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Abstract 

The success of online social platforms hinges on their ability to predict and understand 
user behavior at scale. Here, we present data suggesting that context-aware modeling 
approaches may offer a holistic yet lightweight and potentially privacy-preserving 
representation of user engagement on online social platforms. Leveraging deep LSTM 
neural networks to analyze more than 100 million Snapchat sessions from almost 
80.000 users, we demonstrate that patterns of active and passive use are predictable 
from past behavior ( R2=0.345) and that the integration of context features substan-
tially improves predictive performance compared to the behavioral baseline model 
( R2=0.522). Features related to smartphone connectivity status, location, temporal 
context, and weather were found to capture non-redundant variance in user engage-
ment relative to features derived from histories of in-app behaviors. Further, we show 
that a large proportion of variance can be accounted for with minimal behavioral histo-
ries if momentary context is considered ( R2=0.442). These results indicate the potential 
of context-aware approaches for making models more efficient and privacy-preserving 
by reducing the need for long data histories. Finally, we employ model explainability 
techniques to glean preliminary insights into the underlying behavioral mechanisms. 
Our findings are consistent with the notion of context-contingent, habit-driven pat-
terns of active and passive use, highlighting the value of contextualized representa-
tions of user behavior for predicting user engagement on online social platforms.
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Introduction
Few technologies have shaped the world as drastically as the advent of the internet and 
the rise of online social networks. As people’s lives are increasingly mediated through 
online platforms competing for users’ attention and striving to maximize user engage-
ment, the ability to understand and predict user behavior has become vitally impor-
tant. This capacity forms the basis of powerful personalization technologies that adapt 
to individual users’ needs in order to provide a better user experience and ultimately 
generate revenue. The impact of such technologies can hardly be overestimated as they 
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are deeply embedded in the design—and will continue to be at the core of the business 
model—of online platforms that billions of people use on a daily basis.

The capability to predict user behavior at increasing levels of granularity, however, 
comes at a cost. Not only does it require increasingly sophisticated infrastructure and 
software, it can also compromise users’ privacy [1–4] as the prevailing approach to 
modeling user behavior involves the creation of user-profiles and long histories of past 
behavior to predict future behavior [5], often across platforms [6]. While the design of 
predictive technologies tends to be agnostic to theoretical insights from the behavio-
ral sciences, their application is closely aligned with the catchphrase that past behavior 
is the best predictor of future behavior [7, 8]. However, the availability of fine-grained 
behavioral user data also opens the door for modeling approaches aimed at deeper psy-
chological constructs, such as personality [9–14] or habits [15–17].

In this paper, we propose that a context-aware approach to user modeling can 
increase the performance of predictive models while deepening our understanding of 
online social behavior. That is, in building contextualized, holistic representations of 
user engagement, predictive models can be made more efficient, more privacy-pre-
serving, and more aligned with behavioral theory than current approaches. Specifically, 
we employ LSTM neural networks [18, 19], which excel at representing the recurrent 
behavioral patterns characteristic of media and technology habits [15–17, 20, 21], to 
explore how context-aware models incorporating smartphone connectivity status, loca-
tion, temporal context, weather, and socio-demographic context can aid the prediction 
of active and passive user behaviors in online social platforms.

Background and related work

Recognizing that user engagement is a multi-faceted phenomenon, past research has 
often differentiated between active and passive user behaviors. Active use includes 
behaviors that revolve around social interactions and the creation of content, while pas-
sive use includes behaviors that revolve around content consumption [22–26]. The dis-
tinction between active and passive use is of both theoretical and practical relevance. 
While prior work has examined the impact of active versus passive use on psychologi-
cal outcomes such as well-being [22, 27], little is known about habitual, context-contin-
gent patterns of active and passive use on social platforms. At the same time, the ability 
to predict active and passive use is important for businesses because the two modes 
of user engagement distinctively impact user experience and revenue. For example, it 
is important for online social platforms to host a variety of user-generated content in 
order to keep users socially engaged [25], but passive use has become increasingly rel-
evant because ad revenue is closely tied to content consumption on all major platforms 
as content is interspersed with ads. Relatedly, the recent rise of short-form video content 
has strongly affected how people interact with online social platforms, and the context-
contingent and potentially habitual nature of these novel forms of user behavior is cur-
rently not well understood.

The field of psychology has produced a rich body of work regarding the effects of 
context on human behavior. This includes research on ecological psychology [28–30], 
person-situation interactions [31–33], the conceptualization and measurement of situ-
ational cues [34–37], as well as media and technology habits [38–40]. With regard to 
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the prediction of user engagement, the literature on media and technology habits pro-
vides the most suitable theoretical framework connecting context and online behavior. 
Media and technology habits are learned routines that are contingent on contextual cues 
and emerge after repeated media use [20, 21, 38]. Habit formation is initially driven by 
reward learning, where the pleasure associated with content consumption, or the expe-
rience of social interaction and recognition, act as rewards. Once a habit is formed, 
the initial motivations become less important, and the learned response occurs auto-
matically when triggered by associated contextual cues [40]. For example, a user might 
habitually scroll through social media when riding the bus to work or open an instant 
messaging app when they hear a notification sound. Generally, contextual cues can be 
conceptualized as specific context features that precede habitualized behaviors [40, 41]. 
Relevant cues include “technical cues” that are features of a medium or technology itself 
(e.g., notifications, buzzes, sounds) [39], but also more subtle situational triggers, such 
as the time of the day, properties of the environment, events and activities, or internal 
states [42–46].

Previous empirical research indicates that more than half of media consumption can 
be classified as habitual [47] and that repeated social media use is strongly habitual, with 
frequent users reporting higher degrees of automaticity [40]. Habitual use has also been 
found to be the most important predictor of media use for social sharing [48] and news 
consumption [49]. In line with these findings, recent research has shown that user activ-
ity on social media apps follows predictable patterns. For example, user engagement on 
Snapchat follows habitual patterns over time, enabling new neural network architectures 
specifically designed to represent cyclical patterns [15]. Similarly, fine-grained in-app 
action sequences follow predictable patterns that can be characterized as habitual [16]. 
However, with the exception of time, the role of context has largely been overlooked in 
studies linking habits and user engagement.

While there is a lack of previous research investigating how active and passive use 
relate to contextualized habits, the computer science literature on context-aware mod-
eling offers valuable insights linking user activity and context. The notion of context-
awareness - the “ability of a mobile user’s applications to discover and react to changes 
in the environment” [50] - shares its emphasis on context with the habits literature but 
focuses more on applications than on behavioral theory [e.g., 51, 52]. Recently, there has 
been a strong movement towards utilizing machine learning in context-aware technol-
ogy to model user behavior and tailor applications to individual users’ needs [e.g., 53, 54, 
52, 55–57]. For instance, novel methods have been developed to predict users’ activities 
[58, 59], locations [58, 60], and mental states [56, 61–63], as well as interactions with 
mobile applications [15, 52, 64–66]. Similarly, context-aware recommender systems have 
received attention in past research [54, 67]. A wide array of context features has proven 
useful for the purpose of context-aware modeling, including spatial and temporal con-
text [64, 65], and device context [52], but also more indirect factors such as weather [68]. 
Despite these advancements, it has been pointed out that the collection, processing, and 
modeling of various context features remains a challenge, especially in mobile settings 
[69].

Notably, past work has not always been consistent with regard to its definition of 
context. For example, the literature on context-aware computing tends to operate on a 
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broader notion of context compared to the behavioral science literature. The behavio-
ral science literature usually defines context as the sum of environmental conditions or 
situational circumstances under which behavior occurs, explicitly juxtaposing context-
characteristics and person-characteristics or inner states as distinct (and sometimes 
competing) determinants of behavior [e.g., 70]. This definition is aligned with the behav-
ioral sciences’ focus on individual behavior as the main object of study. The computer 
science literature, on the other hand, tends to include person characteristics such as 
preferences, psychological traits, and even biometric processes in their definitions of 
context [e.g., 71]. This perspective is aligned with a technology-centric view in which 
user characteristics are part of the context in which a technological system is studied. 
Since the present research aims to contribute not only to the technical literature on con-
text-aware computing but also to the behavioral science literature, it employs the for-
mer definition of context, highlighting the dichotomy between environmental factors 
and person characteristics. Similarly, while past research has sometimes characterized 
preceding behavior as context [17, 72, 73], the present paper operates on a more nar-
row definition of context as the sum of environmental factors, focusing on geographic 
areas with certain socio-demographic properties, weather, time, and locations or places. 
This approach captures a comprehensive view of spatial context, including factors that 
are relatively constant and mostly outside users’ control (socio-demographic context and 
weather), along with those that more closely represent users’ decisions and mobility hab-
its (location visits and connectivity status).

Present research

The present research explores how context-aware models representing habitual pat-
terns of behavior can aid the prediction of active and passive user behaviors. We ana-
lyze data from Snapchat, a major instant messaging and online social platform with close 
to 400 million daily active users [74]. In the US, the majority (65%) of 18–29 year-olds 
use Snapchat, most of them at least daily [75]. The app provides ample opportunities 
for active and passive user behaviors. A core functionality of the Snapchat app is mes-
saging, allowing users to exchange written notes (chats), photos and videos (Snaps), or 
other multimedia content found on the app. Messaging is inherently social and therefore 
constitutes a prime example of active use. Other examples of active use include the Lens 
feature, which allows users to creatively edit photos and videos before sharing them, and 
the Stories feature allowing to post multimedia status updates that can be viewed by 
some or all of a user’s friends. Examples of passive use include the Discover Feed and the 
Spotlight Feed, which provide a curated collection of multimedia content that users can 
engage with. The large user base, the high frequency of interaction, and the design of the 
platform allowing for a diverse set of active and passive user behaviors make Snapchat 
an ideal setting to study the prediction of user engagement.

Based on data from over 79,000 Snapchat users, we investigate the extent to which 
the integration of contextual information, including smartphone connectivity status, 
location, temporal context, weather, and socio-demographic context, can lead to more 
accurate, efficient, and privacy-preserving models of user engagement. Using deep 
LSTM neural networks [18, 19], we first show that - consistent with the idea of habit-
driven user engagement—active and passive use follow predictable patterns over time 
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( R2=0.345). Second, highlighting the context-contingent nature of media and technol-
ogy habits, we demonstrate that the model can be improved by adding different types of 
context features ( R2=0.522). Third, we show that very short sequences can lead to satis-
factory predictive performance if momentary context is considered ( R2=0.442). Finally, 
we identify the specific behavioral and contextual variables that are driving predictions 
in order to gain preliminary insights into the underlying behavioral mechanisms.

Methods
Sample and data collection

We utilized archival behavioral user data from a sample of frequent Snapchat users col-
lected through the Snapchat app as part of regular business operations. Frequent users 
were defined as users who used the app every day for the six-month period before 
data collection. Among the users who met this criterion, we drew a random sample 
(N=100,000; N=79,175 after cleaning; details described below; Mage = 25.07; SDage 
= 7.24; 56.31 % female) and obtained their behaviors on the Snapchat app during the 
30-day period from July 6th to August 5th, 2021. The dataset contained 105,636,289 ses-
sions (1334 sessions per user on average) which were distributed across 21,604,570 ses-
sion hours (273 session hours per user on average). A session was defined as the interval 
between opening and closing the Snapchat app, and a session hour was defined as a full 
hour in which at least one session has occurred.

All behavioral user data were obtained from in-app event logs indicating that a user 
had interacted with a specific feature of the app. The set of behavioral features included 
the number of sessions, time spent on the app, and users’ interactions with different fea-
tures of the app (e.g., chats, Snaps, Stories, ads, Discover, Spotlight, creative tools, and 
Lenses), split by the type of interaction (view, send, create), and the source of the inter-
action (e.g., subscriptions, feed, reply; see SI 1). The total number of these behavioral 
features before further processing was 28 (see SI 2.1).

The set of context features included socio-demographic context, weather, temporal 
context, location visits, and connectivity status. This feature set was chosen to enable 
the models to learn a comprehensive representation of spatial context, including macro 
features that are relatively stable and largely beyond the users’ control (e.g., socio-demo-
graphic features and weather at the ZIP code level), as well as more fine-grained features 
that reflect users’ choices and mobility habits to a greater extent (e.g., location visits, 
connectivity status). In order to enrich the behavioral data with socio-demographic and 
weather data, the GPS coordinates of each session were mapped to the corresponding 
ZIP code [76]. Exact GPS coordinates were discarded in order to preserve users’ privacy. 
We then used the ZIP code to collect weather data and socio-demographic census data 
for the area a user was located in during a given session. Weather data was collected 
from OpenWeatherMap [77]. We used OpenWeatherMap’s historical weather API to 
collect hourly weather data for ten raw features for each ZIP code: temperature, per-
ceived temperature, atmospheric pressure in hPa, humidity in percent, minimum tem-
perature, maximum temperature, wind speed in meter/sec, wind direction in degrees, 
cloudiness in percent, and categorical weather descriptors (e.g., sunny, rain, snow, fog, 
extreme, etc.). Socio-demographic data were obtained from the official website of the US 
Census [78]. We captured 19 features belonging to several important socio-demographic 



Page 6 of 20Peters et al. Journal of Big Data          (2024) 11:110 

categories, including socio-economic status, racial composition, age distribution, gender 
distribution, and marital status at the ZIP code level. We also obtained location visita-
tion data for users who agreed to share their location. To preserve users’ privacy, the 
locations were represented as 11 high-level categories, including events, travel, educa-
tion, nightlife, residence, food/beverage, shops/services, arts/entertainment, outdoors/
recreation, other, and missing. Location features were operationalized as the maxi-
mum probability score produced by a location classifier for each location category in 
each given session hour. The exact location names were not used, making it impossible 
to infer individual users’ exact location visits from the processed data. Additionally, we 
obtained connectivity status (Wi-Fi access, mobile data) as well as the temporal context 
(hour of the day, day of the week, day of the month, day of the year, time since the previ-
ous session) from the app usage logs (see SI 2.2).

The protocol was approved by the Columbia University IRB (AAAU2607). All meth-
ods were carried out in accordance with relevant guidelines and regulations. The study 
was exempt from the informed consent requirement by the Columbia University IRB 
because only anonymized archival data were used. While the research relies on propri-
etary data that cannot be shared openly, the code made available on this project’s OSF 
page (https:// osf. io/ nkfhz) provides a detailed picture of the key properties of the dataset 
and data processing.

Data preprocessing and operationalizations

To facilitate training, hyperparameter tuning, and model evaluation, we split the data 
into three distinct datasets: a training set, a validation set, and a test set. The data 
was split at the person level, such that all records associated with any individual were 
assigned to only one of the three datasets. The training data consisted of 500,000 focal 
session hours, while the validation and test set each consisted of 50,000 focal session 
hours. Importantly, each focal session hour was associated with a history of up to 100 
preceding session hours, each representing hundreds of sessions throughout the 30-day 
observation period. The target variable, user engagement, was operationalized as the 
ratio of active-use scores and passive-use scores. Active-use scores were calculated as 
weighted averages of event counts indicating behaviors associated with active use. This 
includes the number of chat messages sent, the number of direct Snaps created or sent, 
and the number of Stories posted by a user. The different input scores were weighted 
using min-max-transformations such that they equally contributed to the active-use 
score, irrespective of their absolute frequencies. This approach ensures that relatively 
rare actions that require higher levels of effort and engagement (e.g., posting a story) 
would not be drowned out by more frequent but effortless actions (e.g., sending a mes-
sage). Passive-use scores were defined as the number of Stories viewed. This includes 
Stories posted by friends, as well as curated Stories viewed through the Discover and 
Spotlight feeds. These definitions map onto the distinction between social active use and 
passive use as presented in the Passive and Active Facebook Use Measure (PAUM) [79].

Because user engagement was analyzed at the hourly level, we aggregated the raw 
behavioral event logs to hourly count metrics for all 28 relevant behavioral features. 
Since the behavioral count data tended to be power-law distributed, we transformed 
the hourly count data in several ways: First, we removed data points in the top 0.001 
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quantiles of each feature distribution in order to remove the most extreme outliers, 
which are likely caused by technical glitches or bots. Second, we normalized the feature 
values by dividing hourly counts by hourly active time on the app while also retaining the 
original non-normalized feature space. This was done to not only measure user activity 
in absolute terms but also how active users were relative to the time they spent on the 
app, which can be interpreted as a measure of intensity. Third, we log-transformed the 
combined feature set to produce more balanced distributions—again, while retaining the 
original non-log-transformed feature space. Additionally, we generated 15 derived fea-
tures, such as composite scores of active behaviors (including chats, Snaps, and Stories 
created or shared by a user), composite scores of passive behaviors (Stories consumed 
through the Discover, Spotlight, and friends’ Story feeds), as well as several ratio and dif-
ference scores: the ratio and difference of chat messages sent and received, the ratio and 
difference of direct Snaps sent and received, the ratio and difference of Stories posted 
and viewed, as well as ratio and difference of active and passive use scores. Through this 
process, we obtained an overall space of 127 behavioral features (see SI 2.1).

Similar to behavioral features, context features were aggregated to the hourly level. For 
ZIP-code-level features (i.e., weather and socio-demographic census features), we cal-
culated time-weighted averages (by active time on the app) if a user had visited more 
than one ZIP code within one hour. For location features, we cast each of the location 
categories as a feature and used the maximum probability score (per category, per hour) 
obtained from a location classifier. Missing values were imputed with zeros as the loca-
tion classifier was not able to pick up on a relevant location in these cases. Connectivity 
status was derived as the ratio of the number of sessions involving mobile data usage 
and the number of sessions involving Wi-Fi access for each hour. It was not necessary to 
further aggregate the five temporal context features since none of them were captured 
at a more granular level than the hourly level. Overall, our model included 56 context 
features (see SI 2.2).

Finally, all numerical (interval and ratio scaled) features were normalized using min-
max transformations, such that the final range for each feature was limited to values 
between 0 and 1 on the training set. Categorical (nominally and ordinally scaled) fea-
tures were one-hot-encoded (dummy coded), increasing the number of weather features 
from 10 to 19. All transformations involving distribution parameters were fitted on the 
training set and then applied to the validation set and the test set using the distribution 
characteristics of the training set. The final feature set included 183 preprocessed pre-
dictors (see SI 2).

Modeling

In distinction from much of the behavioral science literature on user engagement and 
media and technology habits, we employ a predictive modeling approach [80–84]. The 
prediction of user engagement was framed as a multivariate time series regression 
problem, where each feature represented a temporal sequence of behaviors or context 
events, and the target variable was a continuous variable representing active and passive 
use. A neural network architecture that is particularly well suited to represent recur-
rent patterns in multivariate time series is the LSTM architecture [18, 19]. LSTM neural 
network models are a type of recurrent neural network (RNN), that is able to preserve 
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information from previous steps more effectively by combining hidden states from pre-
vious time steps and current inputs before feeding them through a series of gates (input 
gate, forget gate, output gate), determining which information is passed on across time 
steps. In contrast to standard RNN models, which are limited to shorter time series, 
LSTM neural networks are able to represent the temporal order of widely separated 
events and temporally extended patterns in noisy input sequences and effectively extract 
information captured in the temporal distance between events in long sequences [19, 
85]. In other words, LSTM models are designed to learn recurrent patterns over time 
and across long input sequences. LSTM models play an important role in a wide variety 
of applications, including time series prediction [86, 87], anomaly detection [88], speech 
recognition [89], and business process management [90, 91]. In the present project, we 
leverage the capacity of LSTM neural networks to make predictions from a large num-
ber of long time series.

More concretely, we utilized a network architecture of stacked LSTM layers, where 
the output of each LSTM layer was fed into the next LSTM layer. The output of the last 
LSTM layer was fed into a final dense layer which was connected to a 1-neuron out-
put layer with a linear activation function. All dense layers utilized rectified linear unit 
(relu) [92] activation functions, and all LSTM layers utilized hyperbolic tangent (tanh) 
[93] activation functions. We used Bayesian optimization [94] to tune the depth of the 
neural network and the dimensionality of the layers. We also tuned the learning rate and 
the regularization strength with dropout and recurrent dropout. The hyperparameter 
search space spanned LSTM branch depths of 1–4 layers, tapered LSTM layer dimen-
sions [32, 64, 128, 256] (depending on the depth of the network), top layer dimensions 
[32, 64, 128], dropout and recurrent dropout values [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], as well 
as learning rates [0.01, 0.001, 0.0001]. The batch size was set to a value of 2048 across 
all experiments. A full overview of the hyperparameter space can be found in Table SI 
3. To ensure that performance differences between the different model specifications 
were indeed caused by differences in the information content of the feature sets and 
not merely by a mismatch between the dimensionality of the feature space and network 
configuration, we re-tuned the hyperparameters for each learning task. Hyperparameter 
tuning was performed with Bayesian optimization [94] using three randomly selected 
starting points and 100 search iterations per model. Models were trained over 50 epochs 
with early stopping and a patience parameter value of 5. After training, we selected the 
model state resulting in the lowest Root Mean Squared Error (RMSE) on the validation 
set. Generalized model performance was assessed by re-fitting the model with the best 
hyperparameter configuration and evaluating its predictions on the test set. To ensure 
the robustness of these performance estimates, we repeated the procedure ten times for 
each model. An overview of the hyperparameter settings for each model can be found in 
SI 4.

Results
Predicting active and passive use from histories of in‑app user behaviors (RQ1)

To test whether active and passive use can be predicted from users’ histories of in-app 
behaviors, we trained an LSTM model using all 127 behavioral feature sequences as 
inputs (Model 1). We found an R2 coefficient of 0.345, meaning that the model was able 
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to explain 34.5% of the variance in active-passive-use scores, which is considerably bet-
ter than a naive baseline of R2=0. The result indicates that patterns of past behavior are 
predictive of active and passive use at a given point in time, which is consistent with the 
idea of habit-driven patterns of engagement. A graphical representation of the results 
can be found in Fig. 1 and detailed values can be found in SI 5 (Model 1).

Effects of context‑awareness on model performance (RQ2)

In order to assess whether context-awareness can contribute to the prediction of user 
engagement, we employed LSTM neural networks in conjunction with ablation study 
techniques. In particular, we defined six additional model specifications that gave the 
model access to different subsets of context features and allowed us to observe how 
model performance changed in response to the addition/removal of context features. 
We used the previous model consisting of only behavioral sequences as a baseline. We 
then added each of the five individual brackets of context features (socio-demographic 
context, weather, temporal context, location visitations, connectivity status) to the base-
line model in order to assess the increase in predictive performance associated with each 
of the different types of context features independently. Finally, we added all context fea-
tures at once in order to assess the overall increase in predictive performance. An over-
view of the learning tasks, feature sets, and results can be found in Fig. 1 and SI 5.

The results show that weather (Model 3, R2=0.354) and temporal context (Model 4, 
R2=0.357) were associated with small performance improvements (2.5% and 3.5%, 
respectively), while location information (Model 5, R2 =0.380) was associated with a 
moderate performance improvement of 10% over the baseline (Model 1). With a per-
formance improvement of 46%, connectivity status (Model 6, R2 =0.504) added by far 
the most incremental explained variance. Adding census data to the baseline model did 
not result in improved performance (Model 2, R2=0.342). Adding all features to the 

Fig. 1 Overview of the predictive performance of different model specifications. RQ1: Model trained on 
behavioral histories only. RQ2: Model specifications used to assess the performance increment due to 
different sets of context features, including socio-demographic context (Model 2), weather (Model 3), 
temporal context (Model 4), location visits (Model 5), network connectivity status (Model 6), and all context 
features (Model 7). RQ3: Predictive performance of dense neural network models trained on cross-sectional 
data. Model 8 was trained on only behavioral data from t-1. Model 9 was trained on behavioral data from t-1 
and context features from t0. For more details, please see SI 5
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baseline simultaneously (Model 7, R2=0.522) resulted in the best model and the larg-
est performance improvement (51%), indicating that the different feature sets capture 
some non-redundant information. The model also dramatically outperformed mod-
els trained exclusively on context features (see Section 3.3). These findings suggest that 
complementing behavioral features with context features, especially connectivity status, 
can substantially improve the performance of models predicting user engagement. The 
findings are consistent with the idea of context-contingent patterns of engagement.

Effects of context in models trained on truncated sequences (RQ3)

In order to assess the history-dependence of the predictive models, we conducted an 
ablation study in which we manipulated the length of the sequence that was accessible 
to the LSTM model. Sequence lengths ranged from only 1–100 time steps, representing 
anything from just one session up to 100 session hours distributed across 28 days. We 
first conducted this analysis for behavioral sequences and then separately for sequences 
of context data. In the case of behavioral histories, the longest sequence ranged from 
t-101 to t-1. No information about t0 was included in order to ensure that no informa-
tion regarding user activity in the target session leaked into the predictor set. In the case 
of context histories, the longest sequence ranged from t-100 to t0, such that the last data 
point in the sequence represented the momentary context in t0. Model performances 
are depicted in Fig. 2.

As expected, longer time series were generally associated with higher model perfor-
mance. This effect was more pronounced in the case of behavioral histories compared 
to context histories. For example, a model trained on behavioral histories of sequence 
length 1 captured 73% of the maximum performance, while a model trained on context 
histories of sequence length 1 captured 88% of the maximum performance. Models uti-
lizing a sequence length of 50 yielded at least 99% of the performance reached by models 
trained on the maximum length sequences with 100 time steps. The results indicate that 
temporal histories capture information about user engagement and that a relatively large 
share of variance in user engagement can be explained with very short sequences, par-
ticularly in the case of context predictors.

The previously trained models rely on sequences of historical data to predict user 
engagement. While the findings suggest that even short sequences of behavioral and 
contextual data offer moderate levels of predictive performance, we designed an addi-
tional experiment to test the incremental predictive power of context data at the 
extreme. Specifically, we trained a series of models based on minimal historical data, 
including only cross-sectional behavioral features from t-1 and momentary context fea-
tures from t0. Given that this procedure eliminates the sequential structure of the input 
data, we shifted the analytical strategy from the LSTM architecture to a feed-forward 
neural network architecture.

The results show a substantial drop in performance when only behavioral features 
from t-1 are provided to the model. With an R2=0.256, the performance of the model 
incorporating cross-sectional behavioral data (Model 8) was 26% lower compared to the 
baseline model incorporating behavioral histories of sequence length 50 and 51% lower 
compared to the best model incorporating the full feature set at a sequence length of 50. 
The cross-sectional model trained on behavioral and context features (Model 9), on the 
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other hand, showed a predictive performance of R2=0.442. This was 15% lower than that 
of the best model from the previous analysis but 28% higher than the performance of 
the baseline model with full access to behavioral histories and no context features. Most 
importantly, predictive performance was 73% higher than the performance of the model 
built on only cross-sectional behavioral data. The results demonstrate that the predic-
tion of user engagement - even in the extreme case of fully truncated time series - works 
reasonably well if context is considered. For a visual comparison, see Fig. 1.

Model explainability analyses (RQ4)

While deep neural networks excel at making predictions from complex data, they do not 
provide much insight regarding the strength and directionality of specific feature-target 
associations by default. In order to open up the black box and explain how the models 
arrive at their predictions, we employed Shapley values, a popular model explainability 
technique [95]. Shapley values are additive feature importance measures that quantify 
the contribution of each feature with respect to each individual predicted value. Intui-
tively, this is achieved by calculating the average marginal contribution of each feature 
across all possible subsets of features. The marginal contribution of a feature is defined 
as the difference  in predicted values between a model including the focal feature and 
a model withholding the feature (e.g., by replacing feature values with unrelated values 
sampled from a background dataset). Because the effect of withholding a feature is con-
tingent on other features, the marginal effects need to be computed and averaged for all 
possible subsets of features. This procedure is repeated for each feature in the overall 
feature set. In the present project, we used the Shapley Additive Explanations (SHAP) 
[95] Python library. Due to their computational complexity, SHAP values were gener-
ated for the dense neural network model incorporating the full feature set (Model 9) on a 
subsample of 20,000 data points from the test set.

Fig. 2 Model performance as a function of sequence length for behavioral histories (blue) and context 
histories (orange). The curves show diminishing returns to adding additional time steps to the model. Models 
built on behavioral histories benefit more from long time series compared to models built on context 
histories
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In order to estimate general feature importance scores, we computed the arithmetic 
mean of the absolute Shapley values for each feature across all data points in the test 
sample. To analyze the directionality of the association, we analyzed the relationship 
between feature values and Shapley values. For comparison, we also analyzed the rela-
tionships between feature values and actual target values on the test set using Pearson’s 
correlation coefficients for metric features and point-biserial correlation coefficients 
for one-hot encoded categorical features. A positive correlation between feature values 
and Shapley values indicates that higher feature values are, on average, associated with 
higher predicted values in the model. A positive correlation between feature values and 
actual target values would indicate linear feature-target associations irrespective of their 
representations in the model. The results are shown in Fig. 3.

Connectivity status and location visits in t0, along with in-app behaviors related to 
active use in t-1, were particularly important predictors. Connectivity status showed 
by far the greatest average SHAP value. Mobile data usage was overall associated with 
higher predictions of active use. A closer inspection of the SHAP values revealed that, 
in some cases, feature values for high mobile data usage were associated with negative 
SHAP values. This indicates that contrary to the general trend, mobile data usage some-
times decreases predictions of active use, meaning the model represents interaction 
effects or nonlinearities. The idea of interactive relationships is also reflected in another 
finding: despite its high overall impact on predicted values, the correlations between 
connectivity status and SHAP values, as well as actual target values, are lower than those 
of the behavioral predictors. This is likely the case because correlations, as opposed to 
SHAP values, only represent linear relationships.

Discussion
Interpretation of results

The results show that user engagement is highly predictable and that context-aware-
ness can substantially improve the performance of models predicting patterns of 
active versus passive use compared to models trained on behavioral histories alone, 
especially when minimal temporal histories are considered. While the baseline model 
explained 34.5% of the variation in active-passive use scores, the context-aware 
model, including all context features, explained 52.2%, amounting to a performance 
improvement of 51%. The performance improvement was even more pronounced in 
the models trained on truncated sequences, where the context-aware model scored 
73% higher than the behavioral baseline model. These findings underscore the value 
of contextualized representations of user behavior for predicting user engagement on 
social platforms. Additionally, our findings are aligned with previous research sug-
gesting that user behavior on Snapchat follows habitual patterns over time [15, 16]. 
More broadly, our findings are consistent with the notion that social sharing [48, 96] 
and media consumption [17, 40, 46, 47, 49] are habit-driven.

In line with the idea that specific behavioral outcomes are best predicted by con-
structs that match their level of analysis, we found that connectivity status (specific to 
the individual user’s device) and location (an individual user’s immediate surround-
ings) were associated with the greatest uptick in predictive performance, while less 
specific context factors operating at larger geographic scales - such as weather or 
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socio-economic context - were of little help. The small effect of weather on predictive 
performance is consistent with previous work suggesting that weather has only small 
effects on psychological states and behavioral outcomes [97].

The finding that behavioral and contextual histories from the recent past were more 
predictive than information from the distant past is plausible, considering that the 
effects of predictors captured at a more recent point in time are more direct and less 
likely to be washed out by noise. Additionally, more recent predictor states contain 
information about previous states, such that adding previous states to a model will 
only marginally improve model performance insofar as they contain non-redundant 
information. At the same time, the finding reflects a general limitation of LSTM mod-
els, which place more emphasis on more recent data points due to information decay 
[98]. The fact that the effect was more pronounced in the case of behavioral histories, 
however, speaks to the relevance of longer-term behavioral patterns, contrasted with 
more temporally bounded context effects.

The results of the model explainability analysis using SHAP values are aligned with 
the findings of the previous ablation study, indicating that connectivity status and 
location features are particularly important context factors. Mobile data usage was 
generally associated with active use. This is plausible given that people might limit 
passive use in order to save mobile data, but more importantly, people likely encoun-
ter more situations that are worth sharing when they are out and about as compared 
to when they are at home or at work, where they would typically have Wi-Fi access. 
The latter point is especially plausible given the image-based nature of Snapchat. The 
finding also ties in with previous work suggesting that social sharing is habitual [48]. 
This interpretation is aligned with the finding that locations related to outdoor/rec-
reation and travel are also associated with higher levels of active use in the present 
study. The fact that high feature values were not uniformly associated with high SHAP 

Fig. 3 Mean absolute SHAP values (panel A), distribution of individual SHAP values colored by underlying 
feature values (panel B), and correlations between feature values and SHAP values, as well as feature values 
and target values (panel C). Connectivity status, online behaviors in the previous session, location visits, and 
weather features showed the largest impact on predictions



Page 14 of 20Peters et al. Journal of Big Data          (2024) 11:110 

values is consistent with the idea that the neural network model represents interac-
tive relationships and that those interactive relationships are of particular importance 
for the prediction of user engagement.

Taken together, our research extends previous work in several ways: First, we add 
nuance to the study of user engagement by focusing on the distinction between active 
and passive use, which had not been studied through the lens of media and technology 
habits before [22–26]. Second, we use highly granular large-scale user data to explore 
the effects of a wide range of objectively captured context factors, contrasting their 
predictive contributions against each other and against behavioral features. In doing 
so, our study pushes the boundaries of both research on media and technology habits 
and research on context-aware modeling of user engagement. Finally, our study dem-
onstrates how integrating objective sensing and location-tracking can enrich behavioral 
research. By taking research out of the lab and into the real world, we glean insights 
that advance behavioral theory while also speaking to people’s naturalistic experiences 
in everyday life, thus enhancing the ecological validity and applicability of the findings.

Limitations and directions for future research

Our work has several limitations that have the potential to stimulate future research. 
First, the present study squarely follows a predictive modeling approach. This approach 
contrasts with explanatory methods, typically used in the behavioral and social sciences, 
that employ statistical inference to uncover causal relationships between variables [80–
84]. While our methodology allows us to investigate the predictive contributions across 
a range of theoretically informed feature sets based on highly granular longitudinal user 
data, it inherently prioritizes prediction at the expense of causal explanation. Recogniz-
ing this distinction, future research could build on our findings to derive more targeted 
research questions and focus on specific causal mechanisms.

Second, while we interpret the presence of recurrent predictable patterns of user 
engagement through the lens of media and technology habits, our findings also relate 
to other theoretical orientations such as ecological psychology [28–30] and person-sit-
uation interactions [31–33]. Although our research was not designed as an explicit test 
of theoretical predictions from either framework, our findings are aligned with these 
theoretical traditions. Specifically, they add to the existing literature by examining the 
predictive power of context in the setting of online social platforms and by focusing on 
the prediction of user engagement from highly granular behavioral data based on recur-
rent patterns. By offering empirical support for the existence of interactive relationships 
between user engagement and certain context features, our findings corroborate the 
main premise of person-situation interactions. However, additional research is needed 
to disentangle these relationships in a more explicit manner.

Third, while our study leverages an exceptionally granular and comprehensive feature 
set, we encountered several tradeoffs with respect to the operationalization of context. 
For instance, integrating network-related features to capture user relationships [60] 
could have enriched our analysis by offering deeper insights into the predictive utility 
of social contexts. Additionally, the location visits, a critical component of our analysis, 
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were inferred from noisy data. This limitation was compounded by our decision to use 
broad location categories in order to safeguard user privacy, potentially at the expense 
of achieving maximum predictive performance. Furthermore, past research has high-
lighted the value of incorporating self-reported measures to capture the psychological 
experience of context [34–36], a methodological approach we could not employ due 
to our reliance on objective behavioral data. Future work should continue to integrate 
objectively measured cues with self-report measures to gain deeper insights into psycho-
logical mechanisms.

Fourth, we computed active-passive use scores as the ratio of active and passive behav-
iors within a given session hour. This decision was necessary given that active and pas-
sive use in isolation are highly correlated with overall app use, rendering the prediction 
task trivial and less interesting from a theoretical perspective. Our goal was to create a 
measure that captures users’ relative tendency towards either of the usage modes. Future 
work could avoid this tradeoff by shifting the level of analysis to that of individual user 
behaviors.

Fifth, past research has sometimes treated preceding behaviors or activities as a spe-
cific type of context [34, 45]. We fundamentally agree with this perspective but decided 
to emphasize the dichotomy of spatial context and behavioral histories as the distinction 
maps more cleanly onto current approaches in user modeling, which has often relied 
exclusively on past behavior [99, 100].

Finally, our research was conducted on a single online social platform with unique 
affordances [101] and in a specific cultural context [102]. Additionally, we only included 
data from adult users, which excludes a substantial share of Snapchat’s user base. As 
Snapchat shares important features, such as the specific modalities for active and passive 
use (Chat, Stories, Spotlight, Discover) with other online social platforms, we believe it 
is likely that our findings would apply to related settings. However, the extent of general-
izability would have to be examined in future research.

Implications

Our findings indicate that active and passive use follow predictable patterns over time 
and that context-awareness can substantially improve model performance. This has 
implications for the use of predictive models and their integration into the design of 
online platforms. Being able to accurately predict user behavior through context-aware 
modeling could facilitate the dynamic allocation of computational resources to adap-
tively support different modes of user engagement. For example, knowing when an app 
user likes to consume rather than create content would enable a platform to allocate 
resources to a recommender system and preload relevant content. Similarly, knowing 
when a user is likely to actively create and share content would allow them to pre-allo-
cate resources to the camera process and load the user’s favorite filters. At the same time, 
a better understanding of the relationships between context factors and user engage-
ment could facilitate the design of features that encourage active or passive use by mak-
ing specific context factors salient to the user. For example, a system that draws users’ 
attention to the social affordances of their environment might encourage active use and 
discourage passive use in certain settings. While the present paper focuses on active and 
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passive use, psychologically informed context-aware models can be used to personalize 
a wide array of features related to users’ momentary states, including physiological (e.g., 
being hungry or tired), social (e.g., being with family, friends, or work colleagues), or 
psychological states (e.g., mood and affect). Such personalizations that take into account 
context-contingent states will ultimately improve user experience and create new oppor-
tunities for online platforms to generate revenue.

Importantly, our findings can help decision-makers navigate resource and privacy 
tradeoffs. The ablation study that was used to analyze performance as a function of the 
length of data histories shows strongly diminishing returns to longer time series, espe-
cially in excess of sequence lengths of 50 time steps. While the specific relationship is 
highly dependent on the predictive task and the model at hand, our procedure consti-
tutes a simple method to assess a model’s dependence on data histories that can easily 
be used to inform decisions in practice to preserve resources and limit privacy concerns. 
Additionally, our results show that the integration of context data can compensate for 
the truncation of behavioral histories, offering an opportunity to fade out models rely-
ing on historical data in favor of more ephemeral modeling approaches representing 
momentary user states. Accordingly, in situations where maximizing predictive accuracy 
is not an absolute imperative, it might be recommended to use short-term behavioral 
data in conjunction with easily obtainable context features, such as connectivity status, 
to build models that are privacy-preserving and cheap to run. Smaller, less computation-
ally expensive models can, in turn, unlock additional privacy benefits—for example, it 
would be possible to run models locally on a mobile device without sharing sensitive 
data.

Taken together, our findings challenge the narrative that long-term user data are 
needed in order to make accurate predictions of user engagement and provide personal-
ized services [100, 103, 104]. Instead, our results show that it is possible to trade a rel-
atively small reduction in predictive performance for a considerable reduction in data 
requirements and computational resources. Practitioners should be aware of this fact in 
order to make informed decisions and balance considerations of predictive performance, 
resources, and privacy when implementing predictive models in real-world settings.

Conclusion

In conclusion, our findings show that active and passive use follow predictable patterns 
over time and emphasize the importance of context in predicting user engagement on 
social platforms. Consistent with theories on media and technology habits, the combi-
nation of behavioral data and context information leads to a substantial increase in the 
predictive performance of user engagement. The present paper presents the first rigor-
ous large-scale assessment of the predictive power of a wide array of context factors with 
respect to active and passive use on mobile social platforms. Our findings have poten-
tial implications for managerial, engineering, and design decisions - specifically with 
respect to the dynamic allocation of computational resources to adaptively support dif-
ferent modes of user engagement, privacy-preserving modeling of user behavior, and the 
design of features that encourage active or passive use. Furthermore, our work provides 
a starting point for a broader research program investigating additional context factors, 
different types of user engagement, and underlying psychological mechanisms.
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