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Abstract 

Hepatocellular carcinoma (HCC) is a highly prevalent form of liver cancer that neces‑
sitates accurate prediction models for early diagnosis and effective treatment. Machine 
learning algorithms have demonstrated promising results in various medical domains, 
including cancer prediction. In this study, we propose a comprehensive approach 
for HCC prediction by comparing the performance of different machine learning 
algorithms before and after applying feature reduction methods. We employ popular 
feature reduction techniques, such as weighting features, hidden features correlation, 
feature selection, and optimized selection, to extract a reduced feature subset that cap‑
tures the most relevant information related to HCC. Subsequently, we apply multiple 
algorithms, including Naive Bayes, support vector machines (SVM), Neural Networks, 
Decision Tree, and K nearest neighbors (KNN), to both the original high‑dimensional 
dataset and the reduced feature set. By comparing the predictive accuracy, precision, F 
Score, recall, and execution time of each algorithm, we assess the effectiveness of fea‑
ture reduction in enhancing the performance of HCC prediction models. Our experi‑
mental results, obtained using a comprehensive dataset comprising clinical features 
of HCC patients, demonstrate that feature reduction significantly improves the per‑
formance of all examined algorithms. Notably, the reduced feature set consistently 
outperforms the original high‑dimensional dataset in terms of prediction accuracy 
and execution time. After applying feature reduction techniques, the employed algo‑
rithms, namely decision trees, Naive Bayes, KNN, neural networks, and SVM achieved 
accuracies of 96%, 97.33%, 94.67%, 96%, and 96.00%, respectively.

Keywords: Deep learning, Machine learning, Hepatocellular carcinoma, Liver cancer, 
Feature selection, Artificial Intelligence

Introduction
According to reports from the World Health Organization (WHO), approximately 14.1 
million individuals are diagnosed with cancer each year, resulting in 8.2 million deaths 
globally [1]. Hepatocellular carcinoma (HCC) is a form of liver cancer that arises from 
chronic liver disease and cirrhosis. Recent studies indicate that HCC is the most lethal can-
cer worldwide, leading to approximately 600,000 deaths annually [2]. Furthermore, liver 
cancer holds the sixth position among the most frequently diagnosed cancers worldwide 
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[3]. These facts demonstrate the global impact of HCC on human lives. Consequently, it 
is crucial to reduce the mortality rate associated with HCC, which can only be achieved 
through early detection. To accomplish this goal, it is imperative to leverage various data 
mining and machine learning techniques to develop an automated diagnostic system that 
can accurately predict HCC, ensuring more efficient and timely detection. Data mining is 
a multidisciplinary domain that employs principles from computer science and statistics to 
extract valuable information, such as features or rules, from provided data [4]. Conversely, 
machine learning is a branch of computer science that focuses on techniques and method-
ologies through which machines acquire knowledge and learn from experience [5]. In the 
present era, machine learning techniques and data mining are experiencing rapid growth 
and extensive application in the realm of medical diagnostics to tackle various challenges 
such as [6–13].

Our research began with a focus on acknowledging the importance of normalized data. 
A clear trend was observed in previous work—better model performance with normalized 
data. This observation led us to adapt our dataset accordingly. Next, we introduced feature 
selection methods, starting with the powerful “Recursive Feature Elimination (RFE)”. This 
method tests the model’s performance with each potential feature, systematically remov-
ing features and re-testing the model to find the best iteration. Next, we used “Principal 
Component Analysis (PCA)”, which is a popular method for feature extraction. Its goal is to 
reduce the dimensionality of a data set while preserving as much of the information as pos-
sible. PCA accomplishes this by creating new uncorrelated variables or components that 
successively maximize variance. In our study, PCA was utilized to transform the data set 
into a set of linearly uncorrelated variables termed principal components. Finally, optimi-
zation feature operators were applied. It is well recognized that optimizing the selection 
of feature subsets can significantly improve the performance of a classifier. To rate the 
importance of a feature for the classification task, mutual information was utilized. This 
was followed by executing various machine learning algorithms to assess classification 
performance.

A clear challenge exists in the form of Hepatocellular Carcinoma (HCC)—a lethal form 
of cancer cloaked in diagnostic complexity. Accurate, efficient predictive models are crucial 
for timely diagnosis and optimized treatment. However, conventional predictive models 
are hindered by the ‘dimensionality curse’, a common obstacle in high-dimensional datasets 
used in HCC diagnosis.

Problem statement

Despite being one of the most lethal forms of cancer, Hepatocellular Carcinoma (HCC) 
remains shrouded in an air of diagnostic complexity. The development of accurate and 
efficient predictive models represents a critical facilitator of timely diagnosis and effective 
treatment. Stunted by the dimensionality curse commonly associated with high-dimen-
sional datasets acquired in HCC diagnosis, traditional predictive models have demon-
strated limited proficiency.
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Research question

Can the application of alternative feature reduction techniques significantly enhance 
the performance of machine learning algorithms in the prediction of Hepatocellular 
Carcinoma?

Research gap

Previous studies have noted the positive relationship between reducing feature 
dimensionality and the predictive accuracy of machine learning algorithms. However, 
there remains a conspicuous lack of comprehensive approaches that compare the per-
formance of various machine learning algorithms under the influence of different fea-
ture reduction techniques in the domain of hepatocellular carcinoma prediction.

Contributions

This study heralds an important contribution to the field of computational HCC pre-
diction by comparing the performance of much-utilized machine learning algorithms 
before and after the implementation of feature reduction techniques. The main con-
tributions can be summarized as follows:

1. Adoption of data normalization to improve our model’s performance, as reinforced 
by earlier studies.

2. Execution of feature selection methods including ‘Recursive Feature Elimination 
(RFE)’ and ‘Principal Component Analysis (PCA)’ to boost the effectiveness of our 
predictive model.

3. Assessment of the influence of various features on the task of classification by 
deploying mutual information.

4. Conducting a performance comparison of differing machine learning algorithms, 
gauging their classification results.

5. Addressing existing research shortcomings by performing an extensive comparison 
of multiple feature reduction techniques and their corresponding impact on the out-
comes of a range of machine learning algorithms, particularly about Hepatocellular 
Carcinoma (HCC) prediction.

6. Advancing the computational prediction field for HCC by examining performance 
shifts in a variety of machine learning algorithms both before and after the integra-
tion of feature reduction techniques.

Related work
In a research study by Abajian et  al. [14] a study involving 36 patients with HCC 
who underwent transarterial chemoembolization. They employed machine learn-
ing techniques, specifically linear regression, and random forest, and achieved an 
overall accuracy of 78%. In a study by Ioannou et al. [15] focused on predicting the 
occurrence of hepatocellular carcinoma (HCC) within 3  years, a recurrent neural 
network (RNN) was trained using data from patients with hepatitis C virus (HCV)-
related cirrhosis. The dataset included four variables measured at the beginning of the 
study and 27 variables measured over time, collected from 48,151 patients receiving 
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healthcare within the US Department of Veterans Affairs system. The findings of the 
study demonstrated that the RNN model outperformed logistic regression in predict-
ing the development of HCC within the specified timeframe. The RNN achieved an 
accuracy of 75.9% for all patients and 80.6% for patients who achieved sustained viro-
logic response (SVR) in predicting the onset of hepatocellular carcinoma (HCC).

In a research study conducted by Nam et al. [16], a deep neural network was devel-
oped to predict the occurrence of hepatocellular carcinoma (HCC) over a 3- and 5-year 
period in patients with hepatitis B virus (HBV)-related cirrhosis who were undergoing 
entecavir therapy. The study examined 424 patients and demonstrated that the deep 
learning (DL) model outperformed six other previously reported models that utilized 
older modeling techniques. Additionally, the DL model was tested on a validation cohort 
consisting of 316 patients, and the results indicated a Harrell’s C-index of 0.782, indicat-
ing a high level of accuracy in predicting the incidence of HCC in these patients.

Nam et  al. [17] built upon their previous work by developing MoRAL-AI, a novel 
artificial intelligence model utilizing deep learning techniques, to identify liver cancer 
(HCC) patients at high risk of tumor recurrence after transplantation. The MoRAL-
AI model analyzed several prognostic factors including tumor size, patient age, blood 
alpha-fetoprotein (AFP) levels, and prothrombin time to generate risk predictions. 
Results of the study demonstrated that MoRAL-AI outperformed traditional prediction 
models such as the Milan, UCSF, up-to-seven, and Kyoto criteria in determining which 
HCC patients faced elevated recurrence risk post-transplant. Specifically, MoRAL-AI 
achieved a C-index of 0.75 for prognostic accuracy compared to 0.64, 0.62, 0.50, and 
0.50 for the other models respectively, with this difference being statistically significant 
(p < 0.001). In summary, MoRAL-AI represented an improved approach for identifying 
HCC patients likely to experience recurrence following liver transplantation.

In their study, Ali et al. [18] evaluated the predictive performance of various machine 
learning algorithms for hepatocellular carcinoma (HCC), including logistic regression, 
k-nearest neighbors (KNN), decision tree, random forest, and support vector machine 
(SVM). Additionally, they proposed and tested a novel combination approach utilizing 
linear discriminant analysis (LDA), genetic algorithm (GA), and SVM. When compar-
ing all models, the results demonstrated the LDA-GA-SVM approach yielded the best 
overall predictive ability. Specifically, the LDA-GA-SVM achieved the highest accuracy 
of 0.899, sensitivity of 0.892, and specificity of 0.906. These performance metrics were 
superior to those obtained when using the other individual algorithms evaluated—
logistic regression, KNN, decision tree, random forest, and SVM alone. Therefore, the 
study findings suggested the LDA-GA-SVM composite model may be the most effective 
machine learning-based predictive tool for HCC compared to the alternative algorithms 
analyzed.

Cao et al. [19] evaluated the predictive performance of various machine learning mod-
els—logistic regression, k-nearest neighbors (KNN), decision tree (DT), naïve Bayes 
(NB), and deep neural network (DNN)—using the original dataset. The accuracy of the 
models ranged from 57.5 to 70.6%. Precision varied between 40.7 and 70.1%, while recall 
rates were between 20.0 and 67.7%. False positive rates fell between 10.7 and 35.0% and 
standard deviation values ranged from 0.026 to 0.058. Among the models trained on 
the original dataset, KNN exhibited the best overall predictive ability. Specifically, KNN 
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achieved an accuracy of 70.6%, precision of 70.1%, recall rate of 51.9%, and a false posi-
tive rate of 16.0% with a standard deviation of 0.042. These results indicate that of the 
algorithms tested on the unmodified data, KNN provided the most accurate and reliable 
predictions of disease status.

In a study by Zhang et al. [20] 237 patients with liver cancer, almost 39% (92 patients) 
were identified as having a positive marker for MVI. This group, with an average age of 
52, was predominantly male (86 out of 92). The remaining 61% of patients (145 patients) 
were MVI-negative, with an average age of 54 and a more balanced male-to-female ratio 
(124 males to 21 females). Patients with MVI had larger tumors, a higher occurrence of 
tumor capsules, and elevated levels of certain proteins compared to those without MVI.

In a study by [21] After conducting machine learning analysis, they identified eight key 
feature variables (age, intratumoral arteries, alpha-fetoprotein, pre-operative blood glu-
cose, number of tumors, glucose-to-lymphocyte ratio, liver cirrhosis, and pre-operative 
platelets) to develop six distinct prediction models. Among these models, the XGBoost 
model exhibited superior performance, as evidenced by the area under the receiver 
operating characteristic curve (AUC-ROC) values of 0.993 (95% confidence interval: 
0.982–1.000), 0.734 (0.601–0.867), and 0.706 (0.585–0.827) in the training, validation, 
and test datasets, respectively. Furthermore, calibration curve analysis and decision 
curve analysis demonstrated that the XGBoost model exhibited favorable predictive per-
formance and possessed practical value in clinical applications.

Motivated by the development of different diagnostic systems based on machine 
learning models to improve the precision of decision-making about HCC diagnosis and 
prediction we also conducted an approach to enhance hepatocellular carcinoma (HCC) 
prediction through Feature reduction methods. This study highlights the effectiveness of 
feature reduction in boosting the performance of various AI techniques for HCC nodule 
prediction. By streamlining the data, they were able to significantly improve the accu-
racy of algorithms like Naive Bayes, Neural Networks, Decision Tree, SVM, and KNN.

Materials and methods
Database description

Clinical patient data from the Cancer Genome Atlas (TCGA) database were used in this 
study, The TCGA LIHC clinical data set offers a robust resource for investigating the 
clinical landscape of hepatocellular carcinoma (HCC). This data, encompassing diverse 
patient demographics, tumor characteristics, treatment details, and clinical outcomes, 
facilitates a multi-faceted approach to understanding disease progression and informing 
research avenues [22–24].

• Patient demographics: Age, sex, ethnicity, socioeconomic factors, and medical his-
tory provide context for analyzing disease epidemiology and potential risk factors 
as shown in Fig. 1. Correlations between these variables and clinical outcomes can 
inform targeted prevention and early intervention strategies.

• Tumor characteristics: Detailed information on tumor size, stage, grade, location, 
and presence of underlying liver disease allows for stratification of patient popula-
tions and facilitates investigation of tumor progression patterns.



Page 6 of 27Mostafa et al. Journal of Big Data           (2024) 11:88 

• Treatment details: Data on surgical procedures, radiation protocols, and chemother-
apy regimens allows for comparative effectiveness studies and identification of opti-
mal treatment strategies for different patient subgroups.

• Clinical outcomes: Data on overall survival, disease-free survival, time to recurrence, 
and response to treatment offer important endpoints for evaluating treatment effi-
cacy and informing clinical decision-making.

• Limitations: While the TCGA LIHC clinical data set is comprehensive, it’s important 
to acknowledge potential limitations due to data collection inconsistencies, miss-
ing follow-up data, and selection bias. Careful consideration of these limitations is 
necessary to ensure accurate interpretation of results and informed research conclu-
sions.

The dataset employed in this study comprised 77 features for each of the 377 patients 
in total. The label of the dataset denotes tumor status and can assume a value of “tumor-
free” or “with tumor”. The term “tumor-free” does not imply a state of normalcy, but 
instead refers to the absence or persistence of the neoplasm (tumor). It represents a 
statement regarding the progression or lack thereof of the initial disease. It is crucial to 
mention that there are missing values for each feature in the dataset that have the infor-
mation of all features. Within the existing body of literature, two distinct approaches 
are commonly employed to address missing values. The first method involves remov-
ing all samples that contain missing values, but this approach is not feasible in our case 
as it would result in the loss of a significant portion of the samples. Consequently, we 
opted to employ the imputation method to fill in the missing values. Missing data was 
addressed through a diverse range of imputation methods during the studies [25–28]. 
We utilized a statistical approach to impute missing values by substituting them with 
the mean value of the corresponding column or feature in which the missing value was 

Fig. 1 Hepatocellular carcinoma risk factors history in TCGA LIHC data set
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found. Elaborate information is provided about the clinical features of the TCGA dataset 
in Table 1.

Methodology
The proposed research entails a multi-pronged approach to enhance hepatocellular 
carcinoma (HCC) prediction through Feature reduction methods including feature 
importance, hidden feature correlation, and feature selection [29] using different algo-
rithms. The initial phase involved a thorough review of existing literature on deep learn-
ing applications in risk assessment, diagnosis, prognosis, and therapy for HCC patients. 
Subsequently, a meticulous analysis of clinical variables was conducted. Deep learning 
and machine learning algorithms were then implemented for HCC prediction, incorpo-
rating various feature reduction techniques. The overarching objective is to demonstra-
bly validate the superiority of employing alternative feature selection methods compared 
to using all features within the machine learning models for achieving accurate HCC 
prediction.

In this study, the workflow for training a dataset using feature weight, feature correla-
tion, Normalization, and optimization operators in RapidMiner [30] involves a series of 
steps designed to enhance the model-building process.

First, the dataset was loaded into RapidMiner, and the relevant operators were added 
to the process. The weights operator allows assigning importance or significance to indi-
vidual instances or attributes in the dataset. This was useful when certain instances or 
attributes carry more weight or relevance in the analysis.

Next, the correlation operator was applied to identify and measure the relationships 
between different attributes in the dataset. It helps in understanding which attributes 
are strongly correlated with the target variable or with each other. This information can 
guide feature selection and eliminate redundant or highly correlated attributes, reducing 
the dimensionality of the dataset.

After the correlation analysis, the normalization operator was utilized to scale and 
standardize the numerical attributes in the dataset. This step ensures that all attributes 
have similar ranges and distributions, preventing any single attribute from dominating 
the model training process due to differences in their scales. Normalization enhances the 
stability and convergence of various algorithms leading to improved model performance.

Following normalization, the optimization operator was employed to select the most 
relevant subset of features from the dataset. It uses optimization algorithms and statisti-
cal measures to evaluate the contribution of each attribute to the model’s performance. 
By iteratively evaluating different feature subsets, the optimization operator identified 
the combination of attributes that maximizes the model’s accuracy or other defined per-
formance metrics. This step helped in reducing noise, improving model efficiency, and 
enhancing interpretability.

Once the optimized feature subset was determined, the dataset was divided into train-
ing and testing sets 301 examples for train and 75 examples for test using appropriate 
sampling techniques.in our case, we used “Stratified sampling” which involves creat-
ing random subsets while ensuring that the distribution of classes within those subsets 
remains consistent with the overall class distribution in the entire example set.
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Table 1 Information about the features of the TCGA dataset clinical variables

Features Description Type Values

Ablation embolization tx 
adjuvant

Ablation embolization tx 
adjuvant

Binominal No (364), Yes (13)

Age at diagnosis Age at initial pathologic 
diagnosis

Integer Min (16), Max (90)

ajcc metastasis pathologic pm Pathologic M Nominal M0 (272), MX (101), M (4)

ajcc nodes pathologic pn Pathologic N Nominal N0 (257), NX (115), N1 (4)

ajcc pathologic tumor stage Pathologic stage Nominal Stage I (175), Stage II (87), Stage 
IIIA (65), Stage IIIB (9), Stage 
IIIC (9), Stage III (3), Stage IV 
(2), Stage IVB (2), [discrepancy] 
(2),Stage IVA (1)

ajcc staging edition System version Nominal 7th 231,6th 119, 5th 23, 4th 4

ajcc tumor pathologic pt Pathologic T Nominal T1 185, T2 93,T3 45,T3a 29
T4 13,T3b 7,T2a 1,T2b 1
TX 1, [discrepancy] 1

Alpha fetoprotien at procure‑
ment

Laboratory procedure alpha‑
fetoprotein outcome value

Integer Min (1), Max (2035400)

Alpha fetoprotien norm range 
lower

Laboratory procedure alpha‑
fetoprotein outcome lower 
limit of normal value

Integer Min (0), Max (6)

Alpha fetoprotien norm range 
upper

Laboratory procedure alpha‑
fetoprotein outcome upper 
limit of normal value

Integer Min (6), Max (44)

bcr patient barcode bcr patient barcode Nominal Ex: TCGA‑2V‑A95S

bcr patient uuid bcr patient uuid Nominal Ex: 0004D251‑3F70‑4395‑B175‑
C94C2F5B1B81

Bilirubin total Laboratory procedure total bili‑
rubin result specified the upper 
limit of the normal value

Real Min (0.100), Max (19)

Bilirubin total norm range 
lower

Laboratory procedure total 
bilirubin result specified a lower 
limit of normal value

Real Min (0), Max (1)

Bilirubin total norm range 
upper

Laboratory procedure total 
bilirubin results in upper limit 
normal value

Real Min (0.200), Max (21)

Birthdays to Days to birth Integer Min (− 32,120),Max (− 5862)

Child–pugh classification Child–Pugh classification grade Nominal A (223), B (21), C (1)

Clinical M Clinical M Nominal [Not applicable] 377

Clinical N Clinical N Nominal [Not applicable] 377

Clinical stage Clinical stage Nominal [Not applicable] 377

Clinical T Clinical T Nominal

Creatinine level preresection Hematology serum creatinine 
laboratory result value in mg dl

Real Min (0.400),Max (124)

Creatinine norm range lower Laboratory procedure creati‑
nine results lower the limit of 
normal value

Real Min (0), Max (62)

Creatinine norm range upper Laboratory procedure creati‑
nine results in the upper limit of 
normal value

Real Min (0.900), Max (120)

Days to initial pathologic 
diagnosis

Days to initial pathologic 
diagnosis

Integer 0

Death days to Days to death Integer Min (− 1), Max (3258)
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Table 1 (continued)

Features Description Type Values

Definitive surgical procedure Specimen collection method 
name

Nominal Lobectomy 145
Segmentectomy, Multiple 89
Segmentectomy, Single 88
Other (specify) 26
Extended Lobectomy 25
No 3
Total Hepatectomy with Trans‑
plant 1

Disease code Disease code Nominal [Not available] 377

ECOG score Eastern Cancer Oncology 
Group

Integer Min (0), Max(4)

Ethnicity Ethnicity Nominal NOT HISPANIC OR LATINO 340
HISPANIC OR LATINO 18
Other 17
[Not available] 2

Extranodal involvement Extranodal involvement Nominal [Not applicable] 377

Family history cancer indicator Relative family cancer history 
ind 3

Binominal NO 263
YES 114

Family history cancer number 
of relatives

Cancer diagnosis first‑degree 
relative number

Integer Min (0), Max (9)

Form completion date Form completion date Date ‑Time Ranged from (20‑12‑2010) to 
(9‑7‑2015)

Gender Gender Binominal MALE 255
FEMALE 122

Height cm at diagnosis Height Integer Min (64), Max (196)

Hepatic inflammation adj tissue Adjacent hepatic tissue inflam‑
mation extent type

Nominal None 257, Mild 101, Severe 19

Histologic diagnosis Histological type Nominal Hepatocellular Carcinoma 367
Hepatocholangiocarcinoma 
(Mixed) 7
Fibrolamellar Carcinoma 3

History of hepato carcinoma 
risk factors

History hepato carcinoma risk 
factor

Nominal Most (no history of primary risk 
factors 112
Hepatitis B 78
Alcohol consumption 69
Hepatitis C 32
Alcohol consumption|Hepatitis 
B 20
Alcohol consumption|Hepatitis 
C 14
Other 12
Non‑Alcoholic Fatty Liver 
Disease 11)

History neoadjuvant treatment History of neoadjuvant treat‑
ment

Binominal No 375
Yes 2

History other malignancy Prior dx Binominal No 340
Yes 37

icd 10 icd 10 Nominal C22.0 377

icd o 3 histology icd o 3 histology Nominal 8170/3 360, 8180/3 7
8171/3 4, 8174/3 4
8173/3 1, 8310/3 1

icd o 3 site icd o 3 site Nominal C22.0 377

Informed consent verified Informed consent verified Nominal YES 377

Ishak fibrosis score Liver fibrosis ishak score 
category

Nominal 0—No Fibrosis 76
6—Established Cirrhosis 72
1,2—Portal Fibrosis 31
3,4—Fibrous Speta 30
5—Nodular Formation and 
Incomplete Cirrhosis 9
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Table 1 (continued)

Features Description Type Values

Last contact days to Days to the last follow‑up Integer Max(3675)

New tumor event dx indicator New tumor event after initial 
treatment

Nominal NO 279
YES 98

Other hepato carcinoma risk 
factors

History hepato carcinoma risk 
factors other

Nominal Most (No 345
Smoking 6
Tobacco use 6
Cirrhosis 2)

Patient id Patient id Nominal EX: 4072

Pharmaceutical tx adjuvant Postoperative rx tx Binominal NO 362
YES 15

Platelet count pre‑resection Lab procedure platelet results 
specified value

Integer Min (4), Max (499,000)

Platelet norm range lower Laboratory procedure platelet 
results in a lower limit of normal 
value

Integer Min (0), Max (163,000)

Platelet norm range upper Laboratory procedure platelet 
results in the upper limit of 
normal value

Integer Min (6), Max (450,000)

Project code Project code Nominal [Not available] 377

Prospective collection Tissue prospective collection 
indicator

Binominal NO 249
YES 128

Prothrom time INR norm range 
lower

Laboratory procedure inter‑
national normalization ratio 
results lower limit of normal 
value

Real Min (0), Max (11)

Prothrombin time INR at pro‑
curement

laboratory procedure pro‑
thrombin time result value

Real Min (0.800), Max (36.400)

Prothrombin time norm range 
upper

Laboratory procedure 
international normalization 
ratio results upper limit of the 
normal value

Real Min (1), Max (15)

Race Race Nominal WHITE 187
ASIAN 161
BLACK OR AFRICAN AMERICAN 
17
Other 10
AMERICAN INDIAN OR ALASKA 
NATIVE 2

Radiation treatment adjuvant Radiation therapy Binominal NO 373
YES 4

Residual tumor Residual tumor Nominal R0 332, RX 22
R1 17,R2 1

Retrospective collection Tissue retrospective collection 
indicator

Binominal YES 249
NO 128

Serum albumin norm range 
lower

Laboratory procedure albumin 
results in a lower limit of normal 
value

Real Min (0.300), Max (3800)

Serum albumin norm range 
upper

Laboratory procedure albumin 
result upper limit of normal 
value

Real Min (0.500), Max (5100)

Serum albumin preresection laboratory procedure albumin 
result specified value

Real Min (0.200), Max (5200)

Stage other Stage other Nominal [Not available] 377

Surgical procedure other Surgical procedure name other 
specific text

Binominal No 351
R hepatic lobectomy w/resec‑
tion of L segment 1

Tissue source site Tissue source site Nominal Most (DD 151)
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Finally, various modeling techniques, such as decision trees, Naive Bayes, KNN, neural 
networks, and SVM were applied to train the model using the selected features and the 
assigned weights.

Extracting meaningful insights from the TCGA LIHC dataset through regression 
tasks requires careful consideration of the chosen model. Several factors influence this 
selection, including data size, feature types, interpretability needs, and computational 
resources. For datasets with moderate sizes, similar to what might be encountered within 
TCGA LIHC, Naive Bayes offers a strong option. Decision trees are particularly well-
suited for handling missing data inherent to real-world datasets, eliminating the need for 
extra imputation steps. K-Nearest Neighbors (KNN) stands out for its efficiency, directly 
comparing new data points to existing TCGA LIHC entries for prediction without a 
separate training phase. More complex models like neural networks can uncover hid-
den patterns within the data through automatic feature learning. Finally, Support Vec-
tor Machines (SVMs) offer robustness to noise, a common challenge in TCGA LIHC 
datasets. By carefully weighing these factors and evaluating model performance on the 
specific TCGA LIHC subset used, the model’s performance is then evaluated using per-
formance measures like accuracy, precision, F Score, and recall. A Summary of the Data 
Reduction Workflow for Predicting Hepatocellular Carcinoma, as Depicted in Fig. 2.

Results and discussion
Data preprocessing

The dataset initially consisted of 77 features. During the data cleaning process, 28 
entries with unknown values in the “TUMOR status” column were replaced with “With 
TUMOR”. In addition, two new features were introduced for further analysis: “opti-
mal weight” based on Body Mass Index (BMI), categorized as Normal, Overweight, or 
Obesity, and “age stage” categorized as Middle Adulthood, Late Adulthood, or Young 
Adulthood. Redundant information such as age, height, weight, and other columns with 
repeated, unavailable, or inapplicable values, as well as patient IDs, were eliminated. As 
a result, the final dataset now comprises 59 features. Figure 3 illustrates the relationship 

Table 1 (continued)

Features Description Type Values

Tumor grade Neoplasm histologic grade Nominal G2 183,G3 124
G1 55,G4 13
[Not Available] 1

Tumor status Person neoplasm cancer status Binominal TUMOR FREE 236
WITH TUMOR 141

Tumor tissue site Tumor tissue site Nominal Liver 377

Vascular invasion Vascular tumor cell invasion 
type

Nominal None 230
Micro 94
Macro 17

Viral hepatitis serology Viral hepatitis serology Nominal Most (no results 211)

Vital status Vital status Binominal Alive 286
Dead 91

Weight kg at diagnosis Weight Integer Min (40), Max (172)

Year of initial pathologic 
diagnosis

Year of initial pathologic 
diagnosis

Integer Min (1995), Max (2013)
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between patients with obesity and the number of family members with a history of can-
cer. Our findings indicate that the patient with obesity had the highest number of family 
members with this medical history.

Feature importance

After data cleansing the remaining 59 features were weighted with different types of 
weight operators after replacing missing values using RapidMiner. First, we applied 
“Weight by Information Gain”. To determine how relevant each attribute is to the class 
attribute, the Weight by Information Gain operator uses a calculation called information 
gain [31]. Attributes with higher scores are considered more important.

Fig. 2 Outline of data reduction workflow for Hepatocellular carcinoma Prediction

Fig. 3 Illustration of patients with obesity VS number of family relatives having a history of cancer
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While information gain is generally reliable for assessing attribute relevance [32], 
it does have a potential drawback. It can sometimes overestimate the importance of 
attributes that have a very large number of possible values. To overcome the limi-
tations of information gain, particularly its sensitivity to attributes with numerous 
unique values, we used the information gain ratio by analyzing the information each 
attribute provides for understanding the target class, this method assigns weights 
that reflect their relative importance. The more insightful an attribute is for predict-
ing the category, the higher its weight will be.

Secondly, we use the “Weight by Relief ” operator. Considered one of the most 
effective and straightforward algorithms for evaluating feature quality, Relief has 
gained significant recognition. The fundamental concept behind Relief is to gauge 
the quality of features based on their ability to differentiate between instances of 
the same class and instances of different classes that are nearby[33, 34]. By sam-
pling examples and comparing the feature values between the nearest examples of 
the same class and different classes, Relief calculates the relevance of features as 
described in [35].

Pseudocode of the Relief algorithm: 

Hidden feature correlation

Weight by Correlation is a feature selection methodology employed within the 
framework of Rapid Miner Studio [36]. This approach focuses on ascertaining the 
salience of features by quantifying their correlation with the target variable [37]. By 
assigning weights to individual features as shown in Fig. 4 based on their correlation 
coefficients, “Weight by Correlation” prioritizes those features that exhibit stronger 
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correlations. This weighting mechanism [38] facilitates the identification and selec-
tion of the most influential features, thereby enhancing the efficacy and precision of 
data analysis and modeling processes within Rapid Miner Studio.

Feature selection

Normalization is a technique employed to rescale values to fit within a specific range. It 
is particularly crucial when handling attributes that possess varying units and scales [39, 
40].

The significance of data normalization in developing precise predictive models has 
been investigated across multiple machine learning algorithms [41], including Near-
est Neighbors (NN) [42], Artificial Neural Networks (ANN) [43] and Support Vec-
tor Machines (SVM) [44]. Several researchers have confirmed the positive impact of 
data normalization on enhancing classification performance in various domains [45]. 
Examples include medical data classification [46, 47], multimodal biometrics systems 
[48], vehicle classification [49], faulty motor detection[50], stock market prediction 
[51], leaf classification [52], credit approval data classification [53], genomics [54], and 
other application areas [55, 56]. The purpose of the normalization operator is to per-
form the normalization process on selected attributes. There are four available normali-
zation methods, with the “Range transformation” method being utilized in this case. 
This method normalizes all attribute values to a specified range [57]. Upon selecting 
this method, two additional parameters, namely “min” and “max,” become visible in the 

Fig. 4 Illustration of assigning weights to individual features based on their correlation coefficients
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parameters panel. The largest value in the attribute set is assigned to “max,” while the 
smallest value is assigned to “min.” All other values are proportionally scaled to fit within 
the provided range. It is worth noting that this method may be affected by outliers, as 
the boundaries adjust towards them. However, it retains the original distribution of the 
data points, making it suitable for data anonymization purposes as well.

Optimized selection is a valuable technique utilized in RapidMiner. This approach 
plays an essential role in streamlining the model-building process by automatically 
identifying and selecting the most relevant subset of features from a given dataset [58, 
59]. By leveraging optimization algorithms and statistical measures, RapidMiner’s 
optimized selection functionality aims to enhance both the efficiency and efficacy of 
predictive models. The process of optimized selection involves iteratively evaluating 
different feature subsets and assessing their impact on the model’s performance [60]. 
The operator as shown in Fig. 5, implements two deterministic greedy feature selec-
tion algorithms: “forward selection” and “backward elimination.”.

The goal of the forward selection algorithm is to generate the most effective sub-
set of features while disregarding irrelevant and insignificant ones [61–63]. It begins 
by creating an initial population of n individuals, where n represents the number of 
attributes in the input Example Set. Each individual in the population uses only one 
feature. The attribute sets are then evaluated, and the top k sets are selected based on 
their performance. For each of the k selected sets, the algorithm proceeds as follows: 
If there are j unused attributes, j copies of the attribute set are made, and exactly one 
previously unused attribute is added to each copy of the set. The algorithm continues 
to the next step as long as there has been an improvement in performance in the last 
p iterations. The Backward Elimination technique begins with an attribute set that 
includes all features [64, 65]. It evaluates all attribute sets and chooses the top k sets 
based on their performance. For each of the selected k sets, the algorithm proceeds as 
follows: If there are j attributes currently used, j copies of the attribute set are made, 
and exactly one previously used attribute is removed from each copy of the set. The 
algorithm continues to the next step as long as there has been an improvement in per-
formance in the last p iterations.

Fig. 5 Normalize and Optimize selection operators in Rapid Miner
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Pseudocode of Forward Greedy Search (FGS) Feature Selection: 

Details regarding the parameters of the operators employed in RapidMiner are in 
Table 2.

Before feature reduction, machine learning models often face challenges such as 
high dimensionality and redundant or irrelevant features [66–68]. These issues can 
negatively impact both accuracy and execution time. With a large number of features, 
models may struggle to extract meaningful patterns from the data, leading to overfit-
ting or poor generalization. Additionally, the computational complexity of training 
and inference increases significantly with the increasing number of features. How-
ever, after feature reduction techniques were applied, such as dimensionality reduc-
tion or feature selection, the models experienced improved performance in terms of 
accuracy as shown in Fig. 6, and execution time as shown in Fig. 7.

Tables 3 and 4 present a summary of the application of various deep learning and 
machine learning techniques on the TCGA LIHC clinical variables dataset for pre-
dicting hepatocellular carcinoma (HCC). This summary includes the performance of 
these techniques both before and after feature reduction methods were applied. The 
algorithms utilized in this study encompassed Naive Bayes, Neural Network, Decision 
Tree, SVM, and KNN. The primary focus of the evaluation was on the prediction of 
HCC nodules. The results indicate that both the deep learning models and machine 
learning models exhibited outstanding performance after the implementation of fea-
ture reduction methods.
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Before feature reduction, our Neural Network model lumbered through train-
ing, achieving an accuracy of 76.00% at the cost of a sluggish 5 min. This sluggishness 
stemmed from the model struggling to navigate the complexities of a high-dimensional 
feature space, often getting tangled in irrelevant or redundant information. However, 
after applying feature reduction techniques, the model shed its excess baggage, emerg-
ing lean and mean. It effortlessly soared through training, achieving a remarkable 96% 
in a mere 1 min and 10 s. This drastic improvement is a testament to the power of fea-
ture reduction. By eliminating noisy and superfluous features, we cleared the path for 

Table 2 Information about the parameters of used operators in RapidMiner

Used operators Parameters

Set role Attribute Tumor_stauts

Role Label

Replace missing values Replacement value Average

Weight by information gain Normalize weight True

Sort weights True

Sort direction Ascending

Weight by relief Number of neighbors 10

Sample ratio 1.0

Nominal to numerical Coding type Dummy coding

Select by weight Weight relation Greater equals

Weight 0.1

Split data Partitions Ratio:0.8–0.2

Sampling type Stratified sampling

Normalize Method Range transformation

Min 0

Max 1.0

Optimize selection Selection direction Forward

Max Number of generations Naive Bayes(6),decision 
tree (7),Neural 
nets(6),SVM(4),KNN(7)

Naive Bayes Laplace correction True

Decision tree Criterion Gain ratio

Maximal depth 10

Confidence 0.1

Minimal gain 0.01

Minimal leaf size 2

Minimal size for split 4

Number of pre‑pruning alternatives 3

KNN K 1

Measure type Mixed Euclidean Distance

Neural network Training cycles 200

Learning rate 0.01

Momentum 0.9

SVM Kernel type Polynomial

Kernel degree 2.0

Kernel cache 200

Max iteration 100,000

C 10

Convergence epsilon 0.001
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the model to focus on the truly meaningful relationships within the data, resulting in a 
more accurate and efficient learning process. This optimization paves the way for faster 
real-time predictions, reduced computational costs, and ultimately, a more robust and 
deployable model.

Applying feature reduction techniques to the Naive Bayes model yields notable 
enhancements in both accuracy and execution time. Specifically, the model achieves 
an impressive accuracy rate of 97.33%. Moreover, the execution time is significantly 
reduced to a mere 49 s, showcasing the model’s enhanced efficiency in processing and 
making predictions. These improvements highlight the effectiveness of feature reduction 
in optimizing the Naive Bayes model’s performance, resulting in superior accuracy and 
faster execution times.

Before implementing feature reduction, the Decision Tree model attains a commend-
able accuracy of 90.67% but necessitates a relatively lengthy execution duration of 4 min 

Fig. 6 Performance of used algorithms for HCC Prediction, on the TCGA LIHC clinical variables dataset after 
feature reduction methods

Fig. 7 Execution time of used algorithms for HCC prediction, before and after feature reduction methods in 
seconds
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and 12  s. Nevertheless, following the application of feature reduction techniques, the 
model undergoes noteworthy enhancements. It accomplishes an impressive accuracy 
rate of 96%, demonstrating improved precision when classifying instances. Furthermore, 
the execution time is significantly reduced to a mere 1 min and 9 s. These enhancements 
underscore the efficacy of feature reduction in optimizing the performance of the Deci-
sion Tree model, leading to substantially higher accuracy and faster execution. Moreo-
ver, both the SVM and KNN models exhibit superior accuracy, with the SVM model 
achieving 96.00% accuracy and the KNN model achieving 94.67% accuracy. Notably, the 
execution times for these models are 1  min and 48  s for SVM and 1  min and 2  s for 
KNN, respectively.

Discussion
A multitude of machine-learning algorithms have been developed for the predic-
tion of hepatocellular carcinoma. The study [69] explores using a combination of 
machine learning techniques (ensemble learning) to predict how long Hepatocellular 

Table 3 Performance comparison when using each of the deep learning and machine learning 
algorithms for HCC Prediction, on the TCGA LIHC clinical variables dataset Before Feature Reduction 
Methods

Approach Prediction 
criteria

TRUE 
(WITH 
TUMOR)

TRUE 
(TUMOR-
FREE)

Precision 
(%)

Accuracy 
(%)

F1-score 
(%)

Execution 
time

Naive Bayes Pred. WITH 
TUMOR

24 3 88.89% 90.67% 92.63% 4 min and 2 s

Pred. 
TUMOR 
FREE

4 44 91.67%

Recall (%) 85.71% 93.62%

Neural 
Network

Pred. WITH 
TUMOR

13 3 81.25% 76.00% 83.02% 5 min

Pred. 
TUMOR 
FREE

15 44 74.58%

Recall (%) 46.43% 93.62%

Decision 
Tree

Pred. WITH 
TUMOR

21 0 100% 90.67% 93.05% 4 min and 
12 s

Pred. 
TUMOR 
FREE

7 47 87.04%

Recall (%) 75% 100%

SVM Pred. WITH 
TUMOR

23 1 95.83% 92% 93.56% 5 min and 
14 s

Pred. 
TUMOR 
FREE

5 46 90.20%

Recall (%) 82.14% 97.87%

KNN Pred. WITH 
TUMOR

18 0 100% 86.67% 90.38% 4 min and 
45 s

Pred. 
TUMOR 
FREE

10 47 82.46%

Recall (%) 64.29% 100%
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Carcinoma (HCC) patients will survive. The model considers various factors that 
might influence survival, including patient location, risk factors, and details from 
clinical trials.

The researchers test fifteen different models, each involving data cleaning, reducing 
unnecessary features, and then classifying patients based on their predicted survival 
time. To identify the most important factors, they use four methods: LASSO regression, 
Ridge regression, a Genetic Algorithm, and a Random Forest. Only the most influential 
factors are used for prediction.

The models they build include variations of Nu-Support Vector Classification, Ridge 
Classification (RCV), and Gradient Boosting Ensemble Learning (GBEL), each com-
bined with either L1 or L2 regularization or optimized by a Genetic Algorithm or Ran-
dom Forest. These models are evaluated based on how accurately they predict survival, 
using metrics like accuracy, sensitivity, and Area Under the Curve (AUC).

Their findings show that the RFGBEL model (Random Forest combined with Gradi-
ent Boosting Ensemble Learning) performs best compared to the others. This model 
achieves an accuracy of over 93% and a high AUC score of 0.932, indicating strong 

Table 4 Performance comparison when using each of the deep learning and machine learning 
algorithms for HCC Prediction, on the TCGA LIHC clinical variables dataset After Feature Reduction 
Methods

Approach Prediction 
criteria

TRUE 
(WITH 
TUMOR)

TRUE 
(TUMOR-
FREE)

Precision 
(%)

Accuracy 
(%)

F1-score 
(%)

Execution 
Time

Naive Bayes Pred. WITH 
TUMOR

27 1 96.43% 97.33% 97.87% 49 s

Pred. 
TUMOR 
FREE

1 46 97.87%

Recall (%) 96.43% 97.87%

Neural 
network

Pred. WITH 
TUMOR

27 2 93.10% 96% 96.59% 1 min and 
10 s

Pred. 
TUMOR 
FREE

1 45 97.83%

Recall (%) 96.43% 95.4%

Decision 
tree

Pred. WITH 
TUMOR

26 1 96.30% 96% 96.83% 1 min and 9 s

Pred. 
TUMOR 
FREE

2 46 95.83%

Recall (%) 92.86% 97.87%

SVM Pred. WITH 
TUMOR

28 3 90.32% 96.00% 96.70% 1 min and 
48 s

Pred. 
TUMOR 
FREE

0 44 100%

Recall (%) 100% 93.62%

KNN Pred. WITH 
TUMOR

25 1 96.15% 94.67% 95.83% 1 min and 2 s

Pred. 
TUMOR 
FREE

3 46 93.88%

Recall (%) 89.29% 97.87%
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prediction capabilities. Finally, they compare their RFGBEL model to existing methods 
and demonstrate its superior ability to predict HCC patient survival.

Also, researchers in the study [70] propose a new NCA-GA-SVM model for predict-
ing HCC survival. This model combines known high-performing techniques (NCA, GA) 
to improve SVM classification. It achieved high accuracy (96.36%) on a dataset of 165 
patients.

This study [71] developed a highly accurate model for diagnosing liver cancer (HCC) 
that leverages a combination of personalized biological pathways and machine learning. 
The model achieved exceptional performance in internal testing (AUROC > 0.98) and 
demonstrated good generalizability to external data. These results suggest this model 
has great potential for real-world application in HCC diagnosis. Kiani et al. [72] used a 
microscopic image from the TCGA dataset and utilized a convolutional neural network 
(CNN) tool named the “Liver Cancer Assistant,” it accomplished precise discrimination 
between hepatocellular carcinoma (HCC) and cholangiocarcinoma. Notably, the model 
achieved a diagnostic accuracy of 0.885, highlighting its efficacy in accurately identifying 
and distinguishing between these two distinct forms of liver cancer.

In a study conducted by Wang et al. [73], a deep learning technique involving a con-
volutional neural network (CNN) was utilized to automate the identification and clas-
sification of individual nuclei in tissue images. The CNN was trained using H&E-stained 
tissue sections of hepatocellular carcinoma (HCC) tumors from the TCGA dataset. 
Subsequently, a process of feature extraction was carried out, resulting in the identifi-
cation of 246 quantitative image features. Using an unsupervised learning approach, a 
clustering analysis was performed, which yielded intriguing results. Surprisingly, this 
analysis unveiled the existence of three distinct histologic subtypes within the HCC 
tumors. Importantly, these subtypes were found to be unrelated to previously estab-
lished genomic clusters and exhibited different prognoses. This study demonstrated the 
potential of CNN-based image analysis in revealing unique histologic subtypes, offer-
ing valuable insights into the prognosis of HCC tumors. Table 5 displays a collection of 
models proposed by different authors, which have been applied to various HCC-related 
problems using the TCGA dataset. Table 5 represents the Studies of patients with hepa-
tocellular carcinoma based on the TCGA LIHC dataset.

In this work, we proposed an approach that aims to improve the prediction of hepa-
tocellular carcinoma (HCC) through a comprehensive approach that involves multi-
ple strategies. These strategies include reducing the number of features used in the 
prediction model through methods such as analyzing feature importance, explor-
ing hidden feature correlations, and employing various algorithms for HCC predic-
tion using clinical variables. We utilized TCGA LIHC clinical variables but the data 
needed to be cleaned to address any inconsistencies, missing values, or errors. Then 
the data was formatted and prepared for further analysis which involved scaling the 
data to a common range, encoding categorical variables, or performing feature engi-
neering to create new features from existing ones. After identifying the optimized 
feature subset, the dataset was split into two sets: a training set with 301 examples 
and a testing set with 75 examples. This division was performed using a sampling 
technique called “Stratified sampling.” This sampling technique ensures that random 
subsets are created while maintaining the consistent distribution of classes within 
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those subsets, aligning with the overall class distribution in the entire dataset. In 
other words, Stratified sampling helps to preserve the proportional representation 
of different classes during the creation of training and testing sets, which is essen-
tial for maintaining the integrity of the dataset and ensuring reliable model evalua-
tion. The application of feature reduction techniques to the Naive Bayes model leads 
to significant improvements in accuracy and execution time. With these techniques 
implemented, the model achieves an impressive accuracy rate of 97.33%. Additionally, 
the execution time is drastically reduced to just 49  s, demonstrating the enhanced 
efficiency of the model in processing and making predictions. These enhancements 

Table 5 Studies of patients with hepatocellular carcinoma based on the TCGA LIHC dataset

Study Dataset Algorithm Year Accuracy

Deng et al. [74] TCGA and HCCDB18 
datasets

Unsupervised consistent 
clustering method

2022 Comparison of Glycolysis 
and Cholesterol Gene 
Expression in Normal and 
Tumor Samples

Cheng et al. [75] TCGA‑LIHC data set Cox regression analysis 2022 AUC values of the patient’s 
3‑year and 5‑year Overall 
Survival were 0.783 and 
0.828, respectively,

Yamashita et al. [76] Stanford‑HCCDET; TCGA Convolution neural 
network

2021 The AUROC for tumor tile 
classification was 0.952 
(95% CI 0.948, 0.957) on the 
internal test set

Saillard et al. [77] French center and TCGA Convolution neural 
network

2020 These CNN‑based models 
demonstrate superior 
performance compared to 
traditional models, achiev‑
ing a C‑index ranging from 
0.75 to 0.78

Tohme et al. [78] TCGA‑LIHC ANN 2021 The artificial neural network 
(ANN) identified a set of 
15 genes that exhibited 
a normalized importance 
greater than 50%

Kiani et al. [72] TCGA CNN 2020 By employing a CNN‑based 
tool, classifying between 
hepatocellular carcinoma 
and cholangiocarcinoma 
exhibited a diagnostic 
accuracy rate of 0.885

Liao et al. [22] TCGA and a center in 
China

Convolution neural 
network

2020 The predictions of muta‑
tions were surpassing an 
Area Under the Curve (AUC) 
value of 0.70

Wang et al. [73] TCGA–LIHC Convolution neural 
network

2020 The model demonstrated 
high accuracy, achieving 
an overall classification rate 
of 99% for tumor cells and 
97% for lymphocytes

Shi et al. [79] 1 center in China; TCGA Convolution neural 
network

2021 The deep learning‑based 
“stratifies the study popula‑
tion into five groups with 
distinct prognoses in both 
the Zhongshan cohort 
(p < 0.0001) and TCGA 
cohort (p = 0.0003)”
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clearly illustrate the effectiveness of feature reduction in optimizing the performance 
of the Naive Bayes model, resulting in higher accuracy and faster execution times.

Limitations
Although machine learning and deep learning have shown promise in various medical 
applications, including hepatocellular carcinoma (HCC) prediction, there are several 
limitations associated with their use in this context.

One major limitation is the requirement for large and high-quality datasets. Machine 
learning algorithms, including deep learning models, heavily rely on vast amounts of 
well-curated data to learn patterns and make accurate predictions. However, acquiring 
such datasets for HCC prediction can be challenging due to the rarity of the disease and 
the need for comprehensive clinical and imaging data. The limited availability of anno-
tated HCC datasets hampers the development and evaluation of robust models.

Interpretability and explainability are crucial in medical decision-making, and this is 
another limitation of the deep learning model. While these models have demonstrated 
remarkable predictive capabilities, they often function as black boxes, making it difficult 
to understand the underlying reasons behind their predictions. This lack of interpret-
ability raises concerns in medical settings, where clinicians need to have confidence in 
the decision-making process and understand the factors contributing to a prediction.

The generalizability of machine learning and deep learning models can also be a limi-
tation. Models trained on specific populations or datasets may not perform as well when 
applied to different patient populations or settings. The heterogeneity of HCC, includ-
ing variations in tumor characteristics, genetic profiles, and patient demographics, 
can introduce challenges in developing models that can effectively predict HCC across 
diverse populations. Furthermore, the potential for bias in machine learning models is 
another limitation. Biases can be introduced during the data collection process, such as 
underrepresentation of certain demographic groups or confounding factors. If the mod-
els are trained on biased datasets, they may perpetuate or even amplify existing biases, 
leading to inaccurate predictions and disparities in healthcare outcomes.

Conclusion and future work
In conclusion, this study focused on the prediction of hepatocellular carcinoma (HCC), 
a prevalent form of liver cancer, using machine learning algorithms. The objective was to 
assess the effectiveness of feature reduction techniques in enhancing the performance 
of HCC prediction models. By comparing the performance of various machine learning 
algorithms on both the original high-dimensional dataset and a reduced feature subset, 
this study demonstrated that feature reduction significantly improves the accuracy and 
execution time of HCC prediction models. The employed feature reduction techniques, 
including weighting features, hidden features correlation, feature selection, and opti-
mized selection, helped extract a reduced feature set that captured the most relevant 
information related to HCC. The experimental results obtained from a comprehensive 
dataset of clinical features of HCC patients showed that the reduced feature set con-
sistently outperformed the original high-dimensional dataset in terms of prediction 
accuracy. The decision trees, Naive Bayes, K-nearest neighbors, neural networks, and 
support vector machines (SVM) algorithms achieved accuracies of 96%, 97.33%, 94.67%, 
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96%, and 96.00%, respectively, after applying feature reduction techniques. These find-
ings suggest that feature reduction methods can be effectively employed in HCC predic-
tion models, leading to improved accuracy and faster execution times. The application of 
machine learning algorithms, combined with feature reduction techniques, holds great 
potential for the early diagnosis and effective treatment of HCC, ultimately improving 
patient outcomes.

While current models using clinical variables for HCC prediction show promise, there 
are several areas for future work to improve accuracy, personalize risk assessment, and 
ultimately guide better patient outcomes. Integrating Multimodal Data by Exploring 
combining clinical data with other modalities like genetic information, imaging data 
(MRI, CT scans), and blood-based biomarkers. Deep learning models can be particu-
larly adept at handling such diverse data sources. Also, train and validate models on 
large, geographically diverse datasets to ensure generalizability and avoid overfitting to 
specific populations. Account for the presence of other chronic conditions like diabetes 
or hepatitis that may influence HCC development. Develop models that can incorpo-
rate longitudinal data (changes in clinical variables over time) to predict risk changes 
and identify high-risk patients earlier. By focusing on these future work directions, we 
can improve the accuracy and clinical utility of HCC prediction models using clinical 
variables, leading to earlier detection, better risk stratification, and ultimately improved 
patient outcomes.

Author contributions
This work was carried out in collaboration among all authors. All Authors designed the study, performed the statistical 
analysis, and wrote the protocol. All Authors managed the analyses of the study, managed the literature searches, and 
wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with 
The Egyptian Knowledge Bank (EKB). This research did not receive any specific grant from funding agencies in the public, 
commercial, or not‑for‑profit sectors.

Data availability
The TCGA LIHC clinical data set is publicly available.
Data Access Points: There are a couple of resources where researchers can access the data: GDC Data Portal: “https:// 
portal. gdc. cancer. gov/”. TCIA: “https:// imagi ng. cancer. gov/ infor matics/ cancer_ imagi ng_ archi ve. htm”.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication
All authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Received: 27 February 2024   Accepted: 31 May 2024

References
 1. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
 2. DeWaal D, et al. Hexokinase‑2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular 

carcinoma and sensitizes to metformin. Nat Commun. 2018;9(1):446.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://imaging.cancer.gov/informatics/cancer_imaging_archive.htm


Page 25 of 27Mostafa et al. Journal of Big Data           (2024) 11:88  

 3. Santos MS, et al. A new cluster‑based oversampling method for improving survival prediction of hepatocellular 
carcinoma patients. J Biomed Inform. 2015;58:49–59.

 4. Ali L, Bukhari S. An approach based on mutually informed neural networks to optimize the generalization capabili‑
ties of decision support systems developed for heart failure prediction. Irbm. 2021;42(5):345–52.

 5. Książek W, et al. A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn 
Syst Res. 2019;54:116–27.

 6. Ali L et al. A multi‑model framework for evaluating type of speech samples having complementary information 
about Parkinson’s disease. In: 2019 International conference on electrical, communication, and computer engineer‑
ing (ICECCE). IEEE; 2019.

 7. Abdar M, et al. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn Lett. 
2020;132:123–31.

 8. Zheng B, Yoon SW, Lam SS. Breast cancer diagnosis based on feature extraction using a hybrid of K‑means and sup‑
port vector machine algorithms. Expert Syst Appl. 2014;41(4):1476–82.

 9. Shi J, et al. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for 
diagnosis of Alzheimer’s disease. IEEE J Biomed Health Inform. 2017;22(1):173–83.

 10. Zhi X, et al. Efficient discriminative clustering via QR decomposition‑based linear discriminant analysis. Knowl‑Based 
Syst. 2018;153:117–32.

 11. Ali L et al. Early detection of heart failure by reducing the time complexity of the machine learning based predictive 
model. In: 2019 international conference on electrical, communication, and computer engineering (ICECCE). IEEE; 
2019.

 12. Ravikulan A, Rostami K. Leveraging machine learning for early recurrence prediction in hepatocellular carcinoma: a 
step towards precision medicine. World J Gastroenterol. 2024;30(5):424.

 13. Hong H, et al. Prediction of hepatocellular carcinoma development in Korean patients after hepatitis C cure with 
direct‑acting antivirals. Gut and Liver. 2024;18(1):147.

 14. Abajian A, et al. Predicting treatment response to intra‑arterial therapies for hepatocellular carcinoma with the use 
of supervised machine learning—an artificial intelligence concept. J Vasc Intervent Radiol. 2018;29(6):850–7.

 15. Ioannou GN, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepa‑
titis C cirrhosis. JAMA Netw Open. 2020;3(9):e2015626–e2015626.

 16. Nam JY, et al. Deep learning model for prediction of hepatocellular carcinoma in patients with HBV‑related cirrhosis 
on antiviral therapy. JHEP Rep. 2020;2(6): 100175.

 17. Nam JY, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: a 
multicenter study. Cancers. 2020;12(10):2791.

 18. Ali MA, et al. A novel method for survival prediction of hepatocellular carcinoma using feature‑selection techniques. 
Appl Sci. 2022;12(13):6427.

 19. Cao Y, et al. Prediction model for recurrence of hepatocellular carcinoma after resection by using neighbor2vec 
based algorithms. Wiley Interdiscip R Data Min Knowl Discov. 2021;11(2): e1390.

 20. Zhang Y, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular 
invasion in hepatocellular carcinoma. J Magn Reson Imaging. 2021;54(1):134–43.

 21. Zhang Y‑B, et al. Development of a machine learning‑based model for predicting risk of early postoperative recur‑
rence of hepatocellular carcinoma. World J Gastroenterol. 2023;29(43):5804.

 22. Liao H, et al. Deep learning‑based classification and mutation prediction from histopathological images of hepato‑
cellular carcinoma. Clin Transl Med. 2020;10(2): e102.

 23. Deng Z, et al. Mining TCGA database for tumor microenvironment‑related genes of prognostic value in hepatocel‑
lular carcinoma. BioMed Res Int. 2019;2019:2408348.

 24. Wang K, et al. A novel immune‑related genes prognosis biomarker for hepatocellular carcinoma. Aging (Albany NY). 
2021;13(1):675.

 25. Bannister CA, et al. A genetic programming approach to development of clinical prediction models: a case study in 
symptomatic cardiovascular disease. PLoS ONE. 2018;13(9): e0202685.

 26. Dong Y, et al. A novel surgical predictive model for Chinese Crohn’s disease patients. Medicine. 2019;98(46): e17510.
 27. Karhade AV, et al. Development of machine learning algorithms for prediction of prolonged opioid prescription 

after surgery for lumbar disc herniation. Spine J. 2019;19(11):1764–71.
 28. Scheer JK, et al. Development of a preoperative predictive model for major complications following adult spinal 

deformity surgery. J Neurosurg Spine. 2017;26(6):736–43.
 29. Adams S, Beling PA, Cogill R. Feature selection for hidden Markov models and hidden semi‑Markov models. IEEE 

Access. 2016;4:1642–57.
 30. Bjaoui M et al. Depth insight for data scientist with RapidMiner «an innovative tool for AI and big data towards 

medical applications». In: Proceedings of the 2nd international conference on digital tools & uses congress; 2020.
 31. Roy SP, Kasat A. Diabetic prediction with ensemble model and feature selection using information gain method. In: 

2024 2nd international conference on intelligent data communication technologies and internet of things (IDCIoT). 
IEEE; 2024.

 32. Ihianle IK, et al. Minimising redundancy, maximising relevance: HRV feature selection for stress classification. Expert 
Syst Appl. 2024;239: 122490.

 33. Robnik‑Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn. 
2003;53:23–69.

 34. Shukla AK, et al. Knowledge discovery in medical and biological datasets by integration of Relief‑F and correlation 
feature selection techniques. J Intell Fuzzy Syst. 2020;38(5):6637–48.

 35. Haq AU, et al. A hybrid intelligent system framework for the prediction of heart disease using machine learning 
algorithms. Mob Inf Syst. 2018;2018:1–21.

 36. Theng D, Bhoyar KK. Feature selection techniques for machine learning: a survey of more than two decades of 
research. Knowl Inf Syst. 2024;66(3):1575–637.



Page 26 of 27Mostafa et al. Journal of Big Data           (2024) 11:88 

 37. Gao J, et al. Information gain ratio‑based subfeature grouping empowers particle swarm optimization for feature 
selection. Knowl‑Based Syst. 2024;286: 111380.

 38. Wang X, Yan Y, Ma X. Feature selection method based on differential correlation information entropy. Neural Process 
Lett. 2020;52:1339–58.

 39. Singh D, Singh B. Investigating the impact of data normalization on classification performance. Appl Soft Comput. 
2020;97: 105524.

 40. Raju VG et al. Study the influence of normalization/transformation process on the accuracy of supervised classifica‑
tion. In: 2020 third international conference on smart systems and inventive technology (ICSSIT). IEEE; 2020.

 41. Zhou S, et al. Breast cancer prediction based on multiple machine learning algorithms. Technol Cancer Res Treat. 
2024;23:15330338241234792.

 42. Aksoy S, Haralick RM. Feature normalization and likelihood‑based similarity measures for image retrieval. Pattern 
Recogn Lett. 2001;22(5):563–82.

 43. Ajbar W, et al. Development of artificial neural networks for the prediction of the pressure field along a horizontal 
pipe conveying high‑viscosity two‑phase flow. Flow Meas Instrum. 2024;96: 102541.

 44. Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification, Taipei, Taiwan; 2003.
 45. Parashar G, Chaudhary A, Pandey D. Machine learning for prediction of cardiovascular disease and respiratory 

disease: a review. SN Comput Sci. 2024;5(1):196.
 46. Jayalakshmi T, Santhakumaran A. Statistical normalization and back propagation for classification. Int J Comput 

Theory Eng. 2011;3(1):1793–8201.
 47. Acharya UR, et al. Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans Inf 

Technol Biomed. 2011;15(3):449–55.
 48. Snelick R, et al. Large‑scale evaluation of multimodal biometric authentication using state‑of‑the‑art systems. IEEE 

Trans Pattern Anal Mach Intell. 2005;27(3):450–5.
 49. Wen X, et al. Efficient feature selection and classification for vehicle detection. IEEE Trans Circuits Syst Video Technol. 

2014;25(3):508–17.
 50. Esfahani ET, Wang S, Sundararajan V. Multisensor wireless system for eccentricity and bearing fault detection in 

induction motors. IEEE/ASME Trans Mechatron. 2013;19(3):818–26.
 51. Pan J, Zhuang Y, Fong S. The impact of data normalization on stock market prediction: using SVM and technical 

indicators. In: Soft computing in data science: second international conference, SCDS 2016, Kuala Lumpur, Malaysia, 
September 21–22, 2016, Proceedings 2. Springer; 2016.

 52. Kadir A et al. Leaf classification using shape, color, and texture features; 2013. arXiv preprint arXiv: 1401. 4447.
 53. Wang C‑M, Huang Y‑F. Evolutionary‑based feature selection approaches with new criteria for data mining: a case 

study of credit approval data. Expert Syst Appl. 2009;36(3):5900–8.
 54. Wu W, et al. Evaluation of normalization methods for cDNA microarray data by k‑NN classification. BMC Bioinform. 

2005;6:1–21.
 55. Liu Z. A method of SVM with normalization in intrusion detection. Procedia Environ Sci. 2011;11:256–62.
 56. Su D et al. Anomadroid: profiling android applications’ behaviors for identifying unknown malapps. In: 2016 IEEE 

Trustcom/BigDataSE/ISPA. IEEE; 2016.
 57. Peterson RA. Finding optimal normalizing transformations via best normalize. R Journal. 2021;13(1):310–29.
 58. El‑Hasnony IM, et al. Improved feature selection model for big data analytics. IEEE Access. 2020;8:66989–7004.
 59. Song X‑F, et al. A fast hybrid feature selection based on correlation‑guided clustering and particle swarm optimiza‑

tion for high‑dimensional data. IEEE Trans Cybern. 2021;52(9):9573–86.
 60. Mohamad M, et al. Enhancing big data feature selection using a hybrid correlation‑based feature selection. Elec‑

tronics. 2021;10(23):2984.
 61. Khaire UM, Dhanalakshmi R. Stability of feature selection algorithm: a review. J King Saud Univ Comput Inf Sci. 

2022;34(4):1060–73.
 62. Camattari F et al. Greedy feature selection: Classifier‑dependent feature selection via greedy methods. arXiv preprint 

arXiv: 2403. 05138; 2024.
 63. Chen W, Sun X. Dynamic multi‑label feature selection algorithm based on label importance and label correlation. 

Int J Mach Learn Cybern. 2024. https:// doi. org/ 10. 1007/ s13042‑ 024‑ 02098‑3.
 64. Habib M, Okayli M. Evaluating the sensitivity of machine learning models to data preprocessing technique in con‑

crete compressive strength estimation. Arab J Sci Eng. 2024. https:// doi. org/ 10. 1007/ s13369‑ 024‑ 08776‑2.
 65. Peng M, et al. scFSNN: a feature selection method based on neural network for single‑cell RNA‑seq data. BMC 

Genomics. 2024;25(1):264.
 66. Ayesha S, Hanif MK, Talib R. Overview and comparative study of dimensionality reduction techniques for high 

dimensional data. Inf Fus. 2020;59:44–58.
 67. Ray P, Reddy SS, Banerjee T. Various dimension reduction techniques for high dimensional data analysis: a review. 

Artif Intell Rev. 2021;54:3473–515.
 68. Zebari R, et al. A comprehensive review of dimensionality reduction techniques for feature selection and feature 

extraction. J Appl Sci Technol Trends. 2020;1(2):56–70.
 69. Sharma M, Kumar N. Improved hepatocellular carcinoma fatality prognosis using ensemble learning approach. J 

Ambient Intell Humaniz Comput. 2022;13(12):5763–77.
 70. Książek W, Turza F, Pławiak P. NCA‑GA‑SVM: a new two‑level feature selection method based on neighborhood com‑

ponent analysis and genetic algorithm in hepatocellular carcinoma fatality prognosis. Int J Numer Methods Biomed 
Eng. 2022;38(6): e3599.

 71. Cheng B, Zhou P, Chen Y. Machine‑learning algorithms based on personalized pathways for a novel predictive 
model for the diagnosis of hepatocellular carcinoma. BMC Bioinform. 2022;23(1):248.

 72. Kiani A, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Dig Med. 
2020;3(1):23.

 73. Wang H, et al. Single‑cell spatial analysis of tumor and immune microenvironment on whole‑slide image reveals 
hepatocellular carcinoma subtypes. Cancers. 2020;12(12):3562.

http://arxiv.org/abs/1401.4447
http://arxiv.org/abs/2403.05138
https://doi.org/10.1007/s13042-024-02098-3
https://doi.org/10.1007/s13369-024-08776-2


Page 27 of 27Mostafa et al. Journal of Big Data           (2024) 11:88  

 74. Deng W, et al. Classification and prognostic characteristics of hepatocellular carcinoma based on glycolysis choles‑
terol synthesis axis. J Oncol. 2022. https:// doi. org/ 10. 1155/ 2022/ 20146 25.

 75. Cheng D, et al. Identification and construction of a 13‑gene risk model for prognosis prediction in hepatocellular 
carcinoma patients. J Clin Lab Anal. 2022;36(5): e24377.

 76. Yamashita R, et al. Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histo‑
pathologic images. Sci Rep. 2021;11(1):1–14.

 77. Saillard C, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological 
slides. Hepatology. 2020;72(6):2000–13.

 78. Tohme S, et al. The use of machine learning to create a risk score to predict survival in patients with hepatocellular 
carcinoma: a TCGA cohort analysis. Can J Gastroenterol Hepatol. 2021. https:// doi. org/ 10. 1155/ 2021/ 52129 53.

 79. Shi J‑Y, et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep 
learning. Gut. 2021;70(5):951–61.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2022/2014625
https://doi.org/10.1155/2021/5212953

	Feature reduction for hepatocellular carcinoma prediction using machine learning algorithms
	Abstract 
	Introduction
	Problem statement
	Research question
	Research gap
	Contributions

	Related work
	Materials and methods
	Database description

	Methodology
	Results and discussion
	Data preprocessing
	Feature importance
	Hidden feature correlation
	Feature selection

	Discussion
	Limitations
	Conclusion and future work
	References


