
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Kouris et al. Journal of Big Data           (2024) 11:95  
https://doi.org/10.1186/s40537-024-00950-5

Journal of Big Data

Text summarization based on semantic 
graphs: an abstract meaning representation 
graph‑to‑text deep learning approach
Panagiotis Kouris1*   , Georgios Alexandridis1    and Andreas Stafylopatis1 

Abstract 

Nowadays, due to the constantly growing amount of textual information, automatic 
text summarization constitutes an important research area in natural language pro-
cessing. In this work, we present a novel framework that combines semantic graph rep-
resentations along with deep learning predictions to generate abstractive summaries 
of single documents, in an effort to utilize a semantic representation of the unstruc-
tured textual content in a machine-readable, structured, and concise manner. The 
overall framework is based on a well defined methodology for performing semantic 
graph parsing, graph construction, graph transformations for machine learning models 
and deep learning predictions. The employed semantic graph representation focuses 
on using the model of abstract meaning representation. Several combinations of graph 
construction and graph transformation methods are investigated to specify the most 
efficient of them for the machine learning models. Additionally, a range of deep learn-
ing architectures is examined, including a sequence-to-sequence attentive network, 
reinforcement learning, transformer-based architectures, and pre-trained neural 
language models. In this direction, a semantic graph representation of an original 
text is extracted, and then the present framework formulates the problem as a graph-
to-summary learning problem to predict a summary of an original text. To the best 
of our knowledge, this formulation of graph-to-summary predictions in abstractive 
text summarization, without other intermediate steps in the machine learning phase, 
has not been presented in the relevant literature. Another important contribution 
is an introduction of a measure for assessing the factual consistency of the generated 
summaries in an effort to provide a qualitative evaluation. To assess the framework, 
an extensive experimental procedure is presented that uses popular datasets to evalu-
ate key aspects of the proposed approach. The obtained results exhibit promising 
performance, validating the robustness of the proposed framework.

Keywords:  Abstractive text summarization, Semantic graph, AMR graph 
summarization, Graph-to-text, Deep learning, Factual consistency

*Correspondence:   
pkouris@islab.ntua.gr

1 School of Electrical 
and Computer Engineering, 
National Technical University 
of Athens, Athens, Greece

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00950-5&domain=pdf
http://orcid.org/0000-0002-1669-8269
http://orcid.org/0000-0002-3611-8292


Page 2 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Introduction
The domain of automatic text summarization (TS) [1, 2] remains an active research field 
for more than half a century [3, 4] due to the positive perspectives, primarily in reducing 
the reading time or minimizing the processing effort of the large and constantly increas-
ing amount of textual data that is available today. Automatic TS is considered a chal-
lenging task because it aims at representing an original text in an abridged form while 
retaining the important information of the initial content. The purpose of automatic TS 
is to generate a short version of the original text that is informative and also coherent, 
covering the topics of the initial content and eliminating redundancy.

Some of the initial approaches in abstractive TS represented the original text into a 
graph and then composed a summary from the graph representation [5, 6]. These 
approaches construct summaries by merging or discarding nodes, retaining the most 
important of them, to obtain a more concise version of the original graph (i.e., a graph 
with smaller dimensionality than the original one). This graph constitutes an intermedi-
ate step that is used to obtain the final summary in textual form. As a result, the graph 
representation encodes the sequence of words of a text, with the common words among 
sentences to be represented by common nodes in the graph (i.e., nodes that are common 
for more than one sentence). In such cases, transforming in-between graph and textual 
form is a straightforward task. The drawback, however, lies within the fact that a large 
initial graph is created, which is difficult to be processed for computing the final sum-
mary. Also, these graphs do not incorporate any semantic representation other than syn-
tactic and grammatical relationships. This constitutes a weakness of these approaches, as 
they ignore the semantic aspects of a text.

To overcome the aforementioned problem, an alternative graph representation of text 
has been proposed, which incorporates semantic relations and uses a kind of subtraction 
in order to reduce the size of the original graph. Such a perspective could be achieved by 
using semantic graphs, such as the abstract meaning representation (AMR) graphs [7, 8] 
that focus on a semantic representation of a text in a concise form. AMR graphs, which 
are described in "Preliminaries for semantic graph-based representation", strive for more 
semantic representation and less syntactic or grammar structure of a sentence.

The present framework constitutes an attempt of combining machine learning and 
semantic-based techniques in the field of automatic TS. Such a combination should be 
examined because most research focuses either on machine learning approaches or on 
knowledge-based and semantic-based techniques, treating them as separate methodolo-
gies [9]. In the direction of combining aspects and characteristics of the aforementioned 
domains, some recent work has been done [10–14]. The most relevant of them, such 
as [10, 11, 13], which are based on AMR graph representation, are described in "Pre-
liminaries and related work". To further investigate such a combination, the proposed 
framework tries to utilize machine learning and semantic graph representation for con-
tributing to the domain of abstractive TS.

More specifically, the present work focuses on improving the semantic graph-based 
approaches of single-document abstractive TS, because of the positive perspectives these 
approaches present, such as semantic representation in a structured, machine-readable 
and concise version of the content. Furthermore, these methodologies detect redundant 
information and produce semantically related sentences in the summary. Recent works 



Page 3 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

in this domain utilizes AMR graphs, forming a new field [15, 16] that requires further 
research, as this aspect of utilizing semantic-based representations in abstractive TS has 
not been studied sufficiently. It should be noted that the AMR graph-based approaches 
still exhibit reduced performance when compared to deep learning-based ones [17] 
(i.e., deep learning techniques that do not employ any semantic-based representation). 
However, the semantic graph-based approaches are constantly improving, according to 
the relevant literature [11, 13, 18–22]. In this respect, the methodology described in the 
current work falls in the category of AMR graph-based approaches, as it improves the 
performance of a relevant system. In "Preliminaries and related work" that follows, we 
overview the relevant literature, outlining the differences and merits of our proposed 
approach.

Additionally, a framework based on semantic graph-to-text machine learning pre-
dictions is presented and valuable features and aspects of semantic graphs are exam-
ined, with respect to their suitability for abstractive TS. In particular, we investigate if 
a semantic graph representation of an original text, as an intermediate step, could be 
an efficient factor for estimating a summary. More specifically, the proposed approach 
constructs a summary in two steps; (i) retrieving a semantic graph of an original text, 
and (ii) using an obtained semantic graph as input to predict a summary in textual form. 
In the first step, an efficient AMR parser could be used in order to make the semantic 
graphs available for the next step. In the second step, we formulate the problem in a 
graph-to-text learning form, utilizing machine learning techniques for estimating a sum-
mary of an original text.

Within the above framework, the main contribution of this work is four-fold; (i) the 
graph-to-summary formulation of the problem of abstractive TS using deep learning 
techniques, (ii) the examination of a range of deep learning models, (iii) the investiga-
tion of semantic graph-based representation schemes and (iv) the introduction of a set 
of evaluation metrics, aiming at a qualitative evaluation in automatic TS.

To the best of our knowledge, none of the aforementioned points has been studied in 
the relevant literature so far. Graph-to-text or semantic graph-to-summary predictions 
with deep learning models (i.e., models whose input is only a graph representation and 
they predict a summary in textual form, without other intermediate steps) have yet to be 
considered in abstractive TS. However, as it is described in more detail in "Preliminaries 
and related work", some approaches have been proposed in the relevant literature that 
are based on a pipeline of converting a semantic graph of an input text into a semantic 
graph of its summary and then, the summary graph is used for obtaining the respective 
summary in textual form [18–21]. Moreover, other approaches use the input text along 
with its semantic representation to produce a summary, incurring an additional compu-
tational cost [10, 11]. In contrast, the present work introduces a semantic graph-to-text 
solution which outperforms the aforementioned approaches ("Results"), avoiding the 
additional computational cost of using the input text in the machine learning phase and 
limiting the information loss of the successive conversions within the pipeline. Although 
AMR graph-to-text generators have already been implemented [23, 24], graph-to-sum-
mary approaches for obtaining a summary from a semantic graph have not been studied 
yet in the field of abstractive TS. Additionally, we propose and examine a range of deep 
learning architectures, investigating the versatility of the methodology and the merits or 



Page 4 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

drawbacks of the different neural-based models. The deep learning approaches include 
recurrent neural networks in encoder-decoder architecture, reinforcement learning 
(RL), transformers, and pre-trained language models. Moreover, we investigate various 
semantic graph representations as input for a deep learning model, identifying the most 
efficient of them. The employed deep learning models along with the proposed semantic 
graph representations, have not been studied yet in the framework of AMR graph-based 
approaches.

Another novelty of the current work is a set of evaluation metrics proposed for auto-
matic TS. In particular, we introduce a set of metrics for assessing the factual con-
sistency of the predicted summaries, in an effort to provide a qualitative evaluation 
("Factual consistency"). More specifically, an extensive experimental procedure has 
been conducted, estimating various and significant aspects of the proposed framework, 
using two popular datasets. The experimental results and the performance comparison 
between the proposed approach and relevant works validate the efficiency of the pro-
posed methodology.

The rest of this paper is organized as follows; "Preliminaries and related work" intro-
duces the background along with the notation of the semantic graphs and provides an 
overview of the relevant literature. "The proposed framework"  presents the proposed 
framework including the components of semantic graph parsing ("Semantic graph pars-
ing"), semantic graph construction ("Semantic graph construction"), semantic graph 
transformations ("Graph transformations for machine learning") and deep learning 
prediction ("Deep learning prediction"). "Experiments" describes the experimental pro-
cedure, where the evaluation metrics are presented and the measures for assessing the 
factual consistency are introduced. "Results" presents the obtained results, which are 
discussed in "Discussion". Finally, "Conclusion" concludes this work, with some final 
remarks and future work directions.

Preliminaries and related work
Semantic graph‑based text summarization

Preliminaries for semantic graph‑based representation

Semantic graph-based representation Since the standard input in single-document TS 
are unstructured textual data, their transformation into a graph representation may be 
beneficial for handling the system input to estimate a summary. A graph-based text rep-
resentation captures the content of a text in a structured, concise and machine-reada-
ble format. In this work, as it shall be explained below, we assume semantic graphs that 
represent the unstructured input text. Firstly, we examine the conceptual graphs as a 
general formalism of semantic graphs. Secondly, we focus on a particular formalism 
of AMR that, also, constitutes a semantic graph representation, which is employed for 
evaluating our framework ("Experiments"). In the context of knowledge and semantic 
representation, and reasoning in the artificial intelligence domain [25, 26], we make an 
introduction to the semantic graphs, as our framework focuses on representing textual 
information in this form.

Conceptual graphs Conceptual graphs, which are based on first-order logic, facilitate a 
mapping either from natural language to graphs or from graphs to natural language [26, 
27]. As it is described in Definition 1, a conceptual graph CG is comprised of concept 



Page 5 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

types C, relations R and individuals I, giving semantics of natural language. The con-
cept types and individuals are represented by nodes and the relations denote the edges 
among nodes. More specifically, concept types may be abstract classes, objects or enti-
ties. It is obvious that the individuals are specific values or names that correspond to 
concept types, such as yellow may be an individual of concept type color or John may 
constitute an individual of concept type person.

Definition 1  [Conceptual Graph] A conceptual graph is a semantic mapping from a 
text T to a graph CG = {N ,E} that is comprised of a set of nodes N = C ∪ I and a set of 
edges E = R among nodes, where C denotes a set of concept types, R is a set of relations 
and I is a set of individuals.

A conceptual graph may represent the content of a text by using two notations; logic, 
or graph representation. To better illustrate this point, Example 1 represents a mapping 
of a sentence to a conceptual graph in the aforementioned two formats.

Example 1  (Conceptual Graph representation) Given the sentence “Elizabeth is going 
to Berlin by train",

(i) The conceptual graph is represented in Fig. 1, where the classes Person, DoingSome-
thing and City correspond to the specific individuals Elizabeth, Go and Berlin, respec-
tively. Also, the nodes of the graph are connected by particular relations and the class 
Train may be assumed as a sub-class of Vehicle that is a leaf of the graph, which is not 
related to an individual.

(ii) The conceptual graph in logic format may be as following:

As we can see above, in logic format, we utilize variables for denoting the entities or 
individuals.

Abstract meaning representation AMR constitutes a semantic representation language, 
which mainly captures the question who is doing what to whom in a sentence [7]. This 
is a question that may be replied easily by humans, but it is very difficult for machines 

∃p, d, c, e, g , b, v, t : instance(p, Person) ∧ instance(d, DoingSomething) ∧

instance(c, City) ∧ instance(e, Elizabeth) ∧ instance(g , Go) ∧ instance(b,

Berlin) ∧ instance(v, Vehicle) ∧ instance(t, Train) ∧ name(p, e) ∧ agent(p, d)

∧ action(d, g) ∧ transferTo(d, c) ∧ name(c, b) ∧ transferBy(d, v)∧

typeOfVehicle(v, t)

Fig. 1  The conceptual graph of the sentence “Elizabeth is going to Berlin by train” 



Page 6 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

to analyze. Moving from the analysis of the syntactic structure to the semantics of a 
sentence, AMR focuses on representing it in a particular semantic graph. More specif-
ically, AMR is a rooted, directed acyclic graph (DAG) with labelled edges and nodes, 
which represents the meaning of a sentence. AMR graphs are both machine-readable 
format and easy for people to understand. Nevertheless, AMR is closer to English than 
other languages and it is not an interlinguistic format. Moreover, the same AMR may be 
assigned to different sentences with the same meaning (e.g., the sentences “John wants 
his friend to believe him” and “John has a desire to be believed by his friend” may have 
the same AMR representation). In other words, an AMR graph may be translated into 
different sentences, all of which have the same meaning. Furthermore, AMR includes 
more logical than syntactic representation, dropping inflectional morphology for tenses, 
as well as omitting articles and punctuation.

Example 2 illustrates the usage of AMR, representing a sentence in three notations; 
logic, graph and AMR format that is based on PENMAN project [28]. An AMR graph 
includes nodes denoted by variables (e.g. a, b), which represent semantic concepts for 
entities, events, properties and states. The nodes are connected by relations forming a 
rooted DAG. AMR concepts may be English words (e.g., person), PropBank framesets 
[29] (e.g., want-01) or special keywords that include entity types (e.g., date-entity, world-
region), quantities (e.g., distance-quantity) and logical conjunctions (e.g. and). AMR 
uses relations that follow the conventions of the PropBank project (e.g., :ARG0, :ARG1, 
:ARG2). Moreover, it uses approximately 100 additional relations for quantities (e.g., 
:quant, :unit), date-entities (e.g., :day, :month, :year, :time), lists (e.g., :op1, :op2, :op3) and 
general semantic relations (e.g., :age, :cause, :compared-to, :consist-of, :domain, :loca-
tion, :name, :polarity, :topic, etc.). Also, AMR includes an inverse for each relation (e.g., 
:ARG0-0f, :location-of ). Details and guidelines about the AMR project are provided in 
[30] or in the revised version of the AMR specifications1. Finally, a set of annotated AMR 
examples of natural language sentences in the English language is available in [31].

Example 2  (AMR representation)
Given the sentence “Mary wants Jennifer to believe her”, 
(i) the AMR graph is presented in Fig. 2.
(ii) The AMR representation in logic format is:

∃w, b, p1, p2, n1, n2 : instance(w, want- 01) ∧ instance(p1, person) ∧ instance(

n1, name) ∧ instance(b, believe- 01) ∧ instance(p2, person) ∧ instance(n2,

name) ∧ ARG0(w, p1) ∧ name(p1, n1) ∧ op1(n1, “Mary") ∧ ARG1(w, b) ∧

ARG0(b, p1) ∧ ARG1(b, p2) ∧ name(p2, n2) ∧ op1(n2, “Jennifer")

1  AMR 1.2.6 Specification: https://​github.​com/​amrisi/​amr-​guide​lines/​blob/​master/​amr.​md

https://github.com/amrisi/amr-guidelines/blob/master/amr.md


Page 7 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

(iii)The AMR in text format is as follows:

This work focuses on the AMR semantic formalism, where its utilization constitutes 
a perspective that is examined in the research fields of natural language processing and 
especially in TS.

Semantic graph‑based related work

Previous research in the field of single-document TS has shown progress in utilizing 
semantic representations of text. In [32], authors propose a method that is based on con-
ceptual graphs [27], which focuses on ranking and pruning nodes in order to select the 
most important of them. Also, they use weighted conceptual graphs and semantic pat-
terns from WordNet [33, 34] and VerbNet [35] to keep coherent structures, identifying 
the particular concepts that correspond to a summary. In [36], authors employ AMR 
and other lexical resources of WordNet and PropBank [29] in order to select the most 
important concepts that generate an abstractive summary. This approach combines dis-
cursive information of rhetorical structure theory (RST) [37] and the well-known Pag-
eRank algorithm [38] to identify the most relevant concepts, composing a summary by 
using the SimpleNLG tool [39] for natural language generation. Instead of the aforemen-
tioned approaches, which use heuristic algorithms for reducing the dimensionality of an 
initial graph to compose a summary, our work employs conceptual graphs that are given 
as input to machine learning models in order to generate summaries.

Some approaches form a pipeline by using the AMR representation as an intermediate 
step, where an input text is transformed into an AMR graph which is used for estimat-
ing a summary graph that, in turn, generates the final summary in textual form [18–21]. 
More specifically, in [19], the authors propose a framework for creating an AMR graph 
of a document by combining the sub-graphs of each sentence and transforming them 

(w / want- 01

: ARG0 (p1 / person : name (n1 / name : op1 "Mary"))

: ARG1 (b / believe- 01

: ARG0 (p2 / person : name (n2 / name : op1 "Jennifer"))

: ARG1 p1))

Fig. 2  The AMR graph of the sentence “Mary wants Jennifer to believe her” 



Page 8 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

into a single graph. The approach focuses on graph-to-graph prediction, formulating this 
problem with integer linear programming along with supervised learning for parameter 
estimation in order to predict the summary graph. This approach does not include any 
AMR-to-text generation of the summary in textual form. In a similar approach [18], the 
authors propose a pipeline for selecting the most important sentences of a text, extract-
ing an AMR sub-graph for each selected sentence. Moreover, in [20], the authors pro-
pose an algorithm that extracts a semantic graph of a document by using a co-reference 
resolution to merge the sub-graphs of the sentences. Then, a summary graph is created 
by finding the most important relations between nodes, capturing the surrounding 
information of each path in the graph. Furthermore, in [21], a co-reference resolution 
is performed before retrieving the AMR graphs of the sentences. Also, an algorithm 
for merging the AMR graphs is proposed to form the summary graph. To generate the 
summary, the last three approaches described above, [18, 20] and [21], use an available 
AMR-to-text generator [23, 24]. All of the aforementioned approaches employ a series 
of transformations; from text to text graph, from text graph to summary graph, and 
from summary graph to summary, increasing the overall computational load. Also, these 
transformations may incur a significant information loss between each step. In contrast 
to the pipeline techniques, the proposed solution in this work utilizes the benefits of a 
concise semantic representation of an original text, as the above approaches do in the 
first pipeline step, to generate the summary in textual form directly from a conceptual 
graph, without any other transformation. In particular, our approach copes with the 
problem of graph-to-summary predictions, avoiding further transformations that may 
lead to a reduced performance.

Since AMR graph construction and transformations are required, in [22], the authors 
present an analysis and methods of constructing AMR graphs for summarization. The 
authors examine merge-based strategies and the performance of content selection meth-
ods. Also, they propose a method of merging the nodes by combining co-reference reso-
lution with concept merging. In a similar direction [40], authors propose an approach 
for merging AMR sentence graphs into a single document graph, utilizing named enti-
ties and pronominal nodes. In this work, in the case of multi-sentence document sum-
marization, we examine particular techniques of merging the semantic graphs of the 
sentences of a document in order to obtain an overall document graph.

Semantic graph‑based machine learning text summarization

Preliminaries for semantic graph‑based machine learning

Machine learning models have been developed for generating summaries of text [41]. 
More specifically, such models predict an output sequence of tokens Y ′ = (y′1, y

′
2, ...) 

(the summary), given an input sequence of tokens X = (x1, x2, ...) (the candidate text 
for summarization). In the case of combining semantic graph-based representation 
with machine learning predictions, a typical procedure is as follows; given an input 
sequence of tokens X = (x1, x2, ...) (i.e., an input text) a semantic graph representation 
G = (g1, g2, ...) is obtained (representing the original text). Then a deep learning model, 
which is trained on semantic graph-summary pairs, is used for predicting a sequence 
of tokens Y ′ = (y′1, y

′
2, ...) that corresponds to a summary. An overview of the relevant 

literature about semantic graph-based machine learning approaches follows next. The 



Page 9 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

particular methodology, used in the current work, that combines semantic representa-
tion with deep learning predictions is introduced in "The proposed framework", where 
the proposed framework is presented. Additionally, the deep learning models employed 
to generate a summary of a given semantic graph, are described in detail in "Deep learn-
ing prediction".

Semantic graph‑based machine learning related work

In the area of combining semantic representation with machine learning predictions, 
which constitutes the field of the present work, authors in [10] extend the attention-
based neural approach of [42] for abstractive TS, which is used as a baseline model, 
by incorporating an AMR encoder based on a tree-LSTM architecture [43]. In this 
approach, a two-step training scheme is applied. In the first step, the baseline model is 
trained using text-summary pairs, and in the second phase, the obtained AMR graphs 
of text are used for further training and adapting the parameters of the employed AMR 
encoder, which improves the performance of the initial model. This approach combines 
semantic and syntactic aspects of the original text, improving the generated summaries. 
In [11], the authors propose an approach to guide the natural language generation pro-
cess using particular information from an original text, in order to generate its summary 
from its AMR graph. The approach is based on a standard sequence-to-sequence model 
[44] to estimate a summary of an AMR graph. More precisely, information from an orig-
inal text that does not exist in an AMR graph is utilized so as to improve the quality 
of a summary. Additionally, in [13], authors propose an encoder-decoder architecture 
that takes as input an original text along with its semantic graph to predict a summary. 
The aforementioned approaches are in line with our work because they are based on 
machine learning predictions to estimate a summary based on the AMR representation 
of an original text. In this direction, our approach examines a range of machine learn-
ing models, including sequence-to-sequence learning, reinforcement learning (RL), and 
transformers, in an effort to further improve the produced summaries, as explained. 
Finally, we note that in contrast to [11] and [13], our deep learning models receive as 
input only a graph representation of an original text (i.e. the source text is not required 
in the machine learning process) to generate a summary.

The proposed framework
The proposed framework is illustrated in Fig. 3. The input is comprised of a single-doc-
ument text, while the output is a summary of the original text. Its main components are 
four, starting with semantic graph parsing, whose purpose is to retrieve a conceptual 
graph for each sentence of the original text. The set of semantic graphs is used in the 
second component for constructing a graph of the overall text. The third component 
transforms the text graph into an appropriate form for using in machine learning predic-
tions. The last step includes machine learning predictions, where a deep learning model, 
having been trained on a corpus of graph-summary pairs, predicts a summary for a new 
input that has been given. In this section, we introduce the task of semantic graph pars-
ing, define the semantic graph construction and graph transformation processes and 
present the phase of deep learning prediction.



Page 10 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Semantic graph parsing

According to the task of semantic graph parsing, given a sentence S = (w1, w2, ... wn) , 
this task aims at extracting a semantic representation of this sentence to a graph 
G = (N ,E) , where N denotes a set of concepts that correspond to the nodes of the graph 
and E is a set of edges among the nodes. Such a graph may be represented by a set of 
triplets G = {(u1,u2, e12), ..., (ui,uj , eij)} , where ui ∈ N  and uj ∈ N  represent semantic 
nodes and eij ∈ E denotes an edge between two nodes ui and uj . Essentially, the process 
of semantic graph parsing is based on a function ( fp ) that performs a mapping between a 
text (T) and its particular graph ( fp : T → G).

To demonstrate the process of semantic graph parsing, we assume that we have a text 
T that includes a sequence of sentences T = (S1, S2, ..., Sk) , where each sentence is 
comprised of a sequence of words Si = (w1, w2, ..., wn) . The process aims at extracting 
a semantic graph for each sentence of the text. Therefore, given a sequence of sentences 
of a text, the process returns a sequence of semantic graphs GT = (G1, G2, ..., Gn) . This 
step of graph parsing retrieves a sequence of semantic graphs for each text that is given 
to the next component of the framework, which constructs a particular graph for each 
text, as we explain in detail below.

To represent a text to a semantic graph, we adopt the semantic formalism of AMR 
graphs ("Preliminaries for semantic graph-based representation"). For performing 
AMR parsing, several parsers are available to be used [23, 24, 45, 46]. Therefore, in the 
experimental procedure that is conducted to evaluate the present framework, we use an 
already developed AMR parser as it is described in "Experiments".

Semantic graph construction

The process of parsing, which has been discussed above, aims at retrieving a semantic 
graph for each sentence of a text. Having these sub-graphs of a text, we examine two 
strategies for constructing the semantic graph of the text. In the first strategy, we assume 
the semantic graph as a sequence of the sub-graphs, and in the second strategy, we 
assume the semantic graph as a combination of the sub-graphs.

Semantic graph as a sequence of sub‑graphs

In this strategy, the overall graph of a text GT is comprised of a tuple of the sequence of 
sub-graphs Gi of a text so that GT = (G1, G2, ..., Gn) , where Gi with i ∈ (1, 2, ... n) repre-
sents the semantic sub-graph that correspond to sentence Si of the text. The sub-graphs 

Fig. 3  The workflow of the proposed framework



Page 11 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

remain independent of each other (i.e., individual graphs without any edge among their 
nodes) and all together represent the overall text in a sequence of sub-graphs.

Semantic graph as a combination of sub‑graphs

According to this strategy, we combine the sub-graphs, which represent the sentences 
of a text, in order to construct a rooted semantic graph of this text. This strategy 
achieves compression of the content reducing or eliminating the redundancy before 
estimating and producing a summary in text form, utilizing machine learning predic-
tions. We could express the resulting combined graph as a union of the sub-graphs as 
follows GC = G1 ∪ G2 ∪ ... ∪ Gn.

More specifically, to combine two or more semantic sub-graphs, we follow a simi-
lar approach of [19] and in addition, we utilize the resource description framework 
(RDF) [47] as a graph representation to design the Algorithm 1. This Algorithm pro-
vides a systematic way of achieving a combination of sub-graphs to produce a seman-
tic graph of an overall text with multi-sentences.

Algorithm 1  Combination of sub-graphs of a multi-sentence text to produce a semantic graph

In particular, Algorithm  1 takes as input a tuple of the individual semantic sub-
graphs of a text ( GT = (G1, G2, ..., Gn) , where Gi is a sub-graph that represent the 
sentence Si of a text). The procedure starts by initializing the set of the combined RDF 
triplets ( RDFC ) to an empty set (line 1). Then, the algorithm, in the loop of lines 2-6, 
examines the sub-graphs in GT  by adding a root node to each sub-graph (line 3) and 
retrieving the RDF triplets for each sub-graph Gi assigning them to the set RDFi (line 
4), which represent the set of RDF triplets of the current sub-graph. The combined set 
of RDF triplets, which is denoted by RDFC , results from the union of the current sets 
RDFC and RDFi (line 5). In line 7, the algorithm constructs the combined semantic 
graph GC by using the RDF triplets of the set RDFC . Finally, the algorithm returns the 
overall semantic graph GC as a combination of sub-graphs for an input text (e.g., in 
AMR format).

It should be clarified that the obtained semantic sub-graphs of a text may not 
include any connection among them (i.e., without any common node due to a lack 
of overlapping information among sentences). For this reason, we add a root node to 
each sub-graph which, also, constitutes the root node of the overall combined seman-
tic graph that is created, as it is illustrated in Example 3 bellow.

Example 3, which follows, further illustrates the methodology of constructing a 
semantic graph. In this example, we suppose that we have a text with two sentences 
retrieving from them a semantic graph that represents the content of this text.



Page 12 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Example 3  (Semantic graph as a combination of sub-graphs)
Given the sentences S1 and S2 of a text: 

S1:	� I met James, who was going to work.
S2:	� James was driving a car.

The AMR graphs of the sentences S1 and S2 are presented in Fig. 4a and b, respectively.
According to algorithm 1, the RDF triplets of the first sentence ( RDFS1 ) and the second 

sentence ( RDFS2 ) are as follows.

The combined set of RDF triplets ( RDFC ) is provided by the union of both sets, RDFS1 
and RDFS2 , as follows.

RDFS1 ={(root, : ROOT , meet − 03),

(meet − 03, : ARG0, i),

(meet − 03, : ARG1,work − 01),

(meet − 03, : ARG1, person),

(work − 01, : ARG0, i),

(work − 01, : ARG0, person),

(person, : name, name),

(name, : op1, ′′James′′)}

RDFS2 =
{

(root, : ROOT , drive − 01),

(drive − 01, : ARG0, person),

(drive − 01, : ARG1, car),

(person, : name, name),

(name, : op1, ′′James′′)
}

Fig. 4  a The AMR graph of the sentence “I met James, who was going to work", b the AMR graph of the 
sentence “James was driving his car", and c the combined AMR graph of the sentences “I met James, who was 
going to work" and “James was driving a car" 



Page 13 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

According to the combined RDF triplets ( RDFC ), the semantic graph of these two sen-
tences is illustrated in Fig. 4c.

The obtained semantic graphs, in turn, should be transformed into an appropri-
ate format to be given as input to a machine learning model. In the next section, we 
present the methods of transforming the semantic graphs for using them in the deep 
learning phase, where a model is trained on semantic graph-summary pairs to pre-
dict a summary of a new instance.

Graph transformations for machine learning

The machine learning models that we examine in this approach are based mainly on 
sequence-to-sequence (seq2seq) architectures. These architectures take as input a 
sequence of tokens that represent a semantic graph of an input text to predict, also, a 
sequence of tokens forming a summary. Therefore, we should transform the semantic 
graph representation of an input text into a sequence of tokens (i.e., tokens that describe 
a graph). For this purpose, due to the fact that we adopt the AMR formalism to represent 
semantic graphs, we use the AMR graphs in text format because this representation is 
transformed into a sequence of tokens. In this direction, we examine some alternatives 
for representing a semantic graph to a sequence of tokens that are as follows.

Original semantic graph: This is a linearized version of an AMR graph in text format. 
To illustrate, the text format of the AMR graph of Example 2 is linearized to a sequence 
of tokens as follows.

Original semantic graph without sense numbers: In this representation, we have 
removed the sense numbers of the AMR concepts in order to reduce the size of the 
vocabulary (e.g., want-01 is changed to want). For example, the AMR graph of Example 
2 is linearized as follows.

Simplified semantic graph with sense numbers: In this linearized version, we remove 
the variables of the concepts and the symbol “/" after a variable (e.g., b1 / person is 
transformed to person) or replace the variables with the respective concepts (e.g., b1 is 
replaced by person) as well as the first and the last brackets are removed. This transfor-
mation reduces the length of the linearized graph representation. For instance, the AMR 
graph of Example 2 is transformed as follows.

RDFC = RDFS1 ∪ RDFS2 = {(root, : ROOT , meet- 03), (root, : ROOT , drive- 01),

(meet- 03, : ARG0, i), (meet- 03, : ARG1, work- 01), (meet- 03, : ARG1, person),

(work- 01, : ARG0, i), (work- 01, : ARG0, person), (person, : name, name),

(name, : op1, “James"), (drive- 01, : ARG0, person), (drive- 01, : ARG1, car)}

( a / want- 01 : ARG0 ( b1 / person : name ( n1 / name : op1 “Mary" ) ) : ARG1

( c /believe- 01 : ARG0 ( b2 / person : name ( n2 / name : op1 “Jennifer" ) )

: ARG1 b1 ) )

( a / want : ARG0 ( b1 / person : name ( n1 / name : op1 “Mary" ) ) : ARG1 ( c

/ believe : ARG0 ( b2 / person : name ( n2 / name : op1 “Jennifer" ) ) : ARG1

b1 ) )



Page 14 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Simplified semantic graph without sense numbers: In addition to the previous represen-
tation, we remove the sense numbers changing the linearized AMR graph of the exam-
ple 2 as follows.

The simplified versions of the above alternatives provide a concise representation that 
leads to a compression of data, reducing the computational load of the overall approach. 
The deletion of sense numbers in AMR representation leads to a decreasing size of the 
vocabulary that also reduces the search space of the machine learning predictions. The 
effect of each AMR representation is examined in the experimental procedure.

In the case of a multi-sentence text that correspond to a multi-graph representation, 
the linearized version of the semantic graph is composed of a sequence of linearized 
sub-graphs that are separated by a predefined symbol or token (e.g., [linearized AMR 
of sentence 1] [EOG] [linearized AMR of sentence 2],...,[EOG] [linearized AMR of sen-
tence n], where [EOG] denotes the end of a graph or sub-graph), following the graph as 
sequence of sub-graphs construction method mentioned above. On the other hand, in 
the case of combined multi sub-graphs to obtain the semantic graph of a text, the root 
node of an obtained graph (which mentioned above in "Semantic graph as a combina-
tion of sub-graphs") is used for extracting the paths of a graph (e.g., using the DFS algo-
rithm) that forms the linearized version of the semantic graph. Then, the root node is 
removed from the linearized version of the semantic graph because this additional node 
(i.e., the node that has been added to represent the root of a graph) does not convey any 
useful information and also this burdens the machine learning models with additional 
computational cost.

Deep learning prediction

Graph to text generation

The proposed framework is based on a graph-to-text generation process, as it obtains 
a semantic graph representation for each text to generate a summary. As it has been 
explained above, after applying semantic graph parsing ("Semantic graph parsing"), 
semantic graph construction of an original text ("Semantic graph construction") and 
graph transformation ("Graph transformations for machine learning"), the semantic rep-
resentation of the initial text corresponds to a linearized representation of the semantic 
graph. A linearized semantic graph constitutes a sequence of tokens (out of a particular 
set of tokens) that represents an obtained semantic graph. For example, the linearized 
versions of the semantic graph of Fig.  2 (Example 2) have been presented in "Graph 
transformations for machine learning" for each graph transformation method. Then, a 
sequence of tokens that represents a semantic graph (i.e., a semantic graph represen-
tation) is given as input to a machine learning model to predict a sequence of tokens 
that correspond to the generated summary. The particular steps of obtaining a semantic 
graph representation of an original text have been explained in detail above ("Semantic 

want- 01 : ARG0 ( person : name ( name : op1 "Mary" ) ) : ARG1 ( believe- 01

: ARG0 (person : name ( name : op1 "Jennifer" ) ) : ARG1 person

want : ARG0 ( person : name ( name : op1 "Mary" ) ) : ARG1 ( believe : ARG0

( person : name ( name : op1 "Jennifer" ) ) : ARG1 person



Page 15 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

graph parsing", "Semantic graph construction"  and "Graph transformations for machine 
learning"). The employed deep learning models and the process of deep learning predic-
tions are described in detail in this section ("Deep learning prediction") below.

It should be noted that the process of converting an original text to its semantic graph 
representation may lead to information loss. In the case of AMR graph parsing, this issue 
has been studied in the literature [23, 24, 45, 46] in an attempt to specify the accuracy of 
semantic graph parsing. In our case, we focus on evaluating the generated summaries 
because this is a TS framework. Also, it is not possible to examine directly the accuracy 
of the semantic graph representation due to the lack of usage examples that contain ref-
erence semantic graphs for the employed and widely used text summarization datasets. 
The experimental results along with a comparison to other similar methodologies based 
on graph-to-summary generation, are presented and discussed in "Results" and "Discus-
sion", respectively.

The computational load of the proposed framework depends on its individual com-
ponents. Assuming that we have extracted an AMR graph from the initial text, the 
proposed framework performs semantic graph construction, graph transformation 
and machine learning inference. The computational complexity of the graph construc-
tion process depends on the particular methodology that we use. In the worst case of 
using a semantic graph as a combination of sub-graphs ("Semantic graph as a combina-
tion of sub-graphs"), a task performed by Algorithm  1, the computational complexity 
is O(k · n · log n) , where k represents the number of the sub-graphs and n the number 
of examined RDF triplets (node-edge-node) of the semantic graph. Since k << n , the 
computational complexity of the algorithm is assumed to be O(n · log n) [48], as the 
algorithm combines each set of RDF triplets (node-edge-node) of a sub-graph with the 
remaining set of RDF triplets. Although the computational complexity of the above-
mentioned case is equal to O(n · log n) , in practice, the process is performed in almost 
negligible time because the number of n is limited to a few decades or few hundreds, 
according to the length of the text. The same conclusion is valid for the rest of the com-
putational processes (i.e. graph transformation and machine learning inference), as the 
particular algorithms are executed on human-readable texts, which have a limited length 
of textual content.

Semantic graph‑based machine learning phase

Given a semantic graph in a particular format as it has been explained in "Graph trans-
formations for machine learning", the machine learning phase of the proposed frame-
work is performed in two steps. Firstly, the tokens of the training set are represented in a 
continuous vector space, by using either context-independent (e.g. word2vec, glove) [49] 
or context-dependent (e.g., ELMO, BERT) [50] embeddings. Then, the retrieved vec-
tors are provided as input to a deep learning model. In the second step, a deep learning 
model is trained to predict a summary of an original text ("Deep learning models"). It is 
noted that during the phase of training of a machine learning model, the vectors of word 
representation are not assumed as fixed vectors but they may be further adapted accord-
ing to the employed usage examples of the training set.



Page 16 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Word representation
The context-independent word representation techniques map each token to a vector 

of real values of a dimensionality D. These vectors are known as word embeddings [49, 
51]. The main advantage of word embeddings is that they retain the semantic relation-
ship between words (i.e., words with similar meanings are placed close to each other in 
the embedding vector space) that is in line with the proposed framework. However, a 
drawback of this representation is that each word is represented by a single global vec-
tor ignoring its context (i.e., the same vector is assigned to a word without taking into 
account its meaning in a text).

On the other hand, a context-dependent word representation, which is also known 
as contextual embeddings, maps each word to a vector-based representation according 
to its context [50]. Therefore, contextual embeddings capture syntactic and semantic 
properties of words (or sub-words) that are based on a sequence of words that include 
the target word. In several tasks of natural language processing (e.g., sentiment analy-
sis, question answering, machine translation, TS, etc.), contextual embeddings that are 
based on pre-trained models on large-scale corpora achieve state-of-the-art perfor-
mance [52].

The proposed framework makes use of both, non-contextual and contextual embed-
dings in the phase of training machine learning models ("Deep learning models"), where 
the tokens in graph-summary pairs are mapped to their particular vectors. The frame-
work may employ any word embedding methodology provided that the vectors retain 
the semantic relationships of words in the vector space. In the experimental procedure 
of this work (“Experiments”), we make use of Word2Vec [53, 54] and BERT model [55] 
for non-context and contextual embeddings, respectively, according to the employed 
deep learning models that are presented below.

To obtain non-contextual embeddings, we train a particular model (e.g., word2vec) 
from scratch on the usage examples of an employed training set (e.g., Gigaword) that 
contains semantic graph-summary pairs. A semantic graph is represented by a sequence 
of tokens according to the employed linearized graph representation ("Graph transfor-
mations for machine learning") and a summary, which is in textual form and also rep-
resented by a sequence of tokens. Both of the aforementioned sequences of tokens are 
concatenated to create a usage example for training a word embedding model. The 
sequence of tokens that represents a semantic graph of the original text contains words 
that are common with the vocabulary of summaries (e.g., boy, train, person, etc.). The 
vectors of these words are obtained by using the aforementioned pairs of the seman-
tic graph - summary in the phase of training the model of word embeddings. Also, the 
semantic graphs contain words that carry their senses (e.g., want-01, say-01, etc.) and 
keywords for denoting the relations (e.g., :ARG0, :ARG1, :name, etc.), both of them 
appeared only on the semantic graph of the original text. Therefore, the senses and the 
relations are represented by vectors that are obtained by using only the semantic graphs 
of the original texts in training a model of word embeddings. It should be noted that the 
obtained word embeddings should be further adapted during training end-to-end a deep 
learning model ("Deep learning models") for estimating a summary. Also, we may omit 
this step of training word embeddings by initializing randomly the vector of each token 
that will be adapted accordingly during the phase of training a model for automatic 



Page 17 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

TS. However, having trained word embeddings, the process of training a model, which 
learns to predict summaries, is accelerated.

For the contextual embeddings, we make use of the BERT (Bidirectional Encoder Rep-
resentations from Transformers) model [55], which uses sub-word embeddings (i.e., a 
word may be split into sub-words according to the vocabulary of the pre-trained model). 
To incorporate the keywords that denote the relations of the semantic graphs to the pre-
trained model, we add these tokens to the vocabulary of the pre-trained model as tokens 
that are never split into sub-words. The vectors of these tokes are initialized randomly 
and adapted accordingly during training a particular deep learning model ("Deep learn-
ing models").

Deep learning models

Given a sequence of elements of a semantic graph G = (g1, g2, ...) that represents an 
original text, a deep learning model, which is trained on semantic graph-summary pairs, 
is used for predicting a sequence of tokens Y ′ = (y′1, y

′
2, ...) that corresponds to a sum-

mary. For this purpose, we examine five deep learning models; (i) an attentive sequence 
to sequence with pointer-generator, (ii) a reinforcement learning (iii) a transformer, (iv) 
a transformer with contextual embeddings, and (v) a pre-trained encoder transformer. 
These architectures of neural networks are described in detail below.

Attentive sequence to sequence with pointer generator Figure  5 illustrates an 
encoder-decoder deep learning architecture with an attention mechanism, where the 
encoder takes the embeddings of a semantic graph representation, and the decoder 
learns to predict the respective summary in text format. This network is extended 
to incorporate a pointer generator [56] and a coverage mechanism as we describe in 
detail below.

Fig. 5  The attentive sequence to sequence deep learning model



Page 18 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Embedding layer: The embedding layer receives an element from the source 
semantic graph, assigning to it a vector of the used embedding space and subse-
quently forwards it to the next layer of the encoder. The embedding vectors may be 
available in training phase and they are learnable during training the model, as we 
have explained in "Graph to text generation" above.

Bi-directional LSTM layer: The second layer of the model consists of one or 
more bi-directional LSTM units [57, 58], which receive the embedding vectors of a 
sequence of semantic graph elements G = (g1, g2, . . . , gn) (one vector for each time 
step) in forward and reverse order (as it implements a bi-directional structure), pro-
ducing a hidden state Ht = bi_lstm(gt ,Ht−1) at their output. According to Equation 1, 
this hidden state is formed by the concatenation of the hidden state vectors ( 

−→
ht  and 

←−
ht  ) of both directions of the bi-directional LSTM.

Attention Layer: The encoder is equipped with an attention mechanism [56, 59], which 
enhances the accuracy of the predictions by focusing on relevant words of the input 
semantic graph. Since there are English words among the elements of a semantic graph, 
as we have already explained in "Preliminaries for semantic graph-based representation", 
and only these words may be presented in the summary (i.e., special keywords such as 
relations do not appear in summary), the attention mechanism focuses on these words 
that are possible to appear in the summary. This mechanism computes a context vector 
ct , as a weighted sum of the encoder hidden states Ht , according to Equation 2.

where ati is the weight of each time step t of the encoder’s state Hi , et,i indicating the 
degree of fitting the output of step t with the input around the word i, and st−1 is the 
previous state of the encoder. Vi, Wh and Ws are network weights and bi represents bias; 
these parameters are adapted during training.

LSTM layer (decoder): The decoder is comprised of unidirectional LSTM units. Their 
purpose is to predict the next word yt in the summary, based on their hidden state hd,t at 
time t, the context vector ct and the previous hidden state hd,t−1 of the decoder. During 
training, the target sequence of word vectors Y = (y1, y2, . . . , ym) is also made available 
to the decoder (one-by-one word embedding of a reference summary, at each time step 
t) and the decoder learns to predict the next one, shaping the final summary.

Softmax layer: The softmax layer is used for generating a probability distribution of 
the next word over the set of candidate words. In particular, at each time step t, the soft-
max layer computes the probability of each candidate word yi of the vocabulary Y for a 
predicted summary, according to Equation 3.

(1)

−→
ht = lstm(gi,

−−→
ht−1), gi ∈ (g1, g2, ..., gn−1, gn)

←−
ht = lstm(gj ,

←−−
ht−1), gj ∈ (gn, gn−1 , . . . , g2, g1)

Ht = [
−→
ht ;

←−
ht ]

(2)
ct =

|G|
∑

i=1

at,i ·Hi

at,i = softmax(et,i)

et,i = Vi · tanh(Wh ·Hi +Ws · st−1 + bi)



Page 19 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

where G, yt−1 and ht are the input semantic graph, the previous estimated word, and the 
decoder hidden state, respectively. The parameters w and b correspond to the weights 
and bias that are adapted during the learning process. The sum of the probabilities in the 
set of candidate words is equal to one (Equation 4).

Pointer-generator: The above described network is also equipped with a Pointer-gen-
erator [56], which allows out-of-vocabulary (OOV) words to be copied from the source 
to the summary. This network generates words by either sampling them from a fixed 
vocabulary of the training set or from the words that appear in the source graph. There-
fore, the vocabulary is extended to include OOV words that may be appeared in the 
source graph, as OOV words can be assumed only the English words that are appeared 
in a semantic graph. The special keywords that constitute elements of a semantic graph 
can not be considered as new words because they constitute predefined tokens and as a 
result, the pointer-generator does not take them into account as they never appear on 
the output. In particular, at each time step t, the model samples a word either from the 
vocabulary distribution of the training set or from the attention distribution of the cur-
rent usage example (the attention distribution is based on the tokens of the original text, 
some of which may not be included in the vocabulary of the training set as OOV words). 
The probability distribution of the generator is computed by the Equation 5.

where σ denotes the sigmoid function, ct is the context vector as calculated by the atten-
tion mechanism (Equation  2), st is the decoder state and gt is the input vector. The 
weights wh,ws,wg are adapted during training and bp is the bias of the pointer generator. 
The probability Pt(i) of the word i appearing in step t in the estimated summary is cal-
culated according to Equation 6, which gives the probability distribution of the extended 
vocabulary.

where Pv(i) is the probability of presenting a word i to the output sequence. Pv is the 
probability distribution of words of the fixed vocabulary of the training set as calculated 
from the softmax layer (Equation  3). The parameter ai,t represents the weight of the 
word i in time step t, as calculated by the attention mechanism. If the word i is a OOV 
word, then PV (i) = 0 . Otherwise, if a word does not appear in the input graph, then 
ai,t = 0 . In this way, the network estimates the probability distribution on the extended 
vocabulary or on the fixed vocabulary in case there are not any OOV words.

Coverage mechanism: In addition, the model incorporates a coverage mechanism 
to avoid repetition of the same words at the output, adapting the solution suggested 
in [60]. For this purpose, a coverage vector covt is calculated at each time-step t of the 

(3)pt(yi|G, yt−1) =
eh

T
i wi+bi

∑k
j=1 e

hTt wj+bj

(4)
k

∑

i=1

pt(yi|G, yt−1) = 1

(5)Pg ,t = σ(wc · ct + ws · st + wg · gt + bp)

(6)Pt(i) = Pg ,t · Pv(i)+ (1− Pg ,t) · ai,t



Page 20 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

recurrent neural network, which is equal to the sum of the weights of the attention 
mechanism according to Equation 7 for all previous steps t ′.

The vector covt may be assumed as a coverage distribution of the words in the input 
text. This vector indicates how well these words are covered by the attention mecha-
nism. It should be noted that in the first time-step, where no element of the input graph 
has been examined, cov0 = 0 . The cover vector is given as an additional input to the 
attention mechanism by modifying the Equation2 of the et,i presented above according 
to Equation 8.

where wcov is a parameter that is adapted during the training process. This modification 
prevents the attention mechanism from paying attention to the same words, avoiding 
the repetition of the same words in the output.

The deep learning model is trained end-to-end using supervised learning on a train-
ing set of semantic graph-summary pairs, using stochastic gradient descent and mini-
mizing the negative log-likelihood of the target word yt (Equation 9), which is used as 
loss function

where P(yt |G) is the likelihood of the target word at time-step t ∈ [1, 2, . . . , T ] of T 
words in the summary, given an input semantic graph G.

Additionally, the technique of dropout is also used [61, 62], which randomly drops 
connections of units from the neural network during training in order to avoid over-
fitting. Moreover, to predict an optimal summary we use the beam search algorithm [63, 
64], where, at each time step of the decoder, it retains the w (beam-width) candidate 
tokens of the highest log-probability to determine the best output summary according to 
the beam search algorithm.

Reinforcement-learning model In contrast to the above described model (atten-
tive sequence to sequence with pointer generator model) that minimizes a loss func-
tion, which does not constitute a particular measure for evaluating TS, a reinforcement 

(7)covt =

t−1
∑

t ′=0

at ′

(8)et,i = tanh(wh ·Hi + ws · st−1 + wcov · covt + b)

(9)Loss = −

T
∑

t=1

logP(yt |G)

Fig. 6  Reinforcement-learning model



Page 21 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

learning (RL) approach learns a policy that maximizes a specific metric, such as one of 
the Rouge measures. The employed RL model extends a seq2seq network, according to 
the approach of [65].

More specifically, in a RL architecture, an encoder-decoder neural network (e.g., the 
attentive sequence to sequence with pointer generator model described above) is used 
as an agent that interacts with a given environment aiming at maximizing a reward. 
Figure 6 depicts the basic elements of a RL model for automatic TS. The parameters of 
the network ( θ ) define a policy, which determines the actions ( at ) for each time-step t 
to estimate a sequence of words that constitutes a summary of a given semantic graph. 
After each action, the agent (the deep learning model) receives a reward rt in order to 
update the parameters θ . The reward is calculated by comparing the predicted summary 
with the reference summary according to a specific metric.

The process of training uses the self-critical sequence training algorithm [66]. Accord-
ing to this algorithm, the machine learning model produces two sequences of words in 
each iteration of training. The first sequence of words Ys = (ys,1, ys,2, . . . , ys,t , . . . , ys,T ) 
retrieved by sampling from the probability distribution p(ys,t |y1, . . . , yt−1,G) of the 
model, according to the probabilities of the softmax layer, with respect to an input 
semantic graph G. Where ys,t represents a sampling word in the time-step t. The second 
sequence of words Ŷ = (ŷ1, ŷ2, . . . , ŷt , . . . , ŷT ) constitutes a predicted output sequence 
(i.e., as it is predicted in the phase of testing using the beam search algorithm).

During training, the recurrent neural network (attentive sequence to sequence with 
pointer generator), which is used as an agent, estimates the sampling sequence Ys of the 
output words given the previous word of the target sequence at each time step t. In infer-
ence, on the other hand, the model takes into account the previously estimated words to 
generated the predicted sequence Ŷ  , without knowing the previous words of the target 
sequence. This means that the target sequence of words is known to the model during 
training but not in inference. As a result, the sampling sequence is more accurate than 
the estimated one. This constitutes a training bias problem, which is known as exposure 
bias. To mitigate its effect, the model aims at maximizing the reward function by com-
puting both the reward of the sampling sequence r(Ŷ ) and the reward of the predicted 
sequence r(Ys) during training.

More specifically, following the approach of [66], the RL model aims at maximizing 
the reward function of the sampling sequence by minimizing the error function of 
Equation 10.

where r(Ŷ ) is subtracted from r(Ys) in order to reduce the variance of the reward of the 
sampling sequence. It is obvious that minimizing LRL corresponds to a maximization 
of the conditional probability p(ys,t |ys,1, ys,2, . . . , ys,t−1; θ ,G) of the sampling sequence. 
Therefore, the reward the model receives increases during training (more details about 
this model are provided in [65, 66]).

(10)LRL = −(r(Ys)− r(Ŷ ))

T
∑

i=1

log(p(ys,t |ys,1, ys,2, . . . , ys,t−1; θ ,G))



Page 22 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Transformer-based models Since the models that are based on transformers [67–
71] are considered as the state-of-the-art approaches in natural language processing 
[72], we employ such architectures in an effort to examine the effectiveness of trans-
former-based models in the proposed framework. In this direction, we are based on 
the methodology of [70] employing three transformer-based approaches; (i) a trans-
former network (TR), (ii) a transformer network with contextual embeddings (TRCE) 
and (iii) a pre-trained encoder transformer model (PETR).

TR: The first model is a transformer network of an encoder-decoder architecture 
with self-attention layers, as it is described in detail in [67]. This model utilizes paral-
lelism of computations to identify dependencies between input and output, avoiding 
the high computational cost of a recurrent or convolutional network. The TR model 
is trained from scratch on the training set, adapting its weights without using pre-
trained embeddings (e.g., word2vec, glove, BERT, etc.).

TRCE: The second alternative is an identical model to the aforementioned TR 
model, which uses contextual embeddings (e.g., BERT) in order to initialize the 
embedding vectors that are given as input to the network in the training process. This 
alternative aims at accelerating the convergence time of the machine learning model. 
Also, the proper initialization of the embedding vectors may lead to an improvement 
in the accuracy of the model predictions. The aforementioned assumptions are inves-
tigated in the experiments ("Experiments").

PETR: The third model employs a pre-trained BERT [55] encoder with a trans-
former decoder, as it is described in [70]. This model, during the process of training, 
performs a fine-tuning of the weights of the pre-trained encoder and also, it adapts 
the weights of the decoder which is trained from scratch. Currently, the pre-trained 
language models have dominated the field of natural language processing. The spe-
cific model employed in this work (BERT), is a language representation model, which 
has been trained on a large amount of textual data (i.e., BookCorpus consists of 800 
million words [73] and the English Wikipedia contains about 2.5 billion words). The 
BERT model outputs a contextual vector ti for each word i.

Experiments
In this section, we describe the experimental procedure2, which aims at evaluating the 
proposed framework by examining various aspects of the overall methodology. "Data-
sets"   describes the employed datasets, "Evaluation metrics" provides a description of 
the evaluation measures introducing metrics for measuring the factual consistency of 
the generated summaries. "Experimental procedure and parameter tuning" describes the 
experimental procedure and finally, "Competitive approaches" presents other relevant 
approaches that are used for comparison reasons.

Datasets

To evaluate the proposed framework, we use two popular datasets of TS; the annotated 
Gigaword [74], and the CNN/DailyMail [75]. The particular version of the Gigaword 

2  Source code used in the experimental procedure: https://​github.​com/​pkour​is/​semgr​aphte​xtsum

https://github.com/pkouris/semgraphtextsum


Page 23 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

dataset used is that of [42], which has been widely adopted in TS [76]. It contains about 
3.8 million article-summary pairs with 123 million tokens of a vocabulary of 119, 000 
distinct tokens. The average length of an article and a summary is 31.4 and 8.3 tokens, 
respectively. The test set and the validation set are composed by randomly sampling 
2, 000 pairs of instances for each of these sets; a common practice when this dataset is 
used in TS [42, 56, 77].

The second dataset, CNN/DailyMail, is a document-level dataset, which also is widely 
used in TS. It is comprised of articles or stories and their summaries of multi-sentences. 
To obtain the non-anonymized version of this dataset, we follow the methodology of 
preprocessing that is proposed by the creators of the dataset [77]. This version of the 
dataset contains a training set of 287,  227 article-summary pairs, a test set of 11,  490 
instances, and a validation set of 13, 368 usage examples. Following the typical proce-
dure when this dataset is used in deep learning models [56, 78, 79], we limit the length 
of the articles to 400 tokens and the summaries to 100 tokens. After preprocessing, the 
average length of a text and a summary are 386.42 and 61.08 tokens, respectively. This 
version of the dataset contains about 128 million tokens of a vocabulary of 510, 607 dis-
tinct tokens.

For both datasets described above, we obtain the AMR graphs of their texts by per-
forming AMR parsing [80]. The AMR parser returns an AMR graph for each sentence 
of a text. After parsing, we commence with graph construction and transformations, as 
described in "Semantic graph construction" and "Graph transformations for machine 
learning". According the graph construction process, we assume a semantic graph as 
(i) a sequence of sub-graphs or (ii) a combination of sub-graphs (i.e., merging the sub-
graphs to generate a graph representation). Additionally, applying the graph transfor-
mations to AMR graphs, we obtain four alternatives; (i) Original AMR (OAMR), (ii) 
original AMR without sences (OAMRWS), (iii) simplified AMR (SAMR), and (iv) sim-
plified AMR without senses (SAMRWS). Table 1 outlines the overall alternatives of the 
semantic graphs, which correspond to the versions of the datasets that we examine in 
the experimental procedure. These eight alternatives are applied on the CNN/DailyMail 
dataset because it contains texts of multi sentences, and as a consequence multi seman-
tic graphs, where we apply both graph constructions and transformations. In the case of 
Gigaword dataset, we examine only the four alternatives of the graph transformations 
because this dataset contains texts of one sentence and the AMR graph that is obtained 

Table 1  The combinations of graph construction and transformation methods (data schemes)

Graph construction Graph transormation Abbreviation 
of data 
scheme

Sequence of sub-graphs Original AMR S-OAMR

Original AMR without sences S-OAMRWS

Simplified AMR S-SAMR

Simplified AMR without sences S-SAMRWS

Combination of sub-graphs Original AMR C-OAMR

Original AMR without senses C-OAMRWS

Simplified AMR C-SAMR

Simplified AMR without senses C-SAMRWS



Page 24 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

for each text does not require any process of constructing a semantic graph for the over-
all text.

According to the employed data alternatives, Table  2 reports statistics about the 
vocabulary size and the length of the semantic graph-summary pairs of both datasets. 
The average length of the semantic graphs and summaries on a particular dataset and 
data scheme corresponds to the average number of elements or tokens of the linearized 
graphs and summaries, respectively. Also, we have computed the overall number of 
tokens and the number of the distinct tokens (i.e., vocabulary size) for each data scheme. 
The SARMWS data scheme minimizes the vocabulary size and reduces the length of 
a semantic graph, while the data schemes that retain the sense numbers (OAMR and 
SAMR) increase the vocabulary size and the length of a graph representation. The origi-
nal text has the minimum length but the maximum vocabulary size, compared to the 
linearized AMR data schemes.

Evaluation metrics

Rouge metrics

To evaluate the performance of the proposed framework, we use the official Rouge pack-
age [81]. In particular, we calculate the average F-1 score of Rouge-1 (word overlap), 
Rouge-2 (bigram overlap) and Rouge-L (longest common sequence) on the test set of the 
datasets, as it is a typical practice in evaluating TS systems in the relevant literature [77, 
82, 83].

Blue metric

In addition to the Rouge metrics, we also employ the Blue metric [84] to evaluate n-gram 
overlapping between system summaries and the respective reference summaries. In par-
ticular, the Blue metric is a precision-based measure, which calculates a weighted score, 

Table 2  The vocabulary size and the length of the semantic graph-summary pairs of the Gigaword 
and CNN/DailyMail (CNN/DM) datasets for the data approaches according to the employed graph 
construction and transformation technique (data scheme)

Dataset Data scheme Average length Number of tokens Number of distinct 
tokens

Graph Summary Graph Summary Graph Summary

Gigaword OAMR 128.4 8.2 441.7M 28.2M 84, 627 68,882

OAMRWS 128.4 8.2 441.7M 28.2M 82, 029 68,882

SAMR 66.1 8.2 227.3M 28.2M 84, 400 68,882

SAMRWS 66.1 8.2 227.3M 28.2M 81, 806 68,882

CNN/DM S-OAMR 849.1 61.08 277.4M 17.5M 253, 961 195,208

S-OAMRWS 849.1 61.08 277.4M 17.5M 245, 296 195,208

S-SAMR 494.4 61.08 142.0M 17.5M 253.165 195,208 

S-SAMRWS 494.4 61.08 142.0M 17.5M 244, 388 195,208

C-OAMR 830.7 61.08 272.5M 17.5M 253, 961 195,208

C-OAMRWS 830.7 61.08 272.5M 17.5M 245, 296 195,208

C-SAMR 478.6 61.8 140.3M 17.5M 253.165 195,208

C-SAMRWS 478.6 140.3M 17.5M 244,388 195, 208



Page 25 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

taking into account the proportion of n-grams ( n ∈ {1, 2, 3, 4} ) of a generated summary 
that are included to the reference summary. The weight for each n is assumed to be equal 
(e.g., 0.25), as is the typical use of this metric [85]. Also, the Blue measure includes a 
brevity penalty, which is applied when the length of a system summary is shorter than 
that of the reference summary. Finally, we note that the Blue metric is the primary evalu-
ation measure for machine translation and this is also used for assessing the generated 
summaries in the field of automatic TS [86].

Factual consistency

Factual Consistency has been presented in [87, 88], where the authors investigated the 
correlation between this measure and human evaluation. Especially in [88], the authors 
conclude that Factual Consistency is the measure presenting the highest correlation 
with human evaluation scores compared to any other measure, like the Rouge metrics. 
In an effort to provide a qualitative assessment for evaluating the Factual Consistency 
of the predicted summaries, we extend the approach of [14] computing the precision, 
recall and fβ scores of factual consistency. More specifically, triplets, such as (subset, 
relation, object), are retrieved from a predicted summary and the respective original 
text that constitutes the facts. The triplets of facts have been obtained using the open 
information extraction (OpenIE) approach [88, 89]. The overlap between the retrieved 
facts of a system summary and the source text determines the factual consistency that 
is based on precision ( FCp ), recall ( FCr ) and fβ ( FCfβ ), which are computed according to 
Equations 11.

where Ft is a set of facts from a source text, Fs is a set of facts of the respective predicted 
summary and β is the factor that indicates how much more important recall ( FCr ) is 
than precision ( FCp ). To clarify the usage of fβ score, in the case that the source text is 
much longer than the summary (e.g., CNN/DailyMail dataset), the recall-based factual 
consistency is expected to take very small values because, in this case, the source text 
contains much more triplets of facts than those of its summary. This is the reason that 
we use the fβ measure, which provides a weighted score of precision and recall, accord-
ing to the relative length among a source text and its summary. To specify, the frac-
tion of summary length ( SL ) to source text length ( TL ) gives the value of β , according to 
Equation 12.

For example, if the number of tokens of a text and its summary are 400 and 100, respec-
tively, then β = 100/400 = 0.25 . Also, β value may be fixed according to the average 

(11)

FCp =
|Ft ∩ Fs|

|Fs|

FCr =
|Ft ∩ Fs|

|Ft |

FCfβ =
(1+ β2) · FCp · FCr

β2 · FCp + FCr

(12)β =
SL

TL



Page 26 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

length of texts and summaries of the usage examples of a dataset. Therefore, the fβ 
measure provides a weighted value of factual consistency which indicates the coverage 
of salient information between a text and its summary. Finally, we note that the meas-
ures of factual consistency aim at a more qualitative than quantitative evaluation, while 
the Rouge metrics perform a quantitative assessment.

New tokens rate

Since the proposed framework constitutes an abstractive TS approach, we use a met-
ric to investigate the ability of the examined models (i.e. the variations of deep learn-
ing architectures and data schemes) to generate new tokens in a predicted summary 
of an original text. Therefore, the last metric is that of New Tokens Rate (NTR), which 
corresponds to the percentage of tokens appearing in the generated summary, but not 
included in the input text (a similar version of this measure has been used in [42, 90]).

Experimental procedure and parameter tuning

After performing the tasks of AMR parsing, graph construction and graph transforma-
tion on the employed datasets, several versions of semantic graph-summary pairs are 
obtained for each dataset (see in "Datasets") to be used in the training and evaluation 
phases. The particular data schemes and the performance of the respective models are 
further discussed in Sects. “Results” and “Discussion”.

Word representation: We use word2vec representation as non-contextual embed-
dings for the seq2seq attentive and RL model, while for the transformer-based models 
we use the pre-trained BERT model as contextual embeddings (see in "Graph to text 
generation"). A word2vec model of CBOW architecture [53] is trained to obtain word 
embeddings of 300 dimensions for each version of the training data. Each Word2vec 
model, which corresponds to each data scheme, has been trained for 10 epochs with a 
decaying learning rate from 0.02 to 0.001 and a window size equal to 5.

Training the attentive seq2seq with pointer generator (AS2SP) model ("Deep 
learning models"): This network is trained on the different versions of the training data 
obtaining an equal number of trained models. The parameters of this model have been 
optimized by using the validation set of the datasets. The encoder contains two layers 
of bi-directional LSTM units of dimensionality 256 and the decoder uses one layer of 
LSTM units of 512 dimensions each. The training data for each epoch are randomly 
shuffled and the batch size is set to 64 for the Gigaword and 32 for the CNN/DailyMail 
dataset. Also, the learning rate is set to 0.001. Moreover, the Adam optimizer [91] with 
gradient norm clipping [92] is employed with the loss function of negative conditional 
log-likelihood [93]. Additionally, dropout with p = 0.2 is also used. The vocabulary is 
limited to 150,000 words, using the most frequent tokens of the training set. We have 
trained the models (on NVidia K40 GPUs) for about 15 epochs until the models con-
verged sufficiently.

Training the RL model ("Deep learning models", reinforcement-learning model): 
Since this model uses the AS2SP network as an agent, the dimensionality of the LSTM 
layers is the same as the model mentioned above. The learning rate is set to 10−4 , 
and the batch size is set to 32 and 16 for the Gigaword and CNN/DailyMail datasets, 



Page 27 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

respectively. For the rest of the parameters, we have made the same assumptions as the 
above-described model.

Training the TR model ("Deep learning models", transformer-based models): The 
encoder and the decoder of the transformer architecture consist of 6 layers each. The 
hidden size (model dimensionality) of the encoder and the decoder is set to 512 and 
the inner layer has 2048 dimensions. Moreover, the number of heads is set to 8 (i.e., the 
model implements 8 parallel attention layers reducing the model dimensionality of each 
attention layer to 512/8 = 64 ). The batch size is set to 64 for both datasets, Gigaword 
and CNN/DailyMail, and the dropout probability is set to p = 0.1 . The Adam optimizer 
is employed with parameters β1 = 0.9 and β2 = 0.999 and the learning rate is adapted 
during training, as shown in Equation 13, where warmupSteps = 10, 000 and a = 0.05 . 
According to this equation, the learning rate is increased for the first warmupSteps steps 
and then, it is decreased.

Training the TRCE model (“Deep learning models”, transformer-based models): 
The difference between this model with the aforementioned TR model is that the TRCE 
model uses BERT embeddings, as an input to the embedding layer to initialize the corre-
sponding vectors, while the TR model is trained from the scratch. During training, these 
embeddings further adapt their weights.

Training the PETR model ("Deep learning models", transformer-based models): 
The PETR model uses a pre-trained BERT encoder and a transformer decoder of 6 lay-
ers identical to the decoder of TR model mentioned above. The model size of the pre-
trained encoder and the decoder is set to 768. Moreover, the model uses two Adam 
optimizers, one for the encoder and one for the decoder to perform a stable fine-tun-
ing. The parameters of both optimizers are β1 = 0.9 and β2 = 0.99 and these optimizers 
have different learning rates according to Equation 13, where aenc = 0.002 , adec = 0.1 , 
warmupStepsenc = 20, 000 and warmupStepsdec = 10, 000 . The different learning rates 
aim at a stable fine-tuning of the model weights, as the BERT encoder will be fine-tuned 
with a smaller learning rate and a smoother decay than the decoder, avoiding the overfit-
ting or underfitting of the encoder or decoder [70]. The rest of the parameters remain 
the same as the TR and TRCE models.

Generating system summaries: To optimize the predicted summary, we use the beam 
search algorithm [63, 64] with a width equal to 5.

Competitive approaches

Our framework, which focuses on the field of semantic graph-based approaches for 
abstractive TS, is compared with other relevant approaches [10, 13, 18, 22]. In the 
next section, we report the performance of the most relevant systems. As relevant 
approaches, we assume those TS systems that are based on AMR representation and also 
are capable of coping with a dataset of a large size, such as the CNN/DailyMail or Giga-
word. Since our methodology is based on deep learning models, these models require a 
large amount of data to be trained sufficiently. Therefore, we exclude some approaches 
[11, 19, 20], which have been mentioned in the related work section ("Preliminaries and 

(13)lr = a ·min{step−0.5, step · warmupSteps−1.5}



Page 28 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

related work"), that require a small amount of data, and also, they have been evaluated 
in small datasets (e.g. proxy report section of the AMR Bank [94]), because our approach 
is not appropriate for such data. As we can see in our analysis below, this comparison is 
based on Rouge scores that have been reported in the respective papers of the competi-
tive approaches. We assume that the experimental results of the other approaches are 
directly comparable with ours because these approaches have obtained the train, test 
and validations sets of both datasets, Gigaword and CNN/DailyMail, following the same 
methodology as we have done (i.e. following specific preprocessing steps for Gigaword 
and CNN/DailyMail, "Datasets").

Results
Table 3 outlines the performance of the AS2S, RL, TR, TRCE and PETR models in terms 
of the Rouge scores on the Gigaword dataset for the four alternatives of the data that 
are based on the graph transformation methods ("Graph transformations for machine 
learning"), which are applied to create pairs of semantic graph-summary forming the 
usage examples of the training, testing and validation sets. Additionally, the percentage 
of NTR ("Evaluation metrics") is reported for the Gigaword dataset. Since, the best Rouge 
scores are obtained for the SARMWS graph transformation method, in the case of the 
transformer-based models (TR, TRCE, PETR), we report the Rouge scores for this data 
scheme. Also, for the same reason, in the rest of the experiments, we use the SAMRWS 
as a graph transformation method. The last rows of Table 3 include the performance of 
the baseline models ("Competitive approaches") that are used for comparison reasons. 
As we observe, the RL and PETR models obtain the highest Rouge scores.

Additionally, we assess the statistical significance of the Rouge scores for each 
model by the Welch’s t-test [95]. To compute the statistical significance, we use the 
Rouge scores for each instance of the test set. The t-test is calculated on each pair 

Table 3  Rouge scores on the Gigaword dataset of the attentive seq2seq with pointer-generator 
(AS2SP), reinforcement learning (RL), transformer (TR), transformer with contextual embeddings 
(TRCE) and pre-trained encoder transformer (PETR) networks for the data schemes: (i) original AMR 
(OAMR), (ii) original AMR without senses (OAMRWS) (iii) Simplified AMR (SAMR) and (iv) simplified 
AMR without senses (SAMRWS) (pvalue < 0.01)

Model Data scheme Rouge-1 Rouge-2 Rouge-L NTR (%)

AS2SP OAMR 34.62 12.69 31.89 37.48

OAMRWS 35.24 13.36 32.81 36.81

SAMR 36.84 14.12 33.73 35.83

SAMRWS 37.93 14.36 34.84 35.68

RL OAMR 35.14 13.31 32.65 36.75

OAMRWS 35.44 13.63 32.87 37.21

SAMR 37.18 14.12 34.22 34.07

SAMRWS 38.17 15.24 35.40 34.11

TR SAMRWS 36.14 13.02 33.04 41.35

TRCE SAMRWS 36.68 12.85 33.57 41.46

PETR SAMRWS 38.97 15.87 36.17 41.17

ABS+AMR [10] 31.64 12.94 28.54 –

SemSUM [13] 38.78 19.75 36.09 –



Page 29 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

of data alternatives and for each Rouge metric (Rouge-1, Rouge-2 and Rouge-L). The 
obtained values of statistical significance ( pvalue ), which are reported in the caption 
of Table 3, prove that the results are statistically significant in all examined cases. The 
same methodology is followed to calculate the statistical significance in the rest of the 
measurements that follow (i.e., results in Tables 4, 5, 6, 7).

Similar to the above-described results, Table  4 reports the performance of the 
employed models in terms of Rouge scores on CNN/DailyMail dataset for the two 
methods of graph construction ("Semantic graph construction") and the simplified 
AMR without senses (SAMRWS) as graph transformation scheme. Additionally, NTR 
percentage and the assessment of statistical significance ( pvalue ) are reported. Also, 
the last row of this table include the performance of the competitive approach that 
uses the same dataset. RL and PETR are those deep learning models that achieve the 
best Rouge scores.

Additionally, Table  5 includes the performance of the employed models in terms of 
Blue scores on Gigaword and CNN/DailyMail datasets using simplified AMR with-
out senses (SAMRWS) as a graph transformation scheme. Moreover, in case of CNN/
DailyMail dataset, the two proposed methods of graph construction ("Semantic graph 
construction") are examined. Also, the assessment of statistical significance ( pvalue ) is 

Table 4  Rouge scores on the CNN/DailyMail dataset of the AS2SP, RL, TR, TRCE and PETR 
deep learning models for the graph construction methods: (i) sequence of sub-graphs and 
(ii) combination of sub-graphs, and the simplified AMR without senses (SAMRWS) as graph 
transformation technique (pvalue < 0.01)

Model Sequence of sub-graphs Combination of sub-graphs

R-1 R-2 R-L NTR (%) R-1 R-2 R-L NTR (%)

AS2SP 36.44 11.25 29.98 25.26 37.69 11.21 30.52 27.34

RL 37.11 11.49 31.20 26.16 39.83 11.95 31.65 28.30

TR 36.32 7.00 25.53 45.28 31.57 4.88 22.73 44.16

TRCE 39.49 8.70 26.61 44.81 34.36 6.57 23.91 45.15

PETR 40.75 11.18 27.67 45.38 35.50 8.46 24.52 44.92

Lead-3-AMR [18] 31.70 5.80 16.80 – – – – –

Unmerged [22] 33.90 9.80 23.00 – – – – –

Table 5  Blue-scores on the Gigaword and CNN/DailyMail datasets of the employed deep learning 
models using the simplified AMR without senses as semantic graph transformation and the 
semantic graph construction methods that are applied to the CNN/DailyMail dataset (pvalue < 0.012)

Model Gigaword CNN/DailyMail

Sequence of sub-graphs Combination 
of sub-graphs

Blue-score Blue-score Blue-score

AS2SP 14.65 15.81 16.45

RL 19.01 18.73 18.82

TR 14.97 17.05 14.68

TRCE 13.79 17.67 15.37

PETR 20.05 19.86 18.59



Page 30 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

reported. Similar to measurements that are based on Rouge metrics (Tables 3 and 4), RL 
and PETR models achieve the highest Blue scores.

Since factual consistency concerns the domain of automatic TS [14, 87, 88, 96], 
Tables 6 and 7 report the factual consistency ("Evaluation metrics") of the experiments 
on Gigaword and CNN/DailyMail datasets, respectively. To compute the fβ score, we set 
β = 0.264 and β = 0.158 for the Gigawornd and CNN/DailyMail datasets, respectively, 
as these values represent the fractions of the average length of a summary to the aver-
age length of a text in the test sets of the datasets (the usage of β coefficient is explained 
in detail in "Evaluation metrics"). The reported values correspond to the average fac-
tual consistency of the usage examples of the test set for each dataset for the employed 
machine learning models and data schemes. Moreover, the last row of these Tables 
includes the factual consistency of the reference summary. Similar to Rouge scores, in 
both cases, in short-level TS (Gigaword dataset) and document-level TS (CNNDailyMail 
dataset), the RL and PETR deep learning models exhibit the highest scores in terms of 
factual consistency.

Table 6  Factual consistency on the Gigaword dataset of the employed deep learning models and 
the graph transformation methods as data schemes, setting β = 0.264 for computing the FCfβ 
metric (pvalue < 0.02)

Model Data scheme FCp (%) FCr (%) FCfβ (%)

AS2SP OAMR 74.03 24.93 65.60

OAMRWS 77.92 28.93 70.16

SAMR 81.93 26.60 72.13

SAMRWS 83.23 24.67 72.06

RL OAMR 80.11 24.48 69.75

OAMRWS 81.67 25.21 71.25

SAMR 81.12 25.58 71.04

SAMRWS 83.48 25.96 72.92

TR SARMWS 79.17 27.69 70.60

TRCE SARMWS 61.55 32.13 58.08

PETR SARMWS 79.01 39.38 74.14

Reference summaries 76.87 32.65 70.63

Table 7  Factual consistency on the CNN/DailyMail dataset of the employed deep learning models, 
the two graph construction methods and the simplified AMR without senses (SAMRWS) as graph 
transformation scheme, setting β = 0.158 for computing the FCfβ metric (pvalue < 0.025)

Model Sequence of sub-graphs Combination of sub-graphs

FCp (%) FCr (%) FCfβ (%) FCp (%) FCr (%) FCfβ (%)

AS2SP 64.96 2.68 41.45 58.97 2.71 39.16

RL 68.79 3.00 44.82 63.87 2.66 40.91

TR 57.61 2.65 38.26 61.09 1.83 34.14

TRCE 62.72 2.65 40.38 54.55 2.28 35.00

PETR 65.45 2.97 43.27 58.89 3.33 41.86

Reference sum-
maries

65.44 4.8 50.05 – – –



Page 31 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

Table 8  Examples of short-level TS from the input text to the output summary for variations of 
graph transformation methods

Input text: more than one million chinese have studied abroad over the last decade, an official with the 
ministry of education said here on monday .

OAMR Linearized semantic graph: ( s / say-01 :arg0 ( p / person :arg0-of ( h2 / have-org-role-91 :arg1 ( m3 
/ ministry ) :arg2 ( o / official ) ) ) :arg1 ( s3 / study-01 :arg0 ( p2 / person :mod ( c / country :name ( n / 
name :op1 " china " ) :wiki " china " ) :quant ( m4 / more ) ) :arg1 ( e / educate-01 ) :location ( a / abroad 
) :time ( s2 / since :time ( l / late ) ) ) :arg2 ( m / monday ) :location ( h / here ) )

System Summary: more than chinese students studying abroad

OAMRWS Linearized semantic graph: ( s / say :arg0 ( p / person :arg0-of ( h2 / have-org-role :arg1 ( m3 / minis-
try ) :arg2 ( o / official ) ) ) :arg1 ( s3 / study :arg0 ( p2 / person :mod ( c / country :name ( n / name :op1 
" china " ) :wiki " china " ) :quant ( m4 / more ) ) :arg1 ( e / educate ) :location ( a / abroad ) :time ( s2 / 
since :time ( l / late ) ) ) :arg2 ( m / monday ) :location ( h / here ) )

System Summary: more chinese students studying abroad

SAMR Linearized semantic graph: say-01 :arg0 ( person :arg0-of ( have-org-role-91 :arg1 ministry :arg2 
official ) ) :arg1 ( study-01 :arg0 ( person :mod ( country :name ( name :op1 china ) :wiki china ) :quant 
more ) :arg1 ( educate-01 ) :location abroad :time ( since :time late ) ) :arg2 monday :location here

System Summary: more chinese students abroad study

SAMRWS Linearized semantic graph: say :arg0 ( person :arg0-of ( have-org-role :arg1 ministry :arg2 official ) ) 
:arg1 ( study :arg0 ( person :mod ( country :name ( name :op1 china ) :wiki china ) :quant more ) :arg1 ( 
educate :arg1 ( rrb :mod moe ) ) :location abroad :time ( since :time late ) ) :arg2 monday :location here

System Summary: more than one million chinese students studying abroad

Reference summary: number of chinese students abroad exceeds one million

Table 9  Examples of document-level TS from the input text to the output summary for two graph 
construction methods, graph as a sequence of sub-graphs (S-SAMRWS) and combined sub-graphs 
(C-SAMRWS), and simplified AMR without senses (SAMRWS) as data transformation scheme

Input text: a family trip to a nebraska zoo turned terrifying for one family after the gorilla they were 
looking at leaped toward the exhibit window , cracking it . kevin cave caught the incident on video that 
he posted on his reddit page . it has already been viewed more than 1 million times . cave said when 
his family first arrived at omaha ’s henry doorly zoo gorilla exhibit , he noticed one of the gorillas had 
a cut below his eye that was “ bleeding a little bit . [...] even with the crack , the public was never in 
danger , he said , because the window has multiple layers of both glass and acrylic . kijoto is a 20 year 
old western lowland gorilla , according to a release on the zoo ’s website . he weighs 375 pounds .

S-SAMRWS Linearized semantic graph: nebraska :arg0-of ( trip :arg1 family :arg1-of ( crack :arg0 ( gorilla 
:arg0-of ( turn :arg3 ( terrify :arg1 ( family :arg0-of ( exhibit :arg1 window ) ) ) :time ( after :op1 ( leap 
) ) ) :arg1-of ( look :arg0 they ) ) ) ) :mod-of zoo [EOG] reddit :poss ( he :arg1-of ( post :arg0 ( cave 
:arg0-of ( catch :arg1 ( incident :location video ) ) :mod kevin ) :arg2 page [EOG] view :arg0 1 :arg1 
more :time already [EOG] [...] say :arg1 ( release :arg1 ( website :poss zoo :arg2 ( gorilla :domain kijoto 
:mod lowland :mod ( world-region :name ( name :op1 west ) :wiki western_world ) :mod ( old :quant 
( temporal-quantity :quant 20 :unit year [EOG] weigh :arg0 he :arg1 375 [EOG]

System Summary: kevin cave captured the incident in henry doorly zoo in nebraska . the gorilla 
was captured in a video of a cave gorillas leaped toward the exhibit window. the video has already 
been more than 1 million views .

C-SAMRWS Linearized semantic graph: nebraska :arg0-of ( trip :arg1 ( family :arg0-of ( exhibit :arg1 window 
) ) :arg1-of ( crack :arg0 ( gorilla :arg0-of ( turn :arg3 ( terrify :arg1 family ) :time ( after :op1 leap ) ) 
:arg1-of ( look :arg0 they ) :domain kijoto :mod lowland :mod ( world-region :name ( name :op1 west 
) :wiki western_world ) :mod ( old :quant ( temporal-quantity :quant ( 20 :unit year ) ) ) ) ) :mod-of ( 
zoo :arg2 ( gorilla ) ) ( say :arg1 ( release :arg1 ( website :poss zoo ) ) ) [...] ( reddit :poss ( he :arg1-of ( 
post :arg0 ( cave :arg0-of ( catch :arg1 ( incident :location video ) ) :mod kevin ) :arg2 page ) ) )( view 
:arg0 1 :arg1 more :time already [EOG]

System Summary: kevin cave captured the incident in henry doorly zoo in nebraska . the gorilla 
was spotted terrifying a family at the henry zoo in nebraska . the gorilla was overheard fighting with 
one another .

Reference summary: gorilla leaps toward exhibit window and hits it , sending family running . zoo 
says patrons were never in danger .



Page 32 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

Case study

In an attempt to further illustrate the workflow and the main aspects of the proposed 
approach for predicting the final summaries, Tables 8 and 9 present examples of pro-
ducing system summaries on the sentence level and on the document level TS, respec-
tively. In particular, after performing AMR parsing for obtaining the particular AMR 
graphs ("Semantic graph parsing"), the input text has been transformed to a linearized 
semantic graph representation (“Graph transformations for machine learning”) taking 
into account a graph construction technique that has been applied ("Semantic graph 
construction"). The employed machine learning model (in this case, the AS2SP model of 
Sect.  “Deep learning models” has been used) is trained end-to-end to predict a system 
summary. Then, the deep learning model generates a summary of a given input text.

In the example of short TS (Table  8), we can see that the system summaries vary 
among the different data schemes. We notice that the summary gradually improved, tak-
ing its most informative form for the SAMRWS data transformation scheme. Addition-
ally, the predicted summaries include words that do not appear in the input text. For 
example, in the SAMRWS data scheme, the words number and exceeds don’t exist either 
in the original text or in the input semantic graph. However, these words are in line with 
the semantics and the overall content of the particular instance. This shows the potential 
of the present framework to generate new text or paraphrase the original content, as it is 
an abstractive TS approach.

In the case of document level TS (Table  9), we provide examples of predicting sys-
tem summaries for both graph construction methods and the simplified AMR without 
senses (SAMRWS) data transformation scheme. In the instance of the semantic graph 
as a sequence of sub-graphs (S-SAMRWS), we observe that the successive representa-
tions of the sub-graphs are separated from each other by the token [EOG] (end of graph 
or sub-graph). While in the case of the combined sub-graphs (C-SAMRWS), we have a 
single representation of the overall graph of the whole text. The generated summaries 
differ from each other, and in both cases, S-SAMRWS and C-SAMRWS, the summaries 
contain three sentences. Also, the summaries contain words or phrases that do not exist 
in the original text, rephrasing the original content. As we can see, despite the few gram-
matical and syntactical errors, the summaries produced may be considered informative 
as, they capture a part of the content of the original text with salient information.

Discussion
The experimental procedure aims at examining various aspects of the proposed frame-
work. In particular, the effect of various deep learning models along with graph con-
struction methods and data transformation techniques, in the context of semantic 
graph-to-summary predictions, are discussed in "The effect of the deep learning mod-
els", "The effect of graph construction methods" and "The effect of graph transforma-
tion techniques",  and  that follow. Moreover, "New tokens rate in generated summaries" 
describes the obtained results on the NTR metric. Additionally, "Factual consistency" 
discusses on the factual consistency of the generated summaries as a metric that focuses 
on a qualitative evaluation. Finally, in "Summarizing the results", we made some con-
cluding remarks concerning the framework as a whole.



Page 33 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

The effect of the deep learning models

In this work, we examine five deep learning models ("Deep learning models") ranging 
from an attentive encoder-decoder network, RL model and transformer-based archi-
tectures. The experimental results validate that all of these models achieve state-of-the-
art performance in the field of the AMR-based TS that we examine. The RL approach, 
which uses as an agent the AS2SP network, outperforms the AS2SP model. The positive 
results of RL may be attributed to the fact that it tries to optimize the Rouge-L score, 
which is a particular metric for TS, as opposed to the AS2SP model that minimizes an 
error function (i.e., negative log-likelihood loss function), which is not an evaluation 
metric for TS. The TRCE network, which initializes its embedding vectors by using the 
BERT model, obtains better results than the TR model, which uses random initializa-
tion for its embedding vectors. The PETR model, which is based on a BERT pre-trained 
encoder, achieves better results than the other transformer-based architectures and the 
AS2SP model. Finally, the RL and PETR approaches are those that stand out compared 
to the other examined architectures by achieving the best performance, in terms of the 
employed metrics (Rouge & Blue scores, Factual Consistency) on both datasets (Giga-
word and CNN/DailyMail).

The effect of graph construction methods

The proposed graph construction methods ("Semantic graph construction") are applied 
in the cases that the source text contains more than one sentence, aiming at creating the 
semantic graph of the overall text, according to the obtained sub-graphs that correspond 
to the individual sentences. In the case of transformer-based deep learning models, the 
sequence of sub-graphs as a graph construction method is more effective than the com-
bination of sub-graphs. On the other hand, the architectures that are based on recurrent 
neural networks (AS2SP and the agent of RL model) tend to obtain better evaluation 
scores in the case of using the combination of sub-graphs. In particular, according to the 
obtained Rouge & Blue scores, as well as Factual Consistency (Tables 4, 5 and 7), we may 
observe that the performance of the two graph construction methods is comparable. 
Therefore, the sequence of sub-graphs should be preferred to be combined with the pro-
posed framework, as it constitutes the simplest method to create a semantic graph. This 
is a preferable technique because it does not require any methodology for merging sub-
graphs, avoiding the additional computational cost that is created by the second method.

The effect of graph transformation techniques

We have examined four graph transformation techniques ("Graph transformations for 
machine learning") that correspond to four alternatives of the dataset (“Datasets”), which 
aims at creating an appropriate representation of a semantic graph for using it as input 
to a machine learning model. Ranging from a linearized version of an original seman-
tic graph (OAMR) to a simplified version of a semantic graph without sense numbers 
(SAMRWS), the length of the graph representation and the number of distinct tokens 
that represent a semantic graph are decreased (Table 2). The data scheme with the mini-
mum length of the input sequence and also the minimum vocabulary size (SAMRWS) 
achieve the best performance, according to the experimental results. This may be due 
to the fact that a seq2seq machine learning model is trained more efficiently by using a 



Page 34 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

sequence of tokens with a reduced length and a decreased vocabulary size of the training 
set. In this case of the reduced vocabulary size, each input token corresponds to more 
usage examples for training, improving the model predictions. Also, the data schemes 
that use the senses of the words (e.g., say-01) appear to have more distinct tokens for 
representing a graph than those without sense numbers (e.g., say). The experimental 
results validate that the most effective graph transformation method is that of SAMRWS 
which is proposed to be used in the present framework.

New tokens rate in generated summaries

NTR captures the level of abstraction of the generated summaries, as it indicates the 
percentage of tokens in a predicted summary that do not appear in the respective origi-
nal text. As we can see in Tables 3 and 4, for the Gigaword and CNN/DailyMail data-
sets, respectively, NTR tends to be inversely proportional to the vocabulary size. Data 
schemes with more distinct tokens (e.g., OAMR) in representing semantic graphs 
achieve higher NTR than those of reduced vocabulary size (e.g., SAMRWS). Also, the 
level of NTR varies among deep learning models for the same data scheme. The AS2SP 
and RL approaches seem to have slight differences between NTR values, while the trans-
former-based models appear to have the most abstraction when compared for the same 
data scheme.

Factual consistency

We measure the factual consistency ("Evaluation metrics") of the generated summaries, 
investigating the degree that the content of an original text is covered by a summary, as 
an effort to provide a qualitative assessment. According to the obtained results (Tables 6 
and 7), the generated summaries in short level TS (Gigaword dataset) exhibit greater 
factual accuracy than those of the document level TS (CNN/DailyMail dataset). This 
may be attributed to the fact that in short level TS, the predicted summaries cover more 
facts of the original text, while in document level TS, the summaries are not capable of 
reflecting the facts of the original text sufficiently. To clarify, in the case of the Gigaword 
dataset, the average length of a text is about four times longer than that of a summary, 
while in CNN/DailyMail dataset, the summary is almost seven times shorter than the 
text. Therefore, when a text has much more length than the length of its summary, the 
factual consistency is expected to obtain decreased score due to the limited number of 
facts that the summary is capable of covering.

Similarly to the Rouge scores mentioned above, the scores of factual consistency are 
maximized for the SAMRWS graph transformation method. Additionally, in a compari-
son of graph construction methods, we obtain the best scores for using the sequence of 
sub-graphs as a method of creating a semantic graph of a text. Also, the experimental 
results validate that the PETR and RL exhibit the best performance, in terms of factual 
consistency.

Moreover, for some models and data schemes, the factual consistency of the generated 
summaries appears to be improved compared to that of the reference summaries. This 
is not assumed as an implication that the predicted summaries are better than the refer-
ence ones because the human-written summaries may capture the facts of an initial text 
with rephrased content. On the contrary, a system tends to copy words or phrases from 



Page 35 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

an original text to the machine-produced summary, allowing the factual consistency to 
achieve high scores. Therefore, the limited score in the case of the reference summaries 
is not an implication that they include weaknesses. On the other hand, the high scores, 
especially in the case of short level TS (Gigaword dataset), may be assumed as a strong 
indication that the proposed framework generates factual consistent summaries.

Summarizing the results

The analysis that has been presented so far indicates that the proposed framework may 
be an efficient solution that utilizes semantic graphs in the field of abstractive TS, out-
performing other state-of-the-art semantic graph-based systems, especially in the case of 
using reinforcement learning or transformer-based approaches. To construct a semantic 
graph of a text, the sequence of sub-graphs is the simplest graph construction method, 
which exhibits sufficient performance compared with that of the combination of sub-
graphs. This is the method that is proposed for graph construction to avoid merging 
of the sub-graphs that require complex procedures creating additional computational 
cost. To create a linearized representation of a semantic graph, which is required as an 
input to a machine learning model, the graph transformation method that produces the 
most concise version of a semantic graph representation and also leads to the minimum 
vocabulary size achieves the best performance. The particular graph transformation 
method is that of the simplified AMR without senses (SAMRWS), which is proposed, 
as this is the most efficient one, according to the experimental results. Furthermore, 
NTR is affected by the employed data scheme and the machine learning model. NTR is 
decreased when the vocabulary size is reduced (e.g., in the SAMRWS data scheme) and 
this metric is maximized when the transformer-based models are used. Finally, in evalu-
ating the factual consistency, the short level TS achieves higher factual consistency than 
that of document level TS. The experimental results of the factual consistency validate 
that a generated summary exhibits sufficient coverage of the facts of its source text.

Conclusion
In this work, a novel framework for abstractive TS that combines semantic represen-
tation of the input text along with deep learning predictions has been proposed. The 
framework is based on a well-defined model for constructing a semantic graph and 
transforming it to be utilized by a deep learning model. The workflow of the frame-
work includes semantic graph parsing, text graph construction, graph transforma-
tions for deep learning, and deep learning predictions. In this direction, deep learning 
architectures were examined for predicting a summary, given an input semantic 
graph of a source text. As it has already been mentioned in detail, the machine learn-
ing models include an attentive encoder-decoder with a pointer generator network, 
RL, transformer-based architectures, and pre-trained neural language models. Over-
all, the methodology copes with the problem of semantic graph-to-summary learn-
ing, investigating several data schemes along with a range of deep learning models to 



Page 36 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

specify the aspects and the methodology that improve the performance of a semantic 
graph-based abstractive TS system.

An extensive experimental procedure was conducted by using two popular data-
sets (Gigaword and CNN/DailyMail) in order to evaluate the performance of the pro-
posed framework, examining various aspects of the approach. To assess the factual 
consistency of the generated summaries, we have introduced an extension of a par-
ticular metric in an effort to provide a qualitative evaluation. The experimental results 
obtained are considered promising, as they were better or comparable with other rel-
evant approaches (i.e., approaches that are based on semantic graphs). The positive 
results, which have been discussed in "Discussion", may be attributed to the appropri-
ate semantic-based data transformations and model optimization.

Although the proposed framework exhibits satisfactory performance when com-
pared with other related semantic graph-based approaches, it can still be further 
enhanced. The semantic representation of input text needs to be studied more, as 
the the generated summaries depend on the quality of the semantic formulation of 
the original content. Also, further investigation in deep learning architectures, espe-
cially pre-trained neural language models or RL models with transformer-based net-
works as an agent, may yield better results for automatic TS and, more specifically, for 
semantic-based abstractive TS. Finally, automatic evaluation for TS may be further 
studied with respect to investigating the correlation between the proposed extension 
of Functional Consistency and human evaluation, as it may provide useful insights 
into improving automatic TS.
Acknowledgements
This work was supported by computational time granted from the National Infrastructures for Research and Technology 
S.A. (GRNET S.A.) in the National HPC facility - ARIS - under project ID pa181003-islab-med.

Author contributions
P.K. studied the related literature, designed and implemented the proposed framework, conducted the experiments and 
prepared the manuscript. A.S. and G.A. contribute designing the research, reviewing and preparing the manuscript. All 
authors read and approved the final manuscript.

Funding
Not Applicable.

Availability of data and materials
The evaluation procedure has been based on two datasets, which are widely adopted in TS. References to these datasets 
are included in "Datasets’.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 November 2022   Accepted: 21 June 2024

References
	1.	 Gambhir M, Gupta V. Recent automatic text summarization techniques: a survey. Artif Intell Rev. 2017;47(1):1–66.
	2.	 Widyassari AP, Rustad S, Shidik GF, Noersasongko E, Syukur A, Affandy A, et al. Review of automatic text summariza-

tion techniques & methods. J King Saud Univ-Comput Inf Sci. 2020;



Page 37 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

	3.	 Luhn HP. The automatic creation of literature abstracts. IBM J Res Dev. 1958;2(2):159–65.
	4.	 Edmundson HP. New methods in automatic extracting. J ACM (JACM). 1969;16(2):264–85.
	5.	 Filippova K, Strube M. Sentence fusion via dependency graph compression. In: Proceedings of the Conference on 

Empirical Methods in Natural Language Processing, 2008; 177–185. Association for Computational Linguistics.
	6.	 Filippova K. Multi-sentence compression: finding shortest paths in word graphs. In: Proceedings of the 23rd Interna-

tional Conference on Computational Linguistics, 2010;322–330 . Association for Computational Linguistics.
	7.	 Banarescu L, Bonial C, Cai S, Georgescu M, Griffitt K, Hermjakob U, Knight K, Koehn P, Palmer M, Schneider N. 

Abstract meaning representation for sembanking. In: Proceedings of the 7th Linguistic Annotation Workshop and 
Interoperability with Discourse, 2013; 178–186.

	8.	 Tohidi N, Dadkhah C. A short review of abstract meaning representation applications. Model Simul Electr Electron 
Eng. 2022;2(3):1–9.

	9.	 Gupta S, Gupta SK. Abstractive summarization: an overview of the state of the art. Expert Syst Appl. 2019;121:49–65.
	10.	 Takase S, Suzuki J, Okazaki N, Hirao T, Nagata M. Neural headline generation on abstract meaning representation. In: 

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016; 1054–1059.
	11.	 Vlachos A, et al. Guided neural language generation for abstractive summarization using abstract meaning repre-

sentation. arXiv preprint arXiv:​1808.​09160 2018;
	12.	 Kouris P, Alexandridis G, Stafylopatis A. Abstractive text summarization based on deep learning and semantic con-

tent generalization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 
2019; 5082–5092.

	13.	 Jin H, Wang T, Wan X. Semsum: semantic dependency guided neural abstractive summarization. In: Proceedings of 
the AAAI Conference on Artificial Intelligence. 2020;34:8026–33.

	14.	 Kouris P, Alexandridis G, Stafylopatis A. Abstractive text summarization: enhancing sequence-to-sequence models 
using word sense disambiguation and semantic content generalization. Comput Linguist. 2021;47(4):813–59.

	15.	 El-Kassas WS, Salama CR, Rafea AA, Mohamed HK. Automatic text summarization: a comprehensive survey. Expert 
Syst Appl. 2021;165: 113679.

	16.	 Sindhu K, Seshadri K. Text summarization: a technical overview and research perspectives. Handbook of Intelligent 
Computing and Optimization for Sustainable Development. 2022; 261–286.

	17.	 Suleiman D, Awajan A. Deep learning based abstractive text summarization: approaches, datasets, evaluation meas-
ures, and challenges. Math Probl Eng. 2020; 2020.

	18.	 Dohare S, Karnick H, Gupta V. Text summarization using abstract meaning representation. arXiv preprint arXiv:​1706.​
01678 2017;

	19.	 Liu F, Flanigan J, Thomson S, Sadeh N, Smith NA. Toward abstractive summarization using semantic representations. 
arXiv preprint arXiv:​1805.​10399 2018;

	20.	 Dohare S, Gupta V, Karnick H. Unsupervised semantic abstractive summarization. In: Proceedings of ACL 2018, 
Student Research Workshop, 2018; 74–83.

	21.	 Mishra R, Gayen T. Automatic lossless-summarization of news articles with abstract meaning representation. Proc 
Comput Sci. 2018;135:178–85.

	22.	 Lee F-T, Kedzie C, Verma N, McKeown K. An analysis of document graph construction methods for amr summariza-
tion. arXiv preprint arXiv:​2111.​13993 2021;

	23.	 Flanigan J, Dyer C, Smith NA, Carbonell JG. Generation from abstract meaning representation using tree transduc-
ers. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies, 2016; 731–739.

	24.	 Konstas I, Iyer S, Yatskar M, Choi Y, Zettlemoyer L. Neural amr: Sequence-to-sequence models for parsing and gen-
eration. arXiv preprint arXiv:​1704.​08381 2017;

	25.	 van Harmelen F, van Harmelen F, Lifschitz V, Porter B. Handbook of knowledge representation. San Diego: Elsevier 
Science; 2007.

	26.	 Trentelman K. Survey of knowledge representation and reasoning systems. Defence Science and Technology 
Organisation EDINBURGH (AUSTRALIA) 2009;

	27.	 Sowa JF. Conceptual graphs. Found Artif Intell. 2008;3:213–37.
	28.	 Bateman JA, Kasper RT, Moore JD, Whitney RA. A general organization of knowledge for natural language process-

ing: the penman upper model. Technical report, USC/Information Sciences Institute, Marina del Rey, CA: Technical 
report; 1990.

	29.	 Palmer M, Gildea D, Kingsbury P. The proposition bank: an annotated corpus of semantic roles. Comput Linguist. 
2005;31(1):71–106.

	30.	 Banarescu L, Bonial C, Cai S, Georgescu M, Griffitt K, Hermjakob U, Knight K, Koehn P, Palmer M, Schneider N. 
Abstract meaning representation (amr) 1.0 specification. In: Parsing on Freebase from Question-Answer Pairs. In 
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle: ACL, 2012; 
1533–1544.

	31.	 Knight K, Badarau B, Baranescu L, Bonial C, Bardocz M, Griffitt K, Hermjakob U, Marcu D, Palmer M, O’Gorman T, et al. 
Abstract meaning representation (amr) annotation release 3.0 ldc2020t02. Web Download. Philadelphia: Linguistic 
Data Consortium 2020; https://​doi.​org/​10.​35111/​44cy-​bp51.

	32.	 Miranda-Jiménez S, Gelbukh A, Sidorov G. Summarizing conceptual graphs for automatic summarization task. In: 
International Conference on Conceptual Structures, 2013; 245–253. Springer.

	33.	 Miller GA. Wordnet: a lexical database for English. Commun ACM. 1995;38(11):39–41.
	34.	 Fellbaum C. WordNet: an electronic lexical database. MIT press, 1998.
	35.	 Schuler KK. VerbNet: A Broad-coverage, Comprehensive Verb Lexicon. University of Pennsylvania, 2005.
	36.	 Vilca GCV, Cabezudo MAS. A study of abstractive summarization using semantic representations and discourse level 

information. In: International Conference on Text, Speech, and Dialogue, 2017; 482– 490. Springer.
	37.	 Mann WC, Thompson SA. Rhetorical structure theory: toward a functional theory of text organization. Text-interdis-

ciplinary J Study Discourse. 1988;8(3):243–81.

http://arxiv.org/abs/1808.09160
http://arxiv.org/abs/1706.01678
http://arxiv.org/abs/1706.01678
http://arxiv.org/abs/1805.10399
http://arxiv.org/abs/2111.13993
http://arxiv.org/abs/1704.08381
https://doi.org/10.35111/44cy-bp51


Page 38 of 39Kouris et al. Journal of Big Data           (2024) 11:95 

	38.	 Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst. 
1998;30(1–7):107–17.

	39.	 Gatt A, Reiter E. Simplenlg: A realisation engine for practical applications. In: Proceedings of the 12th European 
Workshop on Natural Language Generation (ENLG 2009), 2009;90–93.

	40.	 Naseem T, Blodgett A, Kumaravel S, O’Gorman T, Lee Y-S, Flanigan J, Astudillo RF, Florian R, Roukos S, Schneider N. 
Docamr: Multi-sentence amr representation and evaluation. arXiv preprint arXiv:​2112.​08513 2021.

	41.	 Alomari A, Idris N, Sabri AQM, Alsmadi I. Deep reinforcement and transfer learning for abstractive text summariza-
tion: a review. Comput Speech Lang. 2022;71:101276.

	42.	 Rush AM, Chopra S, Weston J. A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:​
1509.​00685 2015.

	43.	 Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory 
networks. arXiv preprint arXiv:​1503.​00075 2015.

	44.	 Luong M-T, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. arXiv pre-
print arXiv:​1508.​04025 2015.

	45.	 Damonte M, Cohen SB, Satta G. An incremental parser for abstract meaning representation. arXiv preprint arXiv:​
1608.​06111 2016.

	46.	 Foland W, Martin JH. Abstract meaning representation parsing using lstm recurrent neural networks. In: Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017; 
463–472.

	47.	 Pan JZ. In: Staab, S., Studer, R. (eds.) Resource Description Framework, Springer, Berlin, Heidelberg 2009;71–90.
	48.	 Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms, edn. The MIT Press, 2022.
	49.	 Almeida F, Xexéo G. Word embeddings: a survey. arXiv preprint arXiv:​1901.​09069 2019.
	50.	 Liu Q, Kusner MJ, Blunsom P. A survey on contextual embeddings. arXiv preprint arXiv:​2003.​07278 2020.
	51.	 Li Y, Yang T. In: Srinivasan, S. (ed.) Word embedding for understanding natural language: A Survey. Springer, Cham 

2018;. 83–104.
	52.	 Qiu X, Sun T, Xu Y, Shao Y, Dai N, Huang X. Pre-trained models for natural language processing: a survey. Sci China 

Technol Sci. 2020;63(10):1872–97.
	53.	 Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint 

arXiv:​1301.​3781 2013.
	54.	 Rong X. word2vec parameter learning explained. arXiv preprint arXiv:​1411.​2738 2014.
	55.	 Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language under-

standing. arXiv preprint arXiv:​1810.​04805 2018.
	56.	 See A, Liu PJ, Manning CD. Get to the point: summarization with pointer-generator networks. arXiv preprint arXiv:​

1704.​04368 2017.
	57.	 Graves A, Jaitly N, Mohamed A-r. Hybrid speech recognition with deep bidirectional lstm. In: Automatic Speech 

Recognition and Understanding (ASRU), 2013 IEEE Workshop On, 2013; 273–278. IEEE.
	58.	 Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. arXiv preprint 

arXiv:​1506.​00019 2015.
	59.	 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint 

arXiv:​1409.​0473 2014.
	60.	 Tu Z, Lu Z, Liu Y, Liu X, Li H. Modeling coverage for neural machine translation. arXiv preprint arXiv:​1601.​04811 2016.
	61.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks 

from overfitting. J Mach Learn Res. 2014;15(1):1929–58.
	62.	 Watt N, du Plessis MC. Dropout algorithms for recurrent neural networks. In: Proceedings of the Annual Conference 

of the South African Institute of Computer Scientists and Information Technologists, 2018;72–78. ACM.
	63.	 Graves A. Sequence transduction with recurrent neural networks. arXiv preprint arXiv:​1211.​3711 2012.
	64.	 Boulanger-Lewandowski N, Bengio Y, Vincent P. Audio chord recognition with recurrent neural networks. In: ISMIR, 

2013; 335–340. Citeseer.
	65.	 Paulus R, Xiong C, Socher R. A deep reinforced model for abstractive summarization. In: International Conference on 

Learning Representations 2018;.
	66.	 Rennie SJ, Marcheret E, Mroueh Y, Ross J, Goel V. Self-critical sequence training for image captioning. In: Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; 7008–7024.
	67.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: 

Advances in Neural Information Processing Systems, 2017; 5998–6008.
	68.	 Zhang H, Xu J, Wang J. Pretraining-based natural language generation for text summarization. arXiv preprint arXiv:​

1902.​09243 2019.
	69.	 You Y, Jia W, Liu T, Yang W. Improving abstractive document summarization with salient information modeling. In: 

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019; 2132–2141.
	70.	 Liu Y, Lapata M. Text summarization with pretrained encoders. arXiv preprint arXiv:​1908.​08345 2019.
	71.	 Xu S, Li H, Yuan P, Wu Y, He X, Zhou B. Self-attention guided copy mechanism for abstractive summarization. In: 

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020; 1355–1362.
	72.	 Wolf T, Chaumond J, Debut L, Sanh V, Delangue C, Moi A, Cistac P, Funtowicz M, Davison J, Shleifer S, et al. Transform-

ers: State-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in 
Natural Language Processing: System Demonstrations, 2020; 38–45.

	73.	 Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba A, Fidler S. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference 
on Computer Vision,2015; 19–27.

	74.	 Napoles C, Gormley M, Van Durme B. Annotated gigaword. In: Proceedings of the Joint Workshop on Automatic 
Knowledge Base Construction and Web-scale Knowledge Extraction. Association for Computational Linguistics, 
2012; 95–100.

http://arxiv.org/abs/2112.08513
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1608.06111
http://arxiv.org/abs/1608.06111
http://arxiv.org/abs/1901.09069
http://arxiv.org/abs/2003.07278
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1601.04811
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1902.09243
http://arxiv.org/abs/1902.09243
http://arxiv.org/abs/1908.08345


Page 39 of 39Kouris et al. Journal of Big Data           (2024) 11:95 	

	75.	 Hermann KM, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, Blunsom P. Teaching machines to read and 
comprehend. In: Advances in Neural Information Processing Systems, 2015;1693–1701.

	76.	 Joshi A, Fernández E, Alegre E. Deep learning based text summarization: approaches databases and evaluation 
measures. In: International Conference of Applications of Intelligent Systems 2018.

	77.	 Nallapati R, Zhou B, dos Santos C, Gulcehre C, Xiang B. Abstractive text summarization using sequence-to-sequence 
RNNs and beyond. In: Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, 
pp. 280–290. Association for Computational Linguistics, Berlin, Germany. 2016; 280–290 https://​doi.​org/​10.​18653/​
v1/​K16-​1028.

	78.	 Shi T, Keneshloo Y, Ramakrishnan N, Reddy CK. Neural abstractive text summarization with sequence-to-sequence 
models. arXiv preprint arXiv:​1812.​02303 2018.

	79.	 Cohan A, Dernoncourt F, Kim DS, Bui T, Kim S, Chang W, Goharian N. A discourse-aware attention model for abstrac-
tive summarization of long documents. arXiv preprint arXiv:​1804.​05685 2018.

	80.	 Flanigan J, Thomson S, Carbonell JG, Dyer C, Smith NA. A discriminative graph-based parser for the abstract mean-
ing representation. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics 
(Volume 1: Long Papers), 2014; 1426–1436.

	81.	 Lin C-Y. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches Out 2004.
	82.	 Chopra S, Auli M, Rush AM. Abstractive sentence summarization with attentive recurrent neural networks. In: Pro-

ceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies,2016; 93–98.

	83.	 Gao Y, Wang Y, Liu L, Guo Y, Huang H. Neural abstractive summarization fusing by global generative topics. Neural 
Comput Appl. 2020;32(9):5049–58.

	84.	 Papineni K, Roukos S, Ward T, Zhu W-J. Bleu: a method for automatic evaluation of machine translation. In: Proceed-
ings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002; 311–318.

	85.	 Celikyilmaz A, Clark E, Gao J. Evaluation of text generation: a survey. arXiv preprint arXiv:​2006.​14799 2020.
	86.	 Fabbri AR, Kryściński W, McCann B, Xiong C, Socher R, Radev D. SummEval: re-evaluating summarization evaluation. 

Trans Assoc Comput Linguist. 2021;9:391–409. https://​doi.​org/​10.​1162/​tacl_a_​00373 (https://​direct.​mit.​edu/​tacl/​
artic​le-​pdf/​doi/​10.​1162/​tacl_a_​00373/​19239​49/​tacl_a_​00373.​pdf ).

	87.	 Kryściński W, McCann B, Xiong C, Socher R. Evaluating the factual consistency of abstractive text summarization. 
arXiv preprint arXiv:​1910.​12840 2019.

	88.	 Goodrich B, Rao V, Liu PJ, Saleh M. Assessing the factual accuracy of generated text. In: Proceedings of the 25th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019; 166–175.

	89.	 Angeli G, Premkumar MJJ, Manning CD. Leveraging linguistic structure for open domain information extraction. In: 
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International 
Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015; 344–354.

	90.	 Nallapati R, Xiang B, Zhou B. Sequence-to-sequence rnns for text summarization. 2016; arXiv:​1602.​06023.
	91.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:​1412.​6980 2014.
	92.	 Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: International Conference 

on Machine Learning, 2013; 1310–1318.
	93.	 Golik P, Doetsch P, Ney H. Cross-entropy vs. squared error training: a theoretical and experimental comparison. In: 

Interspeech. 2013;13:1756–60.
	94.	 Knight K, Baranescu L, Bonial C, Georgescu M, Griffitt K, Hermjakob U, Marcu D, Palmer M, Schneider N. Abstract 

meaning representation (amr) annotation release 1.0 ldc2014t12. Web Download. Philadelphia: Linguistic Data 
Consortium 2014.

	95.	 Sakai T. Two sample t-tests for ir evaluation: Student or welch? In: Proceedings of the 39th International ACM SIGIR 
Conference on Research and Development in Information Retrieval, 2016; 1045–1048.

	96.	 Zhang Y. Evaluating the factual correctness for abstractive summarization. CS230 Project 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
http://arxiv.org/abs/1812.02303
http://arxiv.org/abs/1804.05685
http://arxiv.org/abs/2006.14799
https://doi.org/10.1162/tacl_a_00373
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00373/1923949/tacl_a_00373.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00373/1923949/tacl_a_00373.pdf
http://arxiv.org/abs/1910.12840
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1412.6980

	Text summarization based on semantic graphs: an abstract meaning representation graph-to-text deep learning approach
	Abstract 
	Introduction
	Preliminaries and related work
	Semantic graph-based text summarization
	Preliminaries for semantic graph-based representation
	Semantic graph-based related work

	Semantic graph-based machine learning text summarization
	Preliminaries for semantic graph-based machine learning
	Semantic graph-based machine learning related work


	The proposed framework
	Semantic graph parsing
	Semantic graph construction
	Semantic graph as a sequence of sub-graphs
	Semantic graph as a combination of sub-graphs

	Graph transformations for machine learning
	Deep learning prediction
	Graph to text generation
	Semantic graph-based machine learning phase
	Deep learning models


	Experiments
	Datasets
	Evaluation metrics
	Rouge metrics
	Blue metric
	Factual consistency
	New tokens rate

	Experimental procedure and parameter tuning
	Competitive approaches

	Results
	Case study

	Discussion
	The effect of the deep learning models
	The effect of graph construction methods
	The effect of graph transformation techniques
	New tokens rate in generated summaries
	Factual consistency
	Summarizing the results

	Conclusion
	Acknowledgements
	References


