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Inhibitory neuron links the causal relationship 
from air pollution to psychiatric disorders: 
a large multi-omics analysis
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Introduction
Psychiatric disorders were the most mysterious diseases in medicine for their unknown 
genetic mechanism and casual risky factors, raising heavy public burdens. These could 
be attributed to the neurophysiological complexity and the lack of effective research 
approaches [1]. However, their pathogenic factors or risky conditions are being 
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Abstract
Psychiatric disorders are severe health challenges that exert a heavy public burden. 
Air pollution has been widely reported as related to psychiatric disorder risk, but 
their casual association and pathological mechanism remained unclear. Herein, we 
systematically investigated the large genome-wide association studies (6 cohorts 
with 1,357,645 samples), single-cell RNA (26 samples with 157,488 cells), and bulk-
RNAseq (1595 samples) datasets to reveal the genetic causality and biological link 
between four air pollutants and nine psychiatric disorders. As a result, we identified 
ten positive genetic correlations between air pollution and psychiatric disorders. 
Besides, PM2.5 and NO2 presented significant causal effects on schizophrenia risk 
which was robust with adjustment of potential confounders. Besides, transcriptome-
wide association studies identified the shared genes between PM2.5/NO2 and 
schizophrenia. We then discovered a schizophrenia-derived inhibitory neuron 
subtype with highly expressed shared genes and abnormal synaptic and metabolic 
pathways by scRNA analyses and confirmed their abnormal level and correlations 
with the shared genes in schizophrenia patients in a large RNA-seq cohort. 
Comprehensively, we discovered robust genetic causality between PM2.5, NO2, 
and schizophrenia and identified an abnormal inhibitory neuron subtype that links 
schizophrenia pathology and PM2.5/NO2 exposure. These discoveries highlight 
the schizophrenia risk under air pollutants exposure and provide novel mechanical 
insights into schizophrenia pathology, contributing to pollutant-related schizophrenia 
risk control and therapeutic strategies development.

Keywords  Psychiatric disorders, PM2.5, NO2, Mendelian randomization, Single-cell 
RNA analyses
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consistently investigated. Air pollution has been a severe public health concern during 
the past decades and has been linked to the increased risk of various chronic diseases 
such as cardiovascular disease and cancers [2–5]. Urban dwellers are currently exposed 
to many detected outdoor air pollution gradients, including fine particulate matter 
(PM2.5), particulate matter of ≤ 10 mm in diameter (PM10), nitrogen oxides (NOx), and 
indoor agents like nitrogen dioxide (NO2) as reported [6], their long-term exposure was 
associated with destroyed lung function or higher asthma incidence during adulthood, 
as well as psychiatric disorders [7]. Air pollution exposures have raised much concerns 
and research interests in psychiatric disorder risk [8]. For instance, depression risk was 
observed to increase by pregnancy PM2.5 exposure [9], and the association between 
air pollution and schizophrenia risk has been proposed [10]. Whereas the non-causal 
observational studies and unpractical randomized controlled trials blocked the potential 
causality investigation and prevented public health decision-making [11].

Mendelian randomization (MR) is a Genome-wide association studies (GWAS)-based 
epidemiological approach. It utilizes randomized alleles (genetic variants) allocation to 
simulate randomized grouping in prospective randomized controlled trials. It maxi-
mally avoids confounders and reveals the causal relationship between the exposure and 
the outcome [12]. In principle, the MR analyses rely on three basic assumptions: First, 
the genetic variants should present a robust association with the exposure. Second, the 
genetic association between the exposure and outcome should be independent of con-
founders. Third, the genetic variants affect the outcome exclusively via the exposures 
[13, 14]. On these bases, MR avoids measurement errors due to the well-defined and sta-
ble genetic instrument variants (IVs) and could eliminate reverse causation because the 
disease cannot affect genotype. Besides, the environmental exposure proxying genetic 
variants is unlikely to be confounded by other factors [15]. These advantages make MR 
an appropriate and advanced approach to investigating causal associations between air 
pollution exposure and psychiatric disorder risk.
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Despite inferring the pollutants to psychiatric risk causality, understanding their bio-
logical mechanism was also urgently required. Previous reports have shown their cor-
relations with specific genetic patterns [16, 17]. YWHAB polymorphic locus rs6031849 
could strengthen cumulative PM2.5’s associations with schizophrenia relapse [17]. Also, 
the extent of PM2.5 exposure’s influence on depression-related neural function networks 
could differ by polygenic risk in gene-by-environment interactions [16]. Gene expression 
transfers gene-level information to biological effects [18–21]. Experimentally, PM2.5 
exposure increased Adra2b levels in the mice’s brains, and Adra2b overexpression, in 
turn, could enhance the anxiety-like behavior under PM2.5 exposure [22]. Meanwhile, 
PM2.5 increased the microglia-related neuroinflammatory transcription [23] to poten-
tially promote mental disorders progression [24]. However, the current understanding of 
how air pollutants affect psychiatric disorder pathology is still insufficient. The emerging 
high-throughput approaches offered effective investigation into gene-trait correlations. 
Transcriptome-wide association study (TWAS) links population gene expression with 
phenotypes [25], while bulk RNA-seq and single-cell RNA (scRNA) have provided more 
detailed expression-traits associations and cell-level clues [26]. Large bulk RNA-seq 
analyses discovered enriched excitatory and inhibitory neuron pathways associated with 
schizophrenia risk [27], and scRNA further identified schizophrenia populations with 
specific excitatory and inhibitory neuronal cell states [28]. Therefore, integrating RNA-
based approaches with MR is beneficial in inferring air pollutants’ causal and biological 
effects on psychiatric disorders.

In this study, we applied a linkage disequilibrium score regression (LDSC) and a two-
sample MR (TSMR) to explore the genetic and causal association between the exposures 
of common air pollution gradients and nine psychiatric disorder risks and used multi-
variable Mendelian randomization (MVMR) to exclude the bias of common confound-
ing factors (Fig. 1). Furthermore, the biological mechanism investigation was performed 
via the TWAS, scRNA, and RNA-seq cohort analyses. We aimed to determine whether 
air pollutants function as the casual risk of psychiatric disorders and reveal potential 
biological mechanisms, thereby benefiting public health decision-making and therapeu-
tic management.

(a) LDSC and TSMR identifies genetic and causal associations between air pollution 
exposure and nine psychiatric disorders, and their confounders-adjusted association 
was examined by MVMR. (b) TWAS converged from GWAS to investigate the potential 
genes and biological processes involved in the association between air pollution expo-
sure and nine psychiatric disorders. (c) ScRNA and RNA-seq cohort analyses validated 
the abnormally expressed genes from TWAS and their involved pathways. Created by 
Biorender.com.

Methods
MR Study design and data sources

MR analysis has been revealed as an important tool to link environmental exposure 
and psychiatric outcome risk with casual associations [29, 30]. Therefore, we used MR 
analysis to investigate the causality between air pollution exposure and psychiatric dis-
order risk. The flow chart of our study design is shown in Fig.  1. The summary-level 
GWAS data we used were collected from publicly available databases (summarized in 
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Additional Table S1, sTable 1). No restriction of gender, age, income, or education level 
was set for these GWAS.

The GWAS data of participants under diverse air pollution exposure levels were 
derived from UK Biobank [31–33] and collected from the MRC IEU database (https://
gwas.mrcieu.ac.uk/) [34, 35]. The residential air pollution range was evaluated in differ-
ent locations in Great London with a land use regression for the annual average of 2010. 
The mean PM10 level was 16·24 ± 1.90micro-g/m3, from 11.78 to 31.39 micro-g/m3, and 
the mean PM2.5 level was 9·99 ± 1.06 micro-g/m3, from 8·17–21.31 micro-g/m3. The 
summary-level GWAS of PM10 and PM2.5 contained 423,796 individuals and 9,851,867 
single-nucleotide polymorphisms (SNPs). The mean NO2 level was 26·71 ± 7·58 micro-
g/m3, from 12·93–108·49 micro-g/m3 The mean NOx level was 44·11 ± 15·53 micro-g/
m3, ranging 19·74–265·94 micro-g/m3. The summary-level GWAS of NO2 and NOx 
included 456,380 individuals and 9,851,867 SNPs.

We also retrieved the GWAS data for analyzing the potential confounders, and these 
include body mass index (BMI) [31], alcohol intake frequency [31], number of cigarettes 
previously smoked daily [31], education level (years of schooling) [34], and income level 

Fig. 1  The MR analyses design and data included in this study
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(average total household income before tax) [31]. These potential confounders’ GWAS 
data included 336,109, 462,346, 108,946, 766,345, and 397,751 participants respectively.

To avoid the bias generated by sample overlapping, the GWAS data of the psychiatric 
outcomes were obtained from databases outside the UK biobank. The psychiatric disor-
ders were all diagnosed by ICD-10. The GWAS data for major depression (170,756 cases, 
329,443 controls, 8,481,298 SNPs) [36], schizophrenia (52,017 cases, 75,889 controls, 
7,659,768 SNPs) [27], anorexia nervosa (3495 cases, 10,982 controls, 10,641,224 SNPs), 
[37] and obsessive-compulsive disorder (OCD) (26,888 cases, 7037 controls, 8,409,517 
SNPs) [38] were obtained from the PGC consortium, bipolar disorder (4501 cases, 
192,220 controls, 16,380,409 SNPs), post-traumatic stress disorder (PTSD) (1103 cases, 
198,110 controls, 16,380,382 SNPs), anxiety (20,992 cases, 166,584 controls, 16,380,449 
SNPs), generalized anxiety disorder (GAD) (2163 cases, 198,110 controls, 16,380,388 
SNPs) and phobic anxiety disorder (PAD) (2200 cases, 198,110 controls, 16,380,394 
SNPs) were obtained from FinnGen (round 5) [39, 40]. This research utilized publicly 
available data, which waived the ethical approval requirement. Each study contributing 
to the GWAS contains details for ethical approval and participant consent in their origi-
nal publications. This research requires no specific ethical approval.

Linkage disequilibrium score regression

We utilized the summarized GWAS data to perform the genetic correlations between 
the four air pollutant exposures and the nine psychiatric disorders via LDSC [40, 41]. 
LDSC evaluated the genetic correlation by leveraging the fact that the GWAS effect size 
estimation for a given SNP encompasses the effects of all SNPs in linkage disequilibrium 
(LD) with that SNP. First, all SNPs were harmonized with munge_sumstats.py. Then, the 
genetic correlations were estimated by the ldsc.py with pre-computed LD scores of 1000 
Genome European data [42].

Selection for instrumental variables

A threshold (5e-6) was used to ensure sufficient IVs for robust analyses, which has been 
commonly used in MR research including psychiatric causality inference [43–49]. Then, 
we calculated F-statistics for each IV and excluded IVs with F-statistics < 10 to retain the 
strong instruments only [50, 51]. F statistics for each instrument in the exposures were 
calculated by 

R2
K

[(1−R2)(N−K−1)]
, where K is the number of SNP, N is the sample size, R2 

is the variance explained by SNPs calculated by 2 ∗ EAF ∗ (1− EAF ) ∗
(
Beta
SE

)2 [51]. 
These approaches were sequentially conducted to ensure the first assumption (expo-
sure correlation assumption) of MR analyses was obeyed. Then, linkage disequilibrium 
analyses (r 2 < 0.001, distance < 10  MB) were conducted to select independent IVs fur-
ther, eliminating the linkage disequilibrium effects. Finally, IVs significantly correlated 
with the outcome were excluded. These filtrations were performed to ensure the third 
assumption was obeyed.

Two-sample mendelian randomization

Seven different methods [random-effect inverse-variance weighted (IVW) [52], 
weighted median, MR Egger [52–54], MR-RAPS [55] MR-PRESSO [56], Simple Mode, 
and Weighted mode] were conducted for two-sample MR. IVW was used as the main 
results, in which the weighted regression of the SNP-outcome effects and SNP-exposure 
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effects were calculated with the intercept constrained to zero. IVW [52] had the optimal 
statistical power but under the assumption that all instruments were valid and without 
pleiotropy. Weighted median and MR egger were used for supplementary results due to 
their more robust estimates in broader conditions, although less efficient [52–54], and 
MR-RAPS and MR-PRESSO are advanced in tackling pleiotropy [55, 56]. Moreover, the 
TSMR examined the association between SNPs and outcome, and the significant SNP 
was removed after ensuring that its removal exerted no effect on TSMR results accord-
ing to the leave-one-out approach. Heterogeneity was analyzed by Cochran’s Q test [57]. 
Steiger tests were conducted to examine the causal direction of SNPs [58]. Horizontal 
pleiotropy was analyzed by the MR Egger intercept test [59, 60], and leave-one-out anal-
ysis was used to evaluate whether a single SNP could affect the results, and this could 
detect the potential violation of the second and third assumptions that the genetic vari-
ants are independent of confounders and merely affect the outcome via the exposure 
[14].

Multivariate mendelian randomization

MVMR allowed for estimating the effects of multiple exposures on an outcome. The 
included exposures could be confounders, mediators, or colliders [61]. MVMR was 
also suitable for accounting for pleiotropic variants [62]. We used MVMR to estimate 
more direct effects of air pollution on psychiatric disorders, adjusting for BMI, alcohol 
intake frequency, the number of cigarettes previously smoked daily, education level, and 
income. This is also critical in identifying potential violence of the second assumption 
that the genetic associations are not correlated to potential confounders [63].

Transcriptome-wide association study (TWAS) and enrichment of biological pathways

To conduct transcriptomic imputation, we converted GWAS into TWAS by the FUSION 
method [64]. Expression quantitative trait loci (eQTL)-based linear model was used in 
FUSION to predict gene expression based on the reference panels of RNA-seq. Euro-
pean cortex samples of RNA-seq of Genotype-Tissue Expression version 8 (GTEx v8) 
[65], CommonMind Consortium’s (CMC), and splicing reference [66] were used as ref-
erence panels in this study. An Omnibus test was performed to evaluate the combined 
association of a single gene in multiple reference panels. Genes significantly associated 
with air pollution and psychiatric disorders were identified in TWAS results. Combined 
P values of TWAS for air pollutants and psychiatric disorders were calculated by Fish-
er’s Combined P-value (FCP) method. Additionally, we conducted biological pathway 
enrichment analyses for these genes based on the Gene Ontology database to further 
understand the potential biological mechanisms underlying air pollution and psychiatric 
disorders.

Single-cell RNA data processing and analyses

The 26 schizophrenia and control scRNA samples were obtained from gene expres-
sion omnibus (GEO, GSE228315) [67]. These samples were derived from either donor 
or engineered brain organoids. The control group contains eight iPSC samples derived 
from control donors and five control-engineered hPSC samples, and the SCZ group 
contains eight iPSC samples derived from SCZ patients and five SCZ-engineered hPSC 
samples. The quality control, doublets removal, data integration, reduction, and cell 
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annotation were conducted according to the previously published study [67]. The level 
of the shared genes in each cell was estimated using “AddModuleScore” function [68], 
and the functional enrichment was performed using “AUCell”, “UCell”, “singscore”, and 
“ssgsea ” algorithms [69, 70] from the “irGSEA” R package (https://github.com/chuiqin/
irGSEA) [71]. We evaluated the metabolic communications among different cell clusters 
by “MEBOCOST” [72]. The BayesPrism [73] deconvolution was used to estimate the cell 
proportions in each bulk RNA-seq sample.

RNA-seq cohort processing and analyses

We retrieved the TPM expression matrix ‘DER-02-PEC-Gene_expression_matrix’ and 
clinical information ‘PEC_capstone_data_map_clinical’ of schizophrenia and control 
cases from http://adult.psychencode.org/#Derived, and the merged PsychENCODE and 
GTEx TPM matrix was then transferred into log2(TPM + 1) matrix for the downstream 
analyses. The differentially expressed genes were identified using the “limma” R package, 
and the ssGSEA score of the shared genes was calculated by the “GSVA” [74] R package. 
To investigate the pathways associated with the shared genes in schizophrenia, we per-
formed WGCNA [75] to filter genes with positive correlations with the shared genes and 
ssGSEA score. The gene module with the highest correlation was selected and the genes 
inside the module with gene significance > 0.5 and module membership > 0.9 [76] were 
harvested for functional enrichment. The functional enrichment was conducted using 
the “clusterProfiler” R package [77]. The correlations between shared genes, ssGSEA 
score, and the pathways were visualized using the “Cytoscape” software [78].

Statistical analyses

Analyses were conducted using the combination of ‘TwoSampleMR’ packages [79], 
‘ggplot2’, ‘clusterProfiler’ [77], ‘enrichplot’, and ‘DOSE’ [80] in Rstudio version 4.2.2 and 
FUSION software. Normally-and non-normally-distributed parameters were tested by 
student’s t-test and Wilcoxon test, respectively. Comparsion among multiple groups of 
normally- and non-normally-distributed data were examined by Anova and Kruskal 
Wallis-test, respectively. The correlations between normally distributed parameters were 
calculated by Pearson’s correlation coefficient and were adjusted by the default ‘holm’ 
method. A false discovery rate (FDR < 0.05) was performed to correct for multiple inde-
pendent tests in TSMR [23, 52–56], TWAS [64] analyses, gene expression differences 
comparison, and differentially enriched pathways identification. Results with FDR < 0.05 
were regarded as statistically significant. Meanwhile, those P < 0.05 with FDR ≥ 0.05 were 
regarded as suggestive [81, 82]. We used raw P values rather than FDR for MVMR analy-
ses, considering these analyses exploratory and robustness tests for the TSMRs, consis-
tent with previous studies [63, 83–85].

Results
TSMR identified the air pollutants-psychiatric disorders pairs with causal association

After filtration, 29, 58, 84, and 75 instrument SNPs were selected for PM10, PM2.5, 
NO2, and NOx, respectively (Additional Table S1, sTables 2, 3, 4 and 5). We then per-
formed LDSC to evaluate the genetic correlation between the four air pollutant expo-
sures and nine psychiatric disorder outcomes (Additional Table S1, sTable  6). PM2.5, 
NO2, and NOx exhibit significant positive genetic correlations with schizophrenia, 

https://github.com/chuiqin/irGSEA
https://github.com/chuiqin/irGSEA
http://adult.psychencode.org/#Derived
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major depression, and anxiety. Also, a significant positive result between PM10 and 
major depression was observed (Fig. 2a). These preliminarily indicate their potential cor-
relations. Further, we conducted TSMRs to calculate the effect size of four air pollutants 
on nine psychiatric disorders, thereby determining their causal correlations. As Fig. 2b 
shows, two significant positive causal associations were found, with PM2.5 & schizo-
phrenia exhibiting the highest causal effect (OR: 1.870, 95%CI: 1.254-2·790, FDR < 0.05, 
P < 0.01), followed by NO2 & schizophrenia (OR: 1.708, 95% CI: 1.261-2·315, FDR < 0.05, 
P < 0.01). Besides, suggestive positive associations between NOx & schizophrenia (OR: 
1.477, 95% CI: 1.077-2·026, P < 0.05), PM10 & GAD (OR: 3·804, 95% CI: 1.128-12·831, 
P < 0.05), PM10 & major depression (OR: 1.224, 95% CI: 1.008–1.486, P < 0.05), PM2.5 & 
major depression (OR: 1.268, 95% CI: 1.037–1.551, P < 0.05), and PM2.5 & bipolar disor-
der (OR: 1.711, 95% CI: 1.035-2·829, P < 0.05) (Table 1). The results of other associations 
were recorded in Additional Table S1, sTable 7,  and 8.

In the sensitivity analyses, the causal directions of the associations in TSMR were 
examined using Steiger tests. The results showed that the causal direction for all sig-
nificant and suggestive positive associations identified by TSMR was correct (Additional 
Table S1, sTable 9). Additionally, heterogeneity was observed in some associations, while 
the main method, random-effect IVW we used, fitted the presence of heterogeneity 

Table 1  Significant TSMR results for air pollution and psychiatry disorders
Exposure Outcome nSNP OR LCI UCI P-value FDR
PM10 Major depression 27 1.224 1.008 1.486 4.11E-02 2.11E-01

GAD 28 3.804 1.128 12.831 3.13E-02 2.11E-01
PM2.5 Schizophrenia 51 1.87 1.254 2.79 2.15E-03 3.87E-02

Bipolar disorder 55 1.711 1.035 2.829 3.62E-02 2.11E-01
Major depression 46 1.268 1.037 1.551 2.08E-02 1.87E-01

NO2 Schizophrenia 74 1.708 1.261 2.315 5.51E-04 1.98E-02
NOx Schizophrenia 71 1.477 1.077 2.026 1.55E-02 1.86E-01
Abbreviation: nSNP, number of single nucleotide polymorphism; OR, odds ratio; LCI, lower confidence interval; UCI, upper 
confidence interval; GAD, generalized anxiety disorder; FDR, false discovery rate

Fig. 2  LDSC genetic correlation and TSMR effect for each association between air pollutants and psychiatric dis-
orders. (a) The LDSC dot map indicates the genetic correlations by dot size and statistical significance by color. (b) 
The TSMR dot map indicates the effect size by dot size and statistical significance by colors.
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(Additional Table S1, sTable 10) [86]. The leave-one-out analyses showed no peculiar 
SNPs and the robustness of the results in all TSMR results (Additional Figure S1-S4). 
Moreover, pleiotropy was also not observed in all significant TSMR results (FDR < 0.05), 
as the P-values for pleiotropy tests were higher than 0.05 (Additional Table S1, sTable 
11), showing that the basic assumptions of MR were obeyed.

MVMR identified the causal association without common confounder disruptions

The aforementioned TSMR methods have filtered out the likely causal associations 
between four air pollutants and nine psychiatric disorders. However, the effects of com-
mon confounders might disrupt these causal effects. Hence, we applied the MVMR 
approach to further identify the robust causal correlations after including the number 
of daily cigarettes, BMI, alcohol intake, education, and income level as confounders. We 
observed that PM2.5 and NO2 exhibit consistent causal effects on schizophrenia after 
all confounding factors were included in MVMR analyses (Fig. 3; Table 2). In contrast, 
some suggestive effects of previously identified causal exposure in TSMR were inter-
fered with by the inclusion of confounders. The aforementioned suggestive causal effect 
of PM10 on GAD attenuated towards null with the inclusion of BMI, alcohol intake, 
income, and number of cigarettes smoked daily, and that of PM10 and PM2.5 on major 
depression also failed to pass the MVMR as affected by either cigarette, BMI, income, 
education or alcohol inclusion (Additional Table S1, sTable 12). Similarly, PM2.5’s causal 
effects on bipolar disorder were also adjusted as not robust after integrating cigarette, 
BMI, and education. Shortly, these results demonstrate that schizophrenia harbored the 
most robust independent cause by air pollutants without violating the MR assumptions 
mediated by confounders, at least for the five common confounding factors BMI, alco-
hol, cigarette intakes, income, and education.

Fig. 3  MVMR of each causal association adjusted by confounders. The forest map describes the adjusted causal 
effect size of four air pollutants on nine psychiatric disorders by cigarette, BMI, alcohol, education, and income. The 
triangle and circle dot indicate that the effect size was significant and not significant after the confounder adjust-
ment, respectively

 



Page 10 of 22Liang et al. Journal of Big Data          (2024) 11:127 

TWAS discovered shared genes significantly associated with air pollution and psychiatric 

disorders

We converted the GWAS results to TWAS in order to discover the genes with signifi-
cant correlations with both air pollution and psychiatric disorders. The detailed gene 
information and statistical summary of significant associations identified by TSMR and 
MVMR are listed in Additional Table S1 (sTables 13–17). We depicted the chromosomal 
location identified of shared genes between PM2.5 & schizophrenia, NO2 & schizo-
phrenia, respectively, and those between the two associations (Fig. 4A, 4B). As a result, 
13 shared genes were found between PM2.5 and schizophrenia, and 15 shared genes 
were found between NO2 and schizophrenia in the same direction. Seven shared genes 
(SULT1A1, ZNF680, RPAP2, NT5C2, KIAA1109, FANCL, and ALG1L11P) were found 
in both PM2.5 & schizophrenia and NO2 & schizophrenia with the same direction. 
Notably, these seven shared genes between the two significant associations are located 
on different chromosomes, suggesting their independent effects in exposure-outcome 

Table 2  Significant MVMR results for air pollution and psychiatry disorders
Model Exposure Outcome OR LCI UCI P-value
PM10 & Alcohol PM10 Schizophrenia 1.853 1.081 3.175 2.48E-02
PM10 & Alcohol Major depression 1.358 1.076 1.713 9.95E-03
PM10 & Income GAD 2.965 1.091 8.057 3.31E-02
PM10 & Education Bipolar disorder 2.943 1.061 8.161 3.80E-02
PM2.5 & Alcohol PM2.5 Schizophrenia 2.026 1.352 3.037 6.30E-04
PM2.5 & Cigarette Schizophrenia 1.925 1.253 2.959 2.82E-03
PM2.5 & BMI Schizophrenia 1.972 1.226 3.171 5.13E-03
PM2.5 & Education Schizophrenia 1.780 1.140 2.778 1.12E-02
PM2.5 & Income Schizophrenia 1.458 1.053 2.017 2.30E-02
PM2.5 & BMI PAD 3.811 1.422 10.215 7.83E-03
PM2.5 & BMI Major depression 1.264 1.020 1.565 3.20E-02
PM2.5 & Cigarette Major depression 1.216 1.012 1.462 3.73E-02
PM2.5 & Education Depression 1.317 1.096 1.581 3.22E-03
PM2.5 & Income Bipolar disorder 2.137 1.045 4.369 3.74E-02
PM2.5 & Alcohol Bipolar disorder 2.223 1.045 4.730 3.81E-02
PM2.5 & Alcohol Anxiety 1.545 1.077 2.216 1.81E-02
PM2.5 & Education Anxiety 1.527 1.069 2.181 1.99E-02
PM2.5 & BMI Anxiety 1.503 1.032 2.188 3.35E-02
NO2 & Alcohol NO2 Schizophrenia 2.372 1.606 3.503 1.41E-05
NO2 & Education Schizophrenia 2.438 1.612 3.687 2.43E-05
NO2 & BMI Schizophrenia 2.627 1.667 4.139 3.13E-05
NO2 & Cigarette Schizophrenia 1.681 1.215 2.325 1.72E-03
NO2 & Income Schizophrenia 1.744 1.163 2.616 7.11E-03
NO2 & Income OCD 3.061 1.123 8.342 2.87E-02
NO2 & Education Depression 1.236 1.045 1.463 1.35E-02
NO2 & Alcohol Bipolar disorder 1.893 1.008 3.556 4.72E-02
NO2 & Education Anxiety 1.490 1.053 2.108 2.42E-02
NOx & Alcohol NOx Schizophrenia 2.094 1.452 3.018 7.49E-05
NOx & Education Schizophrenia 2.128 1.385 3.270 5.66E-04
NOx & BMI Schizophrenia 2.065 1.300 3.282 2.15E-03
NOx & Cigarette Schizophrenia 1.496 1.054 2.125 2.43E-02
NOx & Alcohol GAD 0.462 0.219 0.975 4.28E-02
NOx & Education Depression 1.310 1.101 1.559 2.33E-03
NOx & Education Anxiety 1.463 1.021 2.095 3.81E-02
Abbreviation: nSNP, number of single nucleotide polymorphism; OR, odds ratio; LCI, lower confidence interval; UCI, upper 
confidence interval; BMI, body mass index; GAD, generalized anxiety disorder; PAD, phobic anxiety disorder
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interactions (Fig.  4a). In order to further investigate the biological processes in which 
these shared genes are potentially involved, we input these genes to conduct functional 
enrichment analyses based on the database of GO terms. The results showed that syn-
apse-related and histone arginine methylation processes were enriched by 13  shared 
genes between PM2.5 & schizophrenia (Fig.  4c), while macrophage and endoplasmic 
reticulum-related processes were also observed by 15 shared genes between NO2 & 
schizophrenia (Fig.  4d). The detailed enrichment results were recorded in Additional 
Table S1, sTables 18–19. Importantly, nucleoside and alcohol metabolic processes 
enrichment were found in both two associations (Fig. 4c, 4d), implying that their meta-
bolic disturbance might be the mechanism underlying pollutants-mediated schizophre-
nia risk.

To further examine whether the IVs used in TSMR were located in the shared genes, 
we annotated the location of each IV (Additional Table S1, sTable 2–5). None of the IV 
was located at the shared genes, except rs10094026, which is located at the intron of 
MFHAS1, significantly correlated with NO2 (P = 7·70E-7) but not significantly corre-
lated with schizophrenia (P = 4·58E-1). After excluding this IV, NO2 still showed signifi-
cant correlation and minor alteration in TSMR by IVW (OR: 1.739, 95% CI:1.280-2·362, 
P < 0.01). Besides, leave-one-out tests also confirmed the robustness of the result after 
leaving rs10094026 (Additional Fig. 3).

ScRNA analyses identified abnormally expressed shared genes and their involved 

pathways in a schizophrenia-derived neuron subtype

The abnormal shared genes between air pollution and schizophrenia risk indicate an 
influenced cell population during the pathological development. To investigate the 
potential cell type that turns abnormal and might mediate the causality, we analyzed 

Fig. 4  The shared genes involved in the significant causal association between air pollutants and psychiatric disor-
ders. (a) The chromosome graph shows the location of shared genes recognized by TWAS within each significant 
association. (b) The Venn diagram depicts the shared genes and the common shared genes between both PM2.5 
& schizophrenia and NO2 schizophrenia. (c) Functional enrichment of shared genes within PM2.5 & schizophrenia 
(c) and NO2 & schizophrenia association (d), respectively
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the transcriptional expression of shared genes in schizophrenia/control scRNA samples. 
The scRNA cells were annotated to 27 defined clusters with corresponding cell-specific 
markers, consistent with a previous publication [67] (Additional Figure S5a), the com-
pleted cell annotation, as well as the group allocation, were shown in Additional Figure 
S5b and S5c, respectively. We first compared the expression differences of the shared 
genes on each cell type between the healthy donor and schizophrenia-derived samples. 
We found that five shared genes that show a positive genetic correlation with air pol-
lution & schizophrenia (RPAP2, KIAA1109, CDC42BPA, EVI5, and PXK) were upreg-
ulated in the IN2 cluster (inhibitory neuron subtype2) from the schizophrenia group 
(Fig. 5a), suggesting that the IN2 cells were affected in pollutants-induced schizophrenia 
development. To dive into the IN2 cells, we extracted and clustered the IN2 cells accord-
ing to their high variable features first, and divided them into two levels according to 
the median scores calculated by the shared genes’ expression. We noticed that after the 
IN2 cells were clustered into C0 and C1, the C1 cluster exhibited a remarkably higher 
proportion of high-level cells, as well as a higher expression of the five genes (Fig. 5b). 
This implies that the five genes contribute greatly to the cell fate influence of IN2. Fur-
ther, we compared the biological heterogeneity between the low-level and high-level IN2 
cells, the high-level cells presented elevated biological processes including neuron-neu-
ron synaptic transmission, plus end-directed organelle transport along microtubule etc. 

Fig. 5  Single-cell analyses identify schizophrenia-specific cells with abnormal levels of shared genes, pathways, 
and metabolic patterns. (a) The stacked violin plot compares the expression differences of shared genes between 
schizophrenia and control cases in all cell clusters. (b) The scatter plot depicts the different levels of five shared 
genes and their integrated score between IN2 subtypes. (c) Comparison of functional heterogeneity between the 
high-level and low-level IN2 cells. (d) Comparison of the number of metabolite-sensor communication among 
all cell clusters. (e) The circle plot describes the frequencies of communication events estimated from other cell 
clusters to the high-level and low-level IN2 cells. The arrows indicate the communication direction. (f) Comparison 
of metabolite sensor expressions between the high-level and low-level IN2 cells. (b) The communication network 
of metabolite-sensor communication from other cells to the high-level and low-level IN2 cells
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and protein export, valine leucine and isoleucine biosynthesis pathways etc. (Fig.  5c), 
indicating their abnormal synaptic activities and metabolic process. Hence, we there-
fore compared their metabolic crosstalk differences with other cell clusters. We found 
that the high-level IN2 exhibits a higher number of metabolite-sensor communication 
with several cell clusters like oRG and RG-like cells etc. (Fig. 5d,e). Specifically, we iden-
tified that the receptor genes SLC3A2 and SLC38A1 are highly and upregulated in the 
high-level IN2 cells (Fig. 5f ). When final metabolite-sensor communications were esti-
mated, we noticed that high-level IN2 cells showed significantly higher levels of L-Gluta-
mine-SLC3A2-mediated communications from cycling ventral NEC, non-cycling NEC, 
cycling NEC, intermediate cells, IN6, and RG-like cells, compared to the low-level IN2 
cells. Additionally, they also received significantly stronger L-Glutamine-SLC38A1-
mediated communications from oRG, IN7, and CN3 cells (Fig.  5g), suggesting that 
synaptic and metabolic abnormality might be caused in IN2 cells expressing higher 
expression of the five shared genes.

RNA-seq cohort analyses validated the abnormal expression of five shared genes and their 

involved pathways in schizophrenia cases

Finally, we employed an RNA-seq cohort with a large number of schizophrenia and 
control individual cases to validate the abnormal level of the shared genes, pathways, 
and the schizophrenia-related IN2 subtypes in schizophrenia patients. We confirmed 
that RPAP2, KIAA1109  (BLTP1), CDC42BPA, EVI5, and PXK are consistently upregu-
lated in schizophrenia patients compared to control cases (Fig.  6a,b). Meanwhile, we 
evaluated the cell proportions in each sample, and we noticed that the high-level IN2 
cell proportion was higher in schizophrenia patients, while the low-level IN2 cell pro-
portion was lower (Fig.  6c). After dividing schizophrenia patients into IN2_high and 
IN2_low groups according to the high-level IN2 cell level, we confirmed that patients 
with higher high-level IN2 cell proportion harbored elevated expression of RPAP2, 
KIAA1109, CDC42BPA, EVI5, and PXK (Fig. 6d), indicating their close association with 
IN2 cells. To further verify the pathways that are associated with the five genes and 
their ssGSEA score, we subsequently conducted weighted gene co-expression network 
analysis (WGCNA) to identify genes that are highly associated with RPAP2, KIAA1109, 
CDC42BPA, EVI5, PXK, and ssGSEA level. To obtain the most relevant genes, we col-
lected the genes from the turquoise module with the highest correlation that harbored 
gene significance > 0.5 and module membership > 0.9 (Fig. 6e). Subsequently, functional 
enrichment analysis was performed according to the harvested genes. We noticed that 
pathways related to the endoplasmic reticulum and neuron projection were enriched 
(Fig.  6f ) and their correlations with the five shared genes and the ssGSEA score were 
shown (Fig.  6g). We then calculated the correlation between the five genes, pathways 
levels, and the high-level IN2 cell proportion and their strong positive correlations were 
confirmed (Fig.  6h), implying that IN2 cells with abnormal transcriptional alterations 
were associated with schizophrenia development.

Discussion
Air pollution has been raised as a severe environmental problem found to affect multi-
system dysfunctions, including cardiovascular [87, 88], respiratory diseases [89], neuro-
logic diseases [90], cancers [91, 92], and autoimmune diseases [93], and its correlations 
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with psychiatric disorders have also been widely observed. Though much observational 
research has consistently supported the association between air pollutant exposure and 
mental disorders, their clear causal associations are still unrevealed due to intrinsic 
approache limitations. The results from observational research were usually biased by 

Fig. 6  RNA-seq validates the abnormality of shared genes, cell types, and functional enrichment in schizophrenia 
patients. (a) The volcano plot shows the differentially expressed genes between normal and schizophrenia cases 
in the RNA-seq cohort. (b) Comparison of the five shared genes between normal control and schizophrenia cases. 
(c) Deconvolution of scRNA cell proportion in bulk RNA-seq sample from schizophrenia and control patients. (d) 
Comparison of five shared genes between the IN2-high and IN2-low groups pf schizophrenia patients. (e) WGCNA 
modules and their correlations with the five shared genes and their ssGSEA score. (f) The functional annotation of 
the harvested genes from WGCNA. (g) The correlation network exhibits the correlations between the five shared 
genes, ssGSEA score, and the enriched pathways. The line width and color depth indicate the correlation value, the 
solid line indicates a positive correlation and the dashed line indicates a negative correlation. (h) The correlations 
of IN2_high cell proportion with five shared genes and pathways
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multiple confounders like BMI, cigarette smoking, and alcohol drinking [94], and spuri-
ous associations could thus be concluded. To overcome this limitation, we conducted 
MR to explore their causal associations. We found five suggestive positive as well as two 
significant positive causal associations via TSMR and excluded common confounders in 
the causal effects on schizophrenia by PM2.5 and NO2 using MVMR. Robust causal cor-
relations between other psychiatric disorders (such as anxiety, PAD, and PTSD) and air 
pollution were not found. Our results accorded with but also contradicted some pre-
vious preclinical and systematic review reports [10, 94], indicating the potential bias 
or interspecies biological/pathological heterogeneity might have disrupted the true 
associations.

We compared our MR results with previously published research to clarify which 
exposure to outcome associations are robustly developed and which are not. A recent 
systemic review including 13 Asia articles has proposed the concerns of short-term air 
pollution exposure’s risk for schizophrenia. They found that PM2.5, PM10, and NO2 
exposure correlated to increased schizophrenia risk with consideration of age, country, 
pollutant concentration, and temperature. [10] However, we noticed that PM10 does not 
present causal effects on schizophrenia during TSMR analyses, suggesting that the MR 
analyses might provide the possibility to overcome potential biases. While for PM2.5 
and NO2, two recently published MR studies proposed causality clue between PM2.5 
and schizophrenia [95, 96], which is consistent with our results. Moreover, we discov-
ered NO2 as another independent risk exposure to schizophrenia and further validated 
PM2.5’s and NO2’s causal effects on schizophrenia without bias of BMI, smoking, edu-
cation, incomes, and alcohol intake. However, limitations should be presented in that we 
did not include Asian cases, and the contradictory discoveries were not adjusted by case 
area. This might have differentiated pollutants’ effects on schizophrenia risk. Isobel et al. 
[94] have also conducted a meta-analysis to investigate the correlation between air pol-
lution exposure and depression, anxiety, and bipolar disorder. Their study showed that 
long-term PM2.5 has a significant positive association with depression, while we found 
it not significant after adjusting the TSMR via multiple testing corrections. However, we 
recommended that attention should still be paid to these suggestive associations because 
of the possibility of overcorrection from traditional MR and adjustment of P-values [97].

A subsequent TWAS analysis was performed to present the transcriptional expla-
nation for genetic casual associations. For schizophrenia, many genes are involved in 
its associations with either PM2.5 or NO2. Notably, four genes (SULT1A1, INO80E, 
TAOK2, and DOC2A) were located on 16p11.2, whose copy number variant was associ-
ated with schizophrenia risk [98]. SULT1A1 encodes a sulfotransferase that inactivates 
dopamine via sulfation. It has been detected as a candidate psychosis suppressor in the 
methamphetamine-treated mice brain, which resembles a positive symptom of schizo-
phrenia [99]. This was consistent with our results. INO80E, a chromatin remodeling 
INO80 complex subunit coding gene, has been identified as a schizophrenia-associated 
gene [98]. The alteration of DNA open chromatin region affected by chromatin-remod-
eling-complex was associated with schizophrenia risk SNPs, and the CRISPR editing of 
these SNPs affected neurodevelopment [100], indicating that chromatin remodeling is 
important during schizophrenia development. However, the role of INO80E in schizo-
phrenia pathology is still unclear due to the limited research. Dendritic spine maturation 
is critical for synapse integrity. Synapse dysfunction could disrupt synaptic transmission 
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and contribute to schizophrenia development [101]. TAOK2 is a serine/threonine kinase 
coding gene and its alteration blocked the phosphorylation the cytoskeletal GTPase 
Septin7, which prevents dendritic spines maturation [102] and thereby probably pro-
motes schizophrenia. DOC2A also codes proteins involved in calcium-dependent neu-
rotransmitter release, and its depletion or duplication was found in schizophrenia cases 
[103], suggesting its abnormality promotes the schizophrenia process. Interestingly, 
PM2.5 has been discovered to induce synapse damage and dysfunction [104, 105], and 
this shows its probability of causing schizophrenia progression by disturbing synapse 
function. But its association with DOC2A or TAOK2 remains unclear. On other chro-
mosome regions, PRMT7 encodes a protein arginine methyltransferase with histone 
methylation capability. Histone methylation is a well-recognized epigenetic abnormality 
in schizophrenia because it disrupts oligodendrocytes and myelination function [106]. 
Long-term PM2.5 exposure was found to increase the H3K4 and H3K9 methylation 
in macrophages, decreasing their IL-6 and IFN-β secretion [107], indicating PRMT7’s 
role in PM2.5-mediated schizophrenia risk. Also, PRMT7 was abnormally expressed 
in schizophrenia tissues and was highly associated with schizophrenia [108]. NT5C2 
encodes a cytosolic 5’-nucleotidase to regulate purine/pyrimidine balance and it was 
a target of either schizophrenia risk miRNA variants or risk SNP cis-regulation [109, 
110]. Additionally, the level of CDC42 Binding Protein Kinase alpha and UDP-glucose/
glycoprotein glucosyltransferase 2, encoded by CDC42BPA and UGGT2, respectively, 
were found elevated in the schizophrenia samples [111, 112]. Shortly, we discovered 
genes potentially involved in schizophrenia development, as previous evidence suggests, 
while their roles in PM2.5- or NO2-mediated schizophrenia risk have not been noticed. 
Hence, we provided novel clues for the genetic engagements in air pollution and schizo-
phrenia interaction.

Given that transcriptional changes can enhance the association between genetic 
abnormalities and genotypic transformation, we analyzed the shared genes in bulk tis-
sues and single-cell clusters. Five shared genes (BLTP1/KIAA1109, CDC42BPA, EVI5, 
PXK, and RPAP2) are upregulated in the schizophrenia bulk cases and IN2 cell cluster, a 
subcluster of GABAergic neurons. BLTP1/KIAA1109 gene variation was associated with 
neuron migration and embryonic abnormality [113], while whether it leads to BLTP1/
KIAA1109-deficiency phenotype remains unknown. Overexpressed CDC42BPA protein 
level [111] was observed in schizophrenia samples, and its association with ATF4-medi-
ated endoplasmic reticulum (ER) stress was recently reported [114] in the Alsheimer dis-
ease model, this is similar to what we obtained that CDC42BPA was positively correlated 
with the endoplasmic reticulum activities in schizophrenia cases, indicating CDC42BPA 
could participate in ER-mediated schizophrenia risk. Pxk encodes a secretory protein 
MONaKA that binds to and limits the function of Na⁺, K⁺-ATPase, it was found to cause 
Na⁺ extrusion efficiency thus disrupting the hippocampal neural energy balance [115], 
suggesting that transcriptional change of Pxk might exert widespread damage on neu-
ron function like synaptic activities, which is consistent with our elevated enrichment 
result in the high-level IN2 neurons. GABAergic neuron dysfunction in schizophrenia 
pathology has gained increasing attention [116], recent large data reports have discov-
ered clues that suggest the involvement of inhibitory neuron activity in schizophrenia 
risk [27, 28]. Interestingly, we also discovered that the high-level IN2 neurons highly 
expressed SLC3A2 and SLC38A1, and received a high level of communication mediated 
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via L-Glutamine. As GABAergic neurotransmission relies on the system-A-mediated 
glutamine transmission [117], the regulated SLC38A1 might indicate that the activity 
of IN2 was disordered. Importantly, a higher level of this GABAergic neuron subtype 
was observed in schizophrenia patients, and its association with abnormal pathways 
and shared genes was verified, demonstrating that it links the genetic causality from air 
pollution to schizophrenia. So far, no direct evidence has been published regarding the 
associations between transcriptional changes of shared genes and schizophrenia pathol-
ogy, especially in inhibitory neurons, our discoveries provide novel clues for the biologi-
cal mechanism of schizophrenia risk.

We should emphasize that the results of MR analyses were strictly based on three 
assumptions: (1) The instrument variants present strong associations with exposures. 
(2) The genetic association should be free of confounding factors. (3) The instrument 
variants affect the outcomes exclusively on exposures. Therefore, our study has applied 
a series of approaches to ensure our results obeyed these assumptions. We excluded 
IVs with associations with outcomes and with F < 10 to confirm that the retained IVs 
are strongly associated with air pollution exposure. Besides, we also include linkage dis-
equilibrium analyses and horizontal pleiotropy analyses to ensure the second and their 
assumptions were not violated. Considering the existence of potential confounders, 
BMI, cigarette, and alcohol drinking, in the pollutants-disorder association, we applied 
MVMR to exclude their confounding effects while evaluating the causal correlations, 
as a previous study shows [63]. We finally validated the shared genes and pathways in 
scRNA and bulk-RNA data at the transcriptional level to strengthen the association 
between genetic variation and schizophrenia phenotype. However, there are still some 
limitations in this study. The major one is that some unavoidable confounding factors 
are retained. For instance, the population from different cohorts might introduce biases 
from population heterogeneity. Although we include as many confounding factors in 
MVMR analyses as we can, including BMI, cigarette smoking, alcohol drinking, educa-
tion, and income levels, many other potential confounders might also act as potential 
confounders and need to be further revealed, such as diet factors. Additionally, the scar-
city of transcription data pertaining to air pollution and the unrealizable prospective or 
experimental verification have constrained the exploration of potential links between 
schizophrenia-related genes and air pollution.

Comprehensively, we used LDSC, TSMR, and MVMR to identify robust causal asso-
ciations between four common air pollutant exposures and the common psychiatric dis-
order outcomes, as well as their effect size. We found that the independent causal effects 
of schizophrenia by PM2.5 and NO2 could be established. Further, we applied TWAS 
analyses and discovered the shared genes and pathways between PM2.5 & schizophrenia 
and NO2 & schizophrenia risk, respectively. Finally, the scRNA and bulk RNA-seq data 
then identified an inhibitory neuron subtype with abnormal level of the shared genes 
and pathways. These findings confirmed the risk of air pollution exposure for schizo-
phrenia and identified a critical neuron cell type participating in the pathological pro-
cess. Therefore, more attention should be paid to schizophrenia risk control under air 
pollution exposure.
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