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Abstract 

Objective:  This paper addresses the Graeco-Latin square design (GLSD) under neutro-
sophic statistics. In this work, we propose a novel approach for analyzing Graeco-Latin 
square designs using uncertain observations.

Method:  This approach involves the determination of a neutrosophic ANOVA 
and the determination of the neutrosophic hypotheses and decision rule.

Results:  The performance of the proposed design is evaluated using the numerical 
examples and simulation study.

Conclusion:  Based on the results observed, it can be concluded that the GLSD 
under neutrosophic statistics performs better than the GLSD under classical statistics 
in the presence of uncertainty.

Keywords:  Neutrosophic statistics, Uncertain observations, GLSD, Neutrosophic 
hypotheses

Introduction
Latin square designs are among the most frequently used experimental designs. In this 
design, each treatment occurs once, and only once, in each row and column; thus, the 
number of treatments, rows, and columns is equal. The GLSD is another design related 
to the Latin square. The Graeco-Latin square consists of two orthogonal Latin squares 
(each letter combination appears exactly once). A GLSD allows us to investigate up to 
four factors within a single design. The two factors are represented in rows and columns, 
while the two others represent in Latin and Greek letters. A Graeco-Latin square was 
first constructed by Euler, Leonhard in 1782. Yates and Mather [1] provided Graeco-
Latin tables of orders 3 to 12 (excluding the order of six). A comprehensive description 
of GLSDs was also included in Dénes and Keedwell [2]. Dodge and Shah [3] addressed 
the estimation of missing data in Latin squares and Graeco-Latin squares. Preece [4] 
discussed non-orthogonal GLSDs. Street [5] used the theory of cyclotomy to construct 
certain balanced incomplete block designs (BIBDs) and partially balanced incomplete 
block designs (PBIBDs), which gave some GLSDs as well as some nested row and col-
umn designs. Seberry [6] highlighted orthogonal GLSDs. You can find related articles 
and books about GLSD in [7–11].
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Neutrosophic logic is claimed by Smarandache [12] to be more efficient than fuzzy 
logic. Smarandache [13] introduced the concept of neutrosophic statistics (NS), an 
extension of classical statistics. Aslam [14] explained the differences between fuzzy sta-
tistics, NS, and classical statistics. Neutrosophic ANOVA has been highlighted by Aslam 
[15]. In a more recent article, AlAita and Aslam [16] discussed the application of neutro-
sophic analysis of covariance to neutrosophic completely random designs, neutrosophic 
randomized complete block designs, and neutrosophic split-plot designs. Aslam and 
Albassam [17] suggested post-hoc multiple comparison tests under NS. Neutrosophic 
correlation and simple linear regression have been discussed by Salama, Khaled [18]. 
Analysis of neutrosophic multiple regression has been suggested by Nagarajan, Broumi 
[19]. Numerous neutrosophic statistical studies have been discussed in [20–27].

The GLSD is available under classical statistics in the literature. However, the test sta-
tistics of this design are not capable of providing information regarding the measure of 
indeterminacy under uncertainty. The main objective of the study is to solve problems 
associated with studies involving imprecise, vague, and uncertain data that require the 
application of Graeco-Latin square designs. We can, therefore, analyze our proposed 
designs using NS in order to provide additional information on the measure of indeter-
minacy that classical statistics are not able to provide. There are many real-world exam-
ples that enable us to use this design under NS, for example, a study on the differential 
growth of some algae in acetic acid. For this study, the 5 × 5 GLSD is used. In which, five 
different algae were being studied in five different types of vessels with five settings of 
the pH level. Greek letters represent temperatures at five levels, columns represent pH 
settings, rows represent vessels, and Latin letters represent algae types. In this exam-
ple, classical statistics cannot analyze and interpret neutrosophic data (where the data 
has some degree of indeterminacy) for GLSD. Therefore, the test we propose for neutro-
sophic Graeco-Latin square design (NGLSD) in this paper are essential for these studies.

According to a literature review, no work has been conducted on GLSDs under NS. In 
this paper, we propose for the first time a NGLSD. Moreover, an NANOVA Table will 
be organized to determine the proposed FN-test, neutrosophic hypotheses, and decision 
rule. A Numerical examples and simulation study we will conduct to evaluate the perfor-
mance of the proposed design FN-test. Our expectation is that the proposed Greek-Latin 
square design will perform better than the existing design in the event of uncertainty.

Preliminaries
Many articles and books have been published recently that use NS, which is a gener-
alization of classical statistics. NS is also characterized by its flexibility and efficiency 
in uncertain environments, as well as the ability to calculate measure of indeterminacy 
resulting from the state of uncertainty. It is possible to categorize these uncertainties 
into three categories: Degree of Truth (T), Degree of Falsehood (F) and Degree of Inde-
terminacy (I). Below is a brief overview of some basic concepts related to NS.

Suppose that a neutrosophic random variable (NRV) XN ∈ [XL,XU ] follows the 
neutrosophic normal distribution (NND) with a neutrosophic population mean 
µN ∈ [µL,µU ] and a neutrosophic population variance σ 2

N ∈ [σ 2
L , σ

2
U ] , where XL and 

XU are smaller and larger values of indeterminacy interval. Let XN = XL + XUIN is the 
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neutrosophic form of NRV having determinate part XL and indeterminate part XUIN ; 
IN ∈ [IL, IU ] , where IN ∈ [IL, IU ] is indeterminate interval.

Suppose nN ∈ [nL, nU ] is a neutrosophic random sample selected from a population of 
size NN having indeterminate observations. The neutrosophic population means µN and 
variance σ 2

N , are expressed as follows;

µN ∈

[∑NL
i=1 XLi

NL
,

∑NU
i=1 XUi

NU

]
;µN ∈ [µL,µU ] and 

σ 2
N ∈

[∑NL
i=1 (XLi−µL)

2

NL
,

∑NU
i=1 (XUi−µU )2

NU

]
; σ 2

N ∈ [σ 2
L , σ

2
U ].

But, in the numerical examples, µN and σ 2
N are unknown and can be estimated using 

the sample observations. The neutrosophic sample mean XN and the variance s2N , are 
expressed by;

XN ∈

[∑nL
i=1 XLi

nL
,

∑nU
i=1 XUi

nU

]
;XN ∈

[
XL,XU

]
 and s2

N
∈

[∑nL
i=1 (XLi−XL)

2

nL−1
,

∑nU
i=1 (XUi−XU)

2

nU−1

]
;

s
2
N
∈ [s2

L
, s2
U
].

Analysis of neutrosophic Graeco‑Latin square design
Model and NANOVA for a neutrosophic Graeco‑Latin square design

The neutrosophic statistical model for a NGLSD with aN rows and bN columns can be 
expressed as:

The neutrosophic form of yNijkl can be expressed as

where yNhqi represents the neutrosophic observation in the i th row and k th column for 
Latin letter j and Greek letter k , µN represents a neutrosophic overall mean, ωNi rep-
resents the neutrosophic effect of the i th row, τNj represents the neutrosophic effect of 
the j th treatment of the Latin letter, γNk represents the neutrosophic effect of the k th 
treatment of the Greek letter, δNl represents the neutrosophic effect of the l th column, 
and εNijkl represents the neutrosophic random error assumed to have mean of zero and 
variance σ 2

N ∈ [σ 2
L , σ

2
U ] . Let the total neutrosophic number of all plots in the rows and 

columns is nNT ; then nNT = p2N . Table 1 presents NANOVA of NGLSD.
NSSs can be computed using the following formulas:

SSNT =
∑pN

i=1

∑pN
j=1

∑pN
k=1

∑pN
l=1

y2Nijkl −
y2N ....

p2N
 ; SSNT ∈ [SSLT , SSUT ],

SSNR = 1
pN

∑pN
i=1 y

2
Ni... −

y2N ...

p2N
 ; SSNR ∈ [SSLR, SSUR],

SSNL = 1
pN

∑pN
j=1 y

2
N .j.. −

y2N ...

p2N
 ; SSNR ∈ [SSLL, SSUL],

SSNG = 1
pN

∑pN
k=1

y2N ..k . −
y2N ...

p2N
 ; SSNk ∈ [SSLG , SSUG],

SSNC = 1
pN

∑pN
l=1

y2N ...l −
y2N ...

p2N
 ; SSNR ∈ [SSLC , SSUC ],

(2)yNijkl = µN + ωNi + τNj + γNk + δNl + εNijkl;






i = 1,2, . . . , pN
j = 1,2, . . . , pN
k = 1,2, . . . , pN
l = 1,2, . . . , pN

,

(3)yNijkl = yNijkl + yNijklIN ; IN ∈ [IL, IU ],
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SSNE = SSNT − SSNR − SSNL − SSNG − SSNC ; SSNE ∈ [SSLE , SSUE],

where yNi... stands for the total number of the neutrosophic observations in the h th neu-
trosophic row, yN .j.. stands for the total number of the neutrosophic observations in the 
j th neutrosophic treatment of the Latin letter, yN ..k . stands for the total number of the 
neutrosophic observations in the k th neutrosophic treatment of the Greek letter, yN ...l 
stands for the total number of the neutrosophic observations in the l th neutrosophic 
column, and yN .... stands for the total number of all the neutrosophic observations.

Neutrosophic mean squares are defined as:
MSNR =

SSNR
pN−1

 ; MSNR ∈ [MSLR,MSUR] , MSNL =
SSNL
pN−1

 ; MSNL ∈ [MSLL,MSUL],

MSNG =
SSNG
pN−1

 ; MSNG ∈ [MSLG ,MSUG] , MSNC =
SSNC
pN−1

 ; MSNC ∈ [MSLC ,MSUC ],

MSNE =
SSNE

(pN−3)(pN−1)
 ; MSNE ∈ [MSLE ,MSUE].

The neutrosophic statistic FN-tests become
FNR =

MSNR
MSNE

 ; FNR ∈ [FLR, FUR] , FNL =
MSNL
MSNE

 ; FNL ∈ [FLL, FUL] , FNG =
MSNG
MSNE

 ; 
FNG ∈ [FLG , FUG] , FNC =

MSNC
MSNE

 ; FNC ∈ [FLC , FUC ].

The neutrosophic form of FN is:

where FL and FUIFN are determinate and indeterminate parts of each the proposed 
test. This test reduces to test under classical statistic if IFN = 0.

Neutrosophic hypotheses and decision rule

Under neutrosophic statistics, a null hypothesis and an alternative hypothesis are pre-
sented as follows:

HN0 : ωN1 = ωN2 = · · · = ωNp = 0 vs HN1 : at least one ωNi �= 0,
HN0 : τN1 = τN2 = · · · = τNp = 0 vs HN1 : at least one τNj �= 0,
HN0 : γN1 = γN2 = · · · = γNp = 0 vs HN1 : at least one γNk �= 0,
HN0 : δN1 = δN2 = · · · = δN3 = 0 vs HN1 : at least one δNl �= 0.

FN = FL + FUIFN ; IFN ∈
[
IFL , IFU

]
,

Table 1  NANOVA Table for NGLSD

Source NSS ndf NMS FN

Rows SSNR pN − 1 MSNR =
SSNR
pN−1

FNR =
MSNR
MSNE

Latin letter treatments SSNL pN − 1 MSNL =
SSNL
pN−1

FNL =
MSNL
MSNE

Greek letter treatments SSNG pN − 1 MSNG =
SSNG
pN−1

FNG =
MSNG
MSNE

Columns SSNC pN − 1 MSNC =
SSNC
pN−1

FNC =
MSNC
MSNE

Error SSNE (pN − 3)(pN − 1) MSNE = SSNE
(pN−3)(pN−1)

Total SSNT p2N − 1
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The null hypothesis is accepted if min{pN − value} ≥ α , where α is a level of signifi-
cance. While, the null hypothesis is rejected if max

{
pN − value

}
< α.

Numerical examples and simulation study
Numerical examples

Example 4.1  Suppose that a researcher is investigating the effects of neutrosophic 
treatments on a particular study. The 4 × 4 NGLSD is used. The plan compares four neu-
trosophic treatments (Latin letters) in four neutrosophic rows, four neutrosophic col-
umns, and four neutrosophic Greek letters. Table 2 summarizes the data.

In the NANOVA Table 3, we summarize the calculation formulas for testing the fol-
lowing null hypotheses against the alternative hypotheses under the neutrosophic statis-
tics in NGLSD.

Example 4.2  In this example, the 5 × 5 NGLSD is used. The plan compares five neu-
trosophic treatments (Latin letters) in five neutrosophic rows, five neutrosophic col-
umns, and five neutrosophic Greek letters. Table 4 summarizes the data.

Also, the results of Example 4.2 can be summarized in the NANOVA Table 5.

In order to conduct the proposed FN-test for NGLSD, the following steps will need to be 
taken:

Step 1: We assign the neutrosophic test hypotheses.
Step 2: We prepare the NANOVA Table for the proposed design.
Step 3: We calculate the pN − value at the level of significance α = 0.05 . For exam-
ple, from the NANOVA Table 3 in Example 4.1: pN − value = [0.030, 0.025].
Step 4: We accept the null hypothesis HN0 if pN − values ≥ 0.05 , and we reject HN0 
if pN − values < 0.05.

In Table 3, we reject the null hypothesis HN0 because pN − value = [0.030, 0.025] < 0.05 . 
i.e., there is a difference in mean between the three treatments.

Table 2  Data for the NGLSD

Rows Columns

1 2 3 4

1 Aα [32.61, 33.49] Bβ [59.93, 60.24] Cγ [45.64, 46.49] Dδ [61.59, 61.82]

2 Bδ [56.01, 56.64] Aγ [35.33, 35.66] Dβ [64.56, 65.13] Cα [42.20, 42.48]

3 Cβ [51.08, 51.18] Dα [44.83, 45.76] Aδ [52.05, 52.18] Bγ [51.62, 51.80]

4 Dγ [45.79, 46.56] Cδ [40.45, 40.82] Bα [59.62, 59.77] Aβ [49.53, 50.46]



Page 6 of 13AlAita et al. Journal of Big Data          (2024) 11:109 

Ta
bl

e 
3 

N
A

N
O

VA
 T

ab
le

 fo
r t

he
 N

G
LS

D

So
ur

ce
N
S
S

n
d
f

N
M
S

F
N

N
eu

tr
os

op
hi

c 
fo

rm
 F
N

p
N
−

v
a
lu
e

Ro
w

s
[3
.0
7
,2
.6
7
]

[3
,3
]

[1
.0
2
,0
.8
9
]

[0
.0
6
9
,0
.0
7
1
]

0
.0
6
9
+

0
.0
7
1
I F
N
R
;
I F
N
R
∈
[0
,0
.0
2
8
]

[0
.9

72
, 0

.9
72

]

La
tin

 le
tt

er
 tr

ea
t-

m
en

ts
[5
9
0
.4
5
,5
8
4
.6
6
]

[3
,3
]

[1
9
6
.8
2
,1
9
4
.8
8
]

[1
3
.3
5
,1
5
.5
6
]

1
3
.3
5
+

1
5
.5
6
I F
N
L
;
I F
N
L
∈
[0
,0
.1
4
2
]

[0
.0

30
, 0

.0
25

]

G
re

ek
 le

tt
er

 tr
ea

t-
m

en
ts

[4
0
4
.1
9
,3
9
5
.7
3
]

[3
,3
]

[1
3
4
.7
3
,1
3
1
.9
1
]

[9
.1
4
,1
0
.5
3
]

9
.1
4
+

1
0
.5
3
I F
N
G
;
I F
N
G
∈
[0
,0
.1
3
2
]

[0
.0

51
, 0

.0
42

]

Co
lu

m
ns

[2
6
9
.7
8
,2
6
3
.1
5
]

[3
,3
]

[8
9
.9
3
,8
7
.7
2
]

[6
.1
0
,7
.0
0
]

6
.1
0
+

7
.0
0
I F
N
C
;
I F
N
C
∈
[0
,0
.1
2
9
]

[0
.0
8

 6
, 0

.0
72

]

Er
ro

r
[4
4
.2
4
,3
7
.5
7
]

[3
,3
]

[1
4
.7
5
,1
2
.5
2
]

To
ta

l
[1
3
1
1
.7
3
,1
2
8
3
.7
8
]

[1
5
,1
5
]



Page 7 of 13AlAita et al. Journal of Big Data          (2024) 11:109 	

Simulation study

Simulated studies have been conducted in order to determine the effectiveness of the 
proposed FN-test compared to the existing F-test.

Based on the empirical type I error rate and the power of the test (1− β) , we compare 
the proposed test and the existing test to determine the efficiency of our results. In this 
simulation study, different levels of significance α are considered (0.10, 0.05, 0.025, and 
0.01).

We have selected the number of observations based on various previously published 
examples for Graeco-Latin square design (Montgomery [7]). The distribution considered 
in this study is the neutrosophic standard normal distribution and the number of Monte 
Carlo (MC) simulations is 10,000 replications.

The simulation study will be discussed in the following manner:
An MC method for calculating the empirical type I error rate using neutrosophic sta-

tistics involves the following steps:

•	 For every replicate, u = 1,2, ..., aN :

(a)	 Under the null hypothesis HN0 , generate the u th neutrosophic random sample 
x
(u)
N1, x

(u)
N2, ..., x

(u)
Nn.

(b)	 Calculate the statistic FNu-test based on the u th sample.
(c)	 Record the FNu-test results INu = 1 if HN0 is rejected at the significance level α 

and accepted INu = 0.

•	 Calculate the ratio of significant tests 1
aN

∑aN
u=1 INu . This ratio is the empirical type I 

error rate under the neutrosophic statistics. For further explanation, please see Fig. 1.

An MC method for calculating the empirical power of a test using neutrosophic statis-
tics involves the following steps:

•	 Choose a particular value for the parameters. For example, 
(µN1,µN2,µN3,µN4) = (0,1, 1,1).

•	 For every replicate, u = 1,2, ..., aN :

Table 4  Data for the NGLSD

Rows Columns

1 2 3 4 5

1 Aα [10.03, 10.28] Bγ [9.72, 10.32] Cǫ [9.45, 9.92] Dβ [9.63, 10.24] Eδ [11.42, 11.70]

2 Bβ [12.30, 12.78] Cδ [10.35, 10.63] Dα [12.03, 12.47] Eγ [8.41, 9.08] Aǫ [8.99, 9.63]

3 Cγ [12.71, 13.41] Dǫ [11.55, 11.74] Eβ [11.56, 12.56] Aδ [10.53, 10.78] Bα [12.03, 12.64]

4 Dδ [11.25, 12.03] Eα [7.37, 7.66] Aγ [10.39, 11.24] Bǫ [11.15, 11.39] Cβ [10.05, 10.96]

5 Eǫ [9.53, 10.27] Aβ [8.40, 8.44] Bδ [11.15, 11.99] Cα [9.29, 9.98] Dγ [13.61, 13.99]
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Fig. 1  MC simulation for calculating αEmpirical

Fig. 2  MC simulation for calculating PowerEmpirical
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(a)	 Under the null hypothesis HN1 , generate the u th neutrosophic random sample 
x
(u)
N1, x

(u)
N2, ..., x

(u)
Nn.

(b)	 Calculate the statistic FNu-test based on the u th sample. 
(c)	 Record FNu-test results INu = 1 if HN0 is rejected at the significance level α and 

accepted INu = 0.

•	 Calculate the ratio of significant tests π̂(µNu) =
1
aN

∑aN
u=1 INu . Figure  2 shows the 

steps of the MC method.

In order to assess the power under the neutrosophic statistics, alternative hypotheses 
are considered:
(µN1,µN2,µN3,µN4) = (0,1, 1,1), (µN1,µN2,µN3,µN4) = (0,1, 2,2) , 
(µN1,µN2,µN3,µN4) = (1,1, 3,3), (µN1,µN2,µN3,µN4) = (0,1, 2,3) , 
(µN1,µN2,µN3,µN4) = (0,2, 3,3), (µN1,µN2,µN3,µN4) = (0,1, 3,4).

Discussion and comparative study
The objective of this section is to evaluate the results obtained in the examples and 
the simulation study for the proposed design in the presence of uncertainty. Accord-
ing to the literature on neutrosophic logic, a method based on indeterminate data 
is more effective and suitable for use in uncertain situations than one based solely 
on determined values. In this light, we will assess the effectiveness of the FN-test 
by examining its measure of indeterminacy, adequacy, information, and flexibility. 
Additionally, the proposed FN-test will be compared with the statistic of the exist-
ing F-test in terms of empirical type I error and the empirical power of the test. For 
example, in Table 3, the neutrosophic form of the FNL-test for treatments (Latin let-
ters) is 13.35+ 15.56IFNL ; IFNL ∈ [0, 0.142] . There are two parts to this neutrosophic 
form: an F-test of classical statistics and an indeterminate part. The neutrosophic 
form of the neutrosophic FN-test reduces to the F-test when  IFN = 0 . In other 
words, the value 13.35 represents the F-test value under classical statistics for the 
existing Graeco-Latin square design. As for the second part, 15.56IFNL , it contains an 
indeterminate part that has a measure of indeterminacy of 0.142 . On the other hand, 
at α significance level, the pN − value is [0.030, 0.025] < 0.05 . In light of this, the neu-
trosophic null hypothesis is rejected while the neutrosophic alternative hypothesis is 
accepted. This indicates that there are significant differences between the means of 
the assumed treatments (Latin letters).

Moreover, Table 6 and Fig. 3 present empirical type I error rates and power of tests 
under NS, showing results within the indeterminate interval that is expected under 
uncertain conditions. As can be seen from Fig. 3, the curve of the power of test for 
the indeterminate part lies above the curve for the determinate part. This empha-
sizes the importance of the indeterminate part in uncertain environments. In light 
of the results of the study, it can be concluded that the proposed FN-test is more 
informative and flexible than the existing F-test.
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Conclusion
It is the aim of the present paper to propose a Graeco-Latin square design under NS 
which is suitable for the analysis of indeterminate, uncertain, and imprecise data. A sta-
tistical model and a NANOVA approach have been presented for the proposed design. 
Furthermore, neutrosophic hypotheses were identified as well as a decision rule for the 
proposed design. Numerical examples and simulation studies were conducted to evalu-
ate the proposed design. According to the results, the proposed FN-test offers greater 
flexibility, applicability, and information when compared with the existing F-test in pres-
ence of uncertain data. Accordingly, we recommend that researchers use the proposed 
design rather than the existing design when working in uncertain environments.
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