
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

SURVEY

Halder et al. Journal of Big Data          (2024) 11:113  
https://doi.org/10.1186/s40537-024-00973-y

Journal of Big Data

Enhancing K-nearest neighbor algorithm: 
a comprehensive review and performance 
analysis of modifications
Rajib Kumar Halder1  , Mohammed Nasir Uddin1  , Md. Ashraf Uddin2*  , Sunil Aryal2   and 
Ansam Khraisat2   

Abstract 

The k-Nearest Neighbors (kNN) method, established in 1951, has since evolved 
into a pivotal tool in data mining, recommendation systems, and Internet of Things 
(IoT), among other areas. This paper presents a comprehensive review and perfor-
mance analysis of modifications made to enhance the exact kNN techniques, particu-
larly focusing on kNN Search and kNN Join for high-dimensional data. We delve deep 
into 31 kNN search methods and 12 kNN join methods, providing a methodological 
overview and analytical insight into each, emphasizing their strengths, limitations, 
and applicability. An important feature of our study is the provision of the source code 
for each of the kNN methods discussed, fostering ease of experimentation and com-
parative analysis for readers. Motivated by the rising significance of kNN in high-dimen-
sional spaces and a recognized gap in comprehensive surveys on exact kNN tech-
niques, our work seeks to bridge this gap. Additionally, we outline existing challenges 
and present potential directions for future research in the domain of kNN techniques, 
offering a holistic guide that amalgamates, compares, and dissects existing method-
ologies in a coherent manner.

Keywords: K-nearest neighbors join, K-nearest neighbors search, Exact K-nearest 
neighbors, High dimensional data, Performance analysis

*Correspondence:   
ashraf.uddin@deakin.edu.au

1 Department of Computer 
Science and Engineering, 
Jagannath University, 
Dhaka 1100, Bangladesh
2 Deakin Cyber Research 
and Innovation Centre, Deakin 
University, Geelong, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00973-y&domain=pdf
http://orcid.org/0000-0002-8542-2258
http://orcid.org/0000-0002-0365-294X
http://orcid.org/0000-0002-4316-4975
http://orcid.org/0000-0002-6639-6824
http://orcid.org/0000-0002-8623-0987


Page 2 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Graphical Abstract

Introduction
K-Nearest Neighbors (kNN) is a method in supervised machine learning, originally 
developed by Evelyn Fix and Joseph Hodges in 1951 and later refined by Thomas Cover 
[1]. This algorithm is extensively utilized across diverse fields such as data mining, rec-
ommendation systems, and the Internet of Things (IoT), playing a pivotal role in the 
advent of Industry 4.0. Specifically, in the realm of data mining, kNN is instrumental 
in classifying human activities, registering iterative closest points, and recognizing pat-
terns. Additionally, it proves highly reliable in systems aimed at detecting intrusions 
and faults. These applications of kNN are thoroughly discussed in Sect. ”Applications of 
kNN”.

The K-Nearest Neighbors (kNN) algorithm operates as a non-parametric, instance-
based learning method, commonly employed in supervised learning tasks, including 
classification and regression. Contrasting with model-based learning approaches that 
deduce a function from training data to make predictions, kNN is categorized as a lazy 
learning algorithm. It formulates predictions by analyzing the data structure in real-
time upon the introduction of new instances, without necessitating a preceding explicit 
training phase. The K-Nearest Neighbors (kNN) algorithm operates on the principle of 



Page 3 of 55Halder et al. Journal of Big Data          (2024) 11:113  

likelihood of similarity. It posits that similar data points tend to cluster near each other 
in space. Consequently, the prediction for a new data instance is based on its proximity 
to existing instances in the training set.

Steps in the kNN algorithm:

• Select k: Begin by choosing the number of nearest neighbors to consult. This number, 
k, is a critical hyperparameter that you adjust based on your dataset’s specific charac-
teristics. The optimal value of k is essential for the accuracy of the algorithm’s predic-
tions. A smaller k value can make the algorithm sensitive to noise and overly flexible, 
whereas a larger k can render it computationally intensive and prone to underfitting.

• Calculate Distances: Compute the distance between the new instance and all points 
in the training dataset. Common metrics for this calculation include Euclidean, Man-
hattan, and Minkowski distances. The selection of a distance metric can significantly 
affect the algorithm’s performance, particularly in relation to the dataset’s character-
istics.

• Identify Nearest Neighbors: Order all points in the training set from nearest to far-
thest from the new point, and select the closest k points.

• Aggregate Neighbor Responses: For classification tasks, the prediction is typically the 
majority label among these k nearest neighbors. For regression, it might be the aver-
age or median of the neighbors’ values.

Choice of parameters and its implications:

• Selecting k: The choice of k has a profound impact on the model’s behavior. A lower 
k can cause the model to overfit, capturing noise instead of representing the true 
underlying patterns of the data. On the other hand, a higher k tends to overly smooth 
the decision boundary, which can lead to underfitting.

• Distance Metric: While Euclidean distance is the most commonly utilized, other 
metrics like Manhattan or Minkowski might be more suitable in scenarios involving 
high-dimensional data or when different scaling or sensitivity to particular dimen-
sions is required.

The recent discourse on K-nearest neighbors (kNN) algorithms has highlighted several 
critical issues:

1. Selection of Optimal k: Determining the most appropriate number of neighbors (k) 
remains a challenge as it significantly impacts the algorithm’s accuracy and generali-
zation ability.

2. Computational Efficiency: The classic kNN algorithm can be computationally inten-
sive, particularly with large datasets, due to its need to compute distances between 
points for each query.

3. High-Dimensional Data Handling: kNN’s performance can deteriorate in high-
dimensional spaces due to the curse of dimensionality, where distances become less 
meaningful.

4. Noise and Outlier Sensitivity: The algorithm’s reliance on the nearest neighbors 
makes it susceptible to noise and outliers in the data.



Page 4 of 55Halder et al. Journal of Big Data          (2024) 11:113 

To address kNN algorithm challenges, scholars have innovated by creating adap-
tive algorithms to dynamically select the optimal k value, enhancing the algorithm’s 
sensitivity to the specificities of the data. For computational efficiency, dimensional-
ity reduction techniques have been applied to mitigate the curse of dimensionality. 
Advanced distance metrics and weighting schemes improve robustness against noise 
and outliers, enhancing the algorithm’s accuracy in high-dimensional spaces. These 
adaptations, including variants like Adaptive kNN, Weight adjusted kNN, and Fuzzy 
kNN, are particularly pivotal in domains requiring high precision, such as healthcare 
diagnostics, showcasing a tailored approach to overcoming kNN’s inherent limita-
tions. We have noticed that a lot of current research focuses on faster, approximated 
methods like approximate nearest neighbor (ANN) algorithms [2–6] to handle com-
plex data. These methods are fast but might not always provide the most accurate 
results. This implies that the nearest neighbors obtained might not accurately repre-
sent the actual k nearest neighbors. In contrast, we are particularly interested in the 
exact kNN methods that ensure the highest level of accuracy in finding the true clos-
est data points. This paper is dedicated to discussing these exact kNN methods, given 
their critical importance in scenarios where precision is key. This paper focuses on 
two main types of kNN queries: kNN Search and kNN Join, exploring their important 
roles, details, and opportunities for improvement. kNN Search aims to find the ‘K’ 
nearest data points to a specific query point, essential for applications that need quick 
and accurate data retrieval. On the other hand, kNN Join finds the ‘K’ closest points 
for every query point in the dataset, helping to uncover hidden patterns and relation-
ships in the data, leading to a deeper understanding of the data’s structure and mean-
ing. The research questions we aim to address are as follows:

RQ1: What are the applications and critical issues of kNN?
RQ2: What are the various state-of-the-art variants of kNN that have emerged 
over time?
RQ3: What are the distinct roles, and methodologies for both kNN Search and 
kNN Join queries, considering their respective importance in facilitating rapid 
data retrieval and uncovering hidden patterns and relationships within datasets?
RQ4: What are the strengths and weaknesses associated with various iterations of 
both kNN search and kNN join techniques?
RQ5: How do various R-tree variants, including R-tree, R*-tree, Hilbert R-tree, 
PR-trees, KD-tree, Ball-tree, VP tree, and MVP tree, contribute to the efficient 
processing of low-dimensional datasets in kNN queries, and what are their com-
parative advantages and limitations?
RQ6: How do parallelization, dimensionality reduction techniques, and partition-
ing methods address the challenges of efficient kNN query processing in high-
dimensional spaces, and what are their comparative advantages and limitations in 
overcoming the “curse of dimensionality”?
RQ7: How do we address the challenges faced by traditional kNN methods, and 
how do we enhance information extraction, optimize computational efficiency, 
integrate ensemble learning, and improve classification accuracy for large-scale 
data classification tasks?



Page 5 of 55Halder et al. Journal of Big Data          (2024) 11:113  

kNN in low‑dimensional space: an overview

Basic kNN search approach To determine the k closest neighbors for a given query point, 
the foundational kNN Search method is utilized. This technique is frequently referred to 
as the brute force (BF) method or the exhaustive search approach. When applying this 
method, every data point in the dataset is scanned to identify the k nearest points based 
on the distances from the query point to all other data points. The primary drawback of 
this approach is its computational intensity. Calculating the Euclidean distance for a sin-
gle kNN query comes at a cost of O(nd) , where “ n ” is the sample count and “ d ” signifies 
the dimensionality of the datasets. When the dataset is substantial, or numerous queries 
are pending, the query execution time can become prohibitively long.

kNN join and its advantages Böhm and Krebs were the first to introduce the concept 
of kNN Join [7, 8]. This study emerged from the realization that computing the nearest 
neighbors for all query points concurrently is significantly faster than doing so individu-
ally. The adoption of kNN Join has amplified the performance of various applications. 
Some notable applications include: k-means clustering [9, 10], Outlier detection [11, 12], 
kNN classification [13, 14], k distance diagrams, Missing value computation, and oth-
ers [8]. Several research works delve into kNN queries specifically in low-dimensional 
space [15–22]. The evolution of R-tree variants reflects the ongoing effort to enhance the 
efficient processing of low-dimensional datasets, leading to the proposition of several 
versions. The original R-tree [15] divides the minimum bounding rectangle (MBR) to 
manage spatial data efficiently. The R*-tree [16] improves upon this by taking overlap 
into account when dividing an MBR, reducing overlap and coverage for better perfor-
mance. The Hilbert R-tree [17] further optimizes the grouping of related MBRs based 
on Hilbert ordering, which improves query performance. PR-trees [18] handle large data 
volumes by using priority rectangles, which help in managing extensive datasets more 
effectively. Other notable structures include the KD-tree [19], which is a binary search 
tree method designed to expedite the neighbor search process by recursively partition-
ing the data space. The Ball-tree [20] uses a branch and bound approach to optimize 
distance computations, effectively managing high-dimensional data. The Vantage Point 
Tree (VP tree) [21] addresses complex search issues by organizing data points based on 
their distances to a selected vantage point, allowing efficient similarity searches. The 
Multi-Vantage Point (MVP) tree [22] builds on this by using multiple vantage points 
to divide space into spherical slices, providing a robust distance-based index structure 
for similarity searches. These innovations in tree structures and indexing methods sig-
nificantly contribute to the advancement of efficient data retrieval processes in various 
dimensions.

kNN in high‑dimensional space: an overview

The efficient processing of k-Nearest Neighbors (kNN) queries becomes increasingly 
complex with the rise in data dimensionality, often termed as the “curse of dimension-
ality” [23–25]. Traditional indexing algorithms like B-tree and R-tree are optimized 
for lower dimensions, but their performance diminishes rapidly as the dimensional-
ity increases. This phenomenon necessitates innovative solutions to facilitate efficient 
and speedy kNN queries in high-dimensional spaces. The challenges of high-dimen-
sional kNN queries are significant and multifaceted. Two primary challenges exist: 



Page 6 of 55Halder et al. Journal of Big Data          (2024) 11:113 

first, identifying the k nearest neighbors (kNN), and second, computing distances rap-
idly and efficiently. The complexity of identifying the kNN increases exponentially with 
the number of dimensions, making traditional methods less effective. Efficiently com-
puting distances in high-dimensional spaces is equally challenging due to the curse of 
dimensionality, which can lead to a rapid increase in computational requirements and 
a decrease in performance. These challenges necessitate the development and imple-
mentation of advanced methodologies and optimizations to ensure efficient and accu-
rate kNN query processing. These challenges are compounded by increased dimensions, 
necessitating the exploration of novel methodologies and optimizations [26–28]. The 
traditional indexing dilemma arises because B-tree and R-tree families, though pro-
ficient in low-dimensional settings, are adversely impacted by increased dimensions. 
Consequently, sequential linear scans often become the fastest retrieval method, albeit 
inefficient. Strategies for enhancing kNN query processing include parallelization, 
dimensionality reduction, and partitioning methods. Parallelization divides the compu-
tational task into segments, enabling concurrent processing on different units [29]. This 
approach utilizes clusters, GPUs, or multi-core machines to bolster processing speed 
without diminishing computational requirements, and researchers have demonstrated 
significant speed enhancements, particularly by exploiting GPUs for parallelized brute-
force searches. Dimensionality reduction (DR) transforms high-dimensional data into 
a more manageable, lower-dimensional format [30–33]. Techniques such as Principal 
Component Analysis (PCA) are renowned for their efficiency and scalability, accelerat-
ing searches and data processing, and marking a cost-effective solution to the challenges 
posed by higher dimensions. Partitioning methods are classified into space-based and 
data-based categories. These techniques incorporate diverse tree structures like R-tree, 
R*-tree, Ball tree, and KD-tree, each designed for efficient data space segmentation and 
distance calculation pruning. Given the inadequacy of traditional tree structures in 
high-dimensional settings, innovative models like M-tree, ∆-tree, and HDR-tree have 
emerged [26, 34]. The objective of these adaptations is to optimize kNN query process-
ing amidst the intricate landscape of high-dimensional data.

Survey scope

This article endeavors to conduct an in-depth examination of exact kNN querying tech-
niques, notably kNN Search and kNN Join, within the context of high-dimensional 
spaces. This focus arises from the observation that a significant body of recent works 
is centered on exact kNN queries amidst high-dimensional datasets. Previous surveys 
have either concentrated on kNN techniques within low-dimensional spaces [35–37] or 
explored approximate methodologies in high-dimensional environments [38, 39]. Addi-
tionally, while there are MapReduce-based studies that incorporate distributed and par-
allel survey work [40, 41], a void exists in literature that holistically addresses exact kNN 
Join methodologies.

Objectives

We aim to fill aforementioned gap by giving a thorough review of the current specific 
kNN techniques, looking closely at how they work with complex data. We will organize 
these methods into clear categories and compare them side by side, highlighting their 



Page 7 of 55Halder et al. Journal of Big Data          (2024) 11:113  

unique features, how efficient they are, and where they can be best applied. In simpler 
terms, we are making a complete guide that breaks down and compares these complex 
methods in a way that is easy to understand.

Motivations

The imperative to undertake this survey is rooted in the following considerations:

1. The ubiquity and escalating popularity of kNN queries in high-dimensional spaces, 
courtesy of their expansive applicability across myriad domains in recent times.

2. While kNN Search has been the focal point of numerous scholarly contributions, a 
comprehensive survey synthesizing exact kNN techniques for high-dimensional data 
remains elusive.

3. The literature on kNN Join, although rich with comparative studies on diverse exact 
and approximate MapReduce-centric approaches [40, 41], lacks a dedicated survey 
spotlighting solely on exact kNN Join methodologies pertinent to high-dimensional 
realms.

Contributions

We are exploring advanced ways to use kNN Search and kNN Join for high-dimensional 
data. Here is a simplified breakdown of what we have covered:

1. Methodological Overview: We extensively explored exact kNN techniques for high-
dimensional datasets, encompassing 31 search methods and 12 join methods.

2. Analytical Insight: Each method has been critically evaluated, detailing its strengths, 
limitations, the evaluation metrics used, and the datasets upon which they were 
tested.

3. Resource Provision: For practical engagement, the source code of the kNN methods 
has been provided, facilitating direct experimentation and comparative analysis for 
readers.

4. Research Horizons: We have identified existing challenges and outlined potential 
directions for future investigations in the realm of kNN techniques.

Structure of the article Sect. “Problem definition” lays out the foundational terminology 
and outlines the problem we address. In Sect.  “Article selection process”, we detail the 
criteria and process behind the selection of articles for our study. Sects. “kNN search” 
and “kNN join approach” dissect the mechanisms of kNN queries, specifically focus-
ing on kNN Search and kNN Join techniques, through the lens of computing paradigm 
classifications. Sect. “Applications of kNN” discusses the practical applications of kNN. 
A comparative analysis of the methodologies discussed is presented in Sect. “Compar-
ative analysis”. Sect.  “Discussion” contains various perspectives and viewpoints on the 
application of k-Nearest Neighbors from other scholars. The document concludes with 
Sect. “Conclusion”, summarizing our findings, and Sect. 11, where we identify challenges 
and outline future research directions.



Page 8 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Problem definition
In this section, we provide clear definitions for key terms frequently referenced through-
out this paper.

Definition 1 (kNN search)

Let D be a dataset containing n points in a d-dimensional space, q a query point in the 
same space, k the number of nearest neighbors to retrieve, dist(p, q) a function that cal-
culates the distance between point p and query point q . The kNN search problem is to 
find a set R containing k points from D such that for each point p ∈ R , there is no other 
point p′ ∈ D where dist(p, q) > dist(p′, q) . In other words, every point in R is among the 
k closest points in D to the query point q . Figure 1 shows the example of kNN Search 
approach for k = 3. Example: Given k = 3, the kNN Search method identifies the three 
closest points in dataset D to the query point s1.

Definition 2 (kNN join)

Let D1,D2 be two datasets containing n points in a d-dimensional space, k the num-
ber of nearest neighbors to join, dist(p1, p2) a function that calculates the distance 
between point p1 ∈ D1 and query pointp2 ∈ D2 . The kNN join problem is to find pairs 
of points (p1, p2) such thatp1 ∈ D1 , there are exactly k points p2 ∈ D2 with minimal dis-
tancedist(p1, p2) . It means for each point in D1 , we find its k closest points inD2 . Figure 2 
shows the example of kNN Join approach for k = 2. Example: Given k = 2, the kNN Join 
method determines the two closest points from the D2 dataset for every point within the 
D1 dataset.

Definition 3 (distance range)

A distance range is characterized by identifying all pairs of elements from two dis-
tinct datasets, R and S , that fall within a specified distance threshold, θ . In this con-
text, dataset R contains elements {r1, r2, r3, . . . ., rn} and dataset S consists of elements 
{s1, s2, s3, . . . ., sm} . The pairings from the two sets are determined by the criteria 
(r, s) : r ∈ R, s ∈ S, d(r, s) ≤ θ, where d(r, s) denotes the distance between elements r, s , 
and θ represents the user-defined distance threshold. Every pair that satisfies this condi-
tion is included in the result.

Fig. 1 Example of kNN Search approach for k = 3



Page 9 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Definition 4 (k‑distance join)

The closest point query, equivalently termed as the k-Distance Join, is a method 
employed to ascertain the k most analogous pairings across two distinct datasets, 
R and S . Here R is defined as R = {r1, r2, r3, . . . ., rn} and S = {s1, s2, s3, . . . ., sm} . The k
-Distance Join aims to identify a subset KDJ(R, S) consisting of k pairs, each derived 
from the Cartesian product R× S , wherein each pair (ri, sj) ∈ KDJ(R, S) satisfies the 
condition that the distance d(ri, sj) is lesser or equal to the distance of any other pair 
(rk, sj) is lesser or equal to the distance of any other pair (rk, sl) ∈ R× S . The range of k 
is bounded as 1 ≤ k ≤ min(n,m), ensuring the derivation of the closest pairs without 
exceeding the total number of elements in either dataset.

Definition 5 (reverse kNN join)

Let R and S be two distinct datasets comprised of points situated within a d-dimen-
sional space, denoted as Rd . Let the Euclidean distance function d(ri,sj) measure the 
distance between any two given data points ri ∈ R and sj ∈ S. Additionally, consider a 
natural number k ∈ N+ . Under these conditions, the outcome of a reverse kNN Join 
in correlation to a query data point sj is defined as a subset RkNN

(

R, sj
)

⊆ R, which 
incorporates data points that count sj as one of their k nearest neighbors. Mathemati-
cally, it can be articulated as: RkNN

(

R, sj, k
)

= {r1, r2, r3, . . . .., rn} ⊆ R.

Definition 6 (dynamic kNN join)

R And S as two datasets consisting of points situated within a d-dimensional 
space Rd . The Euclidean distance between two points ri ∈ R and sj ∈ S is com-
puted using the distance function d(ri, sj) . Let k be a positive natural number such 
that k ∈ N+ and 1 ≤ k ≤ |s| . In this context, a dynamic kNN Join refers to the pro-
cess of dynamically identifying and associating similar data points across datasets 
R and S based on their Euclidean distance. The resultant set from this join opera-
tion is denoted asDkNNJ(R, S, k) ⊆ R× S , and it contains pairs of points 

(

ri, sj
)

 such 
that for each ri ∈ R , sj is among its k closest neighbors inS . The formal definition is: 
DkNNJ(R, S, k) = {(ri, sj)|∀ri ∈ R, sj /∈ kNN(S, ri, k} . Furthermore, the dynamic nature 
of this join implies a real-time adaptation to the modifications in datasetS . For every 

Fig. 2 Example of kNN Join approach for k = 2



Page 10 of 55Halder et al. Journal of Big Data          (2024) 11:113 

insertion or deletion operation involving an item si ∈ S , the affected set of users 
ra : RkNN(si) where si ∈ S and RkNN(si) ⊂ R, is identified. Subsequently, updates 
are implemented to reflect the changes in the join results, ensuring that each point 
in ra  maintains its k closest neighbors in the modified datasetS . The updated join is 
expressed as:kNN(S, ra, k) ⊆ R× S.

Definition 7 (approximate nearest neighbour)

The Approximate Nearest Neighbor (ANN) search quickly identifies points in a data-
set that are close to a query point, but not necessarily the closest. This approach is 
beneficial in high-dimensional spaces where exact searches are costly. In recom-
mendation systems, for instance, it is often sufficient to suggest items that are “close 
enough” rather than pinpointing the most similar one. This can lead to unexpected 
and interesting discoveries for users. Similarly, in kNN classification, points that are 
near each other are often of the same class, even if they are not the absolute closest.

Article selection process
Search strategy and data sources

In 2022, we conducted a systematic review by searching various scientific databases, 
including Scopus,,ACM Digital Library, IEEE Xplore, ScienceDirect, SpringerLink, 
Embase, Web of Science, PubMed, Research, Gate, Wikipedia, and others as listed in 
Table 1. The review was limited to studies conducted in English. We ran the search 
using a combination of restricted vocabularies (MESH words) and free-text terms to 
search electronic databases. Using the Google search engine, they also used relevant 
keywords to perform a general search for gray literature, such as conference papers, 
research projects, theses, and dissertations. The PRISMA flowchart conducted all of 
these procedures.

Table 1 Search strategy and keywords

Database Scopus,, ACM Digital Library, IEEE Xplore, ScienceDirect, SpringerLink, Embase, 
Web of Science, PubMed, Research, Gate, Wikipedia

Limits Language (only resources with English), Species (studies on K Nearest Neighbor)

#1 “k Nearest Neighbor (kNN) “ OR “kNN”, OR “Variants of kNN”, OR “Modified kNN “

#2 (“Weighted kNN” OR “Condensed Nearest Neighbor” OR “Reduced Nearest 
Neighbor” OR “Edited Nearest Neighbor” OR “Edited Nearest Neighbor” OR 
“Selective Nearest Neighbor” OR “Voronoi Boundary Nearest Neighbor” OR 
“Model Based k Nearest Neighbor” OR “Ranked Based k Nearest Neighbor” OR 
OR “Clustered k Nearest Neighbor” OR “Ball Tree k Nearest Neighbor” OR “k-d 
Tree Nearest Neighbor” OR “Nearest Future Line Neighbor” OR “Local Nearest 
Neighbor” OR “Principle Axis Tree Nearest Neighbor”OR “iDistance” OR “Diagonal 
Ordering” OR “ VA+-file” OR “OTI and EOTI” OR “BP” OR “∆-tree” OR “array-index” OR 
“ �+-tree” OR “ACDB” OR “iDistance-PS” OR “PL-Tree” OR “iDStar” OR “HC–O” OR “BF-
CUDA” OR “CUBLAS” OR “TBiS” OR “QDBI” OR “CU-kNN” OR “kNN-PA” OR “HkNN” OR 
“MuX” OR “Gorder” OR “iJoin” OR “iJoinAC” OR “iJoinDR” OR “IIB” OR “IIIB algorithm” 
OR “kNNJoin +” OR “HDR-Tree” OR “CTD-kNNJ” OR “EkNNJ” OR “H-BNLJ” OR “H-BRJ” 
OR “PGBJ”

#3 #1 AND #2



Page 11 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Data selection (inclusion and exclusion criteria)

To identify relevant studies, this investigation comprehensively searched conference 
papers and journal articles from specific databases without any time restrictions. 
However, the researchers excluded other types of research, such as letters to the edi-
tor, educational reports, brief communications, editorial commentary, editorials, 
protocols, standards, and industry papers. Duplicate and irrelevant studies, as well 
as publications without full-text access, were also eliminated. The study focused on 
modified kNN applications across various sectors and included only articles written 
in English. Moreover, articles discussing data mining and machine learning, as well 
as those that were not related to the study, were excluded. We have selected 43 (Year: 
1967 to 2022) papers that met the inclusion criteria from the initial pool of 1056 stud-
ies. Figure 3 depicts how we set the article after the PRISMA declaration.

Fig. 3 Flow diagram of the article selection process from 1967 to 2022



Page 12 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Data extraction

We have utilized a form that divided the extracted information from the selected studies 
into three categories: general information, objective and method, and significant results. 
The general information category included the publication’s title, author, date, and loca-
tion. The objective and method types included information on the research objectives, 
data analysis, data mining methodology, and resource data used in the study. Lastly, 
the significant results category captured the three main conclusions drawn from the 
research. To facilitate a comprehensive grasp of the methodologies and their evolution, a 
chronological representation of the kNN Join and kNN Search techniques is delineated 
in Fig. 4. The upper segment of the figure enumerates all the kNN Join techniques, while 
the kNN Search methodologies are cataloged in the lower section.

Furthermore, for an organized understanding, kNN Search and kNN Joins have been 
categorized based on distinct Computing Paradigms—I/O-based, main-memory-based, 
and parallel or distributed, as documented in Tables 2 and 3, respectively.

kNN search
In a significant number of database applications, the task of identifying an item similar 
to a specified query point is often complex and resource-intensive. Under these condi-
tions, the kNN query proves to be especially beneficial. Numerous studies have been 
undertaken to solve the exact kNN issue, yet a considerable portion has been devoted 
to approximation methods. That said, there is also a segment of research focused on 
precise kNN solutions, with proposals such as HDR-tree and iDistance emerging to 
optimize the efficiency of kNN identification and minimize the associated computa-
tional expenses. This survey is primarily concentrated on these precise methodologies. 
An exhaustive exploration of an array of high-dimensional kNN Search and kNN Join 
methods is presented. To simplify the comprehension process, these methods have been 
systematically categorized. In this section, we focus on the diverse exact kNN Search 

Fig. 4 Chronological representation of the kNN Join and kNN Search



Page 13 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Table 2 Classification of kNN Search approach based on Computing Paradigms

Categories Algorithm Time complexity

I/O based iDistance [42, 43] O(logn)

Diagonal Ordering [44] O(logn)

VA+-file [47] O(logn)

OTI and EOTI [48] O(n)

BP [52] O(nlogn)

Main memory based ∆-tree [26] O(n)

array-index [53] O(logn)

�+-tree [26, 54] O(n)

ACDB [55] O(nlogn)

iDistance-PS [56] O(n)

PL-Tree [62] O(logn)

iDStar [63] O(n)

HC–O [66] O(n)

Parallel and distributed Classical kNN [69] O(n)

W-kNN [70] O(n)

CNN [71] O(n)

RNN [72] O(n)

ENN [73] O(n)

SNN [74] O(n)

VBNN [75] O(n)toO(logn)

M-kNN [76] O(n)

R-kNN [77] O(n)

C-kNN [78] O(n)toO(logn)

NFL [79] O(n)

LNN [80] O(n)

BF-CUDA [29] O(n)

TBiS [83] O(log2n)

QDBI [87] O(logn)

CU-kNN [88] O(n)

kNN-PA [89] O(nlogn)

HkNN [92] O(n)

Table 3 Classification of kNN Join approach based on Computing Paradigms

Categories Algorithm Time complexity

I/O based MuX [7, 8] O(nlogn)

Gorder [94] O
(

n2
)

iJoin, iJoinAC and iJoinDR [95] O(nlogn)

IIB and IIIB algorithm [96] O(nlogn)

kNNJoin + [28] O(nlogn)

Main memory based HDR-Tree [34] O(nlogn)

EkNNJ [98] O(nlogn)

Parallel and distributed Ball Tree [100] O(nlogn)

k-d Tree [19] O(nlogn)

PAT [101] O(logn)toO(n)

H-BNLJ and H-BRJ [102] O
(

n2
)

PGBJ [12] O(nlogn)



Page 14 of 55Halder et al. Journal of Big Data          (2024) 11:113 

methods, categorizing them based on different Computing Paradigms including I/O-
based, main-memory-based, and parallel or distributed approaches.

I/O‑based

These algorithms are optimized to minimize disk access and are especially beneficial 
when dealing with large datasets that cannot fit entirely into the main memory.

iDistance iDistance is an innovative index structure developed by researchers [42, 
43] to improve kNN Search for high-dimensional (HD) data. In simple terms, it turns 
complex data into a more straightforward, one-dimensional format. The transformation 
involves:

1. Dividing the data into several sections.
2. Assigning a unique ‘reference point’ to each section.
3. Changing each section based on how similar data points are to their assigned refer-

ence point.
 For this, they used a B+-tree structure for fast access to the one-dimensional points 

and an array to store the reference points and their associated data. When searching, 
they initially look for the closest data points and expand the search area slowly until 
the desired neighbors are found. The efficiency of iDistance makes it stand out, even 
though most search methods become less effective with more data dimensions.

Diagonal ordering In a research study [44], a strategy called ‘diagonal ordering’ was 
introduced. It is a way to simplify high-dimensional data into a more manageable 1D 
format by slicing clusters of data diagonally. To help with data organization, they use a 
B+-tree structure. This method is somewhat similar to other approaches like iDistance 
and the Pyramid Technique. Here is the simple breakdown:

1. The vast data space is split into clusters.
2. Inside each cluster, vectors are organized in a diagonal order.
3. This organization helps turn complex vectors into one-dimensional values, which are 

then indexed using a B +-tree.

One significant benefit of this method is that it can quickly estimate the shortest dis-
tance between data points using the diagonal order. This helps improve search processes 
by quickly eliminating irrelevant data points without needing detailed calculations. The 
method uses an iterative approach to find the nearest neighbors: it begins searching 
with a small radius and expands until the desired neighbors are identified. To make data 
ordering effective, they applied PCA [45], prioritizing key characteristics, and used a 
clustering approach similar to iDistance’s k-means clustering. Overall, the performance 
of the ‘diagonal ordering’ method was found to surpass several other methods, including 
X-tree [46], iDistance [42], and VA file [23].
VA+-file Researchers in [47] introduced an innovative search method tailored for 

large, complex datasets. The VA+-file technique is grounded in the scalar quanti-
sation of data, proving especially efficient for kNN searches within non-uniform 
high-dimensional datasets. This approach enhances search performance by utilizing 
approximation techniques. The study presents a broad framework for approximate 



Page 15 of 55Halder et al. Journal of Big Data          (2024) 11:113  

kNN, explores various strategies for handling similarity queries, and introduces a 
new metric for evaluating these strategies. Additionally, a new method rooted in 
clustering is unveiled, amalgamating the strengths of different approaches to opti-
mize progressive similarity searches.

OTI and EOTI In research documented in [48], a new approach to kNN searching, 
named the Optimum Triangle-Inequality (OTI), is proposed. This method reduces 
redundant distance calculations, making it more efficient than the traditional TI 
technique. However, OTI has a downside of requiring large space. To address this, 
the Enhanced Optimum Triangle-Inequality (EOTI) is introduced, optimizing the 
space and complexity associated with OTI. The KMC-TI-FS (TI) technique [49] 
divides the search process into two steps. Initially, data items are grouped using 
the k-means algorithm in an offline clustering phase. The second phase involves 
an online search where the TI approach identifies potential k nearest neighbors 
for a given query. This method accelerates the kNN search as distances between all 
items and the cluster center are pre-calculated and stored during the offline phase, 
eliminating the need for additional calculations. However, TI’s limitation is that it 
cannot eliminate items in the marginal regions of adjacent clusters. OTI [48] was 
introduced to optimize this process by selecting an ideal cluster center that forms an 
appropriate triangle, improving the elimination process. However, OTI’s high space 
complexity and increased calculation time needed refinement. That is where EOTI 
comes in, as an efficient solution balancing search performance with space and time 
complexity. EOTI records just two distances for each item, reducing space complex-
ity to O(N × C) . It registers the distances to the closest and farthest cluster centers, 
enabling efficient kNN searches with minimized space and time requirements.

BP Bregman distances are a common tool in fields like voice recognition and 
machine learning, including kNN Searches. They are used to process high-dimen-
sional data, like that from multimedia systems. However, past methods using Breg-
man distances [50, 51] were limited to moderate dimensional data and struggled 
with efficiency in high-dimensional spaces due to challenges like cluster overlap and 
intensive computations. This issue is tackled in a new study [52], where research-
ers introduce a partition-filter-refinement structure for efficient high-dimensional 
kNN Search. The method involves dividing the high-dimensional space into smaller 
subspaces, running range queries, and then filtering the results. Innovations in this 
study include the use of the Cauchy inequality to calculate upper limits for searches 
within subspaces and introducing a Pearson Correlation Coefficient-based Parti-
tion (PCCP) to organize correlated dimensions into different subspaces. They also 
implemented Bregman Ball trees (BB-trees) [50] to accelerate searches within these 
low-dimensional subspaces and developed an integrated, disk-resident BB-forest 
index structure. During a search, query items are converted into a triple [52], and 
a range query is performed. Results are then filtered to identify the kNN. To opti-
mize both efficiency and accuracy, the precise solution is modified into an Approxi-
mate BrePartition (ABP), marking the first non-metric method that utilizes Bregman 
distance and offers enhanced performance in high-dimensional spaces for kNN 
searches.



Page 16 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Main‑memory‑based

These are typically used for smaller datasets that can be loaded entirely into the mem-
ory, allowing for faster data access and processing.

∆-tree A study [26] introduced the ∆-tree as a new index structure designed to opti-
mize high-dimensional queries in main memory. The ∆-tree features a multilayered 
structure where each level, facilitated by PCA, presents increased dimensionality 
from the root to the leaves. Each layer aids in narrowing down the search area, thanks 
to the reduced dimensions that quicken distance calculations and optimize cache line 
size utilization. The ∆-tree is highly efficient in pruning the search region. Owing to 
the PCA property, distances between points in lower dimensions are always smaller 
than in higher ones. Thus, if the distance between a data point and the query in low 
dimension exceeds the original distance of the existing k-th nearest neighbor, that 
point is eliminated. However, the tree’s effectiveness is influenced by a few factors:

1. It performs best with globally correlated datasets.
2. It requires processing the entire dataset to determine the PCA eigen matrix.
3. To maintain optimal performance, the entire tree needs frequent rebuilding.
4. Despite these challenges, with the correct number of levels and dimensions at each, 

the ∆-tree stands as a promising tool for efficient high-dimensional data queries.

array-index A study [53] introduced the array-index method to optimize the kNN 
Search performance for Data Partitioning Approaches, particularly on real, highly 
skewed and correlated datasets, while preserving their original features. The tech-
nique involves reading the data partitions formed by high-dimensional data parti-
tioning approaches and converting these partitions into a linear form using ordering. 
This linearization is achieved by sorting the partitions based on the distance between 
a selected reference point and each partition’s representative vector. The distances 
are then utilized to map the partitions into a 1D array-index space. This organiza-
tion brings related partitions closer together, facilitating a more efficient search for 
kNN answer points. With this configuration, the algorithm needs to scan only a small 
region for any given query, leading to a notable reduction in kNN Search time when 
the array-index is incorporated into a Data Partitioning Approach.
�+-tree A refined version of the ∆-tree, named the �+-tree [26, 54], has been devel-

oped to tackle the original model’s shortcomings. The foundational idea of the �+

-tree was first explored in [26], where the authors detailed the index approach and 
dynamic update techniques. The �+-tree improves upon its predecessor by employ-
ing a more global approach to data splitting. The entire data space is divided into 
several clusters, with PCA being applied individually to each cluster, mitigating the 
first limitation of the ∆-tree. To address the second limitation, each cluster is further 
divided into smaller segments based on their distance from the center. This refined 
segmentation reduces the number of areas requiring evaluation during the search 
process. A ∆-tree is then constructed for every one of these smaller segments. This 
not only cuts down the computational cost but also reduces cache misses, making the 
�+-tree a more efficient and effective tool for handling high-dimensional queries.



Page 17 of 55Halder et al. Journal of Big Data          (2024) 11:113  

ACDB Hong et  al. introduced an advanced kNN Search method, ACDB [55], opti-
mized for high-dimensional indexing. It enhances search efficiency by reducing CPU 
usage through the application of the triangle inequality. The method incorporates two 
primary algorithms: the kNN Search algorithm and the Voronoi clusters’ generation. Ini-
tially, the dataset is segmented into multiple Voronoi clusters, divided by hyperplanes. 
The distance between each cluster and its respective hyperplanes is calculated and 
recorded in a file. Items within each cluster are then indexed using the Euclidean dis-
tance measure. During each kNN query, the method dynamically establishes the lower 
distance limits for each cluster, arranging them in ascending order based on these lim-
its. The search begins in the first cluster, seeking the kNN. Using the kNN distance, it 
verifies if this distance exceeds the lower limit of the succeeding cluster. If the kNN dis-
tance is less, the search concludes; otherwise, it proceeds to the next cluster, following 
the same procedure. The incorporation of the triangle inequality aids in accelerating the 
identification of the nearest items within a cluster, resulting in a reduced CPU load and 
enhanced search speed.

iDistance-PS A comprehensive evaluation of various partitioning techniques for the 
iDistance method was first presented in [56]. The researchers highlighted the substan-
tial influence of these techniques on iDistance’s performance and explored its utiliza-
tion in contemporary applications and comparative studies. Since its introduction in [42, 
43], iDistance has emerged as a leading high-dimensional indexing approach, notable for 
its effectiveness. Its application has expanded to challenging domains, including image 
retrieval [57] and video indexing [58], among others [59–61].

PL-tree The PL-tree [62] is an innovative indexing technique designed to enhance the 
efficiency of point queries, range queries, and kNN queries. This method systematically 
breaks down the original data space into hypercubes, each containing a specific number 
of data points. Every hypercube and the data points within are assigned a unique label 
through the Cantor pair function, ensuring that points within the same hypercube share 
the same label. The computational efficiency and bijective nature of the Cantor function 
enable a straightforward mapping of high-dimensional vectors to scalar labels. When-
ever a subspace exceeds its data object limit, the partitioning and labeling process is trig-
gered to divide the subspace further, ensuring an organized and efficient data retrieval 
system.

iDStar The study [63] examines several significant and manageable factors aiming to 
enhance the performance of kNN Search queries with the iDistance and iDStar algo-
rithms. The authors also explore the difficulties associated with indexing in high-dimen-
sional and tightly-clustered data spaces. Experimental results revealed that in spaces 
with fewer than 256 dimensions, the iDStar’s approach of local division consistently out-
performs the iDistance method, especially in clustered spaces. This study builds upon 
previous assessments and extensions of iDistance partitioning techniques and iDStar 
[56, 64, 65].

HC–O The authors introduced a novel caching mechanism [66] aimed at speeding up 
the item filtering stage of kNN Search, but faced two primary challenges: determining 
the optimal data point encoding strategy and deciding the number of bits required for 
encoding each data point. To address the first issue, they formulated and solved a new 
histogram optimization problem, and for the second, a cost model was developed to 



Page 18 of 55Halder et al. Journal of Big Data          (2024) 11:113 

automatically adjust the optimal bit count for encoding. This methodology is applicable 
to both exact tree-based and approximate LSH indexing methods. The process involves 
running queries, tallying the frequency of leaf node access, and prioritizing nodes for 
caching based on this data. A histogram is then constructed using an efficient method 
[113], which calculates the approximate data point representations contained within the 
leaf nodes. This caching approach can be adapted for any tree-based kNN Search algo-
rithm with minor modifications and has proven to be more efficient than exact caching 
methods like iDistance, VP-tree [67], and VA-file [68].

Parallel or distributed

These are typically used for smaller datasets that can be loaded entirely into the memory. 
These are designed to split the workload across multiple processors or machines to han-
dle large-scale datasets and computations efficiently.ng for faster data access and pro-
cessing. Parallel data processing has become increasingly popular due to its effectiveness 
in enhancing the performance of various applications. The advent of General Purpose 
Graphics Processing Units (GPGPUs) has broadened the horizons for parallel process-
ing. Utilizing NVIDIA’s CUDA (Compute Unified Device Architecture) API has shown 
significant improvements in processing speed, offering a robust platform for executing 
parallel operations efficiently. This technology harnesses the power of graphics process-
ing units (GPUs) to accelerate the performance of computing tasks, making it a sought-
after solution in the realm of high-performance computing.

Classical kNN This [69, 147, 148] widely-used instance-based learning method is 
prominent in regression and classification applications. It is a non-parametric approach 
where all existing examples are stored and new ones are classified based on a similar-
ity measure, often Euclidean distance. The process begins with data collection and pre-
processing, where the dataset containing the features (input variables) and labels (output 
variables) is prepared. The next step is to choose the number of nearest neighbors (k) to 
consider when making a prediction. This is a crucial hyperparameter that can be tuned 
based on the performance of the model. Once k is selected, the algorithm calculates the 
distance between the new data point (query instance) and all the points in the train-
ing dataset. Common distance metrics include Euclidean distance, Manhattan distance, 
and Minkowski distance. After calculating these distances, the algorithm sorts them and 
selects the k smallest distances, which correspond to the k nearest neighbors. For clas-
sification tasks, the algorithm determines the majority class among the k nearest neigh-
bors and assigns this class to the new data point. For example, if k = 3 and among the 
3 nearest neighbors, 2 belong to class A and 1 belongs to class B, the new data point 
is classified as class A. For regression tasks, the algorithm computes the average (or 
weighted average) of the continuous values of the k nearest neighbors and uses this aver-
age as the predicted value for the new data point.

W-kNN The Weighted k Nearest Neighbor (W-kNN) [70] algorithm is an enhanced 
version of the traditional kNN algorithm. It incorporates the distance between the test 
and training instances to assign variable weights to each neighbor. Unlike the stand-
ard kNN, which treats all nearby neighbors with equal significance, W-kNN allocates 
higher weight to closer neighbors and lesser to those farther away. This algorithm cal-
culates the distance, assigns weights according to the distances, and then selects the k 



Page 19 of 55Halder et al. Journal of Big Data          (2024) 11:113  

closest instances. The class of the test instance is determined by the weighted major-
ity class among its k closest neighbors. The selection of the weight function is vital as 
it can significantly impact the performance of the W-kNN algorithm. Some weight 
functions include inverse distance weighting.

CNN The Condensed Nearest Neighbor (CNN) algorithm [71] is a machine learn-
ing classification method aimed at downsizing the training dataset to a representative 
subset. The algorithm starts with an empty set of selected instances (S) and adds the 
first instance from the dataset to it. It then examines each subsequent instance to see 
if it is classified correctly by the current set S. Instances that are classified accurately 
are removed, while those that are not are added to S . This continues until no more 
instances can be added to S . The reduced set S then serves as the training dataset for 
classifiers like kNN or decision trees. CNN is premised on the idea that a few rep-
resentative instances can effectively classify the entire dataset, leading to enhanced 
efficiency and precision by reducing data redundancy.

RNN The Reduced Nearest Neighbor (RNN) algorithm [72] is a machine learn-
ing method designed for both classification and clustering. Conventional distance 
metrics, like the Euclidean distance, may fall short with high-dimensional datasets. 
RNN tackles this by identifying nearest neighbors for each data point, then select-
ing a “reduced neighborhood set” to minimize dataset density. This refining process 
continues, reducing neighbors in each step, until a stopping condition is met. The 
final reduced set can be used for classification or clustering tasks. While RNN is com-
putationally efficient and handles noisy or sparse data well, its performance can be 
influenced by a chosen calibration parameter. In essence, it identifies neighbors using 
standard distances, calculates dataset density, selects subsets to decrease density, and 
repeats until a desired condition is achieved.

ENN The Edited Nearest Neighbor (ENN) algorithm [73] is a specialized tool in 
supervised machine learning, aimed at optimizing the training dataset by eliminat-
ing misclassified or irrelevant instances. The user specifies a parameter ‘k’ to identify 
the k nearest neighbors of each instance, utilizing a distance metric, often Euclidean. 
Instances are removed if the majority of their k neighbors belong to a different class, 
ensuring that the cleaned dataset, free from such discrepancies, fosters a more effec-
tive training of machine learning models. ENN acts as a preprocessing step to aug-
ment the dataset’s integrity and quality.

SNN The Selective Nearest Neighbor (SNN) algorithm [74] excels in clustering 
high-dimensional data through a graph-based approach that categorizes data ele-
ments by similarity. It employs a distance metric, such as Euclidean distance or cosine 
similarity, to pinpoint each data point’s k nearest neighbors. A graph is constructed 
with data points as vertices, connected to their k neighbors by edges. The similarity 
criterion determines edge creation—if two data points exhibit a similarity surpassing 
a set threshold, they are connected. The SNN clustering algorithm then takes over, 
allocating data points to clusters and merging clusters iteratively, guided by member 
similarity and a predefined threshold. Clusters amalgamate if a significant proportion 
of their members are mutual nearest neighbors with a surpassing similarity. The pro-
cess concludes when no further cluster integration is feasible.



Page 20 of 55Halder et al. Journal of Big Data          (2024) 11:113 

VBNN The Voronoi Boundary Nearest Neighbor (VBNN) algorithm [75] is a tool for 
clustering and classification tasks. It segments a multidimensional data space into dis-
tinct regions, utilizing Voronoi diagrams and neighboring data points. Each point is 
allocated a Voronoi cell based on its proximity to adjacent points. New data points are 
introduced and classified by measuring their distance to points on the Voronoi bound-
aries, and then assigning them to the nearest Voronoi region. Classification is further 
refined by calculating the Euclidean distance to all points, identifying the k nearest 
neighbors (with k being user-defined), and classifying the point according to the major-
ity class of these neighbors within its assigned Voronoi region.

M-kNN Model Based kNN (M-kNN) Algorithm enhanced version of the conven-
tional kNN algorithm [76] adopts a model-based approach for classification, optimiz-
ing the selection of local neighborhoods around each data point that consists mainly of 
similar class labels. Through the Euclidean distance measure, global neighborhoods are 
established in each iteration based on these local conglomerates. Each local area is rep-
resented by a central data point, selected for its encompassing information about the 
local region’s size and similarity metrics. These representatives, each associated with an 
optimally distinct k value determined by the dataset, negate the need for user input and 
decrease the data points needed for classification, boosting efficiency. If a representative 
covers a new data point, the class label of that representative is assigned to the point. 
Uncovered data points undergo repeated procedures for classification, aligning with the 
kNN principle.

R-kNN Ranked Based KNN (R-kNN) Algorithm variant [77] integrates a ranking 
model to discern the most reliable neighbors, enhancing the weighted kNN approach. 
The algorithm employs a trained ranking model that assesses the reliability of adjacent 
labels in proximity to the true label set. For a new test instance, it identifies the k near-
est neighbors through the standard kNN method, then reevaluates and re-ranks these 
neighbors based on their label similarity to the test instance using the ranking model. 
The final prediction employs a weighted voting mechanism, where weights are opti-
mized to minimize a specific loss function, with performance assessed via the Hamming 
loss. Essentially, it is a refined similarity function learning from label distances, adapt-
able to various distance metrics for enhanced accuracy. The core goal is augmenting pre-
diction accuracy by integrating a ranking model that assigns weights to neighbors’ votes, 
reflecting their reliability.

C-kNN The Clustered k Nearest Neighbor (C-kNN) [78] algorithm addresses the chal-
lenges posed by multi-peaked data distributions in training datasets. Initially, it mitigates 
the multi-peak effect by removing samples near the boundaries of the training set. The 
remaining samples are then clustered by category using the k-means algorithm, and the 
cluster centers become the new training samples. This step streamlines the complexity 
and enhances the algorithm’s performance. Each training sample is weighted according 
to the size of its cluster, favoring larger clusters for improved accuracy. The revised data-
set facilitates the execution of the kNN algorithm, which classifies test samples based 
on the majority class label of their k nearest neighbors, making C-kNN a potent tool for 
tackling complex, multi-peaked data distributions.

NFL The Nearest Future Line (NFL) algorithm [79] is designed for image classification 
and retrieval, capitalizing on the idea of using multiple prototypes to encapsulate feature 



Page 21 of 55Halder et al. Journal of Big Data          (2024) 11:113  

diversity within a class. It conceptualizes each image as a point in feature space and 
forms a trajectory connecting the feature points of evolving prototype images. These tra-
jectories collectively create a subspace representing the class. Unlike the nearest neigh-
bor (NN) search algorithm, which overlooks the proximity of comparable images to this 
subspace, the NFL algorithm integrates this spatial relationship, enhancing the precision 
and efficiency of image classification and retrieval processes.

LNN The Local Nearest Neighbor (LNN) algorithm [80] introduces the concepts of 
the nearest neighbor line (NNL) and nearest neighbor plane (NNP) as pattern classifiers. 
They operate on the principle of local proximity, calculating the feature line or plane only 
for the nearest neighbors of a query point rather than the entire dataset. In a scenario 
with c classes, for a given query sample x , the NNL in the ith class is defined by the line 
connecting x’s two closest neighbors in that class. The NL distance is the Euclidean dis-
tance from x to its projection on the NNL. The NNL with the minimum distance across 
all c classes is selected. For the NNP, it is constructed using three nearest neighbors in 
each class, and the one with the shortest distance to x is chosen. The LNN approach 
reduces computational expense compared to more complex classifiers like NFL or NFP.

BF-CUDA The process of identifying k-nearest neighbors (kNN) in extensive datasets 
of d-dimensional vectors is resource-intensive. One mitigation strategy is the organiza-
tion of data through structures like binary trees. A study [29] explores this by imple-
menting the brute force (BF) method of kNN search using NVIDIA’s CUDA API. The BF 
method is essentially a two-step process, involving the calculation of distances between 
data points and then sorting them. For a specific query point q , the method:

1. Computes the distances between q and all other data points.
2. Sorts these distances in ascending order.
3. Identifies the k-nearest points.
4. Repeats the process for every query point.

In the experiments conducted in the study, a variant of the insertion sort proved more 
efficient than the comb sort for smaller k values. Thanks to the inherent parallelizability 
of the BF method, it is aptly suited for GPU implementations, leveraging both global 
and texture memory. However, a drop in performance was observed with global mem-
ory when memory accesses were non-coalesced, despite its high bandwidth. The study’s 
findings underscore the efficacy of the CUDA API in accelerating the kNN search, 
achieving speeds up to 400 times faster than a comparable CPU-based BF approach. 
This highlights the substantial potential of GPUs in enhancing the efficiency of comput-
ing kNN in large d-dimensional datasets.

TBiS The use of GPUs, especially NVIDIA’s, for multi-core parallel processing has 
gained traction in various projects due to their enhanced support for application inter-
faces [27, 81]. Many GPU implementations involve modifying or tailoring specific sort-
ing algorithms to fit particular needs. Garcia et al., for instance, employed the insertion 
sort and a parallel comb sort in their work [27]. Bitonic sorting stands out as a preferred 
choice for parallel systems because its operations of reading, comparing, swapping, and 
writing during the sorting process are data-independent [82]. In a distinctive study by 
Sismanis et  al. [83], they explore parallel techniques to find the k-nearest neighbors 



Page 22 of 55Halder et al. Journal of Big Data          (2024) 11:113 

(kNN) for individual queries in a high-dimensional space, specifically on a GPU. Their 
focus is on the brute force (BF) kNN sorting process. They introduced a set of truncated 
sort algorithms for parallel kNN searches, leveraging the close relationship between 
the select and sort operations. The truncated bitonic sort (TBiS) is highlighted for its 
straightforward data and program structures, efficient data locality, and synchronous 
concurrency. In TBiS, the overhead diminishes with each iteration, boasting a time 
complexity of O(logn) for the parallel scan. The process begins with identifying the k-th 
element as a threshold, then examining all elements below this threshold. Subsequent 
searches are carried out to identify elements equal to the threshold, and any item con-
firmed not to be among the minimal k is excluded from the sort. The study underscores 
that both the Bubble Sort and Bitonic Sort methods feature data-independent synchro-
nous processes, making them efficient for parallel processing tasks.

QDBI In the evolving landscape of peer-to-peer (P2P) systems that house a plethora 
of high-dimensional data including texts, images, and videos, the challenge of effec-
tively searching through this extensive data has emerged as a pivotal area of research. 
The kNN query, a complex query type for high-dimensional data, has been scrutinized 
in numerous studies [84–86]. In this realm, a novel approach named distributed multi-
dimensional data index (QDBI) has been proposed [87]. QDBI is anchored in the use 
of quad-trees, where each peer employs an MX-CIF quad-tree to create an index for 
their high-dimensional data. Each index item is then assigned a code following the MX-
CIF quad-tree structure. The indices, characterized by their codes, are orchestrated into 
one-dimensional rings. Super-peers are dynamically integrated into these rings as per 
the demands, forming a semantically structured super-peer network. Within this struc-
ture, an efficient kNN query processing mechanism is engineered, specifically tailored 
for high-dimensional data items, leveraging the QDBI index framework. The research 
underscores the efficacy and scalability of both the kNN query approach and the index 
structure. When a super-peer receives a kNN query, it is initially directed to the super-
peer that holds the corresponding control point (quad-tree block). Subsequently, the 
super-peers engage in a simultaneous evaluation of the query. Given that index items 
are arranged in the ring in a clockwise fashion according to the code value of their 
control points, the query might gather comprehensive solutions from one or multiple 
super-peers along the ring in the counterclockwise direction. The underlying principle 
is rooted in the gradual expansion of the search space as the query extends its range. 
In every expanded search space, identifying the k closest data points to the query point 
facilitates the updating of existing data across all spaces with the latest findings. The 
process culminates when the count of the closest data surpasses k and no closer data 
emerges in subsequent searches.

CU-kNN Reference [88] introduces the utilization of CUDA architecture for GPU par-
allelization in the realm of data mining applications. The authors unveil three innovative 
CUDA-based parallel algorithms aimed at optimizing data mining processes on paral-
lel platforms. These comprise a scalable thread scheduling strategy tailored for irregular 
patterns, a parallel distributed top-k strategy for selecting top-k values efficiently, and a 
technique for parallel high-dimensional data reduction. Specifically focusing on the CU-
kNN approach, the core of kNN computation lies in two pivotal elements: the selection 
of kNN and the calculation of distances. The CUDA implementation showcased in this 



Page 23 of 55Halder et al. Journal of Big Data          (2024) 11:113  

study ensures that all calculations are executed by the GPU, eliminating the need for 
data transfer between host and device memory during the classification phase. Given 
the independence of pair-wise distance computations, the authors capitalized on this 
trait to fully parallelize the process, making kNN ideally suited for GPU-based parallel 
execution. The kernel’s design is focused on minimizing global memory accesses while 
amplifying the concurrency of distance computations executed across multiple threads. 
To manage the multidimensional nature of objects in the application, each object is par-
titioned into segments, and distances between these segments are computed iteratively. 
Threads collaboratively load feature segments of query and reference objects into shared 
memory, execute local calculations, and generate local summations. These summations 
are then aggregated to compute the final distance value. In the context of selecting the 
k nearest neighbors, the authors utilize the parallel distributed top-k strategy. Since 
the selection process for different query objects is independent, it is parallelized, with 
specific threads assigned to select the k shortest distances for individual query objects. 
Empirical assessments underscored the superiority of CU-kNN, highlighting its perfor-
mance, which surpassed Fast-kNN [29] by a factor of up to 8.31 times on a real-world 
dataset from KDD-CUP 2004 quantum physics.

kNN-PA This study [89] introduces a specialized library for executing closest neigh-
bor searches in high-dimensional datasets on thousands of cores, utilizing the Mes-
sage Passing Interface (MPI) [90] and OpenMP [91]. The library is designed to deliver 
both exact and approximate results, focusing mainly on approximate nearest neigh-
bors (ANNs) using tree indexing. The authors present two distributed brute-force kNN 
methods: two-dimensional partitioning and cyclic partitioning. The two-dimensional 
approach involves partitioning both reference and query points and allocating them to 
nodes. Although this technique consumes more memory due to replication of points, 
it proves efficient in scenarios where time is a critical performance factor. The cyclic 
partitioning technique, on the other hand, is less memory-intensive but demands more 
communication. It involves dividing reference and query sets into equal-sized segments, 
distributing them across processes, and cycling either set based on their size. Addition-
ally, the study introduces a parallel tree-building method, RKDT (randomized k dimen-
sional tree) [89], compatible with multiple tree types and capable of indexing structures 
in any dimensional space. The authors explore two point-splitting methods within this 
approach: cluster-based (RKDTC) and hyperplane-based (RKDTH). The former uses 
k-means clustering, while the latter involves projecting all points onto a computed pro-
jection direction. Hyperplane-based partitioning proves more efficient, offering equal 
data point division and optimal load balancing, whereas the cluster-based approach is 
more computationally demanding. Hyperplane splitting also enhances filtering dur-
ing neighbor searches. For tree traversal, the authors contrast greedy traversal, where a 
query point explores one of the current node’s child nodes, with bounding ball traversal, 
where every leaf node intersecting the bounding ball is visited. To address kNN chal-
lenges, a two-stage tree traversal method is employed. Initially, each query point uses 
greedy traversal to reach a leaf node and identify its kNN. Subsequently, a bounding 
ball search, with a radius equal to the kNN (k-th item distance), identifies all nearest 
neighbors within the bounding ball. The closest k items among the identified neighbors 
are then returned. This comprehensive approach ensures enhanced performance and 



Page 24 of 55Halder et al. Journal of Big Data          (2024) 11:113 

accuracy in high-dimensional datasets where bounding balls and leaf nodes extensively 
overlap.

HkNN In study [92], Muhr and Affenzeller developed a hybrid approach to enhance 
kNN Search performance on high-dimensional datasets. They identified that tradi-
tional indexing structures often fall short in such environments, leading to the neces-
sity for an efficient brute-force search strategy. Their innovative method leverages both 
CPU and GPU, utilizing their distinct capabilities to optimize the search process. The 
hybrid approach is rooted in the synergy of the GPGPU paradigm [93] and CPU-based 
shared-memory parallelism to address the challenges posed by high-dimensionality in 
kNN Search. In this setup, the GPU is tasked with calculating distances, while the CPU, 
operating asynchronously, focuses on selecting the k nearest neighbors. Batching tech-
niques enable these two processes to occur simultaneously, ensuring optimal efficiency. 
Remarkably, the effectiveness of the HkNN method scales linearly with the increase in 
dataset dimensions, offering a substantial performance advantage, especially for large 
datasets, over conventional methods.

kNN join approach
We have categorized the various kNN Join strategies into four distinct groups: I/O-
based, main-memory-based, parallel, and distributed techniques.

IO‑based

As an example, Böhm et al. [8] introduced a kNN Join issue that identifies the kNN for 
multiple queries in one operation. Research into kNN Join methods, including MuX 
(Multi-page Indexing) [8], Gorder (G-ordering kNN) [94], and iJoin [95], has incorpo-
rated the nested loop search approach for handling high-dimensional data sets.

MuX Böhm and Krebs [7, 8] introduced the concept of kNN Join and developed a new 
method known as multi-page indexing to execute it. This technique utilizes the index 
nested loop join approach and is based on the R-tree [15] structure. The researchers 
employed large-size pages (hosting pages) to reduce I/O time and introduced buckets, 
smaller minimum bounding rectangles, for more precise data division with reduced CPU 
expense. Each set of objects ( R and S ) has its own index. MuX scans the index pages on 
R , and for each R page stored in memory, it pulls the corresponding S pages using the 
index to find the kNN. The process concludes when all pages are either scanned or fil-
tered. The performance of MuX is boosted by merging page-loading and bucket-selec-
tion strategies. However, it faces challenges such as performance decline with increased 
dimensionality and considerable memory overhead, limiting its scalability.

Gorder Gorder (G-ordering) [94] is a method that employs a block-nested loop join 
approach, optimizing both I/O and CPU costs through sorting, join scheduling, and 
distance computation. It consists of two main phases: PCA [30] and grid order sort-
ing. PCA is used to identify the direction of greatest data variance. In grid order sort-
ing, the data space is divided into rectangular cells, which are then ordered based on 
block distance, facilitating a scheduled block nested loop join on the G-ordered data. 
In Gorder, the G-ordered dataset is divided into blocks containing multiple physical 
pages. The method is characterized by its two-tier partitioning system that optimizes 
I/O and CPU times and its scheduling of data joining to improve kNN processing. The 



Page 25 of 55Halder et al. Journal of Big Data          (2024) 11:113  

first-tier involves loading R blocks sequentially and iteratively into the main memory, 
and for each loaded R block, an S block is loaded based on a scheduled sequence of 
similarity. However, this process can be CPU-intensive due to the large block size. 
To address this, the second-tier partition strategy is introduced, where blocks are 
divided into sub-blocks within the main memory, with each sub-block containing 
20–25 points for efficient processing. Given the nature of high-dimensional data, 
minimizing distance calculation is crucial for optimizing CPU time. An algorithm is 
introduced to reduce distance computation. It starts by calculating the minimum dis-
tance between two blocks of G-ordered data, Br and Bs . If this distance exceeds the 
pruning distance, the block is pruned, ensuring efficiency in processing. On the other 
hand, if the calculated minimum distance is smaller than the pruning distance, the 
block is not pruned. Instead, it is acknowledged as the k nearest neighbour, marking 
its significance in the search process.

iJoin Series iJoin [95] is a method developed to enhance performance in kNN com-
putations, taking advantage of the iDistance index structure and partition strategy. 
This technique has been refined into three versions: the basic iJoin, iJoinAC, and 
iJoinDR, each offering unique improvements. In the base version, iJoin, datasets R 
and S are divided into clusters, each associated with the same reference points. Using 
two B+-tree based iDistance indexes, the datasets are indexed efficiently. The method 
searches within a certain radius and prunes unnecessary partitions to find join pairs. 
If it does not find any, it expands the search area to include more S nodes. iJoinAC, an 
advanced version, aims to reduce the number of distance calculations and disk usage. 
This version is nearly identical to the original iJoin but focuses on processing approxi-
mation cubes instead of the actual feature vectors, making computations faster. The 
third variant, iJoinDR, incorporates dimensionality reduction to lessen I/O and CPU 
costs. It captures most of the information in the initial dimension using PCA and 
employs a sorting method for efficient approximation and filtering processes, similar 
to iJoin but more efficient thanks to these enhancements. However, all these methods 
[8, 94, 95] are applied to static datasets, meaning they require a complete kNN com-
putation for all users during updates, leading to a significant processing cost.

IIB and IIIB Algorithms Reference [96] introduces three kNN Join algorithms spe-
cifically designed for handling high-dimensional and sparse datasets. The Brute Force 
(BF) algorithm is the foundational method, where each query point r in block Br is 
compared with each object point s in block Bs based on their similarity scores. If the 
similarity score exceeds the existing pruning score of r , the object point s is identi-
fied as a nearest neighbor, and the pruning score is updated accordingly. To optimize 
this process, the Inverted Index-Based (IIB) algorithm is introduced. IIB is crafted 
to eliminate the need to traverse each item in the object dataset, addressing the inef-
ficiencies of the BF algorithm. Instead of evaluating all features of the query point 
r , IIB prunes unnecessary features of s while calculating the dot product of r and s . 
This optimization is achieved using an inverted list {I1, I2, . . . ., ID} , which contains sets 
of lists for each dimension, aiding in computing the kNN for each query point r in 
Br more efficiently. Building upon the advancements of IIB, the Improved Inverted 
Index-Based (IIIB) algorithm incorporates a new threshold-based pruning method. In 
IIIB, previously calculated results are utilized as thresholds for subsequent iterations, 



Page 26 of 55Halder et al. Journal of Big Data          (2024) 11:113 

streamlining the kNN computation process even further for sparse vectors. These 
enhancements make the IIIB algorithm a more refined solution for tackling the kNN 
Join problem in high-dimensional, sparse datasets.

kNNJoin + Yu, Cui, and colleagues [28] developed the kNNJoin + method to efficiently 
handle kNN Join queries in high-dimensional datasets, as outlined in their study. The 
process of executing an RkNN query is notably resource-intensive compared to a stand-
ard kNN query, so it is deployed selectively when the benefits outweigh the compu-
tational costs. In their innovative approach, the researchers employ four distinct data 
structures to dynamically update tables throughout all operations. These structures 
include the RkNN Join table, kNN Join table, iDistance, and sphere-tree. The sphere-tree 
plays a crucial role in identifying RkNN – points for which a particular point p is con-
sidered as one of the k nearest neighbors. On the other hand, iDistance indexing comes 
into play to determine the k nearest neighbors for any newly added pointp . iDistance 
employs the Pyramid technique to convert the complex, multi-dimensional data space 
into a simplified, one-dimensional value, making the data more manageable. The tech-
nique partitions the data space, assigns a unique reference point to each segment, and 
then relates each section to a one-dimensional space according to the similarity of data 
points to the assigned reference point. These transformed values are then systematically 
organized into a B+-tree for quicker access and efficient updates. To bolster performance 
further, the team crafted a shared query optimization strategy, ensuring that the process 
of handling kNN Join queries remains as efficient and streamlined as possible, even in 
the context of complex, high-dimensional data environments.

Memory‑based

HDR-Tree Yang, Chong, and their team [34] introduced two data structures for han-
dling high-dimensional data: the HDR-tree (for exact solutions) and the HDR*-tree (for 
approximations). The HDR-tree integrates the PCA [31] technique with clustering to 
reduce data dimensions. In contrast, the HDR*-tree opts for the Random Projection [97] 
strategy, which applies a random matrix to transform data dimensions. Essentially, PCA 
helps reduce the computational cost within the tree. The idea behind this is to focus on 
data directions with the highest variance, gradually picking the most significant compo-
nents. The tree’s initial dimension is packed with the most varied values, enabling more 
efficient data pruning and, subsequently, lower computational demands. Using eigen-
values, they tailor the dimensionality across tree levels. They partitioned the complex 
dataset into clusters and assigned varying dimensional depths to different tree levels. As 
you move deeper into the tree, dimensionality grows, reaching its full extent at the leaf 
nodes. The HDR-tree search algorithm zeroes in on specific users in a leaf node. For 
non-leaf nodes, it checks for a pruning condition and continues the search if criteria 
are met. If a certain distance condition is exceeded, certain clusters get bypassed, fur-
ther optimizing the search process. This approach is particularly efficient for ongoing 
kNN Join operations on real-time, high-dimensional datasets, offering a way to lower 
in-memory search expenses.

EkNNJ In real-world scenarios, databases are frequently updated with the addition 
or removal of items. However, a gap exists in the capability of current kNN Join algo-
rithms to efficiently handle batch updates and deletions, according to a study [98]. To 



Page 27 of 55Halder et al. Journal of Big Data          (2024) 11:113  

fill this gap, the authors introduced EkNNJ, an enhanced method to perform kNN Joins 
on high-dimensional data, with a focus on batch processing, delayed updates, and opti-
mized deletion operations. In EkNNJ, when an item is added or removed, the affected 
users are identified but not immediately updated. They are marked as “dirty” nodes in 
the HDR-tree and only updated when necessary, a strategy known as lazy updates. This 
is particularly useful as many new items often affect the same users, leading to redun-
dant calculations if updated each time. Furthermore, EkNNJ employs batch operations 
to enhance efficiency. Instead of updating the affected users with every new item inser-
tion or deletion, the updates are accumulated and processed together, reducing com-
putational efforts. Deletion operations in kNN can be complex and resource-intensive. 
Traditionally, every affected user needs to be identified and their kNN list updated 
whenever an item is deleted. EkNNJ simplifies this process by maintaining a reversed 
kNN (RkNN) table for all items, which speeds up the identification of affected users and 
their subsequent updates. In summary, EkNNJ stands out for its efficiency in handling 
dynamic update operations, especially batch updates and deletions, offering a more 
resource-efficient alternative to existing methods like HDR-tree and naive RkNN.

Parallel and distributed

kNN Join operations can be quite resource-intensive when dealing with high-dimen-
sional data. While various efficient strategies have been devised, they are typically 
designed for a single machine or thread. However, parallel and distributed computing 
methods have gained traction for their ability to enhance performance. MapReduce [99] 
is particularly notable in this context, acclaimed for its simplicity and effectiveness in 
parallel and distributed processing, offering a solution to the limitations of main mem-
ory when handling large datasets. Specific parallel MapReduce kNN Join algorithms 
such as Ball Tree [100], k-d Tree [19], PAT[101], HBNLJ [102], H-BRJ [102], and PGBJ 
[12] have been developed, underscoring the framework’s utility in efficiently processing 
substantial amounts of data in parallel.

Ball Tree This algorithm [100] utilizes a tree structure, specifically a ball tree, for effi-
cient nearest-neighbor searches. The effectiveness of the ball tree depends on the data 
distribution and query type. It employs a distance metric, like Euclidean distance, to 
expedite the identification of the k nearest points to a specified test point. A notable 
feature of this algorithm is its ability to bypass any subtree whose distance from the test 
point exceeds that of the closest identified point, enhancing efficiency. The algorithm 
initiates from the root node, proceeds depth-first, and keeps a record of the k nearest 
points in a max-first priority queue. Three possible operations can occur at each node. 
If the distance to the test point surpasses that of the furthest point in the queue, the 
node is skipped. For leaf nodes, each point within is evaluated, and the queue is updated 
accordingly. Internal nodes invoke a recursive search on their descendants, prioritizing 
the one closer to the test point, thereby optimizing the queue’s updates and often elimi-
nating more distant nodes from consideration.

k-d Tree The k-d Construction Algorithm [19] facilitates the creation of a k-d tree, 
enabling efficient nearest neighbor identification. This offline, top-down recursive algo-
rithm divides data points into two groups based on the median value along the dimen-
sion with the largest spread. The Nearest Neighbor (NN) algorithm, leveraging the k-d 



Page 28 of 55Halder et al. Journal of Big Data          (2024) 11:113 

tree’s structure, swiftly narrows down the search space. It descends recursively from the 
root, comparing the search point to nodes along the dividing dimension, until reaching 
a leaf node where the distances are compared. The current best distance is updated if a 
shorter one is found. As the algorithm ascends back, it checks if points on the other side 
of the dividing plane might be closer. If potential closer points are found, the same pro-
cess recurs on the opposite branch of the tree. Upon reaching the root again, the closest 
point found is declared the nearest neighbor. The construction of the k-d tree has a time 
complexity of O(nlogn) , where n represents the total number of data points.

PAT The Principle Axis Tree Nearest Neighbor (PAT) algorithm [101] enhances search 
efficiency by constructing a search tree through principal component analysis (PCA). It 
segments the dataset into regions, focusing on the node with maximal variance. Utiliz-
ing a depth-first search and a unique elimination criterion, it effectively pinpoints the k 
nearest neighbors. The dataset is projected onto the principal axis, recursively divided 
into equal subsets until each contains a minimal number of data points. The depth-first 
search starts at the root node, using binary search to identify the query point’s region, 
repeating this until the final node is reached. Here, partial distance search (PDS) meas-
ures the distances between points within that node. The elimination criterion is applied 
to the closest sibling node, potentially leading to its examination or removal. The process 
either investigates or eliminates sibling nodes before reverting to the root, optimizing 
the search operation.

H-BNLJ and H-BRJ In this study, two methods for handling large datasets were intro-
duced, both utilizing the MapReduce framework [102]. The first method, H-BNLJ 
(Hadoop Block Nested Loop Join), involves dividing datasets R and S into equal-sized 
blocks during the mapping phase. These blocks are then paired, divided into buckets, 
and processed by reducers to find the k nearest neighbors (kNN) using a nested loop. 
However, this basic approach faced scalability issues with high-dimensional data. To 
enhance this, a refined method, H-BRJ (Hadoop Block R-tree Join), was introduced. 
In this improved version, an R-tree based index is constructed for each local S block 
within a bucket. This index aids in the efficient search for kNN within the same bucket, 
eliminating the need for a local nested loop and thereby saving computational resources. 
The R-tree enables quicker kNN searches, making the H-BRJ a more efficient alterna-
tive for processing large, multidimensional datasets. Each reducer’s output, containing 
records’ ids and the distances to their respective kNNs, is stored in a distributed file sys-
tem (DFS), sorted, and the top-k results for each record id are released. This method 
offers a more scalable solution for handling complex, large-volume datasets in a parallel 
computing environment.

PGBJ Reference [12] is a method that utilizes Voronoi diagrams to divide the entire 
data space into cells, assigning data to the closest pivot within each cell. However, it 
sometimes requires searching through multiple cells to find the k nearest neighbors 
(kNN), leading to data duplication and increased computations. The author proposes 
two strategies to group cells into larger cells to address this issue: Geo grouping (group-
ing adjacent cells) and Greedy grouping (grouping cells with a high duplication prob-
ability). Despite its low communication overhead and disk usage, PGBJ’s efficiency 
diminishes with high-dimensional datasets. The process of selecting pivots, crucial for 
PGBJ’s performance, can also be time-consuming, especially with larger datasets.



Page 29 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Applications of kNN
The k-Nearest Neighbors (kNN) algorithm is widely used across various domains for its 
simplicity and effectiveness. Figure 5 shows the applications of kNN.

Data mining [69, 103–112]

kNN is extensively used in data mining for classification and regression tasks. For 
instance, in [69], the authors utilized kNN for credit scoring, demonstrating its effec-
tiveness in distinguishing between good and bad credit risks based on historical finan-
cial data. Another notable application is seen in [103], where kNN was employed to 
predict customer churn by identifying patterns in customer behavior data. Addition-
ally, [104–108] discussed the use of kNN in fraud detection, where it helped in iden-
tifying fraudulent transactions by analyzing transaction patterns. In [109, 110], kNN 
was applied to medical diagnosis, specifically for classifying patient data into different 
disease categories based on symptom similarity. Lastly, [111, 112] highlighted its use in 
market segmentation, where kNN helped in grouping consumers with similar purchas-
ing behaviors.

In machine learning, kNN is used as a classification or regression algorithm where the 
focus is on predicting the output for a new data point based on its nearest neighbors. In 
contrast, kNN search in data mining refers to the process of finding the nearest neigh-
bors in a dataset, often used for tasks like clustering or similarity search, without neces-
sarily performing classification or regression.

Machine learning [113–125]

In the field of machine learning, kNN serves as a fundamental algorithm for various 
supervised learning tasks. For example, [113, 114] explored its use in image recognition, 

Applications of 
kNN

Data Mining

Machine 
Learning

Mining 
IndustryRobotics

Sensor 
Networks

Fig. 5 Applications of kNN



Page 30 of 55Halder et al. Journal of Big Data          (2024) 11:113 

where kNN classified images based on pixel intensity similarities. In [115, 116], kNN was 
used for text categorization, classifying documents into topics based on word frequency 
features. Moreover, [117–121] highlighted its application in recommendation systems, 
where kNN recommended products to users based on the similarity of user profiles. 
Another study, [122, 123], illustrated how kNN can be used for anomaly detection in 
network traffic, helping identify unusual patterns that may indicate security breaches. In 
[124, 125], kNN was employed in bioinformatics for gene expression analysis, classifying 
genes based on expression levels to understand disease mechanisms.

In machine learning, kNN is used to classify or regress data points by considering the 
labels of their nearest neighbors. On the other hand, kNN search in the survey context 
is about efficiently finding the nearest neighbors in high-dimensional spaces, which is 
a fundamental operation that can support various tasks like similarity search or data 
retrieval, rather than direct classification or regression.

Machine industry [126–130]

The machine industry benefits from kNN in areas such as predictive maintenance and 
quality control. In [126], kNN was used to predict equipment failures by analyzing 
sensor data from machinery, allowing for timely maintenance and reduced downtime. 
Another application in [127] focused on quality inspection, where kNN helped classify 
products based on visual inspection data to ensure they meet quality standards. Addi-
tionally, [128–130] discussed the use of kNN in optimizing manufacturing processes by 
analyzing historical production data to improve efficiency and reduce waste.

In machine learning, kNN in the machine industry typically refers to using the algo-
rithm to predict outcomes like failures or classify product quality based on nearest 
neighbor analysis. kNN search, however, is about identifying similar instances within 
large datasets, which supports these predictive or classification tasks by quickly finding 
relevant data points without necessarily performing the prediction or classification itself.

Robotics [131–136]

In robotics, kNN is applied for object recognition, path planning, and control systems. 
For example, [131–133] used kNN to enable robots to recognize and classify objects in 
their environment based on visual input. In [133], the authors applied kNN for autono-
mous navigation, where the algorithm helped the robot select the optimal path by com-
paring current sensor data with stored navigation maps. Additionally, [134] explored 
kNN for robotic arm manipulation, assisting in precise movement control by referenc-
ing past movement data to achieve desired positions. Another significant application is 
seen in [135, 136], where kNN was used for human-robot interaction, helping robots 
understand and respond to human gestures and commands.

In robotics, kNN in machine learning is primarily used for making decisions based on 
the classification or regression of sensor data, such as object recognition or path plan-
ning. The kNN search, however, focuses on finding the nearest data points to a query 
point, which can be used to support these tasks by providing relevant data for decision-
making processes.



Page 31 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Sensors network [137–142]

kNN is pivotal in sensor networks for tasks like environmental monitoring and locali-
zation. In [137], kNN was employed to analyze temperature and humidity data from 
a network of sensors to predict weather patterns. Another significant application in 
[139] involved using kNN for indoor localization, where it estimated the position of 
a device by comparing real-time signal strength data with a pre-recorded signal map. 
Additionally, [140] used kNN for detecting anomalies in sensor data, which is cru-
cial for maintaining the reliability of the sensor network by identifying faulty sensors 
or unusual environmental conditions. In [141, 142], kNN was applied to smart home 
systems, where it helped in monitoring and controlling home environments based on 
sensor inputs.

In sensor networks, kNN in machine learning is typically used for classification or 
regression tasks based on sensor data, such as predicting weather patterns or detect-
ing anomalies. kNN search, on the other hand, involves finding the nearest neighbors 
in a dataset, which can be used to support these applications by quickly identifying 
relevant data points for further analysis. kNN’s multifaceted applications underscore 
its versatility and efficacy in diverse domains. Its adaptability, ease of implementa-
tion, and precision make it a favored choice for professionals and researchers alike, 
driving innovations and enhancements in data mining, machine learning, the mining 
industry, robotics, and sensor networks. The algorithm’s capacity to handle complex, 
high-dimensional data and deliver precise, reliable outcomes underscores its integral 
role in advancing technology and data-driven solutions.

Comparative analysis
In this segment, a detailed comparison is presented between cutting-edge kNN 
Search and kNN Join methodologies, specifically applied to high-dimensional data-
sets. This analytical comparison aids in achieving a deeper insight into each approach, 
illuminating the distinct features and potential shortcomings inherent in each.

kNN search approach

The diverse kNN Search strategies are thoroughly examined and compared in Table 4. 
This organized presentation of information facilitates an enhanced comprehension of 
the capabilities and constraints associated with each method, guiding informed deci-
sion-making and potential enhancements in future applications.

 1. Classical kNN is appreciated for its simplicity and versatility in handling different 
data distributions and types of problems including classification and regression. It is 
particularly beneficial for datasets with multiple features and dimensions. However, 
its effectiveness is hampered by the high computational cost associated with large 
datasets and increased dimensions. The choice of k is crucial, as an inappropriate 
value can lead to overfitting or underfitting. While it is a robust option for smaller 
datasets and can handle multiple features efficiently, it can suffer in performance due 
to the curse of dimensionality in larger and more complex datasets. (Source Code: 
https:// github. com/ rajib 1346/ kNN/ blob/ main/ Class ical_ kNN. py)

https://github.com/rajib1346/kNN/blob/main/Classical_kNN.py


Page 32 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Ta
bl

e 
4 

Pr
os

. a
nd

 C
on

s 
of

 k
N

N
 S

ea
rc

h

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

C
la

ss
ic

al
 k

N
N

 [6
9]

1.
 T

he
 a

lg
or

ith
m

 is
 s

tr
ai

gh
tfo

rw
ar

d 
an

d 
m

ak
es

 n
o 

as
su

m
pt

io
ns

 
ab

ou
t t

he
 d

at
a 

di
st

rib
ut

io
n

2.
 It

 c
an

 b
e 

us
ed

 to
 s

ol
ve

 p
ro

bl
em

s 
in

vo
lv

in
g 

cl
as

si
fic

at
io

n 
an

d 
re

gr
es

si
on

3.
 It

 c
an

 b
e 

ad
va

nt
ag

eo
us

 fo
r d

at
as

et
s 

w
ith

 n
um

er
ou

s 
ch

ar
ac

te
r-

is
tic

s 
an

d 
hi

gh
 d

im
en

si
on

al
ity

1.
 L

ar
ge

 d
at

as
et

s 
an

d 
hi

gh
-d

im
en

si
on

al
 fe

at
ur

e 
sp

ac
es

 im
po

se
 a

 
hi

gh
 c

om
pu

ta
tio

na
l c

os
t

2.
 S

en
si

tiv
ity

 to
 th

e 
se

le
ct

io
n 

of
 k

, r
es

ul
tin

g 
in

 o
ve

rfi
tt

in
g 

or
 

un
de

rfi
tt

in
g

3.
 A

s 
th

e 
nu

m
be

r o
f f

ea
tu

re
s 

or
 d

im
en

si
on

s 
in

cr
ea

se
s, 

effi
ca

cy
 

de
gr

ad
es

 d
ue

 to
 th

e 
cu

rs
e 

of
 d

im
en

si
on

al
ity

D
at

as
et

: I
ris

A
cc

ur
ac

y:
 1

00
%

Tr
ai

ni
ng

 T
im

e:
 0

.0
0 

s
Te

st
in

g 
Ti

m
e:

 0
.0

5 
s

W
-k

N
N

 [7
0]

1.
 T

he
 a

cc
ur

ac
y 

of
 th

e 
m

et
ho

d 
is

 e
nh

an
ce

d 
by

 a
ss

ig
ni

ng
 

di
st

an
ce

-b
as

ed
 w

ei
gh

ts
 to

 th
e 

k 
N

ea
re

st
 N

ei
gh

bo
rs

2.
 T

he
 m

et
ho

d 
is

 re
si

st
an

t t
o 

th
e 

in
flu

en
ce

 o
f d

at
a 

ou
tli

er
s 

an
d 

no
is

e
3.

 T
he

re
 a

re
 n

um
er

ou
s 

w
ei

gh
t f

un
ct

io
ns

 a
nd

 d
is

ta
nc

e 
m

et
ric

s 
fro

m
 w

hi
ch

 to
 c

ho
os

e

1.
 W

kN
N

 is
 c

om
pu

ta
tio

na
lly

 e
xp

en
si

ve
, m

ak
in

g 
it 

un
su

ita
bl

e 
fo

r 
la

rg
e 

da
ta

se
ts

2.
 S

el
ec

tin
g 

a 
su

ita
bl

e 
w

ei
gh

tin
g 

fu
nc

tio
n 

fo
r W

kN
N

 c
an

 b
e 

ch
al

le
ng

in
g

3.
 W

kN
N

 is
 s

en
si

tiv
e 

to
 o

ut
lie

rs
 in

 th
e 

da
ta

se
t, 

w
hi

ch
 c

an
 le

ad
 to

 
in

co
rr

ec
t p

re
di

ct
io

ns

D
at

as
et

: I
ris

A
cc

ur
ac

y:
 1

00
%

Tr
ai

ni
ng

 T
im

e:
 0

.0
00

9 
s

Te
st

in
g 

Ti
m

e:
 0

.0
7 

s

C
N

N
 [7

1]
1.

 C
N

N
 c

an
 s

ub
st

an
tia

lly
 re

du
ce

 th
e 

or
ig

in
al

 d
at

as
et

’s 
si

ze
 w

hi
le

 
m

ai
nt

ai
ni

ng
 c

la
ss

ifi
ca

tio
n 

ac
cu

ra
cy

2.
 C

N
N

 c
an

 e
nh

an
ce

 th
e 

pe
rf

or
m

an
ce

 o
f c

la
ss

ifi
ca

tio
n 

al
go

-
rit

hm
s 

by
 re

m
ov

in
g 

in
st

an
ce

s 
th

at
 a

re
 c

ha
ot

ic
 a

nd
 ir

re
le

va
nt

 
fro

m
 th

e 
da

ta
se

t
3.

 B
y 

ut
ili

zi
ng

 a
 re

du
ce

d 
su

bs
et

 o
f e

xa
m

pl
es

 fo
r t

ra
in

in
g,

 C
N

N
 

ca
n 

re
du

ce
 th

e 
tr

ai
ni

ng
 ti

m
e 

of
 c

la
ss

ifi
ca

tio
n 

al
go

rit
hm

s. 
Th

e 
ra

te
 

of
 re

co
gn

iti
on

1.
 If

 th
e 

se
le

ct
ed

 s
ub

se
t i

s 
to

o 
sm

al
l o

r n
ot

 re
pr

es
en

ta
tiv

e 
of

 th
e 

or
ig

in
al

 d
at

as
et

, C
N

N
 c

an
 re

su
lt 

in
 o

ve
rfi

tt
in

g
2.

 C
N

N
 is

 s
en

si
tiv

e 
to

 th
e 

in
iti

al
 s

ub
se

t s
el

ec
te

d 
an

d 
th

e 
or

de
r i

n 
w

hi
ch

 in
st

an
ce

s 
ar

e 
ev

al
ua

te
d

3.
 C

N
N

 m
ay

 n
ot

 b
e 

ap
pr

op
ria

te
 fo

r d
at

as
et

s 
w

ith
 in

tr
ic

at
e 

de
ci

-
si

on
 b

ou
nd

ar
ie

s 
or

 c
la

ss
es

 th
at

 o
ve

rla
p

D
at

as
et

: I
ris

A
cc

ur
ac

y:
 9

0%
Tr

ai
ni

ng
 T

im
e:

 0
.0

01
 s

Te
st

in
g 

Ti
m

e:
 0

.1
6 

s

RN
N

 [7
2]

1.
 B

ec
au

se
 it

 re
du

ce
s 

th
e 

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 o

f t
he

 
ne

ar
es

t n
ei

gh
bo

r a
lg

or
ith

m
, t

he
 R

N
N

 a
lg

or
ith

m
 is

 a
n 

eff
ec

tiv
e 

m
et

ho
d 

fo
r p

ro
ce

ss
in

g 
la

rg
e 

da
ta

se
ts

2.
 R

N
N

 c
an

 e
nh

an
ce

 th
e 

sc
al

ab
ili

ty
 a

nd
 e

ffi
ca

cy
 o

f t
he

 n
ea

re
st

 
ne

ig
hb

or
 a

lg
or

ith
m

 w
hi

le
 p

re
se

rv
in

g 
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

3.
 R

N
N

 c
an

 b
e 

ut
ili

ze
d 

w
ith

 a
ny

 d
is

ta
nc

e 
m

et
ric

, n
ot

 ju
st

 th
e 

Eu
cl

id
ea

n 
di

st
an

ce

1.
 If

 in
su

ffi
ci

en
t p

ro
xi

m
al

 n
ei

gh
bo

rs
 a

re
 e

va
lu

at
ed

, R
N

N
 m

ay
 

re
du

ce
 th

e 
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

2.
 T

he
 e

ffi
ca

cy
 o

f t
he

 R
N

N
 a

lg
or

ith
m

 c
an

 b
e 

co
ns

id
er

ab
ly

 
im

pa
ct

ed
 b

y 
th

e 
nu

m
be

r o
f n

ea
re

st
 n

ei
gh

bo
rs

 th
at

 a
re

 c
on

si
d-

er
ed

, i
nd

ic
at

in
g 

th
at

 c
ho

os
in

g 
th

e 
ap

pr
op

ria
te

 n
um

be
r i

s 
cr

uc
ia

l
3.

 R
N

N
 m

ay
 n

ot
 b

e 
ap

pr
op

ria
te

 fo
r d

at
as

et
s 

w
ith

 in
tr

ic
at

e 
de

ci
-

si
on

 b
ou

nd
ar

ie
s 

or
 c

la
ss

es
 th

at
 o

ve
rla

p

D
at

as
et

: I
ris

Ei
ge

n 
Ve

ct
or

 T
ra

ns
fo

rm
at

io
n:

 Y
es

Co
m

pr
es

se
d:

 Y
es

k =
 3

Er
ro

r P
ro

ba
bi

lit
y:

 0
.0

Ei
ge

n 
Ve

ct
or

 T
ra

ns
fo

rm
at

io
n:

 N
o

Co
m

pr
es

se
d:

 N
o

k =
 3

Er
ro

r P
ro

ba
bi

lit
y:

 0
.8

8

EN
N

 [7
3]

By
 e

ra
di

ca
tin

g 
in

st
an

ce
s 

th
at

 a
re

 in
co

rr
ec

tly
 c

la
ss

ifi
ed

 o
r c

on
ta

in
 

no
is

e,
 th

e 
EN

N
 a

lg
or

ith
m

 c
an

 s
ub

st
an

tia
lly

 im
pr

ov
e 

th
e 

cl
as

-
si

fic
at

io
n 

ac
cu

ra
cy

 o
f t

he
 n

ea
re

st
 n

ei
gh

bo
r a

lg
or

ith
m

2.
 E

N
N

 c
an

 b
e 

us
ed

 a
s 

a 
pr

ep
ro

ce
ss

in
g 

ph
as

e 
to

 e
nh

an
ce

 th
e 

effi
ci

en
cy

 o
f o

th
er

 c
la

ss
ifi

ca
tio

n 
al

go
rit

hm
s

3.
 E

N
N

 is
 a

 s
tr

ai
gh

tfo
rw

ar
d 

an
d 

effi
ci

en
t a

lg
or

ith
m

 th
at

 c
an

 b
e 

re
ad

ily
 im

pl
em

en
te

d 
an

d 
ap

pl
ie

d 
to

 d
iv

er
se

 d
at

as
et

s

1.
 E

N
N

 m
ay

 e
lim

in
at

e 
so

m
e 

pe
rt

in
en

t i
ns

ta
nc

es
 fr

om
 th

e 
da

ta
-

se
t, 

re
su

lti
ng

 in
 a

 lo
ss

 o
f i

nf
or

m
at

io
n

2.
 T

he
 n

um
be

r o
f n

ea
re

st
 n

ei
gh

bo
rs

 c
on

si
de

re
d 

an
d 

th
e 

or
de

r i
n 

w
hi

ch
 in

st
an

ce
s 

ar
e 

ed
ite

d 
ca

n 
ha

ve
 a

 s
ig

ni
fic

an
t i

m
pa

ct
 o

n 
th

e 
effi

ci
en

cy
 o

f E
N

N
3.

 E
N

N
 m

ay
 n

ot
 b

e 
ap

pr
op

ria
te

 fo
r d

at
as

et
s 

w
ith

 in
tr

ic
at

e 
de

ci
-

si
on

 b
ou

nd
ar

ie
s 

or
 c

la
ss

es
 th

at
 o

ve
rla

p

D
at

as
et

: P
im

a 
D

ia
be

te
s

M
ea

n 
A

cc
ur

ac
y:

 0
.7

53
5

M
ea

n 
Pr

ec
is

io
n:

 0
.7

34
6

M
ea

n 
Re

ca
ll:

 0
.7

12
2



Page 33 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Ta
bl

e 
4 

(c
on

tin
ue

d)

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

SN
N

 [7
4]

1.
 U

nl
ik

e 
m

an
y 

ot
he

r c
lu

st
er

in
g 

al
go

rit
hm

s, 
th

e 
SN

N
 a

lg
or

ith
m

 is
 

ab
le

 to
 p

ro
ce

ss
 h

ig
h-

di
m

en
si

on
al

 d
at

a
2.

 It
 c

an
 re

co
gn

iz
e 

no
n-

lin
ea

r s
tr

uc
tu

re
s 

in
 th

e 
da

ta
 a

nd
 c

an
 d

ea
l 

w
ith

 n
oi

se
3.

 C
om

pa
re

d 
to

 o
th

er
 c

lu
st

er
in

g 
al

go
rit

hm
s, 

its
 p

er
fo

rm
an

ce
 o

n 
a 

va
rie

ty
 o

f d
at

as
et

s 
ha

s 
be

en
 d

em
on

st
ra

te
d 

to
 b

e 
su

pe
rio

r

1.
 T

he
 o

ut
co

m
e 

of
 c

lu
st

er
in

g 
is

 a
ffe

ct
ed

 b
y 

th
e 

se
le

ct
io

n 
of

 
pa

ra
m

et
er

s, 
su

ch
 a

s 
th

e 
th

re
sh

ol
d 

va
lu

e 
an

d 
th

e 
nu

m
be

r o
f 

ne
ar

es
t n

ei
gh

bo
rs

; t
he

re
fo

re
, i

t m
ay

 b
e 

ne
ce

ss
ar

y 
to

 m
od

ify
 th

e 
pa

ra
m

et
er

s 
fo

r e
ac

h 
da

ta
se

t t
o 

ac
hi

ev
e 

op
tim

al
 re

su
lts

2.
 T

he
 a

lg
or

ith
m

 m
ay

 b
e 

co
m

pu
ta

tio
na

lly
 c

os
tly

, p
ar

tic
ul

ar
ly

 fo
r 

la
rg

e 
da

ta
se

ts
3.

 T
he

 a
lg

or
ith

m
 is

 s
en

si
tiv

e 
to

 th
e 

di
st

an
ce

 m
et

ric
 c

ho
se

n 
an

d 
m

ay
 n

ot
 fu

nc
tio

n 
w

el
l w

ith
 c

er
ta

in
 d

is
ta

nc
e 

m
et

ric
s

D
at

as
et

: U
nk

no
w

n
Q

ue
ry

: B
ra

nc
hi

ng
 c

ar
bo

n 
m

or
e 

th
an

 1
3

A
cc

ur
ac

y:
 8

6%

VB
N

N
 [7

5]
1.

 T
he

 V
BN

N
 a

lg
or

ith
m

 is
 e

as
y 

to
 im

pl
em

en
t a

nd
 u

nd
er

st
an

d,
 

m
ak

in
g 

it 
ac

ce
ss

ib
le

 to
 b

eg
in

ne
rs

 in
 m

ac
hi

ne
 le

ar
ni

ng
2.

 T
he

 a
lg

or
ith

m
 is

 e
ffe

ct
iv

e 
fo

r d
at

as
et

s 
w

ith
 w

el
l-s

ep
ar

at
ed

 
cl

us
te

rs
, a

s 
it 

ca
n 

ac
cu

ra
te

ly
 c

la
ss

ify
 n

ew
 d

at
a 

po
in

ts
 b

as
ed

 o
n 

th
ei

r p
ro

xi
m

ity
 to

 V
or

on
oi

 b
ou

nd
ar

ie
s

3.
 T

he
 V

BN
N

 a
lg

or
ith

m
 c

an
 b

e 
us

ed
 fo

r b
ot

h 
cl

us
te

rin
g 

an
d 

cl
as

-
si

fic
at

io
n 

ta
sk

s, 
m

ak
in

g 
it 

ve
rs

at
ile

 in
 it

s 
ap

pl
ic

at
io

ns

1.
 T

he
 V

BN
N

 a
lg

or
ith

m
 is

 u
ns

ui
ta

bl
e 

fo
r d

at
as

et
s 

w
ith

 c
lu

st
er

s 
th

at
 o

ve
rla

p,
 a

s 
it 

m
ay

 m
is

cl
as

si
fy

 d
at

a 
po

in
ts

 th
at

 li
e 

w
ith

in
 

m
ul

tip
le

 V
or

on
oi

 re
gi

on
s

2.
 T

he
 a

lg
or

ith
m

 is
 c

om
pu

ta
tio

na
lly

 in
te

ns
iv

e 
fo

r l
ar

ge
 d

at
as

et
s 

du
e 

to
 th

e 
co

ns
tr

uc
tio

n 
an

d 
m

od
ifi

ca
tio

n 
of

 th
e 

Vo
ro

no
i d

ia
-

gr
am

 fo
r e

ac
h 

ne
w

 d
at

a 
po

in
t

3.
 T

he
 c

ho
ic

e 
of

 th
e 

di
st

an
ce

 m
et

ric
 u

se
d 

to
 c

al
cu

la
te

 th
e 

di
st

an
ce

 b
et

w
ee

n 
da

ta
 e

le
m

en
ts

 h
as

 a
n 

eff
ec

t o
n 

th
e 

ac
cu

ra
cy

 
of

 th
e 

VB
N

N
 a

lg
or

ith
m

D
at

as
et

s: 
N

av
Te

ch
, U

SG
S

En
tr

ie
s: 

H
os

pi
ta

ls
Q

ue
ry

 p
ro

ce
ss

in
g 

tim
e:

 6
.5

 s
En

tr
ie

s: 
Sh

op
pi

ng
 c

en
te

rs
Q

ue
ry

 p
ro

ce
ss

in
g 

tim
e:

 3
.3

 s
En

tr
ie

s: 
Pa

rk
s

Q
ue

ry
 p

ro
ce

ss
in

g 
tim

e:
 1

.5
 s

En
tr

ie
s: 

Sc
ho

ol
s

Q
ue

ry
 p

ro
ce

ss
in

g 
tim

e:
0.

75
 s

En
tr

ie
s: 

A
ut

o 
se

rv
ic

es
Q

ue
ry

 p
ro

ce
ss

in
g 

tim
e:

 0
.6

5 
s

En
tr

ie
s: 

Re
st

au
ra

nt
s

Q
ue

ry
 p

ro
ce

ss
in

g 
tim

e:
 0

.5
7

M
-k

N
N

 [7
6]

1.
 T

he
 a

lg
or

ith
m

 d
ec

re
as

es
 th

e 
ne

ce
ss

ar
y 

qu
an

tit
y 

of
 d

at
a 

po
in

ts
 

to
 a

ch
ie

ve
 c

la
ss

ifi
ca

tio
n,

 w
hi

ch
 re

su
lts

 in
 h

ig
he

r e
ffi

ci
en

cy
2.

 It
 e

lim
in

at
es

 re
lia

nc
e 

on
 th

e 
k-

va
lu

e,
 m

ak
in

g 
it 

m
or

e 
ad

ap
ta

bl
e 

to
 v

ar
io

us
 d

at
as

et
s

3.
 U

si
ng

 re
pr

es
en

ta
tiv

e 
da

ta
 p

oi
nt

s 
re

du
ce

s 
th

e 
in

flu
en

ce
 o

f 
ch

ao
tic

 d
at

a 
on

 c
la

ss
ifi

ca
tio

n 
ou

tc
om

es

1.
 T

he
 a

lg
or

ith
m

 m
ay

 n
ot

 p
er

fo
rm

 o
pt

im
al

ly
 w

ith
 d

at
as

et
s 

co
n-

ta
in

in
g 

cl
as

s 
bo

un
da

rie
s 

th
at

 a
re

 in
tr

ic
at

e 
an

d 
ov

er
la

p
2.

 T
he

 p
ro

ce
du

re
 o

f s
el

ec
tin

g 
re

pr
es

en
ta

tiv
e 

da
ta

 p
oi

nt
s 

ca
n 

be
 

tim
e-

co
ns

um
in

g 
an

d 
ex

pe
ns

iv
e 

co
m

pu
ta

tio
na

lly
3.

 C
ho

os
in

g 
th

e 
ap

pr
op

ria
te

 re
pr

es
en

ta
tiv

e 
da

ta
 e

le
m

en
ts

 c
an

 
si

gn
ifi

ca
nt

ly
 a

ffe
ct

 th
e 

qu
al

ity
 o

f t
he

 c
la

ss
ifi

ca
tio

n 
re

su
lts

D
at

as
et

: G
la

ss
A

cc
ur

ac
y:

68
57

%
D

at
as

et
: I

ris
A

cc
ur

ac
y:

 9
5%

D
at

as
et

: H
ea

rt
A

cc
ur

ac
y:

 8
9.

74
%

D
at

as
et

: W
in

e
A

cc
ur

ac
y:

 9
5.

43
%

D
at

as
et

: D
ia

be
te

s
A

cc
ur

ac
y:

 7
4.

77
%

D
at

as
et

: A
us

t
A

cc
ur

ac
y:

 8
6.

9%



Page 34 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Ta
bl

e 
4 

(c
on

tin
ue

d)

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

R-
kN

N
 [7

7]
1.

 In
co

rp
or

at
es

 a
 ra

nk
in

g 
m

od
el

 to
 p

ro
m

ot
e 

th
e 

tr
us

tw
or

th
i-

ne
ss

 o
f n

ei
gh

bo
rs

’ la
be

ls
, p

ot
en

tia
lly

 im
pr

ov
in

g 
th

e 
ac

cu
ra

cy
 o

f 
pr

ed
ic

tio
ns

2.
 C

an
 b

e 
in

co
rp

or
at

ed
 w

ith
 a

ny
 d

is
ta

nc
e 

m
et

ric
 to

 p
ro

vi
de

 
so

m
e 

de
gr

ee
 o

f i
m

pr
ov

em
en

t
3.

 P
ro

vi
de

s 
a 

pe
rf

or
m

an
ce

 m
et

ric
 u

si
ng

 H
am

m
in

g 
lo

ss
 to

 e
va

lu
-

at
e 

th
e 

al
go

rit
hm

’s 
pe

rf
or

m
an

ce

1.
 R

eq
ui

re
s 

th
e 

tr
ai

ni
ng

 o
f a

 ra
nk

in
g 

m
od

el
, w

hi
ch

 m
ay

 b
e 

co
m

pu
ta

tio
na

lly
 e

xp
en

si
ve

2.
 T

he
 o

pt
im

iz
at

io
n 

m
et

ho
d 

us
ed

 to
 le

ar
n 

th
e 

w
ei

gh
ts

 fo
r t

he
 

w
ei

gh
te

d 
vo

tin
g 

st
ra

te
gy

 m
ay

 n
ot

 a
lw

ay
s 

re
su

lt 
in

 th
e 

op
tim

al
 

so
lu

tio
n

3.
 T

he
 a

lg
or

ith
m

 m
ay

 n
ot

 p
er

fo
rm

 w
el

l i
n 

hi
gh

-d
im

en
si

on
al

 
sp

ac
es

 o
r w

ith
 n

oi
sy

 d
at

a

H
am

m
in

g 
Lo

ss
 re

su
lts

:
D

at
as

et
: y

ea
st

RK
 +

 G
PS

: 0
.1

9
D

at
as

et
: s

ce
ne

RK
 +

 G
PS

: 0
.0

8
D

at
as

et
: e

m
ot

io
ns

RK
 +

 LW
: 0

.1
86

0
D

at
as

et
: a

ud
io

RK
 +

 G
PS

: 0
.0

85
D

at
as

et
: g

en
ba

se
RK

 +
 G

PS
: 0

.0
01

1
D

at
as

et
: m

ed
ic

al
RK

 +
 G

PS
: 0

.0
11

7

C
-k

N
N

 [7
8]

1.
 B

y 
cl

us
te

rin
g 

th
e 

tr
ai

ni
ng

 s
am

pl
es

, t
he

 p
ro

bl
em

’s 
co

m
pl

ex
ity

 is
 

re
du

ce
d 

an
d 

th
e 

al
go

rit
hm

’s 
effi

ca
cy

 is
 e

nh
an

ce
d

2.
 T

he
 in

tr
od

uc
tio

n 
of

 w
ei

gh
t v

al
ue

s 
en

ha
nc

es
 th

e 
ac

cu
ra

cy
 o

f 
th

e 
al

go
rit

hm
 b

y 
gi

vi
ng

 g
re

at
er

 w
ei

gh
t t

o 
cl

us
te

rs
 w

ith
 m

or
e 

sa
m

pl
es

3.
 T

he
 C

-k
N

N
 a

lg
or

ith
m

 is
 c

ap
ab

le
 o

f m
an

ag
in

g 
co

m
pl

ex
 a

nd
 

m
ul

ti-
pe

ak
ed

 d
at

a 
di

st
rib

ut
io

ns
, m

ak
in

g 
it 

su
ita

bl
e 

fo
r a

 v
ar

ie
ty

 
of

 c
la

ss
ifi

ca
tio

n 
ta

sk
s

1.
 T

he
 c

lu
st

er
in

g 
pr

oc
es

s 
m

ay
 n

ot
 a

lw
ay

s 
pr

od
uc

e 
an

 o
pt

im
al

 
ou

tc
om

e,
 a

nd
 th

e 
qu

al
ity

 o
f t

he
 c

lu
st

er
s 

is
 d

ep
en

de
nt

 o
n 

th
e 

cl
us

te
rin

g 
al

go
rit

hm
 a

nd
 p

ar
am

et
er

s 
se

le
ct

ed
2.

 T
he

 C
-k

N
N

 a
lg

or
ith

m
 m

ay
 b

e 
co

m
pu

ta
tio

na
lly

 e
xp

en
si

ve
, 

es
pe

ci
al

ly
 w

he
n 

w
or

ki
ng

 w
ith

 la
rg

e 
da

ta
se

ts
 o

r h
ig

h-
di

m
en

-
si

on
al

 fe
at

ur
e 

sp
ac

es
3.

 T
he

 a
lg

or
ith

m
’s 

effi
ca

cy
 m

ay
 d

ep
en

d 
on

 th
e 

ch
ar

ac
te

ris
tic

s 
of

 
th

e 
da

ta
se

t, 
an

d 
it 

m
ay

 n
ot

 c
on

si
st

en
tly

 o
ut

pe
rf

or
m

 o
th

er
 c

la
s-

si
fic

at
io

n 
al

go
rit

hm
s 

in
 a

ll 
si

tu
at

io
ns

D
at

as
et

: t
ex

t c
la

ss
ifi

ca
tio

n 
da

ta
se

t
A

vg
. P

re
ce

ss
io

n:
 0

.9
13

3
A

vg
. R

ec
al

l: 
0.

91
15

A
vg

. F
1:

 0
.9

12
3

N
FL

 [7
9]

1.
 T

he
 N

FL
 a

lg
or

ith
m

 c
an

 h
an

dl
e 

va
ria

tio
ns

 w
ith

in
 a

 c
la

ss
 b

y 
ca

pt
ur

in
g 

th
e 

su
bs

pa
ce

 o
f f

ea
tu

re
 v

ar
ia

tio
ns

, m
ak

in
g 

it 
eff

ec
tiv

e 
fo

r i
m

ag
e 

cl
as

si
fic

at
io

n 
an

d 
re

tr
ie

va
l

2.
 It

 c
an

 p
ot

en
tia

lly
 im

pr
ov

e 
th

e 
ac

cu
ra

cy
 a

nd
 e

ffi
ci

en
cy

 o
f 

tr
ad

iti
on

al
 n

ea
re

st
 n

ei
gh

bo
r s

ea
rc

h 
m

et
ho

ds
 b

y 
ut

ili
zi

ng
 th

e 
su

bs
pa

ce
 in

fo
rm

at
io

n
3.

 T
he

 a
lg

or
ith

m
 d

oe
s 

no
t r

eq
ui

re
 a

ny
 tr

ai
ni

ng
 o

r a
dd

iti
on

al
 

da
ta

, m
ak

in
g 

it 
a 

si
m

pl
e 

an
d 

st
ra

ig
ht

fo
rw

ar
d 

ap
pr

oa
ch

 fo
r i

m
ag

e 
re

tr
ie

va
l

1.
 A

ss
um

in
g 

th
at

 e
ac

h 
cl

as
s 

ha
s 

a 
w

el
l-d

efi
ne

d 
su

bs
pa

ce
, t

he
 

N
FL

 a
lg

or
ith

m
 m

ay
 n

ot
 p

er
fo

rm
 w

el
l o

n 
da

ta
se

ts
 c

on
ta

in
in

g 
co

m
pl

ex
 o

r o
ve

rla
pp

in
g 

cl
as

se
s

2.
 C

on
st

ru
ct

io
n 

of
 th

e 
su

bs
pa

ce
 c

an
 b

e 
co

m
pu

ta
tio

na
lly

 in
te

n-
si

ve
, e

sp
ec

ia
lly

 fo
r l

ar
ge

 d
at

as
et

s 
w

ith
 n

um
er

ou
s 

pr
ot

ot
yp

es
 a

nd
 

fe
at

ur
es

3.
 T

he
 e

ffi
ca

cy
 o

f t
he

 N
FL

 a
lg

or
ith

m
 is

 h
ig

hl
y 

de
pe

nd
en

t o
n 

th
e 

qu
al

ity
 o

f t
he

 s
el

ec
te

d 
pr

ot
ot

yp
es

, w
hi

ch
 c

an
 b

e 
di

ffi
cu

lt 
to

 
as

ce
rt

ai
n 

in
 s

om
e 

da
ta

se
ts

D
at

as
et

: B
ro

da
tz

 te
xt

ur
e

Er
ro

r r
at

e:
 5

.3
D

at
as

et
: C

ol
or

 im
ag

e
Er

ro
r r

at
e:

 4
4.

4
D

at
as

et
: I

m
ag

e 
us

in
g 

G
ab

or
Er

ro
r r

at
e:

 7
.9

D
at

as
et

: W
av

el
et

 fe
at

ur
es

Er
ro

r r
at

e:
 4

2.
0

LN
N

 [8
0]

1.
 It

 c
an

 h
an

dl
e 

no
n-

lin
ea

r d
ec

is
io

n 
bo

un
da

rie
s

2.
 It

 c
an

 m
od

el
 c

om
pl

ex
 re

la
tio

ns
hi

ps
 b

et
w

ee
n 

fe
at

ur
es

 a
nd

 
la

be
ls

3.
 T

hi
s 

m
et

ho
d 

is
 a

pp
ro

pr
ia

te
 fo

r u
se

 w
ith

 d
at

as
et

s 
co

nt
ai

ni
ng

 a
 

la
rg

e 
nu

m
be

r o
f d

im
en

si
on

s

1.
 T

he
 e

ffe
ct

iv
en

es
s 

of
 th

e 
m

et
ho

d 
ca

n 
be

 in
flu

en
ce

d 
by

 th
e 

ch
oi

ce
 o

f h
yp

er
pa

ra
m

et
er

s, 
in

cl
ud

in
g 

bu
t n

ot
 li

m
ite

d 
to

 th
e 

di
st

an
ce

 m
et

ric
 u

se
d 

an
d 

th
e 

nu
m

be
r o

f n
ei

gh
bo

rs
 c

on
si

de
re

d
2.

 It
 c

an
 b

e 
co

m
pu

ta
tio

na
lly

 c
os

tly
 fo

r m
as

si
ve

 d
at

as
et

s
3.

 If
 th

e 
tr

ai
ni

ng
 d

at
as

et
 is

 to
o 

lim
ite

d 
or

 n
oi

sy
, i

t i
s 

su
sc

ep
tib

le
 

to
 o

ve
rfi

tt
in

g

D
at

as
et

: F
ac

e 
im

ag
e

Re
co

gn
iti

on
 ra

te
: 9

5.
18

Re
co

gn
iti

on
 ti

m
e:

 0
.0

27
 s



Page 35 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Ta
bl

e 
4 

(c
on

tin
ue

d)

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

BF
-C

U
D

A
 [2

9]
En

ab
le

s 
qu

ic
k,

 c
on

cu
rr

en
t k

N
N

 S
ea

rc
h

In
eff

ec
tiv

e 
w

ith
 e

xt
re

m
el

y 
la

rg
e 

da
ta

se
ts

D
at

as
et

: U
nk

no
w

n
d 
=

 9
6,

 n
 =

 1
20

0
Co

m
pu

ta
tio

n 
tim

e:
 0

.0
2 

s
n 
=

 2
40

0
Co

m
pu

ta
tio

n 
tim

e:
 0

.0
5 

s
n 
=

 4
80

0
Co

m
pu

ta
tio

n 
tim

e:
 0

.1
5 

s
n 
=

 9
60

0
Co

m
pu

ta
tio

n 
tim

e:
 0

.5
7 

s
n 
=

 1
9,

20
0

Co
m

pu
ta

tio
n 

tim
e:

 2
.2

9 
s

n 
=

 3
8,

40
0

Co
m

pu
ta

tio
n 

tim
e:

 9
.6

1 
s

TB
iS

 [8
3]

Fe
at

ur
es

 s
tr

ai
gh

tfo
rw

ar
d 

da
ta

/p
ro

gr
am

m
e 

co
nfi

gu
ra

tio
ns

, 
si

m
ul

ta
ne

ou
s 

op
er

at
io

ns
, s

up
er

io
r d

at
a 

lo
ca

liz
at

io
n

Effi
ci

en
cy

 p
lu

m
m

et
s 

as
 d

at
a 

vo
lu

m
e 

an
d 

k 
va

lu
e 

ex
pa

nd
D

at
as

et
: B

el
ga

Lo
go

s
Co

m
pu

ta
tio

n 
tim

e:
 1

.3
 to

 to
 4

 s

Q
D

BI
 [8

7]
Ex

hi
bi

ts
 e

xc
el

le
nt

 s
ca

la
bi

lit
y 

an
d 

se
ar

ch
 e

ffi
ca

cy
Te

st
in

g 
om

itt
ed

 re
al

 d
at

as
et

s, 
lim

ite
d 

ap
pl

ic
ab

ili
ty

 to
 h

ig
h-

di
m

en
si

on
al

 d
at

a
D

at
as

et
: P

os
ta

l a
dd

re
ss

 d
at

as
et

A
s 

th
e 

K 
va

lu
e 

ris
es

, b
ot

h 
al

go
rit

hm
s 

sh
ow

 a
 g

ra
du

al
 in

cr
ea

se
 

in
 v

is
ite

d 
pe

er
s. 

Th
e 

KN
N

 q
ue

ry
 p

ro
ce

ss
in

g 
in

 S
SW

 h
as

 a
 h

ig
he

r 
nu

m
be

r o
f v

is
ite

d 
pe

er
s 

co
m

pa
re

d 
to

 th
e 

SC
BO

 n
et

w
or

k

C
U

-k
N

N
 [8

8]
D

el
iv

er
s 

to
p-

tie
r p

er
fo

rm
an

ce
, e

nh
an

ce
s 

fu
nd

am
en

ta
l i

ss
ue

s 
in

 
C

U
D

A
-b

as
ed

 d
at

a 
m

in
in

g 
al

go
rit

hm
s

St
ru

gg
le

s 
w

ith
 h

an
dl

in
g 

la
rg

e 
da

ta
 v

ol
um

es
, d

at
a 

tr
an

sf
er

 
ex

pe
ns

e 
is

 p
ro

bl
em

at
ic

D
at

as
et

: K
D

D
-C

U
P 

20
04

Ex
ec

ut
io

n 
tim

e:
 8

.3
1 

s

kN
N

-P
A

 [8
9]

Sc
al

ab
le

, s
up

po
rt

s 
H

D
 d

at
as

et
s 

kN
N

 S
ea

rc
he

s 
ut

ili
zi

ng
 th

ou
sa

nd
s 

of
 c

or
es

N
ot

 ta
ilo

re
d 

fo
r o

ng
oi

ng
 p

oi
nt

 m
od

ifi
ca

tio
ns

, f
al

ls
 s

ho
rt

 in
 

di
st

rib
ut

ed
 m

em
or

y 
se

tt
in

gs
D

at
as

et
: S

yn
th

et
ic

 d
at

as
et

k =
 8

A
cc

ur
ac

y:
99

.5
0%

±
2
.1
6
%

H
kN

N
 [9

2]
Effi

ci
en

t C
PU

 a
nd

 G
PU

 ta
sk

 d
is

tr
ib

ut
io

n,
 h

yb
rid

 m
et

ho
do

lo
gy

, 
pe

rf
or

m
an

ce
 b

oo
st

 w
ith

 d
im

en
si

on
al

ity
 in

cr
ea

se
Ev

al
ua

tio
n 

on
ly

 in
cl

ud
ed

 b
ru

te
-fo

rc
e 

te
ch

ni
qu

es
, o

pp
or

tu
ni

ty
 

fo
r o

pt
im

iz
in

g 
k 

se
le

ct
io

n 
an

d 
di

st
an

ce
 k

er
ne

ls
D

at
as

et
: H

ig
h 

di
m

en
si

on
al

 d
at

as
et

iD
is

ta
nc

e 
[4

2,
 4

3]
En

ab
le

s 
re

al
-t

im
e 

qu
er

y 
re

sp
on

se
s, 

ad
ap

ta
bl

e 
to

 d
iv

er
se

 d
at

a 
di

st
rib

ut
io

ns
, i

nt
eg

ra
te

s 
in

to
 D

BM
S

Ex
te

ns
iv

e 
se

ar
ch

 a
re

a,
 fa

ls
e 

ne
ga

tiv
es

 fr
om

 lo
ss

y 
tr

an
sf

or
m

at
io

ns
, 

effi
ci

en
cy

 in
 p

ru
ni

ng
 d

im
in

is
he

s 
w

ith
 ri

si
ng

 d
im

en
si

on
s

D
at

as
et

: H
ig

h 
di

m
en

si
on

al
 d

at
as

et
D

im
en

si
on

: 3
0

k =
 2

0
A

cc
ur

ac
y:

 1
00

%

D
ia

go
na

l O
rd

er
in

g 
[4

4]
Ev

ad
es

 s
up

er
flu

ou
s 

di
st

an
ce

 c
al

cu
la

tio
ns

, a
da

pt
ab

le
 to

 a
ss

or
te

d 
da

ta
 d

is
tr

ib
ut

io
ns

, s
up

po
rt

s 
re

al
-t

im
e 

qu
er

ie
s

Te
st

in
g 

co
ns

tr
ai

ne
d 

to
 3

0D
 d

at
as

et
, c

on
ce

rn
s 

ab
ou

t e
ffi

ca
cy

 in
 

hi
gh

er
 d

im
en

si
on

s
D

at
as

et
: I

m
ag

e 
da

ta
se

t
C

PU
 C

os
t: 

20
0–

30
0

V
A
+

-fi
le

 [4
7]

A
ve

rt
s 

ex
tr

em
e 

da
ta

 d
is

tr
ib

ut
io

n 
di

sp
ar

iti
es

, s
ui

ta
bl

e 
fo

r n
on

-
un

ifo
rm

 d
at

as
et

s
Re

qu
ire

s 
ap

pr
ox

im
at

io
n 

fo
r r

es
ul

ts
, e

ffi
ci

en
cy

 d
w

in
dl

es
 w

ith
 

in
cr

ea
si

ng
 d

im
en

si
on

s, 
ov

er
lo

ok
s 

ca
ch

e 
an

d 
qu

er
y 

w
or

kl
oa

d
D

at
as

et
: A

irp
ho

to
Th

e 
sp

ee
du

p 
fo

r D
 =

 1
.0

5 
is

 4
Th

e 
sp

ee
du

p 
fo

r D
 =

 1
.1

 is
 6

.9



Page 36 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Ta
bl

e 
4 

(c
on

tin
ue

d)

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

O
TI

 a
nd

 E
O

TI
 [4

8]
Q

ui
ck

 s
ea

rc
h 

al
go

rit
hm

 w
ith

 re
du

ce
d 

co
m

pl
ex

ity
, m

iti
ga

te
s 

ex
te

ns
iv

e 
di

st
an

ce
 c

al
cu

la
tio

ns
O

TI
 h

as
 e

xt
en

si
ve

 s
pa

ce
 a

nd
 ti

m
e 

re
qu

ire
m

en
ts

, t
ria

ng
le

 c
on

-
st

ru
ct

io
n 

pr
oc

es
s 

co
ul

d 
be

 im
pr

ov
ed

D
at

as
et

s: 
A

rc
en

e,
 M

ul
tip

le
fe

at
ur

es
, G

as
Se

ns
or

s, 
Sp

am
ba

se
, W

av
e-

fo
rm

, D
U

W
W

TP
, S

hu
tt

le
, S

lic
e

A
vg

. P
RS

T 
(K

M
C

-O
TI

-F
S)

: 5
2.

28
%

A
vg

. P
RS

T 
(K

M
C

-E
O

TI
-F

S)
: 6

6.
78

%

BP
 [5

2]
Su

pe
rio

r k
N

N
 S

ea
rc

h,
 a

m
pl

ifi
es

 C
PU

 ti
m

e 
an

d 
IO

 c
os

t e
ffi

ci
en

cy
La

ck
s 

su
pp

or
t f

or
 s

ub
st

an
tia

l d
at

a 
up

da
te

s, 
co

nv
er

si
on

 to
 L

2 
co

ul
d 

yi
el

d 
im

pr
ov

ed
 s

ol
ut

io
ns

D
at

as
et

s: 
Re

al
 (A

ud
io

, F
on

ts
, D

ee
p,

 S
ift

), 
sy

nt
he

tic
 (N

or
m

al
, 

un
ifo

rm
) d

at
as

et
s

Ru
nn

in
g 

tim
e:

 5
25

 m
s

I/O
 c

os
t: 

8.
2 ×

1
0
2

∆-
tr

ee
 [2

6]
En

ha
nc

ed
 in

de
x 

st
ru

ct
ur

e,
 c

on
de

ns
es

 s
ea

rc
h 

sp
ac

e 
an

d 
ac

ce
le

r-
at

es
 q

ue
rie

s 
in

 m
ai

n 
m

em
or

y
Ta

ilo
re

d 
fo

r c
or

re
la

te
d 

da
ta

se
ts

, r
eq

ui
re

s 
fre

qu
en

t c
om

pl
et

e 
tr

ee
 

re
co

ns
tr

uc
tio

ns
D

at
as

et
: C

or
el

 im
ag

e
El

ap
se

d 
tim

e:
 0

.0
6 

s

ar
ra

y-
in

de
x 

[5
3]

M
in

im
al

 d
is

k 
ac

ce
ss

, f
as

t a
nd

 c
om

pa
ct

Ex
cl

ud
es

 re
al

-w
or

ld
 d

at
as

et
s 

in
 te

st
in

g
D

at
as

et
: I

m
ag

e 
da

ta
se

t
Se

ar
ch

 ti
m

e:
 1

00
 s

�
+

-t
re

e 
[2

6,
 5

4]
Re

du
ce

s 
co

m
pu

ta
tio

na
l e

xp
en

se
s 

an
d 

ca
ch

e 
m

is
se

s, 
su

pe
rio

r t
o 

iD
is

ta
nc

e 
an

d 
Py

ra
m

id
 tr

ee
In

ca
pa

bl
e 

of
 h

al
tin

g 
tr

ee
 re

co
ns

tr
uc

tio
n,

 p
ar

am
et

er
 v

al
ue

s 
flu

ct
ua

te
 w

ith
 d

at
as

et
 v

ar
ia

tio
ns

D
at

as
et

: M
ot

io
n 

ca
pt

ur
e,

 c
ol

or
 h

is
to

gr
am

s 
da

ta
se

t
El

ap
se

d 
tim

e:
 2

00
0s

A
C

D
B 

[5
5]

U
se

s 
tr

ia
ng

le
 in

eq
ua

lit
y 

fo
r r

ed
uc

ed
 C

PU
 e

xp
en

se
s 

an
d 

en
ha

nc
ed

 p
er

fo
rm

an
ce

In
iti

al
 c

en
te

r p
iv

ot
s 

an
d 

k 
va

lu
e 

pr
of

ou
nd

ly
 in

flu
en

ce
 th

e 
cl

us
te

r-
in

g 
ap

pr
oa

ch
D

at
as

et
: B

io
re

tin
a

Re
sp

on
se

 ti
m

e:
 8

0 
s

iD
is

ta
nc

e-
PS

 [5
6]

Bo
ls

te
rs

 fi
lte

rin
g 

ca
pa

ci
ty

, e
ffi

ci
en

t k
N

N
 q

ue
ry

 e
xe

cu
tio

n
In

te
ns

ifi
ed

 d
im

en
si

on
al

ity
 is

su
es

 in
 s

pa
ce

-o
rie

nt
ed

 m
et

ho
ds

D
at

as
et

: U
ni

fo
rm

 d
at

as
et

PL
-T

re
e 

[6
2]

A
da

pt
s 

to
 d

im
en

si
on

al
ity

 a
nd

 d
at

a 
vo

lu
m

e,
 s

up
po

rt
s 

po
in

t a
nd

 
ra

ng
e 

qu
er

ie
s

A
ss

es
se

d 
w

ith
 a

 1
2D

 d
at

as
et

 o
nl

y,
 iD

is
ta

nc
e 

su
rp

as
se

s 
in

 p
oi

nt
 

qu
er

y 
pe

rf
or

m
an

ce
D

at
as

et
s: 

Sy
nt

he
tic

, r
ea

l w
or

ld
 (U

SP
P, 

TI
G

ER
, L

LM
PP

, M
A

PS
) d

at
as

et
Q

ue
ry

 ti
m

e 
(S

yn
th

et
ic

 d
at

as
et

): 
0.

62
 s

Q
ue

ry
 ti

m
e 

(L
LM

PP
): 

0 
s

Q
ue

ry
 ti

m
e 

(T
IG

ER
): 

3.
6 

s

iD
St

ar
 [6

3]
Ex

ce
ls

 in
 c

lu
st

er
ed

, h
ig

h-
di

m
en

si
on

al
 d

at
a 

sp
ac

es
Re

du
ce

d 
effi

ci
en

cy
 fo

r d
is

pe
rs

ed
 c

lu
st

er
s, 

in
ad

eq
ua

te
 fo

r d
im

en
-

si
on

s 
ex

ce
ed

in
g 

25
6

N
A

H
C

–O
 [6

6]
En

ha
nc

es
 re

fin
em

en
t s

pe
ed

 d
ur

in
g 

se
ar

ch
es

, a
pp

lic
ab

le
 to

 b
ot

h 
ex

ac
t a

nd
 a

pp
ro

xi
m

at
e 

st
ra

te
gi

es
A

ss
um

es
 c

on
si

st
en

t q
ue

ry
 d

is
tr

ib
ut

io
n,

 d
is

ta
nc

e 
bo

un
d 

tig
ht

-
ne

ss
 a

nd
 h

is
to

gr
am

 im
pa

ct
 p

ru
ni

ng
 c

ap
ab

ili
ty

D
at

as
et

: S
O

G
O

U
A

vg
. q

ue
ry

 re
sp

on
se

 ti
m

e:
 0

.8
 s



Page 37 of 55Halder et al. Journal of Big Data          (2024) 11:113  

 2. W-kNN enhances the accuracy of predictions by applying weights based on dis-
tances to the k Nearest Neighbors, making it more resilient to outliers and noise. 
There is a flexibility in choosing weight functions and distance metrics. However, its 
effectiveness can be challenged by the computational intensity, especially with large 
datasets. Choosing an optimal weighting function is also non-trivial and requires 
careful consideration. Although W-kNN can offer improved accuracy, especially in 
noisy environments, its computational expense and sensitivity to outliers can some-
times limit its applicability. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ 
main/W- kNN. py).

 3. CNN stands out for its ability to reduce dataset size while preserving classification 
accuracy, enhancing the performance of classification algorithms by filtering out 
irrelevant data. This makes it efficient in terms of training time and computational 
resources. However, its effectiveness can be compromised if the selected subset is 
too small or unrepresentative, leading to overfitting. It is also sensitive to the ini-
tial subset selection and the sequence in which instances are processed. While CNN 
can be a powerful tool for improving classification performance, care must be taken 
to ensure that the selected subsets are representative and adequately sized. (Source 
Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ CNN. py)

 4. RNN is noted for its capability to handle large datasets efficiently by reducing the 
computational complexity of the nearest neighbor algorithm. It maintains classifica-
tion accuracy and offers flexibility in choosing distance metrics. However, its effec-
tiveness is contingent upon the number of proximal neighbors considered—too few 
can lead to reduced accuracy. Similar to CNN, RNN may also struggle with datasets 
having complex decision boundaries or overlapping classes. RNN offers a scalable 
solution for large datasets but requires a judicious selection of neighbors to maintain 
accuracy. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ RNN. py).

 5. ENN xcels in enhancing classification accuracy by eliminating incorrectly classified 
or noisy instances, serving as a useful preprocessing step for other classification algo-
rithms. It is straightforward and applicable to a variety of datasets. However, there is 
a risk of losing valuable information if pertinent instances are removed. The algo-
rithm’s efficiency is influenced by the number of neighbors considered and the edit-
ing sequence. It may also struggle with datasets having complex decision boundaries 
or overlapping classes. ENN can be a potent tool for noise reduction and improving 
classification accuracy but must be applied with caution to avoid information loss 
and to ensure it is suited to the dataset’s complexity. (Source Code: https:// github. 
com/ rajib 1346/ kNN/ blob/ main/ ENN. py).

 6. SNN is notable for its capacity to process high-dimensional data, recognize non-
linear structures, and manage noise effectively. It has showcased superior perfor-
mance across diverse datasets compared to other clustering algorithms. However, 
its effectiveness can be hampered by the need to fine-tune parameters like threshold 
value and number of nearest neighbors, and it may incur high computational costs 
with large datasets. The choice of distance metric is critical, requiring careful consid-
eration to ensure optimal clustering results. (Source Code: https:// github. com/ rajib 
1346/ kNN/ blob/ main/ SNN. py)

https://github.com/rajib1346/kNN/blob/main/W-kNN.py
https://github.com/rajib1346/kNN/blob/main/W-kNN.py
https://github.com/rajib1346/kNN/blob/main/CNN.py
https://github.com/rajib1346/kNN/blob/main/RNN.py
https://github.com/rajib1346/kNN/blob/main/ENN.py
https://github.com/rajib1346/kNN/blob/main/ENN.py
https://github.com/rajib1346/kNN/blob/main/SNN.py
https://github.com/rajib1346/kNN/blob/main/SNN.py


Page 38 of 55Halder et al. Journal of Big Data          (2024) 11:113 

 7. VBNN is valued for its simplicity, ease of implementation, and effectiveness in data-
sets with well-separated clusters. It is versatile, catering to both clustering and clas-
sification tasks. However, its effectiveness is diminished with overlapping clusters 
due to the inherent limitations in handling data points lying within multiple Voronoi 
regions. Computational intensity and the influence of the chosen distance metric on 
accuracy are also areas of concern, suggesting that VBNN is best suited for specific 
dataset configurations and may not be a universal solution. (Source Code: https:// 
github. com/ rajib 1346/ kNN/ blob/ main/ VBNN. py).

 8. M-kNN stands out for its efficiency in classification by reducing the number of data 
points needed and eliminating reliance on k-value, making it adaptable. It counters 
the influence of chaotic data by using representative data points. However, its perfor-
mance can be suboptimal with complex, overlapping class boundaries. The process 
of selecting representative data points is both time-intensive and computationally 
expensive. The algorithm’s effectiveness, therefore, hinges on the careful selection of 
these points and may be more suited for datasets with distinct, well-defined classes. 
(Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/M- kNN. py).

 9. R-kNN enhances prediction accuracy by incorporating a ranking model and can 
be paired with any distance metric. Its performance is evaluable using Hamming 
loss. However, the need to train a ranking model adds to computational expense. 
The optimization method’s effectiveness and the algorithm’s performance in high-
dimensional or noisy data scenarios can be uncertain. R-kNN promises enhanced 
accuracy in specific scenarios but requires adequate computational resources and 
careful parameter tuning to realize its potential. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/R- kNN. py)

 10. C-kNN optimizes efficiency by clustering training samples, with weight values 
enhancing accuracy. It is adept at handling complex and multi-peaked data distri-
butions. However, the clustering outcome’s optimality and computational expense, 
especially with large or high-dimensional datasets, can be potential drawbacks. The 
algorithm’s effectiveness is contingent on dataset characteristics, suggesting its appli-
cation should be tailored to align with dataset specificities for optimal performance. 
(Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/C- kNN. py).

 11. NFL is adept at handling class variations and is particularly suited for image classi-
fication and retrieval. It offers simplicity and does not require training or additional 
data. However, its effectiveness can be compromised in the presence of complex or 
overlapping classes, and the subspace construction can be computationally intensive. 
The selection of prototypes is critical, indicating that NFL’s applicability is optimal 
in scenarios where class variations are well-defined and manageable. (Source Code: 
https:// github. com/ rajib 1346/ kNN/ blob/ main/ NFL. py).

 12. LNN is prized for its capability to handle non-linear decision boundaries and model 
complex feature-label relationships, even in high-dimensional datasets. However, 
its effectiveness is influenced by hyperparameter choices, computational costs with 
large datasets, and susceptibility to overfitting with limited or noisy training data. 
LNN offers a robust solution for complex, high-dimensional datasets but necessi-
tates careful hyperparameter tuning and adequate training data to mitigate overfit-

https://github.com/rajib1346/kNN/blob/main/VBNN.py
https://github.com/rajib1346/kNN/blob/main/VBNN.py
https://github.com/rajib1346/kNN/blob/main/M-kNN.py
https://github.com/rajib1346/kNN/blob/main/R-kNN.py
https://github.com/rajib1346/kNN/blob/main/R-kNN.py
https://github.com/rajib1346/kNN/blob/main/C-kNN.py
https://github.com/rajib1346/kNN/blob/main/NFL.py


Page 39 of 55Halder et al. Journal of Big Data          (2024) 11:113  

ting and optimize performance. (Source Code: https:// github. com/ rajib 1346/ kNN/ 
blob/ main/ LNN. py)

 13. BF-CUDA is praised for its ability to quickly perform kNN Searches, thanks to its 
parallel processing capabilities. However, its effectiveness is limited by its inability to 
handle extremely large datasets. This algorithm is highly efficient for medium-sized 
datasets but might not be the go-to solution for large-scale applications. (Source 
Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ BF- CUDA. py)

 14. TBiS offers advantages like simplicity in data and program structures and optimal 
data localization. However, its performance diminishes with the increase in data 
items and k value. It could be an excellent choice for applications with moderate data 
volume and k values. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ 
TBiS. py).

 15. QDBI is recognized for its scalability and search performance but falls short as it 
has not been tested on real datasets and lacks focus on high-dimensional data. This 
makes assessing its effectiveness in real-world, high-dimensional applications chal-
lenging. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ QDBI. py).

 16. CU-kNN delivers high performance and addresses core issues associated with 
CUDA-based data mining algorithms but faces challenges with big data scalability 
and data movement costs. It might be suitable for applications where dataset size is 
not extensively large. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ 
CU- KNN. py).

 17. kNN-PA excels in scalability and is capable of handling high-dimensional datasets 
over thousands of cores but is not designed for continuous point updates and is less 
effective in distributed memory environments. It is particularly effective for static, 
high-dimensional datasets. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ 
main/ kNN- PA).

 18. HkNN boasts efficient task distribution between CPU and GPU and offers a hybrid 
approach to kNN Search. However, its evaluation parameters are limited, and there 
is room for exploration in optimized k selection and distance kernels. Its effective-
ness increases linearly with dimensionality. (Source Code: https:// github. com/ 
davnn/ Paral lelNe ighbo rs. jl).

 19. iDistance supports real-time queries and adapts well to different data distributions 
but suffers from a wide search region and lossy transformation issues. Its adaptabil-
ity makes it versatile, though there are concerns about accuracy and efficiency in 
higher dimensions. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ 
iDist ance. py).

 20. Diagonal Ordering avoids unnecessary distance computation and adapts well to var-
ied data distributions but is limited by the scope of tested datasets. Its effectiveness 
in very high-dimensional datasets remains uncertain. (Source Code: https:// github. 
com/ rajib 1346/ kNN/ blob/ main/ Diago nal% 20Ord ering. py).

 21. VA + -file mitigates data distribution disparities and is useful for non-uniform 
datasets but faces challenges in approximation and performance degradation with 
dimensionality increase. It could be beneficial for specific non-uniform datasets but 
might struggle with high-dimensional data. (Source Code: https:// github. com/ rajib 
1346/ kNN/ blob/ main/ VA% 2B- File. py)

https://github.com/rajib1346/kNN/blob/main/LNN.py
https://github.com/rajib1346/kNN/blob/main/LNN.py
https://github.com/rajib1346/kNN/blob/main/BF-CUDA.py
https://github.com/rajib1346/kNN/blob/main/TBiS.py
https://github.com/rajib1346/kNN/blob/main/TBiS.py
https://github.com/rajib1346/kNN/blob/main/QDBI.py
https://github.com/rajib1346/kNN/blob/main/CU-KNN.py
https://github.com/rajib1346/kNN/blob/main/CU-KNN.py
https://github.com/rajib1346/kNN/blob/main/kNN-PA
https://github.com/rajib1346/kNN/blob/main/kNN-PA
https://github.com/davnn/ParallelNeighbors.jl
https://github.com/davnn/ParallelNeighbors.jl
https://github.com/rajib1346/kNN/blob/main/iDistance.py
https://github.com/rajib1346/kNN/blob/main/iDistance.py
https://github.com/rajib1346/kNN/blob/main/Diagonal%20Ordering.py
https://github.com/rajib1346/kNN/blob/main/Diagonal%20Ordering.py
https://github.com/rajib1346/kNN/blob/main/VA%2B-File.py
https://github.com/rajib1346/kNN/blob/main/VA%2B-File.py


Page 40 of 55Halder et al. Journal of Big Data          (2024) 11:113 

 22. OTI and EOTI algorithms offer reduced complexity and faster search but face chal-
lenges in space and time complexity, and efficiency in triangle construction. Their 
effectiveness may be contingent upon the dataset’s nature and size. (Source Code: 
https:// github. com/ rajib 1346/ kNN/ blob/ main/ OTI% 20EOTI).

 23. BP introduces a new approach to kNN Search and improves CPU and IO cost 
efficiency but struggles with massive data updates. Its effectiveness in real-time, 
dynamic environments may be compromised. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/ BP. py).

 24. Δ-tree offers an optimized index structure and reduces search space but is only 
effective for correlated datasets and requires frequent rebuilding. It might be highly 
effective for specific dataset types but is not a universal solution. (Source Code: 
https:// github. com/ rajib 1346/ kNN/ blob/ main/% E2% 88% 86- tree. py).

 25. array-index with minimal disk access and enhanced speed, array-index seems 
promising but has not been tested on real-life datasets. Its real-world effectiveness 
remains speculative. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ 
array- index. py)

 26. Δ + -tree minimizes computational cost but is hampered by the inability to halt tree-
rebuilding processes and varying optimal parameter values. Its effectiveness may be 
high but requires specific tuning for each dataset. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/% E2% 88% 86% 2B- tree. py).

 27. ACDB effectively reduces CPU cost but is significantly impacted by the initial center 
pivots and k values. It can be highly effective with the right parameter setting but 
requires careful tuning. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ 
main/ ABCD. py)

 28. iDistance-PS enhances the filtering power of iDistance but faces significant issues 
with dimensionality in space-based approaches. Its effectiveness is enhanced in fil-
tering but could be constrained by the dataset’s dimensionality. (Source Code: http:// 
code. google. com/p/ idist ance/).

 29. PL-Tree scales well with dimensionality and data size but has only been tested on a 
12D dataset. Its broad applicability and effectiveness are yet to be fully ascertained. 
(Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ PL- Tree. py).

 30. iDStar performs excellently in high-dimensional, tightly clustered data spaces but 
has less pruning power for scattered clusters. It is highly effective in specific data 
configurations. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ idStar. 
py)

 31. HC–O accelerates the candidate refining process but presumes a stable distribution 
of queries. Its effectiveness can be high but might vary significantly depending on 
the query distribution and dataset characteristics. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/ HC-O).

kNN join approach

Table 5 offers an insightful analysis, contrasting a range of kNN Join methodologies that 
are explored in this review, evaluating their effectiveness in various scenarios.

https://github.com/rajib1346/kNN/blob/main/OTI%20EOTI
https://github.com/rajib1346/kNN/blob/main/BP.py
https://github.com/rajib1346/kNN/blob/main/BP.py
https://github.com/rajib1346/kNN/blob/main/%E2%88%86-tree.py
https://github.com/rajib1346/kNN/blob/main/array-index.py
https://github.com/rajib1346/kNN/blob/main/array-index.py
https://github.com/rajib1346/kNN/blob/main/%E2%88%86%2B-tree.py
https://github.com/rajib1346/kNN/blob/main/%E2%88%86%2B-tree.py
https://github.com/rajib1346/kNN/blob/main/ABCD.py
https://github.com/rajib1346/kNN/blob/main/ABCD.py
http://code.google.com/p/idistance/
http://code.google.com/p/idistance/
https://github.com/rajib1346/kNN/blob/main/PL-Tree.py
https://github.com/rajib1346/kNN/blob/main/idStar.py
https://github.com/rajib1346/kNN/blob/main/idStar.py
https://github.com/rajib1346/kNN/blob/main/HC-O
https://github.com/rajib1346/kNN/blob/main/HC-O


Page 41 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Ta
bl

e 
5 

Pr
os

. a
nd

 C
on

s 
of

 k
N

N
 J

oi
n

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

Ba
ll 

tr
ee

 [1
00

]
1.

 T
he

 B
al

l T
re

e 
kN

N
 a

lg
or

ith
m

 c
an

 e
ffe

ct
iv

el
y 

de
al

 w
ith

 
hi

gh
-d

im
en

si
on

al
 d

at
a,

 m
ak

in
g 

it 
a 

va
lu

ab
le

 in
st

ru
m

en
t 

fo
r a

pp
lic

at
io

ns
 s

uc
h 

as
 im

ag
e 

an
d 

sp
ee

ch
 re

co
gn

iti
on

2.
 It

 is
 fa

st
er

 th
an

 o
th

er
 b

ru
te

-fo
rc

e 
al

go
rit

hm
s 

fo
r 

ne
ar

es
t-

ne
ig

hb
or

 s
ea

rc
h,

 p
ar

tic
ul

ar
ly

 fo
r l

ar
ge

 d
at

a 
se

ts
3.

 T
he

 a
lg

or
ith

m
 is

 a
da

pt
ab

le
 a

nd
 c

an
 a

cc
om

m
od

at
e 

a 
va

rie
ty

 o
f d

is
ta

nc
e 

m
et

ric
s, 

m
ak

in
g 

it 
ap

pr
op

ria
te

 fo
r a

 
w

id
e 

ra
ng

e 
of

 d
at

a 
ty

pe
s

1.
 C

re
at

in
g 

a 
ba

ll 
tr

ee
 s

tr
uc

tu
re

 c
an

 ta
ke

 a
 s

ig
ni

fic
an

t 
am

ou
nt

 o
f t

im
e,

 e
sp

ec
ia

lly
 w

he
n 

de
al

in
g 

w
ith

 d
at

as
et

s 
th

at
 a

re
 o

f c
on

si
de

ra
bl

e 
si

ze
2.

 T
he

 a
lg

or
ith

m
 is

 s
en

si
tiv

e 
to

 th
e 

di
st

an
ce

 m
et

ric
 

ch
os

en
, a

nd
 it

s 
effi

ca
cy

 m
ay

 s
uff

er
 if

 th
e 

in
co

rr
ec

t m
et

ric
 

is
 s

el
ec

te
d

3.
 T

he
 a

lg
or

ith
m

 m
ay

 n
ot

 a
lw

ay
s 

re
tu

rn
 th

e 
ex

ac
t k

 N
ea

r-
es

t N
ei

gh
bo

rs
 if

 d
is

ta
nc

es
 b

et
w

ee
n 

si
te

s 
ar

e 
tie

d

D
at

as
et

: U
ni

fo
rm

 d
at

as
et

Co
ns

tr
uc

tio
n 

tim
e:

 2
30

1.
80

 m
s

k-
d 

tr
ee

 [1
9]

1.
 T

he
 k

-d
 tr

ee
 s

tr
uc

tu
re

 e
na

bl
es

 e
ffi

ci
en

t n
ea

re
st

 
ne

ig
hb

or
 s

ea
rc

he
s, 

m
ak

in
g 

it 
po

ss
ib

le
 to

 p
er

fo
rm

 s
uc

h 
se

ar
ch

es
 e

ve
n 

on
 la

rg
e 

da
ta

se
ts

2.
 T

he
 a

lg
or

ith
m

 is
 s

tr
ai

gh
tfo

rw
ar

d 
an

d 
si

m
pl

e 
to

 im
pl

e-
m

en
t

3.
 O

(n
lo

gn
) i

s 
a 

re
as

on
ab

le
 ti

m
e 

co
m

pl
ex

ity
 fo

r m
an

y 
ap

pl
ic

at
io

ns
 a

nd
 is

 q
ui

ck
er

 th
an

 b
ru

te
-fo

rc
e 

se
ar

ch

1.
 T

he
 k

-d
 tr

ee
 s

tr
uc

tu
re

 c
an

 b
e 

in
effi

ci
en

t f
or

 h
ig

h-
di

m
en

si
on

al
 d

at
a,

 a
s 

th
e 

sp
lit

tin
g 

pr
oc

es
s 

be
co

m
es

 le
ss

 
eff

ec
tiv

e 
in

 h
ig

he
r d

im
en

si
on

s
2.

 B
ui

ld
in

g 
th

e 
k-

d 
tr

ee
 c

an
 b

e 
tim

e-
co

ns
um

in
g 

fo
r l

ar
ge

 
da

ta
se

ts
3.

 T
he

 a
lg

or
ith

m
 d

oe
s 

no
t p

ro
vi

de
 e

xa
ct

 s
ol

ut
io

ns
 fo

r 
ne

ar
es

t n
ei

gh
bo

r s
ea

rc
h,

 b
ut

 ra
th

er
 re

tu
rn

s 
an

 a
pp

ro
xi

-
m

at
io

n 
th

at
 m

ay
 b

e 
su

bo
pt

im
al

 in
 s

om
e 

ca
se

s

D
at

as
et

: S
ig

na
l d

at
as

et
k =

 1
6

Se
ar

ch
 ti

m
e:

 4
.5

 m
s

PA
T 

[1
01

]
1.

 T
he

 P
AT

 A
lg

or
ith

m
 is

 e
xt

ra
or

di
na

ril
y 

eff
ec

tiv
e 

an
d 

ca
n 

ra
pi

dl
y 

id
en

tif
y 

k 
ne

ar
es

t n
ei

gh
bo

rs
 fo

r e
no

rm
ou

s 
da

ta
se

ts
2.

 U
si

ng
 p

rin
ci

pa
l c

om
po

ne
nt

 a
na

ly
si

s 
to

 c
on

st
ru

ct
 th

e 
se

ar
ch

 tr
ee

 e
na

bl
es

 th
e 

al
go

rit
hm

 to
 id

en
tif

y 
th

e 
m

os
t 

pe
rt

in
en

t c
ha

ra
ct

er
is

tic
s 

of
 th

e 
da

ta
se

t, 
th

er
eb

y 
m

in
im

iz
-

in
g 

th
e 

im
pa

ct
 o

f i
rr

el
ev

an
t c

ha
ra

ct
er

is
tic

s 
on

 th
e 

se
ar

ch
 

pr
oc

es
s

3.
 T

he
 a

lg
or

ith
m

’s 
el

im
in

at
io

n 
cr

ite
rio

n 
re

du
ce

s 
th

e 
co

m
-

pu
ta

tio
na

l b
ur

de
n 

by
 d

is
ca

rd
in

g 
irr

el
ev

an
t s

ea
rc

h 
pa

th
s

1.
 T

he
 P

AT
 A

lg
or

ith
m

 is
 e

xt
re

m
el

y 
se

ns
iti

ve
 to

 th
e 

nu
m

be
r o

f s
ub

se
ts

 a
nd

 e
lim

in
at

io
n 

th
re

sh
ol

d 
ch

os
en

. 
C

ho
os

in
g 

in
ap

pr
op

ria
te

 v
al

ue
s 

fo
r t

he
se

 p
ar

am
et

er
s 

ca
n 

hi
nd

er
 th

e 
effi

ca
cy

 o
f t

he
 a

lg
or

ith
m

2.
 T

he
 a

lg
or

ith
m

 is
 o

nl
y 

ap
pl

ic
ab

le
 to

 E
uc

lid
ea

n 
di

st
an

ce
 

m
ea

su
re

s, 
lim

iti
ng

 it
s 

ap
pl

ic
ab

ili
ty

 in
 s

itu
at

io
ns

 w
he

re
 

ot
he

r d
is

ta
nc

e 
m

ea
su

re
s 

ar
e 

m
or

e 
su

ita
bl

e
3.

 D
ue

 to
 th

e 
im

pa
ct

 o
f t

he
 c

ur
se

 o
f d

im
en

si
on

al
ity

 o
n 

th
e 

se
ar

ch
 p

ro
ce

ss
, t

he
 P

AT
 A

lg
or

ith
m

’s 
pe

rf
or

m
an

ce
 m

ay
 

de
cr

ea
se

 c
on

si
de

ra
bl

y 
in

 h
ig

h-
di

m
en

si
on

al
 d

at
as

et
s

D
at

as
et

: I
m

ag
e 

Le
na

k =
 8

19
2

Q
ue

ry
 ti

m
es

: 0
.1

86
 s

D
at

as
et

: I
m

ag
e 

Bo
at

Q
ue

ry
 ti

m
es

: 0
.1

94
 s

D
at

as
et

: I
m

ag
e 

Ba
bb

on
Q

ue
ry

 ti
m

es
: 0

.3
85

M
uX

 [7
, 8

]
En

gi
ne

er
ed

 to
 m

in
im

iz
e 

I/O
 a

nd
 C

PU
 e

xp
en

di
tu

re
s

Effi
ci

en
cy

 d
im

in
is

he
s 

w
ith

 in
cr

ea
se

d 
di

m
en

si
on

s; 
de

m
an

ds
 s

ub
st

an
tia

l m
em

or
y 

re
so

ur
ce

s
D

at
as

et
: S

eq
uo

ia
To

ta
l t

im
e:

 B
et

w
ee

n 
50

0 
an

d 
10

00
 s

G
or

de
r [

94
]

Li
m

its
 ra

nd
om

 a
cc

es
s 

an
d 

el
im

in
at

es
 u

np
ro

du
ct

iv
e 

bl
oc

ks
Re

qu
ire

s 
ex

te
ns

iv
e 

co
m

pu
ta

tio
na

l e
ffo

rt
; t

ai
lo

re
d 

fo
r 

st
at

ic
 d

at
a

D
at

as
et

: C
or

el
 Im

ag
e

Th
e 

av
er

ag
e 

sp
ee

d-
up

 fa
ct

or
 o

f G
or

de
r o

ve
r M

uX
 is

 0
.5

9

iJo
in

 [9
5]

Re
no

w
ne

d 
fo

r fl
ex

ib
ili

ty
 a

nd
 d

yn
am

ic
 a

dj
us

ta
bi

lit
y

In
cu

rs
 s

ig
ni

fic
an

t c
os

ts
 in

 d
yn

am
ic

 d
at

a 
sc

en
ar

io
s

D
at

as
et

: U
ni

fo
rm

 d
at

a
C

PU
 ti

m
e:

 1
 h

D
at

as
et

: K
D

D
C

PU
 ti

m
e:

 1
0 

h



Page 42 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Ta
bl

e 
5 

(c
on

tin
ue

d)

Te
ch

ni
qu

es
Pr

os
.

Co
ns

.
D

at
as

et
s 

an
d 

pe
rf

or
m

an
ce

s

IIB
 a

nd
 II

IB
 [9

6]
Pr

ofi
ci

en
t i

n 
ha

nd
lin

g 
sp

ar
se

 d
at

as
et

s
Re

st
ric

te
d 

ad
ap

ta
bi

lit
y 

fo
r c

or
re

la
te

d 
da

ta
; r

oo
m

 fo
r 

pe
rf

or
m

an
ce

 e
nh

an
ce

m
en

t
D

at
as

et
: Y

ea
st

 a
nd

 W
or

m
I/O

 ti
m

e:
 3

.5
 h

C
PU

 ti
m

e:
 B

et
w

ee
n 

20
0 

an
d 

25
0 

h

kN
N

Jo
in

 +
 [2

8]
Fa

ci
lit

at
es

 s
tr

ea
m

lin
ed

 s
ea

rc
he

s 
an

d 
dy

na
m

ic
 m

od
ifi

ca
-

tio
ns

St
ru

gg
le

s 
w

ith
 re

al
-t

im
e 

cr
ite

ria
; h

am
pe

re
d 

by
 d

is
ta

nc
e 

ca
lc

ul
at

io
n 

co
st

s 
an

d 
no

de
 o

ve
rla

ps
D

at
as

et
: S

yn
th

et
ic

 d
at

as
et

El
ap

se
d 

tim
e:

 0
 s

 (A
ft

er
 d

at
as

et
 o

pt
im

iz
at

io
n)

H
D

R-
tr

ee
 [3

4]
St

re
am

lin
es

 id
en

tifi
ca

tio
n 

of
 a

ffe
ct

ed
 u

se
rs

; a
de

pt
 a

t 
m

ul
ti-

di
m

en
si

on
al

 d
at

a 
ha

nd
lin

g
In

ab
ili

ty
 to

 a
cc

om
m

od
at

e 
de

le
tio

ns
 a

nd
 b

at
ch

 u
pd

at
es

D
at

as
et

: N
U

S-
W

ID
E 

Im
ag

e 
da

ta
se

t

Ek
N

N
J [

98
]

Su
pp

or
ts

 e
ffi

ci
en

t, 
ba

tc
h,

 a
nd

 la
zy

 u
pd

at
es

; e
nh

an
ce

d 
de

le
tio

n 
op

tio
ns

Fa
lls

 s
ho

rt
 in

 fu
lly

 d
yn

am
ic

 H
D

 k
N

N
 J

oi
n 

su
pp

or
t; 

op
po

r-
tu

ni
tie

s 
fo

r d
el

et
io

n 
op

tim
iz

at
io

n
D

at
as

et
: N

U
S-

W
ID

E 
Im

ag
e

H
D

R 
Tr

ee
: 2

50
 s

H
D

R 
Fo

re
st

: 2
50

 s
H

D
R 
+

 Fo
re

st
: 2

50
 s

H
D

R*
Fo

re
st

: 1
00

 s

H
-B

N
LJ

 a
nd

 H
-B

RJ
 [1

02
]

Si
m

pl
e 

to
 im

pl
em

en
t

La
g 

in
 s

pe
ed

 a
nd

 s
ca

la
bi

lit
y;

 e
le

va
te

d 
co

m
m

un
ic

at
io

n 
ov

er
he

ad
D

at
as

et
: O

pe
nS

tr
ee

t
Ru

nn
in

g 
tim

e 
(H

-B
N

J)
: 1
0
3
to
1
0
4

Ru
nn

in
g 

tim
e 

(H
-B

RJ
): 

Be
tw

ee
n 
1
0
4
to
1
0
5

PG
BJ

 [1
2]

Co
m

m
un

ic
at

io
n 

ov
er

he
ad

 re
m

ai
ns

 u
na

ffe
ct

ed
 b

y 
in

cr
ea

se
d 

k 
va

lu
es

; m
in

im
al

 d
is

k 
us

ag
e

St
ru

gg
le

s 
w

ith
 h

ig
h-

di
m

en
si

on
al

 d
at

a;
 p

er
fo

rm
an

ce
 

he
av

ily
 re

lia
nt

 o
n 

pi
vo

t s
el

ec
tio

n;
 ti

m
e-

in
te

ns
iv

e 
fo

r l
ar

ge
 

da
ta

se

D
at

as
et

: F
or

es
t

Ru
nn

in
g 

tim
e:

 1
 s

Sh
uffl

in
g 

co
st

: 4
D

at
as

et
: O

SM
Ru

nn
in

g 
tim

e:
 0

.1
 s

Sh
uffl

in
g 

co
st

: 2
 s



Page 43 of 55Halder et al. Journal of Big Data          (2024) 11:113  

 1. The Ball Tree kNN algorithm is valued for its competency in processing high-dimen-
sional data and speed, especially compared to brute-force algorithms. Its adapt-
ability, underscored by its compatibility with various distance metrics, broadens its 
application scope. However, its construction can be time-consuming, and the algo-
rithm’s performance is contingent on the appropriate selection of the distance met-
ric. There is also a probability of not obtaining the exact nearest neighbors in some 
instances. To elevate its effectiveness, optimizing the tree construction process and 
enhancing result precision could be focal areas. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/ Ball- Tree. py).

 2. The k-d tree is renowned for its efficient nearest neighbor searches, even in large 
datasets, owing to its intuitive structure and reasonable time complexity of O(nlogn). 
However, its effectiveness is hampered in higher dimensions, where the tree struc-
ture becomes less proficient. Additionally, constructing the k-d tree for substantial 
datasets can be time-intensive, and the algorithm often yields approximations rather 
than exact solutions for nearest neighbor searches. Enhancements in handling high-
dimensional data and improving the accuracy of search results could augment the 
k-d tree’s effectiveness. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ 
main/k- d% 20Tree).

 3. The PAT algorithm stands out for its speed in identifying k nearest neighbors in 
massive datasets, attributed to the incorporation of principal component analysis 
and an effective elimination criterion. However, its sensitivity to parameter selection 
and restriction to Euclidean distance measures can be limiting. Its performance is 
also compromised in high-dimensional datasets due to the curse of dimensionality. 
Amplifying its effectiveness could involve broadening its adaptability to various dis-
tance measures and optimizing its performance in high-dimensional spaces. (Source 
Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ PAT. py).

 4. MuX is crafted to cut down on I/O and CPU expenses, making it a cost-efficient 
option. However, its performance is hindered with an increase in dimensions and 
it requires a significant amount of memory. Its effectiveness could potentially be 
enhanced by optimizing memory management and scalability for handling a broader 
spectrum of dimensional complexity. (Source Code: https:// github. com/ rajib 1346/ 
kNN/ blob/ main/ MuX. py).

 5. Gorder Gorder is adept at minimizing random access and eliminating non-beneficial 
blocks, enhancing data processing efficiency. Yet, it is computationally demanding 
and is constrained to static data, limiting its versatility. It is potent in specific sce-
narios but could gain from enhanced computational efficiency and adaptability to 
dynamic data. (Source Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ Gorder. 
py).

 6. iJoin is appreciated for its adaptability and dynamic nature, catering to varying data 
scenarios. However, it becomes substantially expensive for dynamic data. Balanc-
ing its adaptive attributes with cost efficiency, especially in fluctuating data environ-
ments, could amplify its effectiveness. (Source Code: https:// github. com/ rajib 1346/ 
kNN/ blob/ main/ iJoin% 20Ser ies. py)

 7. IIB and IIIB algorithms are tailored for sparse datasets, offering specific application 
advantages. However, their applicability wanes for correlated datasets, indicating a 

https://github.com/rajib1346/kNN/blob/main/Ball-Tree.py
https://github.com/rajib1346/kNN/blob/main/Ball-Tree.py
https://github.com/rajib1346/kNN/blob/main/k-d%20Tree
https://github.com/rajib1346/kNN/blob/main/k-d%20Tree
https://github.com/rajib1346/kNN/blob/main/PAT.py
https://github.com/rajib1346/kNN/blob/main/MuX.py
https://github.com/rajib1346/kNN/blob/main/MuX.py
https://github.com/rajib1346/kNN/blob/main/Gorder.py
https://github.com/rajib1346/kNN/blob/main/Gorder.py
https://github.com/rajib1346/kNN/blob/main/iJoin%20Series.py
https://github.com/rajib1346/kNN/blob/main/iJoin%20Series.py


Page 44 of 55Halder et al. Journal of Big Data          (2024) 11:113 

need for versatility. Enhancements in adaptability could transform these algorithms 
into more universally applicable solutions. (Source Code: https:// github. com/ rajib 
1346/ kNN/ blob/ main/ IIB_ IIIB. py)

 8. kNNJoin + is distinguished by its efficient searching and dynamic update features. 
However, it struggles to meet real-time requirements and incurs high costs in dis-
tance computation and node overlap. Its effectiveness could potentially be amplified 
by optimizing real-time performance and computational efficiency. (Source Code: 
https:// github. com/ rajib 1346/ kNN/ blob/ main/ kNNJo in% 2B. py).

 9. HDR-tree makes searches efficient and is adept at handling high-dimensional data. 
However, it lacks support for deletions and batch updates. Increasing its flexibility to 
accommodate these features could significantly bolster its utility and effectiveness 
in dynamic and evolving data environments. (Source Code: https:// github. com/ rajib 
1346/ kNN/ blob/ main/ HDR- Tree. py)

 10. EkNNJ excels in dynamic, batch, and lazy updates and optimizes deletion processes. 
But, it does not support fully dynamic HD kNN Join, and there is room for improv-
ing deletion optimization. Enhancing these aspects could propel EkNNJ into a more 
comprehensive solution for diverse data needs. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/ EkNNJ. py)

 11. H-BNLJ and H-BRJ are lauded for their ease of implementation but are criticized 
for their slower performance, limited scalability, and high communication overhead. 
Addressing these performance and efficiency bottlenecks could enhance their appli-
cability across larger and more complex datasets. (Source Code: https:// github. com/ 
rajib 1346/ kNN/ blob/ main/H- BNLJ_H- BRJ. py)

 12. PGBJ maintains communication overhead even as k values increase and ensures 
low disk usage. However, its efficiency drops with high-dimensional data, and pivot 
selection and large dataset handling are areas of concern. Optimizing these aspects 
can render PGBJ more effective and versatile in varied data landscapes. (Source 
Code: https:// github. com/ rajib 1346/ kNN/ blob/ main/ PGBJ. py)

Discussion
This review paper aims to explore various perspectives and viewpoints on the applica-
tion of k-Nearest Neighbors (kNN) algorithms in machine learning, focusing on key 
issues such as model interpretability, handling imbalanced datasets, optimal parameter 
selection, scalability, computational efficiency, and robustness to noisy data. By synthe-
sizing insights from existing literature and scholarly discussions, this paper aims to pro-
vide a comprehensive understanding of the challenges and opportunities associated with 
kNN models in real-world applications.

Clarification on model interpretability

1. Concern: How does the kNN model’s interpretability compare to other machine 
learning models, particularly in the context of feature importance and decision-making 
transparency?

https://github.com/rajib1346/kNN/blob/main/IIB_IIIB.py
https://github.com/rajib1346/kNN/blob/main/IIB_IIIB.py
https://github.com/rajib1346/kNN/blob/main/kNNJoin%2B.py
https://github.com/rajib1346/kNN/blob/main/HDR-Tree.py
https://github.com/rajib1346/kNN/blob/main/HDR-Tree.py
https://github.com/rajib1346/kNN/blob/main/EkNNJ.py
https://github.com/rajib1346/kNN/blob/main/EkNNJ.py
https://github.com/rajib1346/kNN/blob/main/H-BNLJ_H-BRJ.py
https://github.com/rajib1346/kNN/blob/main/H-BNLJ_H-BRJ.py
https://github.com/rajib1346/kNN/blob/main/PGBJ.py


Page 45 of 55Halder et al. Journal of Big Data          (2024) 11:113  

Concept: Researchers have highlighted the challenge of interpreting kNN models, 
particularly in comparison to more transparent models such as decision trees or linear 
regression. While kNN models offer simplicity and ease of implementation, their inter-
pretability is often limited due to the lack of explicit decision rules and reliance on local 
patterns.

2. Concern: Are there any established techniques or methodologies for enhancing the 
interpretability of kNN models, especially when dealing with high-dimensional datasets 
or complex classification tasks?

Concept: Some scholars advocate for the use of techniques such as local interpretable 
model-agnostic explanations (LIME) or SHAP (SHapley Additive exPlanations) values to 
elucidate the decision-making process of kNN models and provide insights into feature 
importance.

Handling imbalanced datasets

Concern 1: What are the common challenges faced when applying kNN to imbalanced 
datasets, and how do researchers typically address these challenges?

Concept: Imbalanced datasets pose a common challenge in machine learning, and 
kNN models are no exception. The majority voting mechanism of kNN can be biased 
towards the majority class, leading to suboptimal performance on minority classes.

Concern 2: Are there specific modifications or techniques tailored for kNN models to 
improve performance on imbalanced datasets, such as resampling methods or algorithm 
adjustments?

Concept: Techniques such as oversampling (e.g., SMOTE) or undersampling (e.g., ran-
dom undersampling) are commonly employed to address class imbalance in kNN mod-
els. Moreover, modified distance metrics or instance weighting methods can be utilized 
to give more importance to minority samples during the classification process.

Optimal parameter selection

Concern 1: How do researchers determine the optimal value of the k parameter in kNN 
models, considering factors such as dataset characteristics, model complexity, and com-
putational efficiency?

Concept: Determining the optimal value of the k parameter in kNN models is a cru-
cial aspect of model performance. The choice of k significantly impacts the model’s bias-
variance tradeoff, with smaller values of k leading to higher model variance and potential 
overfitting.

Concern 2: Are there any systematic approaches or best practices for tuning hyper-
parameters in kNN models to achieve optimal performance and generalization across 
different datasets?

Concept: Cross-validation techniques, grid search, or model selection criteria such 
as AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion) are 
often used to identify the optimal value of k based on validation performance. Addi-
tionally, adaptive kNN algorithms dynamically adjust the value of k based on local data 
characteristics.



Page 46 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Scalability and computational efficiency

Concern 1: What are the limitations of kNN models in terms of scalability and compu-
tational efficiency, especially when dealing with large datasets or real-time applications?

Concept: Scalability and computational efficiency are important considerations when 
applying kNN models to large datasets or real-time applications. The computational 
complexity of kNN increases linearly with the size of the dataset and the dimensionality 
of the feature space, making it less suitable for high-dimensional data.

Concern 2: Have there been any recent advancements or techniques proposed to miti-
gate these limitations and improve the scalability of kNN models without compromising 
accuracy?

Concept: Approximate nearest neighbor algorithms such as k-d trees or ball trees are 
commonly used to accelerate nearest neighbor search and improve computational effi-
ciency in kNN models. Additionally, parallelization techniques and distributed comput-
ing frameworks can be employed to scale kNN to large datasets.

Robustness to noisy data

Concern 1: How does the performance of kNN models degrade in the presence of noisy 
or irrelevant features, and what strategies are commonly employed to enhance robust-
ness to noisy data?

Concept: Noisy or irrelevant features can adversely affect the performance of kNN 
models, leading to degraded accuracy and increased computational overhead. The dis-
tance-based nature of kNN makes it sensitive to noisy data points, as they can distort the 
local neighborhood structure and influence classification decisions.

Concern 2: Are there any novel approaches or preprocessing techniques specifically 
designed to preprocess noisy datasets before applying kNN models, and how effective 
are they in practice?

Concept: Feature selection methods, namely Extensive Feature Selector (EFS) [143], 
Local Feature Selection (LFS) [144], Brilliant Probabilistic Feature Selector (BPFS) [145], 
Ensemble Feature Selection [146], outlier detection techniques, or robust distance met-
rics (e.g., Mahalanobis distance) are often employed to mitigate the impact of noisy data 
on kNN models. Preprocessing steps such as data normalization or outlier removal can 
also improve the robustness of kNN to noisy features.

This review paper has provided a comprehensive overview of key issues and perspec-
tives surrounding the application of kNN algorithms in machine learning. By address-
ing concerns related to model interpretability, handling imbalanced datasets, optimal 
parameter selection, scalability, computational efficiency, and robustness to noisy data, 
this paper aims to contribute to a deeper understanding of the strengths and limitations 
of kNN models in real-world applications. Further research and exploration are war-
ranted to address emerging challenges and advance the capabilities of kNN algorithms in 
the era of big data and complex machine learning tasks.

Conclusion
In the rapidly evolving sphere of machine learning and data science, kNN querying tech-
niques have steadily asserted their indispensability, particularly in the realm of high-
dimensional spaces. In the pursuit of overcoming the inherent challenges of k-nearest 



Page 47 of 55Halder et al. Journal of Big Data          (2024) 11:113  

neighbor (kNN) searches, particularly in high-dimensional data spaces, recent advance-
ments have presented a plethora of refined methodologies. Our survey has ventured 
deep into the corridors of exact kNN methodologies, addressing a notable gap in current 
literature by focusing on kNN Search and kNN Join techniques. As we delved into 31 
distinct kNN Search methods and 12 kNN Join methods, our examination transcended 
mere descriptions, encompassing a rigorous comparative analysis, weighing the mer-
its and limitations of each. Techniques such as VA +-file and EOTI offer promising 
approaches to approximating kNN searches, effectively balancing the trade-offs between 
search performance and space complexity. Innovations like Bregman distances and the 
∆ +-tree index have been tailored to address the inefficiencies in processing high-dimen-
sional data and the computational burdens of traditional kNN algorithms. Significant 
strides have been made with the array-index method, showcasing remarkable efficiency 
in handling skewed and correlated datasets, and the ACDB method, which utilizes the 
triangle inequality principle to reduce CPU load significantly. iDistance-PS continues 
to play a pivotal role in kNN searches, with its effectiveness being amplified by various 
partitioning techniques. Emerging strategies such as the PL-Tree, M-kNN, and C-kNN 
demonstrate the ongoing evolution of kNN methodologies to support not only accuracy 
and efficiency but also to cater to the dynamic nature of data structures and distribu-
tions. Furthermore, the NFL and LNN algorithms highlight an innovative trajectory in 
kNN searches by integrating feature diversity and local proximity concepts, respectively. 
Overall, these modified methods collectively represent a leap forward in resolving the 
classic kNN problems, each contributing uniquely to the reduction of computational 
costs, improvement of query precision, and accommodation of the multi-faceted nature 
of high-dimensional data spaces. The convergence of these advancements signifies a 
transformative phase in kNN search methodologies, opening new avenues for real-time, 
scalable, and efficient data processing across various domains.

Challenges and future directions
The kNN method has significant performance issues despite its widespread use. The 
choice of k is one of these concerns. If k is too large, the neighborhood may contain an 
inordinate number of points from various classes, whereas if k is too small, the results 
may be susceptible to noise points. The kNN’s single model approach limits its ability 
to effectively manage and interpret the complex information in large datasets, unlike 
ensemble models that combine multiple techniques for better results. This has moti-
vated the need for a more robust, adaptive, and efficient version of the kNN algorithm 
that can effectively leverage the information-rich environment of big datasets while 
ensuring computational efficiency.

We can overcome these challenges by proposing the Region-Based Neighbors Search-
ing Classification Algorithm. The Region-based Neighbor Searching Algorithm is 
designed to efficiently classify large-scale datasets. It operates by establishing a multi-
tude of regions to determine the relationships between a new test point and existing data 
points. The number of regions to be generated is contingent upon the quantity of neigh-
boring points identified within a specified radius of the test point. This method is effec-
tive in reducing both the time and space complexity associated with searching within 
extensive datasets. Our proposed idea encompasses two pivotal components. Firstly, 



Page 48 of 55Halder et al. Journal of Big Data          (2024) 11:113 

we will integrate a point-wise dynamic searching technique to meticulously explore all 
potential relationships between the new test sample and existing points, allocating dis-
tinct regions corresponding to specific radius values. Secondly, we will institute a com-
prehensive linkage with ensemble learning. This amalgamation facilitates the algorithm’s 
decision-making process, enabling it to draw inferences based on the multifaceted, 
region-wise related behaviors of the test sample. The proposed algorithm is expresses as 
follows:

let we have a two datasets D1 , and D2 . Where D1 denotes the trainset and D2 denotes 
the test set.

and

where D1 > D2 , r and p are the number of instances of train and test set respectively, 
and n represents the number of attributes. Firstly, pick a test data from D1 , and also take 
the value of ε where ε denotes the radius of a circular region. Secondly, create a region 
say R1 at point x1 for the given radius ε . Samples from the training dataset that fall within 
a distance equal to or less than the specified radius ε will be identified as neighbors 
Ni(x

1
[R1]

) of the test data within region R1 . This process is done by calculating the Euclid-
ean distance (Ed) between test data and train samples as:

where,Ni(x
1
[R1]

) = {x : x ∈ zr , Ed(x
1, zr) ≤ ε}.

Next calculate the total weight of each class for according to the formula 2 and 3:

where a and b denotes the target classes. After Create a list that contains all the neigh-
bors Ni

(

x1[R1]

)

 of region R1.

let, C = [N1,N2, ......,Ni].where, C = {x : x ∈ Ni(x
1
[R1]

)}and Ed(x
1,Ni) ≤ ε ; 

i = 1,2,3,……,n
Implementing a dynamic scanning technique involves sequentially traversing each 

neighbor stored in C . At each neighbor, a circular region with the same radius ε is consid-
ered, enabling the extraction of additional relations between the test point and the train-
ing points. The regions for neighbors N1,N2,N3, ......,Ni are denoted as R2,R3,R4, ......,Ri , 
respectively. Create a list, denoted as R , which encompasses all regions, including R1 . In 
any region the Euclidean distance (Ed) between  x1 and its neighbors are less than or equal 
to the given radius ( ε ) i.e., Ed(x1,Ni(x

1
[Ri]

)) ≤ ε . Then the total weight of each class for 

D1 = {z1(z1, z2, ....., zn), ..............., z
r(z1, z2, z3, ....., zn)}

D2 = {x1(x1, x2, ....., xn), ..........., x
p(x1, x2, ....., xn)}

(1)Ed(x
1, zr) =

√

√

√

√

n
∑

r=1

(x1 − zr)

(2)Wa =
∑ 1

Ed(x1, zr)

(3)Wb =
∑ 1

Ed(x1, zr)



Page 49 of 55Halder et al. Journal of Big Data          (2024) 11:113  

regions R2,R3,R4, ......,Ri is computed utilizing the aforementioned formulas (2) and (3). 
A weight-activation function is applied on each region to predict class of x1 as follows:

Finally, integrate the outcomes of all regions and take the most frequently repeated 
class as a final target class using the below formula:

Continue the same Steps for the rest of the test samples x2, x3, x4, ............, xn.
This innovative methodology is tailored to enhance the sensitivity and specificity of 

the KNN algorithm, optimizing it for big data classification tasks. The aim is to not only 
improve the accuracy and reliability of classification results but also ensure that the algo-
rithm is computationally efficient and scalable to handle large volumes of data charac-
teristic of contemporary datasets.

The proposed idea has been guided by the following objectives:

1. Enhance Information Extraction: Develop and implement a Region-Based Neighbors 
Searching approach that facilitates exhaustive exploration and capture of relation-
ships between new test samples and existing data points, overcoming the informa-
tion extraction limitations of traditional KNN.

2. Optimize Computational Efficiency: Address the time and space complexity issues 
inherent in the traditional KNN, ensuring that the enhanced algorithm is capable of 
handling big data classification tasks efficiently.

3. Integrate Ensemble Learning: Establish a linkage with ensemble learning models to 
amplify the decision-making capability of the KNN algorithm, enabling it to derive 
insights from the complex, region-wise related behaviors of test samples.

4. Improve Classification Accuracy: Ensure that the refined KNN model classifies large-
scale data with a significantly low error rate, marking a substantial improvement over 
its traditional counterpart in terms of accuracy and reliability.

Through these objectives, this research seeks to contribute a sophisticated, robust, and 
efficient tool to the repertoire of machine learning algorithms for big data classification, 
combining the foundational strengths of KNN with innovative enhancements to meet 
the demands of the contemporary data landscape.
Acknowledgements
We would like to extend our heartfelt appreciation to Deakin Cyber Research and Innovation Centre, Deakin University, 
Australia and UGC, Bangladesh (Grant ID: 37.01.0000.073.12.021.23.2849, 2022-23) for their support in this research.

Author contributions
Rajib Kumar Halder: Conceptualization, Resources, Data Curation, Methodology, Formal analysis, Editing, Validation.  
Mohammed Nasir Uddin: Investigation, Validation, Project administration, Review & Editing. Ashraf Uddin: Investigation, 
Formal analysis, Funding acquisition, Original Draft, Review & Editing. Sunil Aryal: Investigation, Formal analysis, Original 
Draft, Review & Editing. Ansam Khraisat: Investigation, Formal analysis, Review & Editing.

Funding
This work is financially supported by the Deakin Cyber Research and Innovation Centre, Deakin University, Australia.

Availability of data and materials
All datasets are available at the link below: https:// github. com/ rajib 1346/ kNN. git; and available from the corresponding 
author upon request. No datasets were generated or analysed during the current study.

(4)y(Ri) =

{

a;Wa>Wb
b;Otherwise

(5)y = mode
(

y(R1), y(R2), y(R3), ................., y(Ri)
)

https://github.com/rajib1346/kNN.git


Page 50 of 55Halder et al. Journal of Big Data          (2024) 11:113 

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 18 April 2024   Accepted: 23 July 2024

References
 1. Wikipedia contributors. K-nearest neighbors algorithm. 2023. https:// en. wikip edia. org/ wiki/K- neare st_ neigh bors_ 

algor ithm.
 2. Andoni A, Indyk P. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. 47th 

Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), Berkeley, CA, USA, 2006. https:// doi. org/ 
10. 1109/ focs. 2006. 49.

 3. Bawa M, Condie T, Ganesan P. LSH forest. In Proceedings of the 14th International Conference on World Wide Web 
(WWW ‘05). 2005. https:// doi. org/ 10. 1145/ 10607 45. 10608 40

 4. Lv Q, Josephson W, Wang Z, Charikar M, Li K. Multi-probe LSH: efficient indexing for high-dimensional similarity 
search. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB ‘07), 2007. 950–961. 
https:// www. csd. uoc. gr/ ~hy561/ Data/ Papers/ p950- lv. pdf.

 5. Jeǵou H, Douze M, Schmid C. Product quantization for nearest neighbor search. IEEE Trans Pattern Anal Mach 
Intell. 2011;33(1):117–28. https:// doi. org/ 10. 1109/ tpami. 2010. 57.

 6. Wang Y, Pan Z, Li R. A new Cell-Level search based Non-Exhaustive Approximate Nearest Neighbor (ANN) search 
algorithm in the framework of product quantization. IEEE Access. 2019;7:37059–70. https:// doi. org/ 10. 1109/ 
access. 2019. 29007 30.

 7. Böhm C, Krebs F. Supporting KDD applications by the K-Nearest Neighbor join. In Lecture Notes in Computer Sci-
ence. 2003. pp. 504–516. https:// doi. org/ 10. 1007/ 978-3- 540- 45227-0_ 50.

 8. Böhm C, Krebs F. The K-Nearest neighbour join: turbo charging the KDD process. Knowl Inf Syst. 2004;6(6):728–49. 
https:// doi. org/ 10. 1007/ s10115- 003- 0122-9.

 9. Algorithm AS 136: A K-Means Clustering Algorithm—百度学术. (n.d.). https:// xueshu. baidu. com/ userc enter/ 
paper/ show? paper id= 2815f e2e7e af748 5735d 130ea c76d3 30.

 10. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY. An efficient k-means clustering algorithm: 
analysis and implementation. IEEE Trans Pattern Anal Mach Intell. 2002;24(7):881–92. https:// doi. org/ 10. 1109/ 
tpami. 2002. 10176 16.

 11. Breunig M, Kriegel H, Ng RT, Sander J. LOF. Sigmod Record. 2000;29(2):93–104. https:// doi. org/ 10. 1145/ 335191. 
335388.

 12. Lü W, Shen Y, Su C, Ooi BC. Efficient processing of k nearest neighbor joins using MapReduce. Proc VLDB Endow-
ment. 2012;5(10):1016–27. https:// doi. org/ 10. 14778/ 23366 64. 23366 74.

 13. Dasarathy BV. Nearest neighbor (NN) norms: NN pattern classification techniques. 1991. http:// ci. nii. ac. jp/ ncid/ 
BA199 40413.

 14. Zhang S, Li X, Zong M, Zhu X, Wang R. Efficient KNN classification with different numbers of nearest neighbors. 
IEEE Trans Neural Netw Learn Syst. 2018;29(5):1774–85. https:// doi. org/ 10. 1109/ tnnls. 2017. 26732 41.

 15. Guttman A. R-Trees. Sigmod Record. 1984;14(2):47–57. https:// doi. org/ 10. 1145/ 971697. 602266.
 16. Beckmann N, Kriegel H, Schneider R, Seeger B. The R*-tree: an efficient and robust access method for points and 

rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data (SIGMOD 
‘90). 1990. https:// doi. org/ 10. 1145/ 93597. 98741.

 17. Kamel I, Faloutsos C. Hilbert R-tree: An Improved R-tree using Fractals. In Proceedings of the 20th International 
Conference on Very Large Data Bases (VLDB ‘94), 1994. 500–509. http:// cis. temple. edu/ ~vasil is/ Cours es/ CIS750/ 
Papers/ Hilbe rtRtr ee- Kamel. pdf.

 18. Arge L, De Berg M, Haverkort H, Yi K. The priority R-tree. ACM Trans Algorithms. 2008;4(1):1–30. https:// doi. org/ 10. 
1145/ 13289 11. 13289 20.

 19. Sproull RF. Refinements to nearest-neighbor searching ink-dimensional trees. Algorithmica. 1991;6(1–6):579–89. 
https:// doi. org/ 10. 1007/ bf017 59061.

 20. Fukunaga K, Narendra PM. A branch and bound algorithm for computing K-Nearest neighbors. IEEE Trans Comput. 
1975;C–24(7):750–3. https:// doi. org/ 10. 1109/t- c. 1975. 224297.

 21. (No date) Chapter 34 data structures and algorithms for nearest neighbor search ... Available at: http:// algor ithmi 
cs. lsi. upc. edu/ docs/ pract icas/ p311- yiani los. pdf (Accessed: 29 October 2023).

 22. Bozkaya T, Ozsoyoglu M. Distance-based indexing for high-dimensional metric spaces. Sigmod Record. 
1997;26(2):357–68. https:// doi. org/ 10. 1145/ 253262. 253345.

 23. Weber R, Schek H, Blott S. A quantitative analysis and performance study for similarity-search methods in high-
dimensional spaces. In Proceedings of the 24rd International Conference on Very Large Data Bases (VLDB ‘98). 
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998; 194–205.

 24. Beyer K, Goldstein J, Ramakrishnan R, Shaft U. When is “Nearest Neighbor” meaningful? In Lecture Notes in Com-
puter Science 1999. pp. 217–235. https:// doi. org/ 10. 1007/3- 540- 49257-7_ 15.

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://doi.org/10.1109/focs.2006.49
https://doi.org/10.1109/focs.2006.49
https://doi.org/10.1145/1060745.1060840
https://www.csd.uoc.gr/~hy561/Data/Papers/p950-lv.pdf
https://doi.org/10.1109/tpami.2010.57
https://doi.org/10.1109/access.2019.2900730
https://doi.org/10.1109/access.2019.2900730
https://doi.org/10.1007/978-3-540-45227-0_50
https://doi.org/10.1007/s10115-003-0122-9
https://xueshu.baidu.com/usercenter/paper/show?paperid=2815fe2e7eaf7485735d130eac76d330
https://xueshu.baidu.com/usercenter/paper/show?paperid=2815fe2e7eaf7485735d130eac76d330
https://doi.org/10.1109/tpami.2002.1017616
https://doi.org/10.1109/tpami.2002.1017616
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.14778/2336664.2336674
http://ci.nii.ac.jp/ncid/BA19940413
http://ci.nii.ac.jp/ncid/BA19940413
https://doi.org/10.1109/tnnls.2017.2673241
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/93597.98741
http://cis.temple.edu/~vasilis/Courses/CIS750/Papers/HilbertRtree-Kamel.pdf
http://cis.temple.edu/~vasilis/Courses/CIS750/Papers/HilbertRtree-Kamel.pdf
https://doi.org/10.1145/1328911.1328920
https://doi.org/10.1145/1328911.1328920
https://doi.org/10.1007/bf01759061
https://doi.org/10.1109/t-c.1975.224297
http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf
http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf
https://doi.org/10.1145/253262.253345
https://doi.org/10.1007/3-540-49257-7_15


Page 51 of 55Halder et al. Journal of Big Data          (2024) 11:113  

 25. Kouiroukidis N, Evangelidis G. The Effects of Dimensionality Curse in High Dimensional kNN Search. 15th Panhel-
lenic Conference on Informatics, Kastoria, Greece, 2011. https:// doi. org/ 10. 1109/ pci. 2011. 45.

 26. Cui B, Ooi BC, Su J, Tan K. Contorting high dimensional data for efficient main memory KNN processing. In 
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘03). 2003. 
https:// doi. org/ 10. 1145/ 872757. 872815.

 27. Garcia V, Debreuve É, Nielsen F, Barlaud M. K-nearest neighbor search: Fast GPU-based implementations and appli-
cation to high-dimensional feature matching. 2010 IEEE International Conference on Image Processing, Hong 
Kong, China, 2010. https:// doi. org/ 10. 1109/ icip. 2010. 56540 17

 28. Chen Y, Zhang R, Huang Y, Xiong H. High-dimensional kNN joins with incremental updates. GeoInformatica. 
2009;14(1):55–82. https:// doi. org/ 10. 1007/ s10707- 009- 0076-5.

 29. Garcia V, Debreuve É, Barlaud M. Fast k nearest neighbor search using GPU. 2008 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 2008. https:// doi. org/ 10. 1109/ 
cvprw. 2008. 45631 00

 30. Wold S, Esbensen KH, Geladi P. Principal component analysis. Chemom Intell Lab Syst. 1987;2(1–3):37–52. https:// 
doi. org/ 10. 1016/ 0169- 7439(87) 80084-9.

 31. Chakrabarti K, Mehrotra S. Local dimensionality reduction: a new approach to indexing high dimensional spaces. 
In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB ‘00). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 89–100. 2000. https:// www. micro soft. com/ en- us/ resea rch/ wp- conte nt/ uploa 
ds/ 2016/ 02/ ldr. pdf.

 32. Abdi H, Williams LJ. Principal component analysis. WIREs Comput Stat. 2010;2(4):433–59. https:// doi. org/ 10. 1002/ 
wics. 101.

 33. Vidal R, Ma Y, Sastry SS. Principal component analysis. In Interdisciplinary applied mathematics. 2016. pp. 25–62. 
https:// doi. org/ 10. 1007/ 978-0- 387- 87811-9_2.

 34. Yang C, Yu X, Yang L. Continuous KNN join processing for real-time recommendation. 2014 IEEE International 
Conference on Data Mining, Shenzhen, China, 2014. https:// doi. org/ 10. 1109/ icdm. 2014. 20

 35. Kibriya AM, Frank E. An empirical comparison of exact nearest neighbour algorithms. In Lecture Notes in Com-
puter Science. 2007. pp. 140–151. https:// doi. org/ 10. 1007/ 978-3- 540- 74976-9_ 16.

 36. Bhatia N. Survey of nearest neighbor techniques. 2010. arXiv.org. https:// arxiv. org/ abs/ 1007. 0085.
 37. RezaAbbasifard M, Ghahremani B, Naderi H. A survey on nearest neighbor search methods. Int J Comput Appl. 

2014;95(25):39–52. https:// doi. org/ 10. 5120/ 16754- 7073.
 38. Liu T, Moore AW, Yang K, Gray AG. An investigation of practical approximate nearest neighbor algorithms. Neural 

Inf Proc Syst. 2004; 17: 825–832. http:// papers. nips. cc/ paper/ 2666- an- inves tigat ion- of- pract ical- appro ximate- 
neare st- neigh bor- algor ithms. pdf.

 39. Li W, Zhang Y, Sun Y, Wang W, Li M, Zhang W, Lin X. Approximate nearest neighbor search on high dimensional 
data—experiments, analyses, and improvement. IEEE Trans Knowl Data Eng. 2020;32(8):1475–88. https:// doi. org/ 
10. 1109/ tkde. 2019. 29092 04.

 40. Song G, Rochas J, Huet F, Magoulès F. Solutions for processing K Nearest neighbor joins for massive data on 
MapReduce. 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Process-
ing, Turku, Finland, 2015. https:// doi. org/ 10. 1109/ pdp. 2015. 79

 41. Song G, Rochas J, Beze LE, Huet F, Magoulès F. K Nearest neighbour joins for big data on MapReduce: a theoretical 
and experimental analysis. IEEE Trans Knowl Data Eng. 2016;28(9):2376–92. https:// doi. org/ 10. 1109/ tkde. 2016. 
25626 27.

 42. Chen Y, Ooi BC, Tan K, Jagadish HV. Indexing the Distance: An Efficient Method to KNN Processing. In Proceedings 
of the 27th International Conference on Very Large Data Bases (VLDB ‘01). Morgan Kaufmann Publishers Inc., San 
Francisco, CA, USA, 421–430. 2001. https:// www. vldb. org/ conf/ 2001/ P421. pdf.

 43. Jagadish HV, Ooi BC, Tan K, Chen Y, Zhang R. IDistance. ACM Trans Database Syst. 2005;30(2):364–97. https:// doi. 
org/ 10. 1145/ 10716 10. 10716 12.

 44. Hu J, Cui B, Shen HT. Diagonal Ordering: a new approach to high-dimensional KNN processing. In Proceedings of 
the 15th Australasian Database Conference—Volume 27 (ADC ‘04). Australian Computer Society, Inc., AUS, 2004. 
39–47. https:// crpit. com/ confp apers/ CRPIT V27Hu. pdf.

 45. Olliffe IT. Principal component analysis: a beginner’s guide—I. Introduction and application. Weather. 
1990;45(10):375–82. https:// doi. org/ 10. 1002/j. 1477- 8696. 1990. tb055 58.x.

 46. Berchtold S. The X-Tree : an index structure for High-Dimensional data. 2001. https:// www. seman ticsc holar. org/ 
paper/ The-X- tree-% 3A- An- Index- Struc ture- for- Data- Berch told- Keim/ 774db 16a3f 25a73 ceda9 e6ab4 d5a8b 8f3c4 
0605d.

 47. Ferhatosmanoğlu H, Tuncel E, Agrawal D, Abbadi AE. High dimensional nearest neighbor searching. Inf Syst. 
2006;31(6):512–40. https:// doi. org/ 10. 1016/j. is. 2005. 01. 001.

 48. Pan Y, Pan Z, Wang Y, Wang W. A new fast search algorithm for exact k-nearest neighbors based on optimal 
triangle-inequality-based check strategy. Knowl-Based Syst. 2020;189: 105088. https:// doi. org/ 10. 1016/j. knosys. 
2019. 105088.

 49. Almalawi AM, Fahad A, Tari Z, Cheema MA, Khalil I. k NNVWC: an efficient k -nearest neighbors approach based on 
various-widths clustering. IEEE Trans Knowl Data Eng. 2016;28(1):68–81. https:// doi. org/ 10. 1109/ TKDE. 2015. 24607 
35.

 50. Cayton L. Fast nearest neighbor retrieval for bregman divergences. In Proceedings of the 25th International Con-
ference on Machine Learning (ICML ‘08). Association for Computing Machinery, New York, NY, USA. 2008. https:// 
doi. org/ 10. 1145/ 13901 56. 13901 71.

 51. Zhang Z, Ooi BC, Parthasarathy S, Tung AKH. Similarity search on Bregman divergence. Proc VLDB Endowment. 
2009;2(1):13–24. https:// doi. org/ 10. 14778/ 16876 27. 16876 30.

 52. Song Y, Gu Y, Zhang R. BrePartition: Optimized High-Dimensional kNN Search with Bregman Distances. 2020. arXiv 
(Cornell University). https:// doi. org/ 10. 48550/ arxiv. 2006. 00227.

https://doi.org/10.1109/pci.2011.45
https://doi.org/10.1145/872757.872815
https://doi.org/10.1109/icip.2010.5654017
https://doi.org/10.1007/s10707-009-0076-5
https://doi.org/10.1109/cvprw.2008.4563100
https://doi.org/10.1109/cvprw.2008.4563100
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ldr.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ldr.pdf
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1007/978-0-387-87811-9_2
https://doi.org/10.1109/icdm.2014.20
https://doi.org/10.1007/978-3-540-74976-9_16
https://arxiv.org/abs/1007.0085
https://doi.org/10.5120/16754-7073
http://papers.nips.cc/paper/2666-an-investigation-of-practical-approximate-nearest-neighbor-algorithms.pdf
http://papers.nips.cc/paper/2666-an-investigation-of-practical-approximate-nearest-neighbor-algorithms.pdf
https://doi.org/10.1109/tkde.2019.2909204
https://doi.org/10.1109/tkde.2019.2909204
https://doi.org/10.1109/pdp.2015.79
https://doi.org/10.1109/tkde.2016.2562627
https://doi.org/10.1109/tkde.2016.2562627
https://www.vldb.org/conf/2001/P421.pdf
https://doi.org/10.1145/1071610.1071612
https://doi.org/10.1145/1071610.1071612
https://crpit.com/confpapers/CRPITV27Hu.pdf
https://doi.org/10.1002/j.1477-8696.1990.tb05558.x
https://www.semanticscholar.org/paper/The-X-tree-%3A-An-Index-Structure-for-Data-Berchtold-Keim/774db16a3f25a73ceda9e6ab4d5a8b8f3c40605d
https://www.semanticscholar.org/paper/The-X-tree-%3A-An-Index-Structure-for-Data-Berchtold-Keim/774db16a3f25a73ceda9e6ab4d5a8b8f3c40605d
https://www.semanticscholar.org/paper/The-X-tree-%3A-An-Index-Structure-for-Data-Berchtold-Keim/774db16a3f25a73ceda9e6ab4d5a8b8f3c40605d
https://doi.org/10.1016/j.is.2005.01.001
https://doi.org/10.1016/j.knosys.2019.105088
https://doi.org/10.1016/j.knosys.2019.105088
https://doi.org/10.1109/TKDE.2015.2460735
https://doi.org/10.1109/TKDE.2015.2460735
https://doi.org/10.1145/1390156.1390171
https://doi.org/10.1145/1390156.1390171
https://doi.org/10.14778/1687627.1687630
https://doi.org/10.48550/arxiv.2006.00227


Page 52 of 55Halder et al. Journal of Big Data          (2024) 11:113 

 53. Aghbari ZA, Makinouchi A. Linearization approach for efficient KNN search of High-Dimensional Data. In Lecture 
Notes in Computer Science. 2004. pp. 229–238. https:// doi. org/ 10. 1007/ 978-3- 540- 27772-9_ 24.

 54. Cui B, Coi BC, Su J, Tan K. Indexing high-dimensional data for efficient in-memory similarity search. IEEE Trans 
Knowl Data Eng. 2005;17(3):339–53. https:// doi. org/ 10. 1109/ tkde. 2005. 46.

 55. Hong H, Guo J, Wang B. An improved KNN algorithm based on adaptive cluster distance bounding for high 
dimensional indexing. 2012 Third Global Congress on Intelligent Systems, Wuhan, China. 2012. https:// doi. org/ 10. 
1109/ gcis. 2012. 86.

 56. Schuh MA, Wylie T, Banda JM, Angryk RA. A comprehensive study of iDistance Partitioning Strategies for KNN 
Queries and High-Dimensional Data Indexing. In Lecture Notes in Computer Science. 2013. pp. 238–252. https:// 
doi. org/ 10. 1007/ 978-3- 642- 39467-6_ 22.

 57. Zhang J, Zhou X, Wang W, Shi B, Pei J. Using high dimensional indexes to support relevance feedback based 
interactive images retrieval. In Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB 
‘06). VLDB Endowment, 2006. 1211–1214. https:// doi. org/ 10. 5555/ 11826 35. 11642 46.

 58. Shen HT, Ooi BC, Zhou X. Towards effective indexing for very large video sequence database. In Proceedings of 
the 2005 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘05). Association for Comput-
ing Machinery, New York, NY, USA. 2005. https:// doi. org/ 10. 1145/ 10661 57. 10662 40.

 59. Ilarri S, Mena E, Illarramendi A. Location-dependent queries in mobile contexts: distributed processing using 
mobile agents. IEEE Trans Mob Comput. 2006;5(8):1029–43. https:// doi. org/ 10. 1109/ tmc. 2006. 118.

 60. Doulkeridis C, Vlachou A, Kotidis Y, Vazirgiannis M. Peer-to-peer similarity search in metric spaces. In Proceedings 
of the 33rd International Conference on Very Large Data Bases, 2007. 986–997. http:// www. db- net. aueb. gr/ files/ 
2007V LDB. pdf.

 61. Qu L, Chen Y, Xiao Y. iDistance Based Interactive Visual Surveillance Retrieval Algorithm. 2008 International Confer-
ence on Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 2008. https:// doi. org/ 10. 
1109/ icicta. 2008. 13.

 62. Wang J, Lu J, Zheng F, Ge T, Chen C. PL-Tree: an efficient indexing method for high-dimensional data. In Lecture 
Notes in Computer Science. 2013. pp. 183–200. https:// doi. org/ 10. 1007/ 978-3- 642- 40235-7_ 11.

 63. Schuh MA, Wylie T, Angryk RA. Mitigating the Curse of Dimensionality for Exact kNN Retrieval. In the Twenty-
Seventh International Flairs Conference. 2014. https:// dblp. uni- trier. de/ db/ conf/ flairs/ flair s2014. html# Schuh WA14.

 64. Schuh MA, Wylie T, Angryk RA. Improving the Performance of High-Dimensional kNN Retrieval through Localized 
Dataspace Segmentation and Hybrid Indexing. In Lecture Notes in Computer Science. 2013. pp. 344–357. https:// 
doi. org/ 10. 1007/ 978-3- 642- 40683-6_ 26.

 65. Wylie T, Schuh MA, Sheppard JW, Angryk RA. Cluster Analysis for Optimal Indexing. In FLAIRS Conference. 2013. 
https:// acade mic. timwy lie. com/ files/ Wylie_ 2013_ FLAIRS. pdf.

 66. Tang B, Yiu ML, Hua KA. Exploit every bit: Effective caching for high-dimensional nearest neighbor search 
(extended abstract). 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA. 
2017. https:// doi. org/ 10. 1109/ icde. 2017. 29.

 67. Shang X, Zhu Z, Leimkuhler B, Storkey A. Neural Information Processing Systems (NIPS). Learning to Prune in 
Metric and Non-Metric Spaces. NIPS: Neural Information Processing Systems. 2015. https:// www. resea rch. ed. ac. 
uk/ portal/ en/ publi catio ns/ covar iance contr olled- adapt ive- lange vin- therm ostat- for- large scale- bayes ian- sampl 
ing(76582 5cc- 13d9- 40d1- 8a9e- e696a 60e9e 36). html.

 68. Weber R, Blott SM. An Approximation-Based Data Structure for Similarity Search. ResearchGate. 1998. https:// 
www. resea rchga te. net/ publi cation/ 25771 57_ An_ Appro ximat ion- Based_ Data_ Struc ture_ for_ Simil arity_ Search.

 69. Cover TM, Hart PD. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7. https:// doi. org/ 
10. 1109/ tit. 1967. 10539 64.

 70. Bailey TL, Jain A. A note on Distance-Weighted K-Nearest Neighbor rules. IEEE Trans Syst Man Cybern. 
1978;8(4):311–3. https:// doi. org/ 10. 1109/ tsmc. 1978. 43099 58.

 71. Gowda KC, Krishna G. The condensed nearest neighbor rule using the concept of mutual nearest neighborhood 
(Corresp.). IEEE Trans Inf Theory. 1979;25(4):488–90. https:// doi. org/ 10. 1109/ tit. 1979. 10560 66.

 72. Gates GW. The reduced nearest neighbor rule (Corresp.). IEEE Trans Inf Theory. 1972;18(3):431–3. https:// doi. org/ 10. 
1109/ tit. 1972. 10548 09.

 73. Viadinugroho RAA. Imbalanced Classification in Python: SMOTE-ENN Method. Medium. 2022. https:// towar dsdat 
ascie nce. com/ imbal anced- class ifica tion- in- python- smote- enn- method- db5db 06b8d 50.

 74. Ritter GL, Woodruff HB, Lowry SR, Isenhour TL. An algorithm for a selective nearest neighbor decision rule (Cor-
resp.). IEEE Trans Inf Theory. 1975;21(6):665–9. https:// doi. org/ 10. 1109/ tit. 1975. 10554 64.

 75. Kolahdouzan MR, Shahabi C. Voronoi-Based K Nearest neighbor search for spatial network databases. In Elsevier 
eBooks. 2004. pp. 840–851. https:// doi. org/ 10. 1016/ b978- 01208 8469-8. 50074-7.

 76. Guo G, Wang H, Bell DA, Bi Y, Greer K. KNN model-based approach in classification. In Lecture Notes in Computer 
Science. 2003. pp. 986–996. https:// doi. org/ 10. 1007/ 978-3- 540- 39964-3_ 62.

 77. Chiang T, Lo H, Lin S. A ranking-based KNN approach for Multi-Label classification. J Mach Learn Res. 2012; 81–96. 
http:// proce edings. mlr. press/ v25/ chian g12/ chian g12. pdf.

 78. Yong Z, Li Y, Xia S. An improved KNN text classification algorithm based on clustering. J Comput. 2009. https:// doi. 
org/ 10. 4304/ jcp.4. 3. 230- 237.

 79. Li S, Chan KL, Wang C. Performance evaluation of the nearest feature line method in image classification and 
retrieval. IEEE Trans Pattern Anal Mach Intell. 2000;22(11):1335–9. https:// doi. org/ 10. 1109/ 34. 888719.

 80. Zheng W, Zhao L, Zou C. Locally nearest neighbor classifiers for pattern classification. Pattern Recogn. 
2004;37(6):1307–9. https:// doi. org/ 10. 1016/j. patcog. 2003. 11. 004.

 81. Kuang Q, Zhao L. A practical GPU based kNN algorithm. International Symposium on Computer Science and 
Computational Technology (ISCSCT). 2009.

 82. Batcher KE. Sorting networks and their applications. In Proceedings of the April 30--May 2, 1968, Spring Joint 
Computer Conference (AFIPS ‘68 (Spring)). 1968. https:// doi. org/ 10. 1145/ 14680 75. 14681 21.

https://doi.org/10.1007/978-3-540-27772-9_24
https://doi.org/10.1109/tkde.2005.46
https://doi.org/10.1109/gcis.2012.86
https://doi.org/10.1109/gcis.2012.86
https://doi.org/10.1007/978-3-642-39467-6_22
https://doi.org/10.1007/978-3-642-39467-6_22
https://doi.org/10.5555/1182635.1164246
https://doi.org/10.1145/1066157.1066240
https://doi.org/10.1109/tmc.2006.118
http://www.db-net.aueb.gr/files/2007VLDB.pdf
http://www.db-net.aueb.gr/files/2007VLDB.pdf
https://doi.org/10.1109/icicta.2008.13
https://doi.org/10.1109/icicta.2008.13
https://doi.org/10.1007/978-3-642-40235-7_11
https://dblp.uni-trier.de/db/conf/flairs/flairs2014.html#SchuhWA14
https://doi.org/10.1007/978-3-642-40683-6_26
https://doi.org/10.1007/978-3-642-40683-6_26
https://academic.timwylie.com/files/Wylie_2013_FLAIRS.pdf
https://doi.org/10.1109/icde.2017.29
https://www.research.ed.ac.uk/portal/en/publications/covariancecontrolled-adaptive-langevin-thermostat-for-largescale-bayesian-sampling(765825cc-13d9-40d1-8a9e-e696a60e9e36).html
https://www.research.ed.ac.uk/portal/en/publications/covariancecontrolled-adaptive-langevin-thermostat-for-largescale-bayesian-sampling(765825cc-13d9-40d1-8a9e-e696a60e9e36).html
https://www.research.ed.ac.uk/portal/en/publications/covariancecontrolled-adaptive-langevin-thermostat-for-largescale-bayesian-sampling(765825cc-13d9-40d1-8a9e-e696a60e9e36).html
https://www.researchgate.net/publication/2577157_An_Approximation-Based_Data_Structure_for_Similarity_Search
https://www.researchgate.net/publication/2577157_An_Approximation-Based_Data_Structure_for_Similarity_Search
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1109/tsmc.1978.4309958
https://doi.org/10.1109/tit.1979.1056066
https://doi.org/10.1109/tit.1972.1054809
https://doi.org/10.1109/tit.1972.1054809
https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-db5db06b8d50
https://towardsdatascience.com/imbalanced-classification-in-python-smote-enn-method-db5db06b8d50
https://doi.org/10.1109/tit.1975.1055464
https://doi.org/10.1016/b978-012088469-8.50074-7
https://doi.org/10.1007/978-3-540-39964-3_62
http://proceedings.mlr.press/v25/chiang12/chiang12.pdf
https://doi.org/10.4304/jcp.4.3.230-237
https://doi.org/10.4304/jcp.4.3.230-237
https://doi.org/10.1109/34.888719
https://doi.org/10.1016/j.patcog.2003.11.004
https://doi.org/10.1145/1468075.1468121


Page 53 of 55Halder et al. Journal of Big Data          (2024) 11:113  

 83. Sismanis N, Pitsianis N, Sun X. Parallel search of k-nearest neighbors with synchronous operations. 2012 IEEE Con-
ference on High Performance Extreme Computing, Waltham, MA, USA, 2012. https:// doi. org/ 10. 1109/ hpec. 2012. 
64086 67.

 84. Liu B, Lee W, Lee DL. Supporting Complex Multi-Dimensional Queries in P2P Systems. 25th IEEE International 
Conference on Distributed Computing Systems (ICDCS’05), Columbus, OH, USA, 2005. https:// doi. org/ 10. 1109/ 
icdcs. 2005. 75.

 85. Li M, Lee WC, Sivasubramaniam A, Zhao J. Supporting K nearest neighbors query on high-dimensional data in P2P 
systems. Front Comp Sci. 2008;2(3):234–47. https:// doi. org/ 10. 1007/ s11704- 008- 0026-7.

 86. Jagadish HV, Ooi BC, Vu QH, Zhang R, Zhou A. VBI-tree: a peer-to-peer framework for supporting multi-dimen-
sional indexing schemes. 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 2006. 
https:// doi. org/ 10. 1109/ icde. 2006. 169.

 87. Qiao B, Ding L, Wei Y, Wang X. A KNN Query Processing Algorithm over High-Dimensional Data Objects in P2P 
Systems. In Advances in intelligent and soft computing. 2012. pp. 133–139. https:// doi. org/ 10. 1007/ 978-3- 642- 
28314-7_ 19.

 88. Jian L, Wang C, Liu Y, Liang S, Yi W, Shi Y. Parallel data mining techniques on Graphics Processing Unit with 
Compute Unified Device Architecture (CUDA). J Supercomput. 2011;64(3):942–67. https:// doi. org/ 10. 1007/ 
s11227- 011- 0672-7.

 89. Xiao B, Biros G. Parallel algorithms for nearest neighbor search problems in high dimensions. SIAM J Sci Comput. 
2016;38(5):S667–99. https:// doi. org/ 10. 1137/ 15m10 26377.

 90. Clarke LJ, Glendinning I, Hempel R. The MPI Message Passing Interface Standard. In Birkhäuser Basel eBooks. 1994. 
pp. 213–218. https:// doi. org/ 10. 1007/ 978-3- 0348- 8534-8_ 21.

 91. Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng. 
1998;5(1):46–55. https:// doi. org/ 10. 1109/ 99. 660313.

 92. Muhr D, Affenzeller M. Hybrid (CPU/GPU) exact nearest neighbors search in High-Dimensional Spaces. In IFIP 
advances in information and communication technology. 2022. pp. 112–123. https:// doi. org/ 10. 1007/ 978-3- 031- 
08337-2_ 10.

 93. Luebke D, Harris MJ, Govindaraju NK, Lefohn A, Houston MJ, Owens JD, Segal MN, Papakipos M, Buck I. S07---
GPGPU. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ‘06). Association for Computing 
Machinery, New York, NY, USA. 2006. https:// doi. org/ 10. 1145/ 11884 55. 11886 72.

 94. Xia C, Lu H, Ooi B, Hu J. GORDERAn Efficient Method for KNN join processing. In Elsevier eBooks. 2004. pp. 
756–767. https:// doi. org/ 10. 1016/ b978- 01208 8469-8/ 50067-x.

 95. Chen Y, Cui B, Wang S, Su J. Efficient index-based KNN join processing for high-dimensional data. Inf Softw Tech-
nol. 2007;49(4):332–44. https:// doi. org/ 10. 1016/j. infsof. 2006. 05. 006.

 96. Wang J. Efficient K-Nearest Neighbor join algorithms for high dimensional sparse data. 2010. arXiv.org. https:// 
arxiv. org/ abs/ 1011. 2807.

 97. Achlioptas D. Database-friendly random projections. Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART 
Symposium on Principles of Database Systems. 2001. https:// doi. org/ 10. 1145/ 375551. 375608.

 98. Ukey N, Yang Z, Zhang G, Liu B, Li B, Zhang W. Efficient kNN join over dynamic high-dimensional data. In Lecture 
Notes in Computer Science. 2022. pp. 63–75. https:// doi. org/ 10. 1007/ 978-3- 031- 15512-3_5.

 99. Dean JM, Ghemawat S. MapReduce. Commun ACM. 2008;51(1):107–13. https:// doi. org/ 10. 1145/ 13274 52. 13274 92.
 100. CiteSeerX. (n.d.). CiteSeerX. https:// cites eerx. ist. psu. edu/ doc_ view/ pid/ 17ac0 02939 f8e95 0ffb3 2ec4d c8e86 bdd8c 

b5ff1# citat ions.
 101. McNames J. A fast nearest-neighbor algorithm based on a principal axis search tree. IEEE Trans Pattern Anal Mach 

Intell. 2001;23(9):964–76. https:// doi. org/ 10. 1109/ 34. 955110.
 102. Zhang C, Li F, Jestes J. Efficient parallel kNN joins for large data in MapReduce. ACM Int Conf Proc Ser. 2012. https:// 

doi. org/ 10. 1145/ 22475 96. 22476 02.
 103. Pan Z, Wang Y, Ku W. A new k-harmonic nearest neighbor classifier based on the multi-local means. Expert Syst 

Appl. 2017;67:115–25. https:// doi. org/ 10. 1016/j. eswa. 2016. 09. 031.
 104. Pan Z, Wang Y, Ku W. A new general nearest neighbor classification based on the mutual neighborhood informa-

tion. Knowl-Based Syst. 2017;121:142–52. https:// doi. org/ 10. 1016/j. knosys. 2017. 01. 021.
 105. De Figueiredo JJS, Oliveira F, Esmi E, Freitas L, Schleicher J, Novais A, Sussner P, Green S. Automatic detection and 

imaging of diffraction points using pattern recognition. Geophys Prospect. 2012;61(s1):368–79. https:// doi. org/ 10. 
1111/j. 1365- 2478. 2012. 01123.x.

 106. Nguyen B, Morell C, De Baets B. Large-scale distance metric learning for k-nearest neighbors regression. Neuro-
computing. 2016;214:805–14. https:// doi. org/ 10. 1016/j. neucom. 2016. 07. 005.

 107. Song Y, Liang J, Lü J, Zhao X. An efficient instance selection algorithm for k nearest neighbor regression. Neuro-
computing. 2017;251:26–34. https:// doi. org/ 10. 1016/j. neucom. 2017. 04. 018.

 108. Stone CJ. Consistent nonparametric regression. Ann Stat. 1977. https:// doi. org/ 10. 1214/ aos/ 11763 43886.
 109. Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outliers. IEEE Trans Knowl Data Eng. 

2006;18(2):145–60. https:// doi. org/ 10. 1109/ tkde. 2006. 29.
 110. Ghoting A, Parthasarathy S, Otey ME. Fast mining of distance-based outliers in high-dimensional datasets. Data 

Min Knowl Disc. 2008;16(3):349–64. https:// doi. org/ 10. 1007/ s10618- 008- 0093-2.
 111. Jin N, Chen L, Zhou C, Wen Y. Parameter k search strategy in outlier detection. Pattern Recogn Lett. 2018;112:56–

62. https:// doi. org/ 10. 1016/j. patrec. 2018. 06. 007.
 112. Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. Sigmod Record. 

2000;29(2):427–38. https:// doi. org/ 10. 1145/ 335191. 335437.
 113. Jiang S, Pang G, Wu M, Kuang L. An improved K-nearest-neighbor algorithm for text categorization. Expert Syst 

Appl. 2012;39(1):1503–9. https:// doi. org/ 10. 1016/j. eswa. 2011. 08. 040.
 114. Cavalcante HG. A question classification in closed domain question-answer systems. Int J Appl Inf Syst (IJAIS). 

2021;12:1–5. https:// doi. org/ 10. 5120/ ijais 20214 51913.

https://doi.org/10.1109/hpec.2012.6408667
https://doi.org/10.1109/hpec.2012.6408667
https://doi.org/10.1109/icdcs.2005.75
https://doi.org/10.1109/icdcs.2005.75
https://doi.org/10.1007/s11704-008-0026-7
https://doi.org/10.1109/icde.2006.169
https://doi.org/10.1007/978-3-642-28314-7_19
https://doi.org/10.1007/978-3-642-28314-7_19
https://doi.org/10.1007/s11227-011-0672-7
https://doi.org/10.1007/s11227-011-0672-7
https://doi.org/10.1137/15m1026377
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1109/99.660313
https://doi.org/10.1007/978-3-031-08337-2_10
https://doi.org/10.1007/978-3-031-08337-2_10
https://doi.org/10.1145/1188455.1188672
https://doi.org/10.1016/b978-012088469-8/50067-x
https://doi.org/10.1016/j.infsof.2006.05.006
https://arxiv.org/abs/1011.2807
https://arxiv.org/abs/1011.2807
https://doi.org/10.1145/375551.375608
https://doi.org/10.1007/978-3-031-15512-3_5
https://doi.org/10.1145/1327452.1327492
https://citeseerx.ist.psu.edu/doc_view/pid/17ac002939f8e950ffb32ec4dc8e86bdd8cb5ff1#citations
https://citeseerx.ist.psu.edu/doc_view/pid/17ac002939f8e950ffb32ec4dc8e86bdd8cb5ff1#citations
https://doi.org/10.1109/34.955110
https://doi.org/10.1145/2247596.2247602
https://doi.org/10.1145/2247596.2247602
https://doi.org/10.1016/j.eswa.2016.09.031
https://doi.org/10.1016/j.knosys.2017.01.021
https://doi.org/10.1111/j.1365-2478.2012.01123.x
https://doi.org/10.1111/j.1365-2478.2012.01123.x
https://doi.org/10.1016/j.neucom.2016.07.005
https://doi.org/10.1016/j.neucom.2017.04.018
https://doi.org/10.1214/aos/1176343886
https://doi.org/10.1109/tkde.2006.29
https://doi.org/10.1007/s10618-008-0093-2
https://doi.org/10.1016/j.patrec.2018.06.007
https://doi.org/10.1145/335191.335437
https://doi.org/10.1016/j.eswa.2011.08.040
https://doi.org/10.5120/ijais2021451913


Page 54 of 55Halder et al. Journal of Big Data          (2024) 11:113 

 115. Bijalwan V, Kumar V, Kumari P, Pascual J. KNN based machine learning approach for text and document mining. Int 
J Database Theory Appl. 2014;7(1):61–70. https:// doi. org/ 10. 14257/ ijdta. 2014.7. 1. 06.

 116. Zhao J, Han J, Shao L. Unconstrained face recognition using a Set-to-Set distance measure on deep learned 
features. IEEE Trans Circuits Syst Video Technol. 2018;28(10):2679–89. https:// doi. org/ 10. 1109/ tcsvt. 2017. 27101 20.

 117. Tofighi A, Khairdoost N, Monadjemi SA, Jamshidi K. A robust face recognition system in image and video. Int J 
Image Graphics Signal Proc. 2014;6(8):1–11. https:// doi. org/ 10. 5815/ ijigsp. 2014. 08. 01.

 118. Zhang J, Yin Z, Chen P, Nichele S. Emotion recognition using multi-modal data and machine learning techniques: 
a tutorial and review. Inf Fusion. 2020;59:103–26. https:// doi. org/ 10. 1016/j. inffus. 2020. 01. 011.

 119. Murugappan M. Human emotion classification using wavelet transform and KNN. 2011 International Conference 
on Pattern Analysis and Intelligence Robotics, Kuala Lumpur, Malaysia, 2011. https:// doi. org/ 10. 1109/ icpair. 2011. 
59768 86.

 120. Guru DS, Sharath YH, Manjunath S. Texture features and KNN in classification of flower images. Int J Comput Appl. 
2010;1:21–9.

 121. Zawbaa HM, Abbass M, Hazman M, Hassenian AE. Automatic fruit image recognition system based on shape and 
color features. In Communications in computer and information science. 2014. pp. 278–290. https:// doi. org/ 10. 
1007/ 978-3- 319- 13461-1_ 27.

 122. Zanchettin C, Bezerra BLD, Azevedo WW. A KNN-SVM hybrid model for cursive handwriting recognition. The 2012 
International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 2012. 2012. https:// doi. org/ 
10. 1109/ ijcnn. 2012. 62527 19.

 123. Hamid NA, Sjarif NNA. Handwritten recognition using SVM, KNN and neural network. arXiv (Cornell University). 
2017. https:// arxiv. org/ pdf/ 1702. 00723. pdf.

 124. Akila S, Reddy US. Cost-sensitive Risk Induced Bayesian Inference Bagging (RIBIB) for credit card fraud detection. J 
Comput Sci. 2018;27:247–54. https:// doi. org/ 10. 1016/j. jocs. 2018. 06. 009.

 125. Imandoust SB, Bolandraftar M. Application of K-nearest neighbor (KNN) approach for predicting economic events 
theoretical background. Int J Eng Res Appl. 2013;3:605–10.

 126. Zheng B, Zheng K, Xiao X, Su H, Yin H, Zhou X, Li G. Keyword-aware continuous kNN query on road networks. 2016 
IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 2016. 2016. https:// doi. org/ 10. 
1109/ icde. 2016. 74982 97.

 127. Tripathy DP, Parida S, Khandu L. Safety risk assessment and risk prediction in underground coal mines using 
machine learning techniques. J Inst Eng India Series D. 2021;102(2):495–504. https:// doi. org/ 10. 1007/ 
s40033- 021- 00290-1.

 128. Mohsen S, Elkaseer A, Scholz S. Human activity recognition using K-Nearest Neighbor Machine Learning Algo-
rithm. In Smart innovation, systems and technologies. 2021. pp. 304–313. https:// doi. org/ 10. 1007/ 978- 981- 16- 
6128-0_ 29.

 129. Selma C, Haouzi HBE, Thomas P, Gaudreault J, Morin M. An iterative closest point method for measuring the level 
of similarity of 3D log scans in wood industry. In Studies in computational intelligence 2018. pp. 433–444. https:// 
doi. org/ 10. 1007/ 978-3- 319- 73751-5_ 33.

 130. Chabanet S, Thomas P, El-Haouzi HB, Morin M, Gaudreault J. A kNN approach based on ICP metrics for 3D scans 
matching: an application to the sawing process. IFAC-PapersOnLine. 2021;54(1):396–401. https:// doi. org/ 10. 1016/j. 
ifacol. 2021. 08. 045.

 131. Al-Faiz MZ, Ali AA, Miry AH. A K-Nearest Neighbor based algorithm for human arm movements recognition using 
EMG signals. Al-maǧallaẗ Al-ʻirāqiyyaẗ Al-handasaẗ Al-kahrabāʼiyyaẗ Wa-al-ilikttrūniyyaẗ. 2010;6(2): 158–166. https:// 
doi. org/ 10. 33762/ eeej. 2010. 54888.

 132. Shen B, Zhao Y, Li G, Zheng W, Qin Y, Yuan B, Rao Y. V-Tree: Efficient kNN Search on Moving Objects with Road-
Network Constraints. 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 
2017. 2017. https:// doi. org/ 10. 1109/ icde. 2017. 115.

 133. Fiorini L, Mancioppi G, Semeraro F, Fujita H, Cavallo F. Unsupervised emotional state classification through physi-
ological parameters for social robotics applications. Knowl-Based Syst. 2020;190: 105217. https:// doi. org/ 10. 1016/j. 
knosys. 2019. 105217.

 134. Markom MA, Adom AH, Shukor SAA, Rahim NA, Tan ESMM, Ilias B. Improved KNN scan matching for local map 
classification in mobile Robot Localisation application. IOP Conf Ser Mater Sci Eng. 2019;557(1):012019. https:// doi. 
org/ 10. 1088/ 1757- 899x/ 557/1/ 012019.

 135. Pinto AM, Rocha LF, Moreira AP. Object recognition using laser range finder and machine learning techniques. 
Robot Comput-Integr Manuf. 2013;29(1):12–22. https:// doi. org/ 10. 1016/j. rcim. 2012. 06. 002.

 136. Xu G, Pang Y, Bai Z, Wang Y, Lü Z. A fast point clouds registration algorithm for laser scanners. Appl Sci. 
2021;11(8):3426. https:// doi. org/ 10. 3390/ app11 083426.

 137. Li W, Yi P, Wu Y, Pan L, Li J. A new intrusion detection system based on KNN classification algorithm in wireless sen-
sor network. J Electric Comput Eng. 2014;2014:1–8. https:// doi. org/ 10. 1155/ 2014/ 240217.

 138. Liu G, Zhao H, Fan F, Liu G, Xu Q, Nazir S. An enhanced intrusion detection model based on improved KNN in 
WSNs. Sensors. 2022;22(4):1407. https:// doi. org/ 10. 3390/ s2204 1407.

 139. Yang J, Sun Z, Chen Y. Fault detection using the Clustering-KNN rule for gas sensor arrays. Sensors. 
2016;16(12):2069. https:// doi. org/ 10. 3390/ s1612 2069.

 140. Zhou C, Tham C. GraphEL: A Graph-Based Ensemble Learning Method for Distributed Diagnostics and Prognostics 
in the Industrial Internet of Things. 2018 IEEE 24th International Conference on Parallel and Distributed Systems 
(ICPADS), Singapore, 2018. 2018. https:// doi. org/ 10. 1109/ padsw. 2018. 86449 43.

 141. Liang S, Ning Y, Li H, Wang L, Mei Z, Ma Y, Zhao G. Feature selection and predictors of falls with foot force sensors 
using KNN-based algorithms. Sensors. 2015;15(11):29393–407. https:// doi. org/ 10. 3390/ s1511 29393.

 142. Dziubany M, Machhamer R, Laux H, Schmeink A, Gollmer KU, Burger G, Dartmann G. Machine Learning Based 
Indoor Localization Using a Representative k-Nearest-Neighbor Classifier on a Low-Cost IoT-Hardware. 2018 26th 
European Signal Processing Conference (EUSIPCO), Rome, Italy, 2018. 2018. https:// doi. org/ 10. 23919/ eusip co. 
2018. 85531 55.

https://doi.org/10.14257/ijdta.2014.7.1.06
https://doi.org/10.1109/tcsvt.2017.2710120
https://doi.org/10.5815/ijigsp.2014.08.01
https://doi.org/10.1016/j.inffus.2020.01.011
https://doi.org/10.1109/icpair.2011.5976886
https://doi.org/10.1109/icpair.2011.5976886
https://doi.org/10.1007/978-3-319-13461-1_27
https://doi.org/10.1007/978-3-319-13461-1_27
https://doi.org/10.1109/ijcnn.2012.6252719
https://doi.org/10.1109/ijcnn.2012.6252719
https://arxiv.org/pdf/1702.00723.pdf
https://doi.org/10.1016/j.jocs.2018.06.009
https://doi.org/10.1109/icde.2016.7498297
https://doi.org/10.1109/icde.2016.7498297
https://doi.org/10.1007/s40033-021-00290-1
https://doi.org/10.1007/s40033-021-00290-1
https://doi.org/10.1007/978-981-16-6128-0_29
https://doi.org/10.1007/978-981-16-6128-0_29
https://doi.org/10.1007/978-3-319-73751-5_33
https://doi.org/10.1007/978-3-319-73751-5_33
https://doi.org/10.1016/j.ifacol.2021.08.045
https://doi.org/10.1016/j.ifacol.2021.08.045
https://doi.org/10.33762/eeej.2010.54888
https://doi.org/10.33762/eeej.2010.54888
https://doi.org/10.1109/icde.2017.115
https://doi.org/10.1016/j.knosys.2019.105217
https://doi.org/10.1016/j.knosys.2019.105217
https://doi.org/10.1088/1757-899x/557/1/012019
https://doi.org/10.1088/1757-899x/557/1/012019
https://doi.org/10.1016/j.rcim.2012.06.002
https://doi.org/10.3390/app11083426
https://doi.org/10.1155/2014/240217
https://doi.org/10.3390/s22041407
https://doi.org/10.3390/s16122069
https://doi.org/10.1109/padsw.2018.8644943
https://doi.org/10.3390/s151129393
https://doi.org/10.23919/eusipco.2018.8553155
https://doi.org/10.23919/eusipco.2018.8553155


Page 55 of 55Halder et al. Journal of Big Data          (2024) 11:113  

 143. Parlak B, Uysal AK. A novel filter feature selection method for text classification: extensive feature selector. J Inf Sci. 
2023;49(1):59–78. https:// doi. org/ 10. 1177/ 01655 51521 991037.

 144. Parlak B, Uysal AK. The effects of globalisation techniques on feature selection for text classification. J Inf Sci. 
2021;47(6):727–39. https:// doi. org/ 10. 1177/ 01655 51520 930897.

 145. Parlak B. A novel feature ranking algorithm for text classification: brilliant probabilistic feature selector (BPFS). 
Comput Intell. 2023;39(5):900–26. https:// doi. org/ 10. 1111/ coin. 12599.

 146. Parlak B. Ensemble feature selection for single-label text classification: a comprehensive analytical study. Neural 
Comput Appl. 2023;35:19235–51. https:// doi. org/ 10. 1007/ s00521- 023- 08763-y.

 147. Mladenova T, Valova I. Comparative analysis between the traditional K-Nearest Neighbor and Modifications with 
Weight-Calculation, 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies 
(ISMSIT), Ankara, Turkey, 2022, pp. 961–965, https:// doi. org/ 10. 1109/ ISMSI T56059. 2022. 99326 93.

 148. Briliani A, Irawan B, Setianingsih C. Hate Speech Detection in Indonesian Language on Instagram Comment Sec-
tion Using K-Nearest Neighbor Classification Method, 2019 IEEE International Conference on Internet of Things 
and Intelligence System (IoTaIS), Bali, Indonesia, 2019, pp. 98–104, https:// doi. org/ 10. 1109/ IoTaI S47347. 2019. 89803 
98.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1177/0165551521991037
https://doi.org/10.1177/0165551520930897
https://doi.org/10.1111/coin.12599
https://doi.org/10.1007/s00521-023-08763-y
https://doi.org/10.1109/ISMSIT56059.2022.9932693
https://doi.org/10.1109/IoTaIS47347.2019.8980398
https://doi.org/10.1109/IoTaIS47347.2019.8980398

	Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications
	Abstract 
	Introduction
	kNN in low-dimensional space: an overview
	kNN in high-dimensional space: an overview
	Survey scope
	Objectives
	Motivations
	Contributions

	Problem definition
	Definition 1 (kNN search)
	Definition 2 (kNN join)
	Definition 3 (distance range)
	Definition 4 (k-distance join)
	Definition 5 (reverse kNN join)
	Definition 6 (dynamic kNN join)
	Definition 7 (approximate nearest neighbour)

	Article selection process
	Search strategy and data sources
	Data selection (inclusion and exclusion criteria)
	Data extraction

	kNN search
	IO-based
	Main-memory-based
	Parallel or distributed

	kNN join approach
	IO-based
	Memory-based
	Parallel and distributed

	Applications of kNN
	Data mining [69, 103–112]
	Machine learning [113–125]
	Machine industry [126–130]
	Robotics [131–136]
	Sensors network [137–142]

	Comparative analysis
	kNN search approach
	kNN join approach

	Discussion
	Clarification on model interpretability
	Handling imbalanced datasets
	Optimal parameter selection
	Scalability and computational efficiency
	Robustness to noisy data

	Conclusion
	Challenges and future directions
	Acknowledgements
	References


