimensional
space RY. The Euclidean distance between two points r; € R and sj €S is com-
puted using the distance function d(rj,sj). Let k be a positive natural number such
that k € Nt and 1< k < |s|. In this context, a dynamic kNN Join refers to the pro-
cess of dynamically identifying and associating similar data points across datasets
R and S based on their Euclidean distance. The resultant set from this join opera-
tion is denoted asDKNNJ(R, S, k) € R x S, and it contains pairs of points (ri, sj) such
that for each r; € R, s; is among its k closest neighbors inS. The formal definition is:
DKNNJ(R, S, k) = {(r;, ) |Vr; € R, s; ¢ KNN(S, rj, k}. Furthermore, the dynamic nature
of this join implies a real-time adaptation to the modifications in datasetS. For every
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insertion or deletion operation involving an item s; € S, the affected set of users
ra : RKNN(s;) where si € S and RkNN(sj) C R, is identified. Subsequently, updates
are implemented to reflect the changes in the join results, ensuring that each point
in r, maintains its k closest neighbors in the modified datasetS. The updated join is
expressed as:kNN(S,ry, k) SR x S.

Definition 7 (approximate nearest neighbour)

The Approximate Nearest Neighbor (ANN) search quickly identifies points in a data-
set that are close to a query point, but not necessarily the closest. This approach is
beneficial in high-dimensional spaces where exact searches are costly. In recom-
mendation systems, for instance, it is often sufficient to suggest items that are “close
enough” rather than pinpointing the most similar one. This can lead to unexpected
and interesting discoveries for users. Similarly, in kNN classification, points that are
near each other are often of the same class, even if they are not the absolute closest.

Article selection process

Search strategy and data sources

In 2022, we conducted a systematic review by searching various scientific databases,
including Scopus,,ACM Digital Library, IEEE Xplore, ScienceDirect, SpringerLink,
Embase, Web of Science, PubMed, Research, Gate, Wikipedia, and others as listed in
Table 1. The review was limited to studies conducted in English. We ran the search
using a combination of restricted vocabularies (MESH words) and free-text terms to
search electronic databases. Using the Google search engine, they also used relevant
keywords to perform a general search for gray literature, such as conference papers,
research projects, theses, and dissertations. The PRISMA flowchart conducted all of
these procedures.

Table 1 Search strategy and keywords

Database Scopus, ACM Digital Library, IEEE Xplore, ScienceDirect, SpringerLink, Embase,
Web of Science, PubMed, Research, Gate, Wikipedia

Limits Language (only resources with English), Species (studies on K Nearest Neighbor)

#1 "k Nearest Neighbor (kNN)“ OR "kNN", OR “Variants of kNN’, OR “Modified kNN *

#2 ("Weighted kNN"OR “Condensed Nearest Neighbor”OR “Reduced Nearest

Neighbor”OR "Edited Nearest Neighbor” OR “Edited Nearest Neighbor” OR
“Selective Nearest Neighbor” OR “Voronoi Boundary Nearest Neighbor” OR
“Model Based k Nearest Neighbor” OR "Ranked Based k Nearest Neighbor” OR
OR“Clustered k Nearest Neighbor” OR “Ball Tree k Nearest Neighbor” OR “k-d
Tree Nearest Neighbor”OR “Nearest Future Line Neighbor”OR “Local Nearest
Neighbor” OR“Principle Axis Tree Nearest Neighbor"OR “iDistance” OR “Diagonal
Ordering” OR "VA*-file” OR“OTl and EOTI" OR “BP" OR “A-tree” OR “array-index” OR
“A-tree” OR"ACDB" OR “iDistance-PS” OR “PL-Tree” OR “iDStar” OR “HC-O" OR “BF-
CUDA" OR“CUBLAS" OR“TBiS" OR “QDBI" OR “CU-kNN"OR “kNN-PA" OR "HKNN"OR
“MuX"OR“Gorder” OR “iJoin” OR “iJoinAC" OR “iJoinDR" OR “IIB" OR “llIB algorithm”
OR"kNNJoin +"OR "HDR-Tree" OR “CTD-kNNJ"OR "EKNNJ" OR “H-BNLJ"OR “H-BRJ"
OR"PGBJ”

#3 #1 AND #2
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Data selection (inclusion and exclusion criteria)

To identify relevant studies, this investigation comprehensively searched conference
papers and journal articles from specific databases without any time restrictions.
However, the researchers excluded other types of research, such as letters to the edi-
tor, educational reports, brief communications, editorial commentary, editorials,
protocols, standards, and industry papers. Duplicate and irrelevant studies, as well
as publications without full-text access, were also eliminated. The study focused on
modified kNN applications across various sectors and included only articles written
in English. Moreover, articles discussing data mining and machine learning, as well
as those that were not related to the study, were excluded. We have selected 43 (Year:
1967 to 2022) papers that met the inclusion criteria from the initial pool of 1056 stud-

ies. Figure 3 depicts how we set the article after the PRISMA declaration.

Identification

Screening

Eligibility

[

Included

[

Records identified through
database searching
(N=1056)

{

v

Records after duplicates removed
(N =902)

Records screened
(N =468)

Full-text articles assessed for
eligibility
(N =134)

Repeated article
(N = 154)

Records excluded after
screening title
(N=434)

Records excluded after
screening abstract
(N =334)

Studies included in
qualitative synthesis
(N =43)

4

Full-text articles excluded,
with reasons (Full-text
unavailable and
irrelevant article)

(N =91)

Fig. 3 Flow diagram of the article selection process from 1967 to 2022
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Data extraction
We have utilized a form that divided the extracted information from the selected studies
into three categories: general information, objective and method, and significant results.
The general information category included the publication’s title, author, date, and loca-
tion. The objective and method types included information on the research objectives,
data analysis, data mining methodology, and resource data used in the study. Lastly,
the significant results category captured the three main conclusions drawn from the
research. To facilitate a comprehensive grasp of the methodologies and their evolution, a
chronological representation of the kNN Join and kNN Search techniques is delineated
in Fig. 4. The upper segment of the figure enumerates all the kNN Join techniques, while
the kNN Search methodologies are cataloged in the lower section.

Furthermore, for an organized understanding, kNN Search and kNN Joins have been
categorized based on distinct Computing Paradigms—I/O-based, main-memory-based,
and parallel or distributed, as documented in Tables 2 and 3, respectively.

kNN search

In a significant number of database applications, the task of identifying an item similar
to a specified query point is often complex and resource-intensive. Under these condi-
tions, the KNN query proves to be especially beneficial. Numerous studies have been
undertaken to solve the exact kNN issue, yet a considerable portion has been devoted
to approximation methods. That said, there is also a segment of research focused on
precise kNN solutions, with proposals such as HDR-tree and iDistance emerging to
optimize the efficiency of kNN identification and minimize the associated computa-
tional expenses. This survey is primarily concentrated on these precise methodologies.
An exhaustive exploration of an array of high-dimensional kNN Search and kNN Join
methods is presented. To simplify the comprehension process, these methods have been
systematically categorized. In this section, we focus on the diverse exact kNN Search

Fig. 4 Chronological representation of the kNN Join and kNN Search
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Table 2 Classification of kNN Search approach based on Computing Paradigms

Categories Algorithm Time complexity
I/O based iDistance [42, 43] O(logn)
Diagonal Ordering [44] O(logn)
VAt-file [47] O(logn)
OTl and EOTI [48] O(n)
BP [52] O(nlogn)
Main memory based A-tree [26] O(n)
array-index [53] O(logn)
At-tree [26, 54] O
ACDB [55] O(nlogn)
iDistance-PS [56] O(n)
PL-Tree [62] O(logn)
iDStar [63] O(n)
HC-0 [66] O(n)
Parallel and distributed Classical kNN [69] O(n)
W-kNN [70] O
CNN [71] O(n)
RNN [72] O
ENN 73] O
SNN [74] O(n)
VBNN [75] O(n)toO(logn)
M-kNN [76] o)
R-kNN [77] o)
C-kNN [78] O(n)toO(logn)
NFL [79] O(n)
LNN [80] O
BF-CUDA [29] O(n)
TBIS [83] O(log?n)
QDBI [87] O(logn)
CU-kNN [88] Oo(n)
kNN-PA [89] O(nlogn)
HKNN [92] O

Table 3 Classification of kNN Join approach based on Computing Paradigms

Categories Algorithm Time complexity
I/0 based MuX [7, 8] O(nlogn)
Gorder [94] o(nZ)
iJoin, iJoinAC and iJoinDR [95] O(nlogn)
IIB and IlIB algorithm [96] O(nlogn)
kNNJoin 4 [28] O(nlogn)
Main memory based HDR-Tree [34] O(nlogn)
EKNNJ [98] O(nlogn)
Parallel and distributed Ball Tree [100] O(nlogn)
k-d Tree [19] O(nlogn)
PAT [101] O(logn)toO(n)
H-BNLJ and H-BRJ [102] O(nz)

PGBJ[12]

O(nlogn)

Page 13 of 55
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methods, categorizing them based on different Computing Paradigms including I/O-
based, main-memory-based, and parallel or distributed approaches.

1/0-based

These algorithms are optimized to minimize disk access and are especially beneficial

when dealing with large datasets that cannot fit entirely into the main memory.
iDistance iDistance is an innovative index structure developed by researchers [42,

43] to improve kNN Search for high-dimensional (HD) data. In simple terms, it turns

complex data into a more straightforward, one-dimensional format. The transformation

involves:

1. Dividing the data into several sections.
2. Assigning a unique ‘reference point’ to each section.
3. Changing each section based on how similar data points are to their assigned refer-
ence point.
For this, they used a B+-tree structure for fast access to the one-dimensional points
and an array to store the reference points and their associated data. When searching,
they initially look for the closest data points and expand the search area slowly until
the desired neighbors are found. The efficiency of iDistance makes it stand out, even
though most search methods become less effective with more data dimensions.
Diagonal ordering In a research study [44], a strategy called ‘diagonal ordering’ was
introduced. It is a way to simplify high-dimensional data into a more manageable 1D
format by slicing clusters of data diagonally. To help with data organization, they use a
B+-tree structure. This method is somewhat similar to other approaches like iDistance
and the Pyramid Technique. Here is the simple breakdown:

1. The vast data space is split into clusters.

2. Inside each cluster, vectors are organized in a diagonal order.

3. This organization helps turn complex vectors into one-dimensional values, which are
then indexed using a B+-tree.

One significant benefit of this method is that it can quickly estimate the shortest dis-
tance between data points using the diagonal order. This helps improve search processes
by quickly eliminating irrelevant data points without needing detailed calculations. The
method uses an iterative approach to find the nearest neighbors: it begins searching
with a small radius and expands until the desired neighbors are identified. To make data
ordering effective, they applied PCA [45], prioritizing key characteristics, and used a
clustering approach similar to iDistance’s k-means clustering. Overall, the performance
of the ‘diagonal ordering’ method was found to surpass several other methods, including
X-tree [46], iDistance [42], and VA file [23].

VA™-file Researchers in [47] introduced an innovative search method tailored for
large, complex datasets. The VA™-file technique is grounded in the scalar quanti-
sation of data, proving especially efficient for kNN searches within non-uniform
high-dimensional datasets. This approach enhances search performance by utilizing
approximation techniques. The study presents a broad framework for approximate
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kNN, explores various strategies for handling similarity queries, and introduces a
new metric for evaluating these strategies. Additionally, a new method rooted in
clustering is unveiled, amalgamating the strengths of different approaches to opti-
mize progressive similarity searches.

OTI and EOTI In research documented in [48], a new approach to kNN searching,
named the Optimum Triangle-Inequality (OTI), is proposed. This method reduces
redundant distance calculations, making it more efficient than the traditional TI
technique. However, OTI has a downside of requiring large space. To address this,
the Enhanced Optimum Triangle-Inequality (EOTI) is introduced, optimizing the
space and complexity associated with OTI. The KMC-TI-FS (TI) technique [49]
divides the search process into two steps. Initially, data items are grouped using
the k-means algorithm in an offline clustering phase. The second phase involves
an online search where the TI approach identifies potential k nearest neighbors
for a given query. This method accelerates the kNN search as distances between all
items and the cluster center are pre-calculated and stored during the offline phase,
eliminating the need for additional calculations. However, TI’s limitation is that it
cannot eliminate items in the marginal regions of adjacent clusters. OTI [48] was
introduced to optimize this process by selecting an ideal cluster center that forms an
appropriate triangle, improving the elimination process. However, OTI’s high space
complexity and increased calculation time needed refinement. That is where EOTI
comes in, as an efficient solution balancing search performance with space and time
complexity. EOTI records just two distances for each item, reducing space complex-
ity to O(N x C). It registers the distances to the closest and farthest cluster centers,
enabling efficient kNN searches with minimized space and time requirements.

BP Bregman distances are a common tool in fields like voice recognition and
machine learning, including kNN Searches. They are used to process high-dimen-
sional data, like that from multimedia systems. However, past methods using Breg-
man distances [50, 51] were limited to moderate dimensional data and struggled
with efficiency in high-dimensional spaces due to challenges like cluster overlap and
intensive computations. This issue is tackled in a new study [52], where research-
ers introduce a partition-filter-refinement structure for efficient high-dimensional
kNN Search. The method involves dividing the high-dimensional space into smaller
subspaces, running range queries, and then filtering the results. Innovations in this
study include the use of the Cauchy inequality to calculate upper limits for searches
within subspaces and introducing a Pearson Correlation Coefficient-based Parti-
tion (PCCP) to organize correlated dimensions into different subspaces. They also
implemented Bregman Ball trees (BB-trees) [50] to accelerate searches within these
low-dimensional subspaces and developed an integrated, disk-resident BB-forest
index structure. During a search, query items are converted into a triple [52], and
a range query is performed. Results are then filtered to identify the kNN. To opti-
mize both efficiency and accuracy, the precise solution is modified into an Approxi-
mate BrePartition (ABP), marking the first non-metric method that utilizes Bregman
distance and offers enhanced performance in high-dimensional spaces for kNN
searches.
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Main-memory-based
These are typically used for smaller datasets that can be loaded entirely into the mem-
ory, allowing for faster data access and processing.

A-tree A study [26] introduced the A-tree as a new index structure designed to opti-
mize high-dimensional queries in main memory. The A-tree features a multilayered
structure where each level, facilitated by PCA, presents increased dimensionality
from the root to the leaves. Each layer aids in narrowing down the search area, thanks
to the reduced dimensions that quicken distance calculations and optimize cache line
size utilization. The A-tree is highly efficient in pruning the search region. Owing to
the PCA property, distances between points in lower dimensions are always smaller
than in higher ones. Thus, if the distance between a data point and the query in low
dimension exceeds the original distance of the existing k-th nearest neighbor, that
point is eliminated. However, the tree’s effectiveness is influenced by a few factors:

It performs best with globally correlated datasets.
It requires processing the entire dataset to determine the PCA eigen matrix.
To maintain optimal performance, the entire tree needs frequent rebuilding.

oW e

Despite these challenges, with the correct number of levels and dimensions at each,
the A-tree stands as a promising tool for efficient high-dimensional data queries.

array-index A study [53] introduced the array-index method to optimize the kNN
Search performance for Data Partitioning Approaches, particularly on real, highly
skewed and correlated datasets, while preserving their original features. The tech-
nique involves reading the data partitions formed by high-dimensional data parti-
tioning approaches and converting these partitions into a linear form using ordering.
This linearization is achieved by sorting the partitions based on the distance between
a selected reference point and each partition’s representative vector. The distances
are then utilized to map the partitions into a 1D array-index space. This organiza-
tion brings related partitions closer together, facilitating a more efficient search for
kNN answer points. With this configuration, the algorithm needs to scan only a small
region for any given query, leading to a notable reduction in kNN Search time when
the array-index is incorporated into a Data Partitioning Approach.

AT-tree A refined version of the A-tree, named the A*-tree [26, 54], has been devel-
oped to tackle the original model’s shortcomings. The foundational idea of the A™
-tree was first explored in [26], where the authors detailed the index approach and
dynamic update techniques. The A™-tree improves upon its predecessor by employ-
ing a more global approach to data splitting. The entire data space is divided into
several clusters, with PCA being applied individually to each cluster, mitigating the
first limitation of the A-tree. To address the second limitation, each cluster is further
divided into smaller segments based on their distance from the center. This refined
segmentation reduces the number of areas requiring evaluation during the search
process. A A-tree is then constructed for every one of these smaller segments. This
not only cuts down the computational cost but also reduces cache misses, making the
AT-tree a more efficient and effective tool for handling high-dimensional queries.
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ACDB Hong et al. introduced an advanced kNN Search method, ACDB [55], opti-
mized for high-dimensional indexing. It enhances search efficiency by reducing CPU
usage through the application of the triangle inequality. The method incorporates two
primary algorithms: the kNN Search algorithm and the Voronoi clusters’ generation. Ini-
tially, the dataset is segmented into multiple Voronoi clusters, divided by hyperplanes.
The distance between each cluster and its respective hyperplanes is calculated and
recorded in a file. Items within each cluster are then indexed using the Euclidean dis-
tance measure. During each kNN query, the method dynamically establishes the lower
distance limits for each cluster, arranging them in ascending order based on these lim-
its. The search begins in the first cluster, seeking the kNN. Using the kNN distance, it
verifies if this distance exceeds the lower limit of the succeeding cluster. If the kNN dis-
tance is less, the search concludes; otherwise, it proceeds to the next cluster, following
the same procedure. The incorporation of the triangle inequality aids in accelerating the
identification of the nearest items within a cluster, resulting in a reduced CPU load and
enhanced search speed.

iDistance-PS A comprehensive evaluation of various partitioning techniques for the
iDistance method was first presented in [56]. The researchers highlighted the substan-
tial influence of these techniques on iDistance’s performance and explored its utiliza-
tion in contemporary applications and comparative studies. Since its introduction in [42,
43], iDistance has emerged as a leading high-dimensional indexing approach, notable for
its effectiveness. Its application has expanded to challenging domains, including image
retrieval [57] and video indexing [58], among others [59-61].

PL-tree The PL-tree [62] is an innovative indexing technique designed to enhance the
efficiency of point queries, range queries, and kNN queries. This method systematically
breaks down the original data space into hypercubes, each containing a specific number
of data points. Every hypercube and the data points within are assigned a unique label
through the Cantor pair function, ensuring that points within the same hypercube share
the same label. The computational efficiency and bijective nature of the Cantor function
enable a straightforward mapping of high-dimensional vectors to scalar labels. When-
ever a subspace exceeds its data object limit, the partitioning and labeling process is trig-
gered to divide the subspace further, ensuring an organized and efficient data retrieval
system.

iDStar The study [63] examines several significant and manageable factors aiming to
enhance the performance of kNN Search queries with the iDistance and iDStar algo-
rithms. The authors also explore the difficulties associated with indexing in high-dimen-
sional and tightly-clustered data spaces. Experimental results revealed that in spaces
with fewer than 256 dimensions, the iDStar’s approach of local division consistently out-
performs the iDistance method, especially in clustered spaces. This study builds upon
previous assessments and extensions of iDistance partitioning techniques and iDStar
[56, 64, 65].

HC-0 The authors introduced a novel caching mechanism [66] aimed at speeding up
the item filtering stage of kNN Search, but faced two primary challenges: determining
the optimal data point encoding strategy and deciding the number of bits required for
encoding each data point. To address the first issue, they formulated and solved a new
histogram optimization problem, and for the second, a cost model was developed to
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automatically adjust the optimal bit count for encoding. This methodology is applicable
to both exact tree-based and approximate LSH indexing methods. The process involves
running queries, tallying the frequency of leaf node access, and prioritizing nodes for
caching based on this data. A histogram is then constructed using an efficient method
[113], which calculates the approximate data point representations contained within the
leaf nodes. This caching approach can be adapted for any tree-based kNN Search algo-
rithm with minor modifications and has proven to be more efficient than exact caching
methods like iDistance, VP-tree [67], and VA-file [68].

Parallel or distributed

These are typically used for smaller datasets that can be loaded entirely into the memory.
These are designed to split the workload across multiple processors or machines to han-
dle large-scale datasets and computations efficiently.ng for faster data access and pro-
cessing. Parallel data processing has become increasingly popular due to its effectiveness
in enhancing the performance of various applications. The advent of General Purpose
Graphics Processing Units (GPGPUs) has broadened the horizons for parallel process-
ing. Utilizing NVIDIA’s CUDA (Compute Unified Device Architecture) API has shown
significant improvements in processing speed, offering a robust platform for executing
parallel operations efficiently. This technology harnesses the power of graphics process-
ing units (GPUs) to accelerate the performance of computing tasks, making it a sought-
after solution in the realm of high-performance computing.

Classical kNN This [69, 147, 148] widely-used instance-based learning method is
prominent in regression and classification applications. It is a non-parametric approach
where all existing examples are stored and new ones are classified based on a similar-
ity measure, often Euclidean distance. The process begins with data collection and pre-
processing, where the dataset containing the features (input variables) and labels (output
variables) is prepared. The next step is to choose the number of nearest neighbors (k) to
consider when making a prediction. This is a crucial hyperparameter that can be tuned
based on the performance of the model. Once k is selected, the algorithm calculates the
distance between the new data point (query instance) and all the points in the train-
ing dataset. Common distance metrics include Euclidean distance, Manhattan distance,
and Minkowski distance. After calculating these distances, the algorithm sorts them and
selects the k smallest distances, which correspond to the k nearest neighbors. For clas-
sification tasks, the algorithm determines the majority class among the k nearest neigh-
bors and assigns this class to the new data point. For example, if k=3 and among the
3 nearest neighbors, 2 belong to class A and 1 belongs to class B, the new data point
is classified as class A. For regression tasks, the algorithm computes the average (or
weighted average) of the continuous values of the k nearest neighbors and uses this aver-
age as the predicted value for the new data point.

W-kNN The Weighted k Nearest Neighbor (W-kNN) [70] algorithm is an enhanced
version of the traditional KNN algorithm. It incorporates the distance between the test
and training instances to assign variable weights to each neighbor. Unlike the stand-
ard kNN, which treats all nearby neighbors with equal significance, W-kNN allocates
higher weight to closer neighbors and lesser to those farther away. This algorithm cal-
culates the distance, assigns weights according to the distances, and then selects the k
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closest instances. The class of the test instance is determined by the weighted major-
ity class among its k closest neighbors. The selection of the weight function is vital as
it can significantly impact the performance of the W-kNN algorithm. Some weight
functions include inverse distance weighting.

CNN The Condensed Nearest Neighbor (CNN) algorithm [71] is a machine learn-
ing classification method aimed at downsizing the training dataset to a representative
subset. The algorithm starts with an empty set of selected instances (S) and adds the
first instance from the dataset to it. It then examines each subsequent instance to see
if it is classified correctly by the current set S. Instances that are classified accurately
are removed, while those that are not are added to S. This continues until no more
instances can be added to S. The reduced set S then serves as the training dataset for
classifiers like kNN or decision trees. CNN is premised on the idea that a few rep-
resentative instances can effectively classify the entire dataset, leading to enhanced
efficiency and precision by reducing data redundancy.

RNN The Reduced Nearest Neighbor (RNN) algorithm [72] is a machine learn-
ing method designed for both classification and clustering. Conventional distance
metrics, like the Euclidean distance, may fall short with high-dimensional datasets.
RNN tackles this by identifying nearest neighbors for each data point, then select-
ing a “reduced neighborhood set” to minimize dataset density. This refining process
continues, reducing neighbors in each step, until a stopping condition is met. The
final reduced set can be used for classification or clustering tasks. While RNN is com-
putationally efficient and handles noisy or sparse data well, its performance can be
influenced by a chosen calibration parameter. In essence, it identifies neighbors using
standard distances, calculates dataset density, selects subsets to decrease density, and
repeats until a desired condition is achieved.

ENN The Edited Nearest Neighbor (ENN) algorithm [73] is a specialized tool in
supervised machine learning, aimed at optimizing the training dataset by eliminat-
ing misclassified or irrelevant instances. The user specifies a parameter ‘k’ to identify
the k nearest neighbors of each instance, utilizing a distance metric, often Euclidean.
Instances are removed if the majority of their k neighbors belong to a different class,
ensuring that the cleaned dataset, free from such discrepancies, fosters a more effec-
tive training of machine learning models. ENN acts as a preprocessing step to aug-
ment the dataset’s integrity and quality.

SNN The Selective Nearest Neighbor (SNN) algorithm [74] excels in clustering
high-dimensional data through a graph-based approach that categorizes data ele-
ments by similarity. It employs a distance metric, such as Euclidean distance or cosine
similarity, to pinpoint each data point’s k nearest neighbors. A graph is constructed
with data points as vertices, connected to their k neighbors by edges. The similarity
criterion determines edge creation—if two data points exhibit a similarity surpassing
a set threshold, they are connected. The SNN clustering algorithm then takes over,
allocating data points to clusters and merging clusters iteratively, guided by member
similarity and a predefined threshold. Clusters amalgamate if a significant proportion
of their members are mutual nearest neighbors with a surpassing similarity. The pro-
cess concludes when no further cluster integration is feasible.
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VBNN The Voronoi Boundary Nearest Neighbor (VBNN) algorithm [75] is a tool for
clustering and classification tasks. It segments a multidimensional data space into dis-
tinct regions, utilizing Voronoi diagrams and neighboring data points. Each point is
allocated a Voronoi cell based on its proximity to adjacent points. New data points are
introduced and classified by measuring their distance to points on the Voronoi bound-
aries, and then assigning them to the nearest Voronoi region. Classification is further
refined by calculating the Euclidean distance to all points, identifying the k nearest
neighbors (with k being user-defined), and classifying the point according to the major-
ity class of these neighbors within its assigned Voronoi region.

M-kNN Model Based kNN (M-kNN) Algorithm enhanced version of the conven-
tional kNN algorithm [76] adopts a model-based approach for classification, optimiz-
ing the selection of local neighborhoods around each data point that consists mainly of
similar class labels. Through the Euclidean distance measure, global neighborhoods are
established in each iteration based on these local conglomerates. Each local area is rep-
resented by a central data point, selected for its encompassing information about the
local region’s size and similarity metrics. These representatives, each associated with an
optimally distinct k value determined by the dataset, negate the need for user input and
decrease the data points needed for classification, boosting efficiency. If a representative
covers a new data point, the class label of that representative is assigned to the point.
Uncovered data points undergo repeated procedures for classification, aligning with the
kNN principle.

R-kNN Ranked Based KNN (R-kNN) Algorithm variant [77] integrates a ranking
model to discern the most reliable neighbors, enhancing the weighted kNN approach.
The algorithm employs a trained ranking model that assesses the reliability of adjacent
labels in proximity to the true label set. For a new test instance, it identifies the k near-
est neighbors through the standard kNN method, then reevaluates and re-ranks these
neighbors based on their label similarity to the test instance using the ranking model.
The final prediction employs a weighted voting mechanism, where weights are opti-
mized to minimize a specific loss function, with performance assessed via the Hamming
loss. Essentially, it is a refined similarity function learning from label distances, adapt-
able to various distance metrics for enhanced accuracy. The core goal is augmenting pre-
diction accuracy by integrating a ranking model that assigns weights to neighbors’ votes,
reflecting their reliability.

C-kNN The Clustered k Nearest Neighbor (C-kNN) [78] algorithm addresses the chal-
lenges posed by multi-peaked data distributions in training datasets. Initially, it mitigates
the multi-peak effect by removing samples near the boundaries of the training set. The
remaining samples are then clustered by category using the k-means algorithm, and the
cluster centers become the new training samples. This step streamlines the complexity
and enhances the algorithm’s performance. Each training sample is weighted according
to the size of its cluster, favoring larger clusters for improved accuracy. The revised data-
set facilitates the execution of the kNN algorithm, which classifies test samples based
on the majority class label of their k nearest neighbors, making C-kNN a potent tool for
tackling complex, multi-peaked data distributions.

NFL The Nearest Future Line (NFL) algorithm [79] is designed for image classification
and retrieval, capitalizing on the idea of using multiple prototypes to encapsulate feature
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diversity within a class. It conceptualizes each image as a point in feature space and
forms a trajectory connecting the feature points of evolving prototype images. These tra-
jectories collectively create a subspace representing the class. Unlike the nearest neigh-
bor (NN) search algorithm, which overlooks the proximity of comparable images to this
subspace, the NFL algorithm integrates this spatial relationship, enhancing the precision
and efficiency of image classification and retrieval processes.

LNN The Local Nearest Neighbor (LNN) algorithm [80] introduces the concepts of
the nearest neighbor line (NNL) and nearest neighbor plane (NNP) as pattern classifiers.
They operate on the principle of local proximity, calculating the feature line or plane only
for the nearest neighbors of a query point rather than the entire dataset. In a scenario
with c classes, for a given query sample x, the NNL in the ith class is defined by the line
connecting &’s two closest neighbors in that class. The NL distance is the Euclidean dis-
tance from x to its projection on the NNL. The NNL with the minimum distance across
all ¢ classes is selected. For the NNP, it is constructed using three nearest neighbors in
each class, and the one with the shortest distance to x is chosen. The LNN approach
reduces computational expense compared to more complex classifiers like NFL or NFP.

BF-CUDA The process of identifying k-nearest neighbors (kNN) in extensive datasets
of d-dimensional vectors is resource-intensive. One mitigation strategy is the organiza-
tion of data through structures like binary trees. A study [29] explores this by imple-
menting the brute force (BF) method of kNN search using NVIDIA’s CUDA API. The BF
method is essentially a two-step process, involving the calculation of distances between
data points and then sorting them. For a specific query point g, the method:

1. Computes the distances between g and all other data points.
2. Sorts these distances in ascending order.
3. Identifies the k-nearest points.

4. Repeats the process for every query point.

In the experiments conducted in the study, a variant of the insertion sort proved more
efficient than the comb sort for smaller k values. Thanks to the inherent parallelizability
of the BF method, it is aptly suited for GPU implementations, leveraging both global
and texture memory. However, a drop in performance was observed with global mem-
ory when memory accesses were non-coalesced, despite its high bandwidth. The study’s
findings underscore the efficacy of the CUDA API in accelerating the kNN search,
achieving speeds up to 400 times faster than a comparable CPU-based BF approach.
This highlights the substantial potential of GPUs in enhancing the efficiency of comput-
ing kNN in large d-dimensional datasets.

TBiS The use of GPUs, especially NVIDIA’, for multi-core parallel processing has
gained traction in various projects due to their enhanced support for application inter-
faces [27, 81]. Many GPU implementations involve modifying or tailoring specific sort-
ing algorithms to fit particular needs. Garcia et al.,, for instance, employed the insertion
sort and a parallel comb sort in their work [27]. Bitonic sorting stands out as a preferred
choice for parallel systems because its operations of reading, comparing, swapping, and
writing during the sorting process are data-independent [82]. In a distinctive study by
Sismanis et al. [83], they explore parallel techniques to find the k-nearest neighbors
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(kNN) for individual queries in a high-dimensional space, specifically on a GPU. Their
focus is on the brute force (BF) kNN sorting process. They introduced a set of truncated
sort algorithms for parallel kNN searches, leveraging the close relationship between
the select and sort operations. The truncated bitonic sort (TBiS) is highlighted for its
straightforward data and program structures, efficient data locality, and synchronous
concurrency. In TBiS, the overhead diminishes with each iteration, boasting a time
complexity of O(logn) for the parallel scan. The process begins with identifying the k-th
element as a threshold, then examining all elements below this threshold. Subsequent
searches are carried out to identify elements equal to the threshold, and any item con-
firmed not to be among the minimal k is excluded from the sort. The study underscores
that both the Bubble Sort and Bitonic Sort methods feature data-independent synchro-
nous processes, making them efficient for parallel processing tasks.

QDBI In the evolving landscape of peer-to-peer (P2P) systems that house a plethora
of high-dimensional data including texts, images, and videos, the challenge of effec-
tively searching through this extensive data has emerged as a pivotal area of research.
The kNN query, a complex query type for high-dimensional data, has been scrutinized
in numerous studies [84—86]. In this realm, a novel approach named distributed multi-
dimensional data index (QDBI) has been proposed [87]. QDBI is anchored in the use
of quad-trees, where each peer employs an MX-CIF quad-tree to create an index for
their high-dimensional data. Each index item is then assigned a code following the MX-
CIF quad-tree structure. The indices, characterized by their codes, are orchestrated into
one-dimensional rings. Super-peers are dynamically integrated into these rings as per
the demands, forming a semantically structured super-peer network. Within this struc-
tur