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Abstract 

Diabetic retinopathy (DR) is the most prevalent cause of preventable vision loss 
worldwide, imposing a significant economic and medical burden on society today, 
of which early identification is the cornerstones of the management. The diagnosis 
and severity grading of DR rely on scales based on clinical visualized features, but lack 
detailed quantitative parameters. Retinal non-perfusion area (NPA) is a pathogenic 
characteristic of DR that symbolizes retinal hypoxia conditions, and was found 
to be intimately associated with disease progression, prognosis, and management. 
However, the practical value of NPA is constrained since it appears on fundus 
fluorescein angiography (FFA) as distributed, irregularly shaped, darker plaques that are 
challenging to measure manually. In this study, we propose a deep learning-based 
method, NPA-Net, for accurate and automatic segmentation of NPAs from FFA images 
acquired in clinical practice. NPA-Net uses the U-net structure as the basic backbone, 
which has an encoder-decoder model structure. To enhance the recognition 
performance of the model for NPA, we adaptively incorporate multi-scale features 
and contextual information in feature learning and design three modules: Adaptive 
Encoder Feature Fusion (AEFF) module, Multilayer Deep Supervised Loss, and Atrous 
Spatial Pyramid Pooling (ASPP) module, which enhance the recognition ability 
of the model for NPAs of different sizes from different perspectives. We conducted 
extensive experiments on a clinical dataset with 163 eyes with NPAs manually 
annotated by ophthalmologists, and NPA-Net achieved better segmentation 
performance compared to other existing methods with an area under the receiver 
operating characteristic curve (AUC) of 0.9752, accuracy of 0.9431, sensitivity 
of 0.8794, specificity of 0.9459, IOU of 0.3876 and Dice of 0.5686. This new automatic 
segmentation model is useful for identifying NPA in clinical practice, generating 
quantitative parameters that can be useful for further research as well as guiding DR 
detection, grading severity, treatment planning, and prognosis.
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Introduction
Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM) [1] 
and the most prominent cause of avoidable blindness in many nations for working-age 
individuals [2, 3]. Due to the extensive epidemic of DM [4, 5], the prevalence of DR has 
reached an alarming level and continues apace [2, 3]. It was estimated that more than 
160 million people will suffer from DR by 2045 globally, and 44.82 million are vision-
threatening [6], which imposes huge medical and economic burdens. The pathogenesis 
of DR by elevated plasma glucose levels triggers biochemical environment changes 
that lead to microvascular damage. One prominent clinical lesion is the non-perfusion 
area (NPA) in the retina [7]. NPA is a non-perfused capillary patch caused by shunt 
and viscosity changes of blood secondary to vascular wall damage [8, 9], manifested as 
the occlusion or closure of local capillaries and dilation of adjoining ones [9]. Current 
NPA detection relies on fundus fluorescein angiography (FFA) or optical coherence 
tomography angiography (OCTA). Although OCTA has emerged as a non-invasive 
examination, its application has been limited because of the high cost and restrictions 
like artifact correction [10], making FFA remains the gold standard. On FFA, fluorescein 
induced into the bloodstream allows direct visualization of retinal vascular, whereas 
NPA is identified as hypofluorescent dark areas surrounded by hyperfluorescent dilated 
vessels [11], presenting as scattered, irregularly bordered patches in DR patients. 
Quantification of NPA has been revealed as a biomarker in DR assessment and follow-up 
[12, 13], with important implications in quantifying disease severity [13], predicting 
progression [13–15], and even guiding treatment scheme [14, 16]. However, manual 
quantification of NPA is time-consuming and labor-intensive, so auto-quantification 
is essential to make it practical in real-world clinics. Previous studies have proposed 
algorithms based on image processing [17, 18] for NPA automatic detection. These 
methods extracted NPA features as lesser grayscale and monotonic texture compared 
to regular perfused regions on FFA [18–20], inevitably depending on illumination 
correction and noise removal to minimize disturbances caused by image capturing, 
building models by over-segmenting in primary regions [19] or using topographic 
characteristics to designate NPA as valley [20] or pool [18], and provided comparable 
results with the manual label with an area under the curve (AUC) of around 0.8 [18, 20]. 
However, these methods will inevitably require manual feature extraction and empirical 
parameter selection, and lack robustness in practice.

In recent years, deep learning (DL) techniques have made breakthroughs in a variety 
of fields, such as computer vision, natural language processing and speech recognition, 
due to their powerful feature representation capabilities [21]. In the area of assisted 
diagnosis and screening of ophthalmic diseases, DL showed excellent advancement in 
detecting clinical features such as hemorrhage and exudation [22], diagnosing DR [23], 
and grading severity [24, 25]. Meanwhile, DL has also been applied to auto-detect some 
quantifiable indicators, such as vascular segmentation [26] and fluid quantification [27], 
and a few studies have produced promising outcomes for NPA detection on FFA [28, 
29]. Tang et  al. [30] proposed a deep learning model for segmenting non-perfusion 
regions from FFA images using dense atrous and deformable convolution (DADC), 
dense atrous convolution (DAC) block, and residual multi-kernel pooling to learn better 
feature representations. Jin et al. [29] explored different deep learning models DenseNet, 
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ResNet50 and VGG16 to simultaneously identify NPAs, microaneurysms and leaks in 
FFA images. Despite the promising performance achieved, the accurate identification of 
non-perfusion areas from FFA images remains a challenging task. This is mainly due to 
several reasons: (1) the shape and size of non-perfusion areas in FFA images are usually 
irregular and diffuse. Some small, fuzzy boundaries are often missed by the model; and 
(2) The contrast between the non-perfusion region and the surrounding area is small, 
making it more difficult for the model to identify it accurately.

To address the above issues, in this paper, we propose a new deep learning model 
NPA-Net for the accurate identification of non-perfusion regions from FFA images. 
Firstly, considering the low contrast between the non-perfusion region and the sur-
rounding region, we use a Contrast Limited Adaptive Histogram Equalization (CLAHE) 
technique [31] to enhance the contrast of the image to improve the recognition perfor-
mance of the model. Secondly, as the shape of the non-perfusion regions varies, incor-
porating multi-scale features and contextual information in the model training process 
may help the model to better cope with irregular non-perfusion regions. To this end, we 
use an adaptive encoder feature fusion module (AEFF), a multilayer deep supervised loss 
and an atrous spatial pyramid pooling module (ASPP) to adaptively fuse multi-scale fea-
tures and contextual information in the segmentation to further improve the recognition 
performance of the model for the non-perfusion regions. We have conducted extensive 
experiments on a stitched FFA image dataset acquired from a clinical setting, and the 
results show that NPA-Net outperforms other traditional and deep learning methods by 
a large margin.

Methodology
The overall structure of NPA-Net is shown in Fig. 1. Our segmentation model NPA-Net is a 
U-shaped structure with an encoder-decoder structure, containing a total of four encoders 
and four corresponding decoders, and finally a classification layer and a softmax function 
to output the predictions of the model. Each module contains a convolution layer, a batch 
normalization layer, and a dropout layer with a dropout rate of 0.2. The dropout and batch 
normalization layers are used to reduce overfitting and accelerate convergence respectively. 
The number of channels per encoder is 64, 256, 512 and 1024 respectively. Each encoder 
is followed by a pooling layer with a step size of 2× 2 to reduce the feature map, while an 

Fig. 1 The overall framework of NPA-Net
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upsampling layer is applied to enlarge the feature map during decoding. In addition, skip 
connections are used to combine the feature maps extracted by each encoder with those of 
the corresponding decoder.

To improve the recognition performance of the model for non-perfusion regions, we 
introduced three key designs: Adaptive encoder feature fusion module (AEFF), Multilayer 
deep supervised loss and Atrous spatial pyramid pooling module (ASPP).

Adaptive encoder feature fusion module

In FFA images, non-perfusion regions are usually irregular and of varying shape and size. 
Traditional deep learning segmentation models such as the U-net cannot effectively handle 
irregularly regions. We believe that the introduction of multi-scale features and contextual 
information can help the model to better identify non-perfusion regions. To this end, we 
propose an adaptive encoder feature fusion module that fuses the multi-scale feature maps 
generated by different encoder layers and is able to adaptively learn the weights of differ-
ent scale features (Fig. 2). Specifically, we first obtain the output El(l ∈ {1, 2, 3, 4}) of each 
encoder layer, which corresponds to the multi-scale deep feature representation extracted 
by encoder 1–encoder 4, respectively. As the resolution and scale of the feature representa-
tions extracted by different encoders differ, we scale the feature maps of encoder 1, encoder 
2 and encoder 3 all to the size of the feature map of encoder 4 uniformly through the convo-
lution and pooling layers. We then introduce an adaptive weighting layer to fuse the feature 
representations at different scales, and the fused feature representation is:

where w1,w2,w3,w4 represent scalar variables used to weight the feature representations 
at different scales and w1 + w2 + w3 + w4 = 1 . These weights can be calculated by:

(1)Efused = w1 · E1 + w2 · E2 + w3 · E3 + w4 · E4

(2)wm =
e�m

e�1 + e�2 + e�3 + e�4

Fig. 2 The structure of the adaptive encoder feature fusion module
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where �1, �2, �3, �4 represent the learnable parameters and we can update these weight 
parameters by back propagation.

Multilayer deep supervised loss

To further exploit the multi-scale features to improve the segmentation performance 
of the model, we further introduce a multi-layer deep supervised loss. Specifically, as 
shown in Fig. 1, we insert a prediction branch after each decoder layer, and different 
decoder layers are able to generate segmentation results at different scales. The overall 
segmentation loss is thus defined as:

where LBce represents the binary cross-entropy loss and LDice represents the Dice loss 
used to mitigate the imbalance problem. Yi and Y ′

i  represent the ground truth labels and 
model predictions, respectively, and the ground truth labels at other scales are obtained 
by downsampling the original ground truth labels.

Atrous spatial pyramid pooling module

We also introduced the atrous spatial pyramid pooling module to further extend the 
receptive field of the model to extract multi-scale feature representations, which has 
achieved significant segmentation performance improvements in the field of natural 
images [32]. As shown in Fig.  3, for an input feature map, we apply four convolu-
tion layers with different dilation rates to extract different scales of feature represen-
tations, and then fuse the different scales of feature representations to obtain the final 
output. We add this module to the last layer of the segmentation model to obtain the 
prediction results.

(3)L =

5
∑

i=1

(

LBce

(

Yi,Y
′
i

)

+ LDice

(

Yi,Y
′
i

))

Fig. 3 The structure of the atrous spatial pyramid pooling module
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Experiments and results
To validate the segmentation performance of the proposed deep learning algorithm, we 
conduct experiments on a clinical medical dataset.

Dataset

FFA images from DR patients with type II diabetes who were referred to the 
ophthalmology department at Beijing Tsinghua Changgung Hospital between February 
2015 and August 2022 were randomly selected. All images were collected by a Heidelberg 
imaging system (Heidelberg imaging system (SN: Spec-CAM-07889-S1600)). The 
imaging field is 55× 55 degrees, and mosaic images were obtained manually (Photoshop, 
version 22.4.0, Adobe Inc) from images in the venous phase (45  s -3 min). The NPA 
in the FFA images was annotated by two ophthalmologists and revised by one retinal 
expert. Mosaic images labeled with NPA were collected as the database for this study, 
and demographic information was collected from electronic medical records, with no 
personal information accessed. Approval for retrospective anonymized data collection 
and analysis from the institutional review board of Beijing Tsinghua Changgung Hospital 
was obtained. The study was conducted per the tenets of the Declaration of Helsinki.

A total of 163 eyes from 130 patients were included in this study, among which 
116 eyes were randomly selected as the training set and 47 eyes as the test set. The 
demographic characteristics are shown in Table 1.

Pre‑processing

We perform a series of pre-processing on the FFA images. Firstly, we normalize each 
pixel in the original FFA image to a zero mean, unit standard deviation, and then map 
the normalized pixel values to the [0,255] range. Secondly, we apply the Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) technique [31] to each FFA image to 
enhance the contrast of the image.

Specifically, we first divide each FFA image into 8× 8 blocks and then compute the 
histogram on each block. If any histogram bin has a value higher than 2, these pixels are 
clipped and evenly distributed to the other bins before histogram equalisation is applied. 
Compared to traditional histogram equalisation algorithms, CLAHE can focus on local 
areas and avoid over-amplifying background noise. The example visualization results of 
the CLAHE algorithm are shown in Fig. 4. It can be seen that after CLAHE, the contrast 
of some regions of interest in the FFA image is enhanced, which will facilitate more 
accurate recognition by the segmentation model later.

Finally, given the large size of the original FFA images, direct input to the model would 
result in out-of-memory, and direct scaling to smaller sizes would lose a large amount of 
detail information, we use a patch-based training and evaluation strategy. Specifically, 

Table 1 Demographic characteristics for the training and test sets

Dataset Age: year(mean) Sex: male(n%) OD/OS Number 
of 
images

Training 58.13 (10.18) 69 (59.5) 0.61 116

Testing 56.68 (10.32) 29 (61.7) 1.04 47
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we randomly sample 100,000 64 × 64 patches from the training set and input them to 
the model for training. In the test phase, we also use a patch-based evaluation strategy, 
where we extract patches from the test FFA images using a 64 × 64 sliding window in 
steps of 32, and feed these patches into the model to obtain segmentation results. As 
the same pixel may appear in different patches, we average the prediction probabilities 
of different patches to obtain the final prediction probability for each pixel. A similar 
training and evaluation approach is used for the vessel segmentation task to increase the 
number of images in the training set [33].

Experimental setup and implementation details

We run all experiments based on the pytorch deep learning framework. We use the 
Stochastic Gradient Descent optimizer to train the segmentation model, with an initial 
learning rate set to 0.001 and a weight decay of 0.0003. The number of iterations of the 
model is set to 100,000, the batch size is 128, and we multiply the learning rate by 0.1 
every 10,000 iterations. During the training process, we also use data augmentation 
strategies such as random rotation, random horizontal/vertical flipping to enhance the 
model’s robustness and generalization performance. For performance evaluation, we use 
the following metrics: Area Under the ROC Curve (AUC), accuracy (ACC), sensitivity 
(SEN), specificity (SPE), intersection over union(IOU), and Dice coefficient (Dice).

Comparison with the state‑of‑the‑art methods

In order to verify the superiority of the proposed model NPA-Net, we compare it with 
some currently existing segmentation models. Specifically, we implement a traditional 
segmentation model based on Graph Cuts [34]. In addition, we also implement five 
deep learning segmentation models: U-net [35], CE-net [36],  deeplab [37], ConvNeXt 
[38] and InternImage [39]. U-net is the most classical deep learning segmentation model 
that has been successfully applied to several medical image analysis tasks, and CE-net by 
dense atrous convolution (DAC) block and residual multi-kernel pooling (RMP) block 
to exploit the contextual spatial information to improve the segmentation performance 

Fig. 4 Visualization results of the CLAHE algorithm. a original FFA image; b FFA image after CLAHE processing
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of the model. ConvNeXt uses a more advanced segmentation model backbone, and 
deeplab uses atrous convolution to capture multi-scale features. InternImage [39] uses 
deformable convolution as the core operator, and introduces long-range dependencies 
and adaptive spatial aggregation to learn stronger and more robust feature representa-
tions. Table  2 shows the segmentation performance of different algorithms. It can be 
seen that the traditional semi-automatic segmentation algorithm Graph Cuts performs 
the worst, which is mainly because it still requires manual feature design, and lacks 
robustness and better generalization performance in practical applications. In contrast, 
the deep learning methods all achieve better segmentation performance, which indicates 
they have more powerful feature extraction capability and better model generalization 
performance. Finally, it can be found that our model achieves the best segmentation per-
formance. Compared with the best comparison algorithm InternImage, our model has 
higher sensitivity and specificity, which indicates its ability to make full use of the con-
textual information and multi-scale features in FFA images to improve the model’s rec-
ognition of non-perfusion regions.

Figure 5 shows the segmentation results of different algorithms. It can be seen that the 
traditional method is difficult to accurately identify the non-perfusion regions in the FFA 
images. The deep learning model has better recognition performance due to its ability 
to perform feature extraction automatically. The better recognition performance of our 
segmentation model NPA-Net, which greatly reduces the number of false positives and 
the probability of missing non-perfusion regions, indicates that it is more suitable for 
segmenting non-perfusion regions from FFA images and is expected to be applied in 
clinical scenarios.

Figure  6 shows the comparison of the area of the non-perfusion region predicted 
by NPA-Net  and  labeled by the doctors on the test set images.  It can be seen that 
NPA-Net accurately identifies non-perfusion regions in global FFA images, with its 

Table 2 Segmentation performance of different algorithms on the test set

Metric AUC ACC SPE SEN IOU Dice

Graph Cuts [34] 0.9345 0.9093 0.8964 0.7535 0.2724 0.3864

U-net [35] 0.9557 0.9127 0.9166 0.8001 0.3028 0.4346

CE-net [36] 0.9631 0.9295 0.9336 0.8234 0.3331 0.5028

deeplab [37] 0.9646 0.9322 0.9343 0.8268 0.3463 0.5245

ConvNeXt [38] 0.9685 0.9361 0.9375 0.8432 0.3592 0.5351

InternImage [39] 0.9692 0.9388 0.9401 0.8518 0.3615 0.5427

NPA-Net 0.9752 0.9431 0.9459 0.8794 0.3876 0.5686

Fig. 5 Visualization of segmentation results of different algorithms
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predicted areas closely matching those annotated by doctors. This  shows its poten-
tial to automatically identify the non-perfusion region from the FFA image in clinical 
applications.

We perform ablation experiments to verify the effectiveness of the different 
components. As shown in Table  3, AEFF denotes adaptive encoder feature fusion 
module, ASPP denotes Atrous spatial pyramid pooling module, and MDS denotes 
Multilayer deep supervised loss. It can be observed that all of these  components lead 
to improved segmentation performance, and our segmentation model integrates the 
different components to achieve the best segmentation performance.

Discussion
Non-perfusion area (NPA) is an important clinical feature of DR and an important 
link and component of the pathogenesis. With the availability and advancement of 
examination techniques, numerous studies have confirmed that NPA is closely related 
to the severity of DR [7, 40]. In cross-sectional studies, larger NPA was frequently 
observed in more severe eyes, with a more pronounced difference in peripheral retinal 
regions [41, 42]. Using manually labeled NPA, Antaki F. et al. [43] reported increased 
NPA associated with macular thickening and visual deterioration, indicating the 

Fig. 6 Comparison of the area of the non-perfusion region (number of pixels) predicted by the 
segmentation model NPA-Net and those labeled by the doctor on the test set images

Table 3 Ablation experiments of different components

CLAHE AEFF ASPP MDS AUC ACC SPE SEN IOU Dice

� 0.9558 0.9135 0.9206 0.8084 0.3135 0.4422

� � 0.9643 0.9236 0.9298 0.8372 0.3391 0.4952

� � � 0.9682 0.9299 0.9381 0.8451 0.3522 0.5215

� � � 0.9701 0.9312 0.9388 0.8582 0.3692 0.5381

� � � � 0.9752 0.9431 0.9459 0.8794 0.3876 0.5686
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prognostic value of NPA, which was further supported by a longitudinal study [14], as 
eyes with larger NPA was reported to have a higher risk for DR exacerbation, in which 
posterior NPA contributes to a higher hazard ratio in disease worsening.

As a key event in the progression of the disease to the proliferative phase, retinal 
neovascularization tends to occur when large areas of non-perfusion are present [44, 
45]. In addition, NPA size varied in groups with different neovascularization locations 
[13], and larger NPAs found in individuals with optic disc neovascularization (a risk 
factor for severe visual loss [46]) compared to elsewhere [13, 47]. Studied further from 
the mechanism, NPA leads to local retinal hypoxia, increasing oxidate stress, tissue 
inflammation, and cytokines release [44]; it has also been discovered that the levels of 
pro-angiogenic factors like VEGF, which promote neovascularization, were correlated 
with the degree of NPA. As the current first-line DR treatment, trials involving anti-
VEGF, including RISE/RIDE [48], VISTA [49], PERMEATE [49], and RECOVERY 
[16] showed an increased best-corrected visual acuity (BCVA) and paralleled delayed 
development of NPA in a dose-dependent manner, which provide a theoretical basis 
for NPA in guiding precision and individualization anti-VEGF schedule and adjustment 
during follow-up.

Although anti-VEGF is more effective in preserving the retina and can better maintain 
peripheral and night vision [50], some patients respond poorly to it [51]. At the same 
time, considering the economic cost of anti-VEGF treatment and the strong dependence 
on follow-up, laser photocoagulation remains an irreplaceable and effective treatment 
option with visual benefits not significantly different from anti-VEGF injections [50]. 
Laser photocoagulation is usually applied when retinal neovascularization is present, but 
since the appearance of new vessels marks the irreversible progression of DR to a severe 
stage, if laser is performed only after the appearance of neovascularization is observed, a 
head start in preventing vision loss is lost. Experienced ophthalmologists often perform 
laser treatment to control the further progression of DR in the presence of large areas of 
nonperfusion in the retina. However, there is no specific answer as to what constitutes 
a ”large area”, making the timing of laser treatment a very subjective decision. With this 
in mind, NPA quantification, as a biomarker that can sensitively and effectively reflect 
the state of retinal ischemia, will undoubtedly provide a strong, actionable and objective 
indicator of the above issues.

In recent years, deep learning techniques have developed rapidly and have achieved 
great success in several fields. Convolution neural networks based on deep learning 
techniques are able to automatically extract deep feature representations from the 
original image and then perform recognition and prediction, avoiding the tedious 
manual feature extraction step, integrating feature extraction and recognition into 
a unified framework that can be trained in an end-to-end manner. In the past few 
years, several automatic segmentation models for NPA have been proposed, but 
most of them are based on the local NPA segmentation model and do not effectively 
address some key challenges in the recognition of NPA [28–30]. First, in FFA images, 
the contrast between the NPA and the surrounding regions is low and easily affected 
by some background noise, and the stitching introduces more disturbances, e.g., 
inconsistent illumination, making the segmentation task more challenging; secondly, 
the NPAs are usually irregular and diffuse, and it is difficult for the traditional 



Page 11 of 14Feng et al. Journal of Big Data          (2024) 11:131  

segmentation models to effectively handle the NPAs with  different shapes and 
sizes. To this end, in this work, we propose a new segmentation model based on 
deep learning techniques for automatic identification of NPAs from mosaic stitch-
based FFA images. We employ different techniques to deal with the above problems 
separately. Specifically, for the low contrast problem of the NPAs in FFA images, 
we use the CLAHE technique to enhance the contrast of the images to improve the 
recognition ability of the model for the NPAs. Then, considering that the NPAs are 
usually irregular and diffuse, introducing contextual information and multi-scale 
features in the segmentation model might improve the recognition ability of the 
model for NPAs of different shapes and sizes. To this end, we propose three modules 
based on the U-net segmentation backbone model: AEFF, MDS and ASPP to make 
full use of multiscale features and contextual information, which greatly improves 
the segmentation performance of the model for NPAs and effectively reduces false 
positive predictions while avoiding missing some small dispersed NPAs.

We conducted extensive experiments on a dataset of FFA images acquired from a 
clinical setting and compared our approach with traditional methods and some of the 
latest deep learning models. The experimental results in Table 2 show that our model 
NPA-Net greatly outperforms other comparative algorithms, with an AUC 0.9752, 
accuracy 0.9431, sensitivity 0.8794, specificity 0.9459, IOU 0.3876, and Dice 0.5686 on 
the test set. As can be seen from the segmentation results in Fig.  5, NPA-Net is able 
to mitigate the prediction of false positives and avoid the interference of background 
noise, as well as identify well for those small, diffuse NPAs. In addition, we verified 
the effectiveness of the different modules through ablation experiments in Table 3. We 
also quantified the NPAs predicted by the model, as shown in Fig.  6, the area of the 
NPA predicted by NPA-Net is very close to the area of the NPA labeled by the human 
physician, which demonstrates its ability to automatically segment the NPA. Future work 
is to validate the effectiveness of NPA-Net on clinical datasets from additional medical 
institutions.

Conclusion
In this work, a new DL model NPA-Net was developed to detect NPA in FFA images. We 
introduced three modules, Adaptive Encoder Feature Fusion (AEFF), Multilayer Deep 
Supervised Loss, and Atrous Spatial Pyramid Pooling (ASPP) to incorporate multiscale 
features and contextual information from different perspectives, effectively enhancing 
the model’s ability to recognize NPA of different sizes. This NPA segmentation model is 
expected to automatically identify biomarker NPAs from FFA images, provide reference 
for clinical diagnosis, grading and follow-up of DR patients, and provide evaluation for 
the formulation of treatment plans such as anti-vascular endothelial growth factor and 
laser photocoagulation.
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