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Introduction
Traffic flow forecasting, as a basis technology in transportation planning and traffic 
command management, is a core problem of intelligent transportation system [1]. 
Real-time and accurate traffic flow forecasting could make great contributions to the 
synergistic development of intelligent transportation and intelligent city. Thus, traffic 
flow forecasting has received wide attention from researchers.

In past decades, researchers have proposed many effective forecasting methods for 
traffic flow, such as Autoregressive Integrated Moving Average Model (ARIMA) [2], 
Kalman-filter-based method [3], Bayesian-based method [4], statistical-based method 
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[5] and so on. These methods adopt the shallow temporal features and statistical 
characteristics among traffic flow to achieve forecasting. However, traffic flow always 
lie on high dimentional and non-linear space. Thus the traditional linear methods 
would be no longer valid [6]. Therefore, some researchers have turned their focus to 
the models which are better suitable for nonlinear data. Radial Basis Function (RBF) 
[7] model, Support Vector Regression (SVR) [8] model, K-Nearest Neighbor-SVR 
(KNN-SVR) [9] model, and Least-Square SVR (LSSVR) [10] model have been used 
to forecast short-term traffic flow, and these models have good robustness for large-
scale data regression problems. However, when dealing with large-scale data, these 
models require significant time and memory. In addition, the forecasting accuracy 
can be significantly affected by the kernel parameters.

With the rapid development of deep learning and its great success in big data 
area, a large number of deep learning based models have been carried out for short-
term traffic flow forecasting [11]. Compared with traditional methods, deep learn-
ing based ones could extract more informative features from traffic flow such as 
Stacked AutoEncoder (SAE) based traffic data forecasting method [12], Deep Belief 
Network (DBN) based traffic flow forecasting method [13]. These methods could 
extract and transform the inherent features in the traffic flow by using deep archi-
tectures which adopt multi-layer nonlinear processing units [14]. To further explore 
the temporal feature among traffic flow, researchers proposed Recurrent Neural Net-
work (RNN) based traffic flow forecasting method [15], Long Short-Term Memory 
Network (LSTM) based traffic flow forecasting method [16] and Bi-directional Long 
Short-Term Memory Network (Bi-LSTM) based traffic flow forecasting method [17]. 
Besides, Graph Neural Networks (GNNs) also have been introduced to formulate new 
traffic flow forecasting models for characterizing the spatial relationship among traffic 
flow [18]. A series of GNNs based methods such as Spatial Temporal Graph Convo-
lutional Network (STGCN) based traffic flow forecasting method [19], Dual-Chan-
nel Spatio-Temporal Graph Convolutional Network (DC-STGCN) based traffic flow 
forecasting method [20] and Graph WaveNet based traffic flow forecasting method 
[21]. These GNNs based methods could further improve the accuracy of traffic flow 
forecasting and demonstrate their remarkable advantage of spatio-temporal feature 
extraction [22].

Since traffic flow has a large time span and a wide coverage area, there always contains 
different distribution and complicated spatio-temporal relationship among them. For 
example, congested and uncongested traffic flow belong to different traffic states and 
exhibit different distributions of traffic flow. Figure 1 presents the traffic flow variation 
curve of an intersection in Qingdao within one day. In this figure, it can be clearly 
observed that the traffic flow abruptly increases and remains high during the morning 
and evening peak hours. While during the non-peak hours, the traffic flow is relatively 
small. These reflect the distribution and fluctuation of traffic flow in the congested and 
uncongested states are not the same. Hence, the methods should be able to explore 
different feature among traffic flow for better forecasting. However, most existing 
methods treat all traffic flow equally and adopt a single networks data forecasting only. 
This kind of approaches may ignore the different interactions from different traffic 
situation, which would decrease the forecasting accuracy.
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Therefore, we propose a new adaptive composite framework, named Long-Short-
Combination (LSC) for short-term traffic flow forecasting. The LSC framework is 
composed of two parts: a data forecasting module and an attribute forecasting module. 
The data forecasting module aims to accurately forecast traffic flows with varying 
attributes. We first divide the traffic flow into two parts according to their own attribute. 
And then each part data is extracted by two networks respectively. The attribute 
forecasting module is used to forecast the traffic attributes at each time point in the 
future time series and selects the corresponding model for traffic flow forecasting. After 
dividing the flow reasonably and combining two modules mentioned above, LSC can 
improve the accuracy of traffic flow forecasting more effectively.

The main contributions of this paper can be summarized as follows:

• An adaptive composite framework model is established for exploring different 
features in different distributions of traffic flow. Through an optional back 
propagation method, the data can adaptively select a suitable net for training to 
improve the forecasting effect.

• An attribute forecasting module for traffic flow is designed to forecast the traffic 
attributes in future time series, enabling the selection of different forecasting models 
for diverse traffic attributes.

• Through experiments on two real-world datasets verify the practicability and 
effectiveness of our proposed method.

The rest of this paper is organized as follows. Related work introduces the relevant 
work of short-term traffic flow forecasting. The architecture of the LSC model and the 
computational procedure using the divided data are described in detail in Method. 
Experiment and Result Analysis is devoted to data description and some performance 
measures. The final Conclusion makes conclusions and discusses the future work.

Fig. 1 Traffic flow change curve of an intersection in Qingdao during one day. The x-axis represents time, 
and the y-axis represents the traffic flow. Red and blue represent congested and uncongested traffic flow, 
respectively
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Related work
In this section, we introduce the related work about traffic flow forecasting. From the 
perspective of technical characteristics, traffic flow forecasting models can be divided 
into two categories: classical forecasting methods and deep learning models.

Classical forecasting methods

Early learning models usually used short-term time windows or data statistics tendency 
to estimate future traffic flow. For example, He et al. [23] computed the Hurst exponent 
to estimate the period of change in traffic flow time series. Meanwhile, Pei et  al. [24] 
investigated the fractal properties of traffic flow by calculating its fractal dimension. 
On the other hand, An urban traffic flow forecasting model was established by Moretti 
et  al. [25] through the integration of hybrid modeling techniques, including statistics 
and neural networks. Lin et  al. [26] used Autoregressive Integrated Moving Average 
(ARIMA) model to achieve traffic flow forecasting by analyzing the data fluctuation 
characteristics. Yi et  al. [27] used k-nearest-neighbor method to identify the optimal 
smoothing factor and combined it with a generalized regression model to improve the 
accuracy of traffic flow forecasting. In addition, Guo et al. [28] introduced the Kalman 
filter to forecast the short-term traffic flow. However, traffic flow is characterized by 
randomness. If the traffic flow shows irregular variations, the forecasting performance 
of these methods is not quite satisfactory. In order to solve this problem and discover 
the patterns from the nonlinear fluctuating historical data, Xiao et al. [29] constructed 
a dynamic forecasting model of traffic flow using radial basis function (RBF) to forecast 
the traffic flow of the city road and achieved better results. Liu et  al. [9] proposed A 
hybrid forecasting model based on K-Nearest Neighbor (KNN) and Support Vector 
Regression (SVR). The KNN algorithm was used to reconstruct the traffic flow data and 
the SVR was used to forecast the short-term traffic flow.

However, traditional machine learning has unsatisfactory performance in dealing 
with nonlinear data, with large limitations and inaccurate forecasting results. Moreover, 
Shallower architectures of these models can only extract superficial traffic flow rules, 
and are not effective in utilizing massive traffic flow.

Deep learning models

With the development of deep learning techniques, several methods have been 
successfully applied in the forecasting of time-series data. Guo et  al. [30] designed 
a Back Propagation Network (BPNN) for short-time traffic flow forecasting, which 
became the model basis for many future algorithms. Zhao et  al. [31] designed 
a one-dimensional Temporal Convolutional Network (TCN) model to obtain 
spatiotemporal information traffic flow. Similarly Yang et al. [32] improved the SAE by 
incorporating an Empirical Mode Decomposition (EMD) to decompose complex time 
series, a collection of simple ones in the network forecasting to further improve the 
forecasting accuracy. Recurrent Neural Network (RNN) is an artificial neural network 
with hidden-layer-node connections and closed loops, RNN explores the time 
series input of any length by using internal memory cells. In order to better capture 
the temporal variation of traffic flow, Ma et  al. [33] introduced RNN into traffic 
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flow forecasting and achieve good results. To overcome the vanishing gradient and 
exploding gradient of RNNs during backpropagation, Zhao et al. [34] used multilayer 
LSTM networks for traffic flow forecasting, and the experimental results showed that 
LSTMs are more suitable than other deep neural networks. In order to further extract 
the temporal and spatial features of traffic flow, Du et  al. [35] proposed a hybrid 
deep learning framework by combining Convolutional Neural Network (CNN) and 
LSTM for traffic flow forecasting. In addition, Wu et al. [36] proposed an Attention-
Based LSTM (Att-LSTM) model incorporating an attention mechanism to further 
improve the forecasting accuracy. Ma et al. [37] further improved the LSTM network 
by combining the traditional LSTM network with a Bi-LSTM, and demonstrated the 
superiority of the model on short-term traffic flow forecasting through experiments.

Due to the complex spatiotemporal dependency of traffic data, further extraction 
of spatiotemporal features among traffic data is necessary to explore the correlation 
between traffic data in time and space. Yu et  al. [19] proposed a Spatio-Temporal 
Graph Convolutional Networks (STGCN) to represent the traffic network as a 
graph and established a model with a complete convolutional structure. In addition, 
Pan et  al. [20] designed a Dual-Channel Spatio-Temporal Graph Convolutional 
Networks (DC-STGCN) to explore the correlation between the daily and weekly time 
components, further improving the accuracy of traffic flow forecasting. However, 
GCN based traffic flow forecasting methods often struggle to capture the short-term 
and long-term time relationships in traffic flow data. To address these issues, Huo 
et al. [38] proposed a hierarchical traffic flow forecasting network to further improve 
forecasting performance.

Traffic data are complex time series. Different underlying features of traffic data 
has different attributes. Some researchers have considered the differences. Sun et al. 
[39] proposed framework built upon a multilayer perceptron (MLP), incorporating 
the principle of residual separation idea and wavelet decomposition techniques. 
This approach effectively captures various patterns and noise information within the 
traffic data. Similarly, Fang et  al. [40] proposed framework separates the complex 
traffic data into stable and fluctuating trends. Then, a dual-channel spatio-temporal 
network is used to independently model these trends. Wang et  al. [41] divided the 
city into grid cells by utilizing the regional attributes to create a graph structure. 
By using Graph Convolutional Networks (GCN) to capture spatial correlations and 
Temporal Convolutional Networks (TCN) to capture temporal correlations of the 
roads, the model improves prediction. In addition, Cai et  al. [42] proposed a novel 
node adjustment mechanism, which increases the number of Radial Basis Function 
(RBF) nodes in complex scenarios and decreases it under normal conditions. 
This adaptability allows the model to effectively respond to time-varying traffic 
states, like in peak and non-peak. Wang et  al. [43] designed a model called varying 
spatiotemporal graph-based convolution (VSTGC) to express detailed features, such 
as vehicle type, braking state and external variables.

Up to now, different deep learning structures have been adopted to improve 
the accuracy of traffic flow forecasting. Unfortunately, there has seldom research 
considered the different underlying features of traffic data with different attributes, 
especially the data attributes of congestion and non-congestion. Thus ignoring the 
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negative impact of uniform training of congested and non-congested traffic data. 
In comparison, our proposed framework LSC can explore traffic data with different 
attributes and improve the accuracy of traffic data forecasting significantly.

Method
To address the interaction problem between different traffic data distributions, we 
designed the LSC framework, as shown in Fig. 2. The internal modules, combined with 
the designed selective backpropagation, enable the LSC framework to adaptively select 
the appropriate model for prediction based on different traffic attributes.

Let a denote the LSC framework transform function, then the forecast process can be 
represented as:

where [xT−n, xT−n+1, . . . , xT ]
T is a sequence of traffic flow observations with n historical 

time steps as the input of the model and the x̂T+1 is the forecast value at the next state.

LSC framework

In this paper, the LSC framework is designed to extract and categorize the data features 
of large and small traffic flows. The LSC framework consists of a data forecasting module 
and an attribute forecasting module (C model). The data forecasting module consists of 
a large traffic flow forecasting model (L model) and a small traffic flow forecasting model 
(S model). The structure of the LSC framework is illustrated in Fig. 2. And the training 
and testing processes of the entire LSC framework are detailed in Algorithm 1.

Specifically, for the task of traffic flow forecasting, we predict future traffic flow data at 
a 5-minute time granularity. Prior to training, we classify the data through traffic attrib-
ute division, labeling large traffic flows as 1 and small traffic flows as 0. Based on the data 
characteristics, the data is differenced and normalized before being input into the L, S, 
and C models, which are constructed based on L-B-LSTM. A selective backpropagation 

(1)x̂T+1 = [a0, . . . , an]







xT−n

...
xT






,

Fig. 2 The LSC framework; 
⊕

 denotes the element-wise addition and 
⊗

 denotes the element-wise product. 
The L-model and S-model are used to predict time-series states with different attributes, while the C-model is 
responsible for distinguishing traffic flow attributes and combining the outputs of the two models
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method is designed to avoid interaction between different traffic attributes during train-
ing. The L model is trained to best fit the large traffic flow values in the time series, while 
the S model is trained to best fit the small traffic flow values in the time series. To accu-
rately determine traffic attributes, the C model is trained to detect when future traffic 
time series can be categorized as large or small traffic flow. During the prediction pro-
cess, we first utilize the C model to determine whether the traffic attribute at each future 
time point is a large traffic flow or a small traffic flow, recording large traffic flows as 
1 and small traffic flows as 0. Subsequently, based on the classification results of the C 
model, we select the corresponding model (L model for label 1 and S model for label 
0) for prediction. The prediction results are then concatenated and processed through 
denormalization and reverse de-differencing to obtain the final predicted values for each 
future time point.

Algorithm 1 The LSC framework

Traffic attribute division and time series analysis

Different distributions of traffic flow reflect different traffic states and imply different 
traffic attributes. For example, in the uncongested state, there are fewer vehicles 
and less traffic density. On the contrary, in the congested state, the traffic density is 
higher. To avoid the mutual influence among different distributions of traffic flow, the 
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median value of traffic flow is taken as the standard to classify traffic attributes into 
two categories: large traffic flow (congestion) and small traffic flow (non-congestion). 
About the specific definition and division parameters of congested status, different 
countries and regions have their own standards. It is related to the service level of 
urban roads. In order to ensure the balance of different traffic attributes data after 
dividing, and prevent the impact of unbalanced data volume on model training, we 
take the median value of traffic flow as the division standard, and further compare 
with different division methods in Section IV. For each detection time point in the 
time series, the change in traffic status is instantaneous. To ensure the continuity 
and transition of traffic state changes, we classify the traffic flow state in each 
moment based on selected division standards. Specifically, the label of 1 represents 
congested traffic data, while the label of 0 represents uncongested traffic data. These 
classification labels are utilized for training the attribute forecasting module in the 
framework.

The time series is an important research subject in econometric. However, using 
time series data as a sample will violate the assumption of random sampling [44]. This 
is due to the fact that each observation can only be uniquely observed at any given 
time. If the time series is stationary, the autocorrelation coefficient will rapidly con-
verge to zero with time intervals [45]. In this case, the sample drawn can represent 
the population sample, and the stationarity of the time series can replace random 
sampling. This can effectively reduce spurious regression and enable the model to 
perform correct parameter estimation or statistical inference. Therefore, during the 
data processing stage, the stationarity of time series must be detected and the non-
stationary time series must be smoothed.

Taking the one-day traffic flow data of an intersection in Qingdao as an example, 
the autocorrelation graph is plotted as shown in the left chart of Fig. 3. The decreasing 
autocorrelation coefficient indicates that the series is unstable. Therefore, we use the 
difference operation to smooth the time series [46], and it is defined as follows:

where X is the time series, t is the number of terms in the series, and k is the order of the 
difference. For this experimental data we use the first-order difference, and the formula 
is follows:

(2)∇kXt = Xt − Xt−k ,

Fig. 3 Comparative autocorrelation analysis of traffic flow time series at an intersection in Qingdao. The 
left chart presents the autocorrelation plot of the original traffic flow time series, illustrating the raw data 
patterns. The right chart displays the traffic flow time series autocorrelation plot after smoothing
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In the right chart of Fig.  3, the autocorrelation coefficient rapidly converges to 0, 
indicating that a smooth time series is obtained after differential processing. The 
time series is then normalized by scaling the data and converting the time series to a 
dimensionless value. This improves the speed of the model in finding the optimal 
solution as well as the accuracy of the results. The definition of standardization is as 
follows:

Attribute forecasting module and data forecasting module

The attribute forecasting module is implemented based on the L-B-LSTM forecasting 
model, as shown in Fig. 4. The LSTM is served as the first layer of the model to extract 
the hidden features of the time series. Bi-LSTM is applied to the second layer, and the 
input data dimension of Bi-LSTM is equal to the output data dimension of the first layer 
of LSTM. LSTM processes the time series in chronological order, but only the historical 
information is considered while the future information is ignored. As the second layer, 
the Bi-LSTM can fully learn the effective information extracted by LSTM, and avoid to 
reduce the forecasting accuracy because of the noise in the original time series data. In 
addition, Bi-LSTM can effectively extract the forward and backward dependencies in the 
traffic flow data [47–49].

The Bi-LSTM model contains two independent LSTMs as hidden layers with data 
propagation details shown below. The input sequences [lt−n, . . . , lt−1, lt ] are input 
into the next two independent LSTMs in forward and backward order for feature 
extraction. The forward output sequence 

−→
h t and backward output sequence 

←−
h t are 

(3)∇Xt = Xt − Xt−1.

(4)X ′
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Fig. 4 The L-B-LSTM network architecture
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concatenated together to form the final extracted feature vectors. The output of the 
Bi-LSTM can be expressed in the following equation:

where W is the weight matrix, b is the bias vector, σ−→
h

 is the forward activation function, 
σ←−
h

 is the backward activation function, and δ is the connection function.
The LSTM has excellent inference and forecasting ability to obtain contextual 

information from long-range time series [50–52]. In L-B-LSTM, LSTM is introduced as 
the forecasting layer of the model, as shown in Fig. 4. The input of this layer is the output 
of the Bi-LSTM.

Within each LSTM unit, the current hidden layer state nt is obtained based on the 
contextual information [ht−n, . . . , ht−1, ht ] and the previous unit’s hidden state nt−1 , 
which is used to forecast the next traffic flow state xt+1 . By iteratively accumulating 
useful contextual information, the final forecasting result is obtained. The computational 
process is expressed as shown in the following equations:

To constrain and guide the optimization of the model, the cost function L
(

xt+1, x̂t+1

)

 
is set as the root mean square error function in the training phase, as shown in the 
following equation:

where x̂t+1 is the forecast value of the model, xt+1 is the measured value of traffic flow, 
and n is the number of training samples. Since the traffic attributes are divided into 
large and small traffic flows, the attribute forecasting is a binary classification task. In 
this paper the embedding dimension of the L-B-LSTM hidden layer in the attribute 
forecasting module is set to 128. Afterward, Fully Connected (FC) layers with Sigmoid 
activation functions are connected to achieve the classification of traffic attributes. These 
layers enable the network to map the input features extracted by the L-B-LSTM into the 
desired output classes. The Binary Cross-Entropy (BCE) loss function is selected, which 
is often the most appropriate loss function for binary classification tasks. The expression 
can be written as follows:

where t represents the measured value and p represents the forecast value.
To forecast the traffic flow, the same embedding dimension of the L-B-LSTM hidden 

layer is set in the traffic forecasting module to 128, and the traffic features extracted 
by the L-B-LSTM are then fed into three fully connected (FC) layers. The number of 
nodes in the final FC layer is reduced to 12 to obtain the future traffic forecasting results. 

(5)
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h t = δ(

−→
h t ,
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,

(8)BCE(t, p) = −
(

t × log(p)+ (1− t)× log(1− p)
)

,
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Additionally, we have incorporated dropout method in our model to mitigate the risk of 
overfitting, thus enhancing the model’s generalization ability and stability.

The selectable backpropagation

In order to ensure the correct training of the L and S models and to avoid the interaction 
between large and small traffic flow data during the training process, we use selecta-
ble backpropagation and depicts it visually in Fig. 5, where the blue and orange inputs 
respectively represent large and small traffic flows. The direction of the arrows repre-
sents the data transmission direction. Red arrows indicate that the data classification 
label matches the assigned model, allowing loss calculation and backpropagation, while 
black arrows indicate the opposite. After the data are divided and labeled, each forecast-
ing sample contains traffic flow data for 12 time points, and both large and small traffic 
flows are distributed in each sample. If direct backpropagation is performed directly, the 
loss of small traffic flow data will inevitably affect the L model, and vice versa.

As a result, the optional back-propagation ignores forecastings on the small traffic flow 
data in the L model and on the large traffic flow data in the S model, forcing the model 
to only focus on the classification data corresponding to itself. Specifically, when training 
the L model, only the large traffic flow data add to the loss, and similarly for the S model, 

Fig. 5 The selectable backpropagation for the L and S models. Blue and orange inputs represent large and 
small traffic flow values, respectively
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only the data classified as small traffic flow increases the loss. This ensures that the hidden 
parameters in the network are updated properly for both large and small traffic flow data.

Experiment and result analysis
In this section, in order to test the effectiveness of traffic flow classification as well as to 
enhance the persuasive power of the LSC framework, the forecasting accuracy is used to 
represent the solving ability in experiments. Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and Root Mean Square Error (RMSE) are chosen as the 
evaluation indexes, and the test datasets are collected by traffic fellow detectors at multiple 
spots in two different datasets. The training procedure is implemented with PyTorch and 
a GPU (GeForce RTX 3090). The comparison experiments are carried out to compare the 
framework with other superior models, and the experimental results are analyzed. The best 
experimental results in the table are bolded, and the suboptimal ones are underlined. This 
framework addresses the problem of forecasting traffic data at an individual intersection, 
and does not involve the research of spatial characteristics in traffic data currently.

Data description

Qingdao dataset and PeMS08 dataset are used to conduct the experiments. Qingdao 
dataset is a month (30 days) of traffic flow data collected by sensors at an intersection of 
the road network in Qingdao, China, with a data sampling interval of 5 min and 288 sample 
data collected per day. In the experiment, the traffic flow data of the first 18 days (5184 
sampling intervals, 60% of the total data) are collected as the training set, the traffic flow 
data of the 18th to 23rd days (1728 sampling intervals, 20% of the total data) are used as the 
validation set, and the others (1728 sampling intervals, 20% of the total data) are used as the 
test data.

PeMS08 dataset was collected from California by the Caltrans Performance Measurement 
System (PeMS) at a frequency of sampling every 30 s. PeMS08 contains traffic data from 
170 sensors in San Bernardino from July to August 2016. The raw data is aggregated into 
5-minute intervals, which means that there are 288 records of sampling time points in a 
day, with a total of 17857 valid records at each point. In the experiment, three spots are 
selected to conduct the experiments. And 60% of the total traffic flow data are collected as 
the training set, 20% is used as the validation set, and the others are used as testing dataset.

Evaluation Indexes

To evaluate the LSC framework performance, Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) are selected as 
the evaluation metrics [53], which are commonly selected to assess traffic flow forecasting 
performance. The specific calculation equations are as follows:

(9)MAE =
1

n

n
∑

i=1

∣

∣

∣
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∣

∣
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(10)MAPE =
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n
∑
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∣

∣

∣

∣

∣

hi − ĥi
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∣

∣

∣

∣

∣

,
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In the above three equations, n is the sample size of the data, ĥi represents the forecast 
traffic flow value, and hi represents the observation value. To evaluate the effectiveness of 
the C model in classifying traffic data of large and small flows, the F1 score are selected 
as an evaluation index, which is calculated as follows:

where TP, FP, and FN respectively represent the true positive, false positive, and false 
negative values. precision represents the proportion of correct samples forecasted by the 
classifier. Recall represents the ratio of all correct cases forecasted by the classifier to 
all actual correct cases. The F1 score is the harmonic mean of precision and recall, and 
higher F1 means better model performance.

Framework parameters

The size of the input sequence and number of hidden nodes in each layer are important 
to the LSC framework for forecasting accuracy. We find LSTM layer widths of 128 
nodes are better suited for the L, S and C models. All models are trained using PyTorch 
1.9.1. Finally, the L-B-LSTM layers were trained using an SGD optimizer with learning 
rate 10−3 , while the fully connected layers were trained using an Adam optimizer with 
learning rate 5× 10−4 . The best-performing model on the validation set is selected to 
conduct testing and evaluate our framework.

Effect of L‑B‑LSTM

As shown in Fig. 2, L-B-LSTM is the backbone structure of the LSC framework. To ver-
ify the effectiveness, we compare the LSC framework with L-B-LSTM as the backbone 
with LSC using the LSTM, Bi-LSTM, and Att-LSTM as the backbone. Specifically, in the 
LSC framework, the features are explored through L model and S model respectively, 
and the C model is used as the attribute forecasting module. To prove the effectiveness 
of L-B-LSTM, MAE, MAPE and RMSE are selected as the accuracy evaluation indica-
tors for comparing L and S models in Qingdao dataset (A, B). And F1score is the evalu-
ation indicator of C model. The experimental results are shown in Table 1. It shows that 
L-B-LSTM has good performance in the traffic forecasting module (L and S models), 
especially in the MAE evaluation indicator. In contrast, Att-LSTM performs slightly bet-
ter in certain evaluation indicators. However, the overall performance of Att-LSTM falls 

(11)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ĥi − hi

)2
.

(12)recall =
TP

TP + FN
,

(13)precision =
TP

TP + FP
,

(14)F1 =
2 × precision× recall

precision+ recall
.
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slightly short of L-B-LSTM. Furthermore, the attribute forecasting module (C model) 
is a simple binary classification task based on median value dividing, so several models 
perform similarly with good classification results. Therefore, L-B-LSTM is selected as 
the main structure of the model in the construction of the overall LSC framework.

In the LSC framework, the embedding dimension of the L-B-LSTM hidden layer is 
set to 128. In order to verify the rationality of the nodes number, we choose the hidden 
layers with different numbers of nodes for training in Qingdao Dataset B. The results are 
shown in Fig. 6. It shows that the widths of 128 nodes are better suited for the frame-
work. And all evaluation indexes are less than others.

To demonstrate the effect of choosing median as the division standard, we compare 
the results of using the mean, the mode, the variance and the standard deviation as 
division standard of the L module, S module and LSC framework in Qingdao dataset 
B. The experimental results are shown in Fig.  7. It shows that using the median as 
the division standard performs better than others, both on the all framework and the 
modules. Because, the median can ensure that the amount of data used for training in 
the L and S modules is balanced.

Effect of data division

In the model introduction section, it is hypothesized that dividing the traffic flow can 
effectively avoid the interaction between different attributes of traffic flow, and LSC 
can effectively extract the hidden features of time series based on the divided traf-
fic data. To verify this hypothesis, we use MAPE as the main evaluation index, and 

Table 1 Effectiveness of L-B-LSTM in LSC in Qingdao Dataset (A, B)

The best experimental results in the table are bolded

Dataset Models L S C

MAPE(%) RMSE MAE MAPE(%) RMSE MAE F1score

SPOT A LSTM 1.82 1.38 1.05 5.92 0.80 0.61 0.98
Bi-LSTM 1.63 1.27 0.94 7.56 1.05 0.81 0.97

Att-LSTM 1.15 1.17 0.86 4.98 0.68 0.55 0.98
L-B-LSTM 1.25 1.06 0.73 4.41 0.54 0.41 0.98

SPOT B LSTM 1.94 0.83 0.64 18.79 0.83 0.64 0.96

Bi-LSTM 1.53 0.68 0.49 15.71 0.66 0.52 0.96

Att-LSTM 1.61 0.67 0.53 12.55 0.75 0.62 0.98
L-B-LSTM 1.27 0.53 0.41 13.76 0.69 0.51 0.98

Fig. 6 Effect of the number of nodes in the LSC framework in Qingdao Dataset B. The y-axis represents 
different evaluation indexes, and the x-axis represents the number of nodes
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performed comparative experiments on LSTM, Bi-LSTM, Att-LSTM, and L-B-LSTM 
models in Qingdao dataset (A, B). The experimental results are shown in Fig. 8, where 
“self ” represents the model itself using the traffic flow time series for forecasting with-
out data division, while “LSC” indicates that the forecasting using the LSC framework 
after dividing the traffic flow data into large and small flows. It can be clearly observed 
from the figure that the forecasting performance is significantly improved after divid-
ing the traffic flow data. Among them, the L-B-LSTM model combined with LSC has 
the best forecasting performance, and the average result is 1 % higher compared with 
only using L-B-LSTM model.

Furthermore, using L-B-LSTM as the backbone network significantly outperformed 
the other methods compared, with an average improvement of 2.7% , 1.27% and 0.89% 
higher than LSTM, BiLSTM, and Att-LSTM respectively. This also demonstrates the 
effectiveness of using L-B-LSTM as the backbone structure of the LSC framework. 
Therefore, it can be proved that the reasonable division of traffic flow can better 

Fig. 7 Effect of Different Divided Methods in L module (a–c), S module (d–f) and LSC framework (g–i) in 
Qingdao Dataset B. The x-axis represents data division standard, and the y-axis represents different evaluation 
indexes

Fig. 8 Effect of data divisions, where “self” represents the model itself without data division, while “LSC” 
indicates the forecasting using the LSC framework. The y-axis represents MAPE evaluation indexes
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explore the hidden features of traffic and improve the forecasting performance of the 
framework.

Effect of LSC

To demonstrate the performance of our proposed LSC framework and verify the 
differences between deep learning and traditional machine learning algorithms, This 
section compares the designed LSC model with various methods. Since this framework 
only solves the short-term traffic prediction problem at a single intersection, and 
does not utilize the road structural to further capture spatial correlations, it is not 
compared with graph based networks currently. Among the traditional machine 
learning algorithms include: ARIMA model (a combination of Autoregressive and 
Moving Average models, which is a traditional time series forecasting analysis method), 
RBF (Radial Basis Function neural network, a single-layer neural network structure 
with RBF kernel), and SVR (Support Vector Regression, which applies support vector 
machines to regression problems). Deep learning algorithms include: BPNN (Multilayer 
Back Propagation Neural Network, which is the most basic deep learning forecasting 
model), RNN (Recurrent Neural Network, with good time series information processing 
capabilities), LSTM (Long Short-Term Memory Network, a variation of traditional 
RNN, mitigating the phenomenon of gradient disappearance or explosion), Bi-LSTM 
(bi-directional LSTM, which captures both forward and backward information), L _
BILSTM (has better performance in processing short-time series information), Att-
LSTM (retains the intermediate output results of the LSTM encoder for the input 
sequence, and selects the attention mechanism to selectively learn the input), LSTM-
GRU [54] (consists of a mixture of LSTM and Gated Recurrent Unit for better mining 
of time series features) and PSO-Bi-LSTM [55] (is based on the Bi-LSTM model and 
is optimized using PSO technique to expand the global search capability of the model). 
The experimental comparison results on the Qingdao dataset are shown in Table 2, and 
those on the PeMS08 dataset are presented in Table 3. The average results of Qingdao 
dataset and PeMS08 dataset are shown in Table 4.

As shown in the tables, it can be evidently found that the deep learning algorithms 
outperform the traditional machine learning algorithms in exploring traffic flow 
information. The SVR and RBF are better than conventional ARIMA, which has the 
lowest precision. Although the forecasting results of deep learning methods BPNN and 
LSTM are decent in classical methods, they are still less than LSTM-GRU and PSO-Bi-
LSTM. And the LSC framework performs better in traffic flow forecasting than other 
deep learning methods. These demonstrate the effectiveness and feasibility of the 
proposed framework.

Furthermore, to demonstrate the transferability of the framework, we trained the 
model on the PeMS08 dataset (E) and adjusted the data dividing value before testing 
it on the Qingdao dataset (A). As shown in Table 5, the comparison with other models 
indicates that the LSC model exhibits excellent transferability. It can still perform well 
even after changing the dataset.

In traffic data, there are significant differences in traffic flow characteristics between 
weekdays and weekends. It is typically manifested as increased traffic volume, increased 
congestion, and less distinct morning and evening peak hours. To make further 
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Table 3 Forecast performances of different models in PeMS08 Dataset (E, F, G)

The best experimental results in the table are bolded, and the suboptimal ones are underlined

Models SPOT E SPOT F SPOT G

MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE

ARIMA 27.00 86.62 60.18 24.72 71.09 50.59 32.96 73.19 50.82

RBF 17.20 68.62 46.53 19.12 57.49 42.30 23.34 54.77 40.42

SVR 19.23 66.83 48.37 18.63 55.99 41.38 20.76 54.55 39.93

BPNN 14.52 46.49 41.54 16.28 34.68 25.96 15.69 39.78 32.09

RNN 14.68 45.56 35.55 11.55 36.11 27.12 15.38 38.70 29.33

LSTM 11.20 42.56 31.69 9.35 32.76 24.75 13.71 35.14 26.25

Bi-LSTM 10.58 40.34 28.91 9.48 32.65 24.69 12.83 31.84 23.94

L_BILSTM 10.41 39.21 27.77 9.15 34.45 24.79 13.30 31.09 23.52

Att-LSTM 10.46 36.00 28.10 9.26 32.98 22.32 12.71 32.95 24.68

LSTM-GRU 11.19 35.46 26.56 9.98 32.21 23.48 13.10 31.96 23.65

PSO-Bi-LSTM 10.51 34.71 25.42 10.96 32.44 24.55 12.12 31.41 24.10

LSC 10.14 31.82 24.01 8.70 31.55 22.45 11.57 27.11 20.22

Table 4 Average Forecast Performances of Different Models in Qingdao Dataset and PeMS08 
Dataset

The best experimental results in the table are bolded, and the suboptimal ones are underlined

Models Qingdao PeMS08

MAPE(%) RMSE MAE MAPE(%) RMSE MAE

ARIMA 18.16 7.90 5.16 28.23 76.97 53.86

RBF 12.41 5.20 3.50 19.89 60.29 43.08

SVR 10.06 5.27 3.39 19.54 59.12 43.23

BPNN 8.12 1.71 1.11 15.50 40.32 33.20

RNN 7.20 0.99 0.76 13.87 40.12 30.67

LSTM 5.70 0.97 0.73 11.42 36.82 27.56

Bi-LSTM 5.05 0.81 0.64 10.96 34.94 25.85

L_BILSTM 4.25 0.74 0.58 10.95 34.91 25.36

Att-LSTM 4.35 0.79 0.63 10.81 33.98 25.37

LSTM-GRU 4.28 0.80 0.56 11.42 33.21 24.56

PSO-Bi-LSTM 4.38 0.76 0.59 11.20 32.85 24.69

LSC 3.50 0.66 0.45 10.14 30.16 22.23

Table 5 Verification of model transferability to different datasets by training on the PeMS08 Dataset 
(E) and testing on the Qingdao Dataset (A)

The best experimental results in the table are bolded, and the suboptimal ones are underlined

Models E → A

MAPE(%) RMSE MAE

LSTM 24.55 3.31 2.45

Bi-LSTM 36.40 3.65 3.08

L_BILSTM 24.01 3.08 2.33

Att-LSTM 21.98 3.47 2.73

LSTM-GRU 16.51 3.61 2.54

PSO-Bi-LSTM 20.69 3.99 2.45

LSC 12.98 3.08 2.18
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refinements, forecasting experiments are conducted on traffic flow data in Qingdao 
dataset (A) and PeMS08 dataset (E) on weekdays and weekends. As shown in Table 6 
and Table  7, the LSC framework achieves better forecasting performance than other 
methods both on weekdays and weekends. This further demonstrates the effectiveness 
of the proposed model.

Conclusion
In this study, we propose an adaptive composite framework LSC for short-term traffic 
flow forecasting, which aims to avoid the influence of traffic flow with different attributes 
on the model training and better extract the hidden information in the time series. We 
divide the processed time series into large traffic flow data and small traffic flow data 

Table 6 Forecast performances of different models in Qingdao Dataset (A) on weekdays and 
weekends

The best experimental results in the table are bolded, and the suboptimal ones are underlined

Models Weekdays Weekends

MAPE(%) RMSE MAE MAPE(%) RMSE MAE

ARIMA 22.15 11.54 7.74 36.72 15.87 11.83

RBF 15.60 8.19 4.89 32.34 12.34 9.76

SVR 11.52 7.44 5.48 27.80 11.29 9.88

BPNN 8.37 3.79 2.11 25.78 9.04 8.35

RNN 9.93 2.35 2.07 26.35 8.68 6.58

LSTM 5.78 1.32 0.98 21.60 7.46 6.46

Bi-LSTM 5.40 1.41 0.99 20.23 6.05 5.15

L_BILSTM 4.38 1.23 0.80 19.71 5.89 5.35

Att-LSTM 3.89 1.34 0.89 17.99 6.56 5.62

LSTM-GRU 4.62 1.12 0.92 17.82 6.53 5.97

PSO-Bi-LSTM 5.00 1.34 0.83 18.63 6.06 5.11

LSC 3.53 1.37 0.72 17.48 5.66 4.87

Table 7 Forecast Performances of Different Models in PeMS08 Dataset (E) on Weekdays and 
Weekends

The best experimental results in the table are bolded, and the suboptimal ones are underlined

Models Weekdays Weekends

MAPE(%) RMSE MAE MAPE(%) RMSE MAE

ARIMA 26.95 95.06 64.63 26.26 74.92 52.41

RBF 16.83 76.58 48.73 19.76 51.27 40.12

SVR 19.66 73.75 51.83 19.82 50.83 40.76

BPNN 11.34 50.39 48.29 12.21 47.15 35.70

RNN 13.47 51.02 47.81 12.63 39.83 31.73

LSTM 12.69 43.30 31.48 12.28 36.19 28.35

Bi-LSTM 10.96 41.01 29.69 12.09 36.40 28.63

L_BILSTM 10.00 39.94 28.23 10.88 35.52 27.36

Att-LSTM 10.61 41.19 29.24 12.54 35.14 27.70

LSTM-GRU 10.76 40.76 30.62 10.06 33.41 25.72

PSO-Bi-LSTM 10.56 38.01 27.04 12.08 33.46 26.44

LSC 9.46 30.74 23.70 10.19 29.57 23.28
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based on traffic attributes. The LSC model adaptively learns different regression models 
for forecasting large and small traffic volumes, and selects the corresponding model for 
each time node in the future time series through an attribute forecasting module. In 
addition, an L-B-LSTM model with two LSTM layers and one Bi-LSTM layer is selected 
for the internal structure of the framework, which is combined with an optional back-
propagation method to further improve the performance of the composite framework. 
Compared with existing methods, the LSC framework achieves superior forecasting 
performance on the traffic flow dataset. In the future, we will attempt to combine the 
present framework with the spatial structure of roads to further explore the network-
wide features. And we will investigate more advanced traffic attribute classification 
methods, extending the current binary classification to multi-class classification. 
Additionally, we will further attempt to capture hidden temporal features during traffic 
state transitions to further enhance the prediction performance.
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