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Abstract
Big data present new opportunities for modern society while posing challenges 
for data scientists. Recent advancements in sensor networks and the widespread 
adoption of the Internet of Things (IoT) have led to the collection of physical-sensor 
data on an enormous scale. However, significant challenges arise in conducting high-
quality data analytics within the realm of big data. To uncover big data challenges 
and enhance data quality, it is essential to quantitatively unveil data characteristics. 
Furthermore, the existing studies lack analysis of the specific time-related 
characteristics of physical-sensor data. Enhancing the efficiency and precision of data 
analytics through the big data lifecycle requires a comprehensive understanding of 
data characteristics to address the hidden big data challenges. To fill in the research 
gap, this paper proposes a systematic data characteristic framework based on a 
6Vs model. The framework aims to unveil the data characteristics in terms of data 
volume, variety, velocity, veracity, value, and variability through a set of statistical 
indicators. This model improves the objectivity of data characteristic understanding 
by relying solely on data-driven indicators. The indicators related to time-related 
characteristics in physical-sensor data are also included for the analysis of temporal 
aspects in the physical-sensor data. Furthermore, the big data challenges are linked 
to each dimension of the 6Vs model to gain a quantitative understanding of the data 
challenges. Finally, a pipeline is developed to implement the proposed framework, 
and two case studies are conducted to illustrate the process of understanding 
the physical-sensor data characteristics and making recommendations for data 
preprocessing to address the big data challenges. The proposed framework is able to 
analyze the characteristics of all physical-sensor data, therefore, identifying potential 
challenges in subsequent analytics, and providing recommendations for data 
preprocessing. Furthermore, the characteristic indicators can be used to analyze other 
types of big data.

Keywords  Big data characteristics, Data challenges, Data preprocessing, Data mining, 
6Vs model, Physical-sensor data
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Introduction
Big data bring new opportunities to modern society including governments, industries, 
institutions, and so on [1], which hold great promise in uncovering subtle population 
patterns and heterogeneities that are not feasible with small-scale data. the International 
Data Corporation (IDC) has estimated that the amount of generated data will double 
every 2 years [2, 3]. In 2020, the daily data production totaled 175.9 exabytes, with an 
estimated increase to 495.9 exabytes by 2025 [4]. The immense data volume, diverse 
data content, and complex data structure introduce unique computational and statistical 
challenges in big data. These include issues related to scalability and storage bottleneck, 
noise accumulation, spurious correlation, incidental endogeneity, and measurement 
errors [5, 6]. As a result, it is essential to develop techniques for comprehending the 
characteristics of big data, which extract valuable insights and assist in addressing the 
challenges posed by big data, ultimately enhancing the reliability and accuracy of data 
analytics.

In real-world applications, big data often fail to yield valuable insights due to the afore-
mentioned challenges. Coping with big data problems requires a lot of resources in addi-
tion to the direct adaption of existing analytics algorithms. In the realm of data analytics, 
raw data is seldom immediately suitable for processing. Instead, it typically undergoes 
multiple stages, including cleansing, integrating, and transforming, before progressing 
to further refinement, evaluation, and preparation as it moves through its lifecycle [7].

Enhancing the capacity to comprehend, manage, and make informed decisions based 
on vast volumes of data is a crucial concern in big data analytics, which aims to advance 
the selection of technologies to extract valuable insights from such substantial datasets 
for effective data processing. The huge amount of grown information hidden behind the 
datasets should be inferred and effectively managed to reveal the characteristics of big 
data, which should be the initial step before considering the application of any data pre-
processing and analytic technologies. Data characteristics are models on the ‘Vs’ that 
describe the attribute and dimension information of data sources in detail [8, 9]. The 
number and the selection of vs. vary in the different studies based on distinct require-
ments. Volume, variety, and velocity are the basic three Vs showing big data characteris-
tics [10, 11]. It can be extended to 6 Vs by adding veracity, value, and variability [12–14]. 
In addition to the 6Vs framework, several other dimensions, such as validity [15], volatil-
ity [16], valence [15], and so on, have been developed in recent publications to encom-
pass a broader and more comprehensive representation of data characteristics. In recent 
research, several new criteria have been introduced to broaden the understanding of 
data characteristics, such as visualization, validity, vitality, etc [15–19]. These novel cri-
teria are currently still in the development stage and potentially overlap the existing Vs 
concepts [20, 21]. Even Although the proposed Vs frameworks have provided precise 
and convincing definitions of all their dimensions, existing studies exhibit certain limita-
tions when attempting to quantify these Vs to cover the comprehensive characteristics 
of large-scale data, primarily due to their sheer volume, multiple sources, and diverse 
formats [22].

The characteristics of big data not only furnish abundant information for methodol-
ogy selection in data analytics but also unveil the challenges inherent in the field. The 
high dimensionality and large sample size raise unique challenges noise accumulation, 
computational cost, heterogeneity, and so on [1]. The data characteristics derived from 
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Vs models are intricately linked to numerous challenges in many studies [10, 13, 23], and 
each ‘V’ represents one specific challenge. However, the limitations in quantifying Vs 
models result in non-quantitative representations of big data challenges. This may limit 
the provision of detailed and specific information regarding the challenges associated 
with certain datasets. It is necessary to utilize quantitative indicators to represent the big 
data challenges to make precise decisions on data preprocessing and data analytics.

The proposed Vs data characteristic frameworks are generally generic and can be 
employed to analyze datasets from different sectors. However, data derived from physi-
cal sensors have some specific characteristics and rely on the machine and system 
settings [22, 24]. With the availability of grand-scale use of measurement devices in 
multi-sensor systems [25], large-scale data are collected and managed in the Internet of 
Things (IoT), which involves intelligent digital sensors and networking technologies [26]. 
The errors of certain sensors or communication mechanisms in IoT systems may cause 
missing records and inconsistency of different variables, which damages the data qual-
ity and brings some challenges [27, 28]. Furthermore, a substantial portion of physical-
sensor data is recorded as time series. The datasets are time-related tabular data with 
timestamps. The time-related characteristics, like timestamps, play vital roles in big data 
characteristics. Given the time-dependent nature of IoT systems, irregular time intervals 
or duplicate timestamps can lead to erroneous analyses. Current publications often lack 
time-related characteristic indicators, which should be integrated into the data char-
acteristic framework for a more comprehensive understanding of physical-sensor data 
challenges.

To address the limitations mentioned above, this article proposes a systematic data 
characteristic understanding framework to analyze physical-sensor big data challenges. 
It aims to identify the characteristics of data recorded through physical sensors and 
understand potential challenges before adopting data preprocessing strategies. The data 
characteristic results provide crucial support for the development of data preprocessing 
pipelines. These pipelines are instrumental in enhancing the accuracy and trustworthi-
ness of decision-making processes. Furthermore, the results foster increased transpar-
ency in data management, ensuring that information is handled more effectively. This 
framework provides a complete understanding of data characteristics with a 6Vs model. 
To reveal physical-sensor data characteristics quantitatively and objectively, each dimen-
sion of the 6Vs model includes a set of statistical indicators deriving information from 
raw data and several indicators are specifically for temporal data. Moreover, the evalu-
ation metrics are developed for each dimension of Vs to quantitatively measure the 
overall quality of a dataset in each respective V-dimension. To understand the big data 
challenges systematically and make specific recommendations to cope with these chal-
lenges, each challenge is lined to one dimension of the 6Vs model and evaluated based 
on the statistical indicators. Furthermore, a pipeline is developed to implement the 
proposed data characteristics model, which includes timestamp understanding, value 
understanding, and feature understanding. Two case studies are conducted to demon-
strate the process of data characteristic understanding. Two physical-sensor datasets are 
generated from the industrial processing sector and the transportation sector respec-
tively. The results disclose the dataset characteristics and analyze the potential big data 
challenges, along with the corresponding preprocessing methods.
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Reflecting the outlined scope of this article, its key contributions and novelty pertain 
to the following aspects:

 	• To address the limitations of quantifying the data characteristic model, this study 
develops a 6Vs model and each dimension involves a set of statistical indicators. This 
model improves the objectivity of data characteristic understanding by relying solely 
on data-driven indicators, evaluation metrics, and data-based information.

 	• To cope with the drawbacks of applying the general data characteristic model in 
physical-sensor big data, the study implements indicators related to temporal data 
into the data characteristic model to investigate time-related characteristics of 
physical-sensor data.

 	• To understand the challenges of physical-sensor big data systematically and 
quantitatively, each challenge is linked to one dimension of the 6Vs model.

 	• To visualize the application of the proposed framework, a pipeline to utilize the data 
characteristic understanding framework is developed in this article, and two case 
studies regarding physical-sensor data are conducted.

The remainder of this paper is arranged as follows. Background and related work intro-
duces the background and the related work of the study. In Section Data Characteristic 
Understanding Framework for Physical-sensor Big Data, the proposed data character-
istic understanding framework and the components are elaborated on and explained in 
detail. The pipeline to implement the proposed framework is presented in Section Pipe-
line of data characteristic understanding. Section Case study shows the two case studies 
as well as the results of data characteristic understanding. Furthermore, Section Discus-
sions discusses the data challenges in the two cases, compares the developed framework 
with existing models, and makes recommendations for data preprocessing. Finally, Sec-
tion Conclusion concludes the study and presents the plan for future work.

Background and related work
Big data lifecycle

A vast volume of data is constantly being produced in the world, which is generated 
from diverse sources, such as The Internet of Things (IoT) [29], simulators [30], human 
activities [31], and so on. Large-scale and intricate datasets are defined as big data, 
which requires economical and advanced methodologies of digital information analytics 
for generating insight and supporting decision-making [5, 32, 33] [5, 32, 33]. The com-
plexity of big data may result in a high false discovery rate in applications; in the mean-
time, challenges of big data analytics exist in all data processing phases, including data 
acquisition, data storage, and data analysis [20, 34]. Therefore, it is crucial to manage the 
data values across all phases with a global framework and elucidate the interconnections 
among these phases. The Data Lifecycle (DLC) model is proposed as an effective data 
management tool streamlining data organization and knowledge extraction within com-
plex data systems, which highlights the sequential progression of data phases, outlines 
the management policies for each phase, and describes the relationship between these 
phases [6, 35, 36].

The Cross Industry Standard Process for Data Mining (CRISP-DM) is the de-facto 
standard and pipeline to develop data mining and knowledge discovery projects and has 
been widely employed in most data science projects [37, 38]. The original CRISP-DM 
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model is illustrated in Fig. 1. This model is a six-step cycle, and there exist iterative pro-
cesses between ‘business understanding’ and ‘data understanding’, as well as between 
‘data preparation’ and ‘modeling’. The definition of the six steps is as follows [39, 40]:

(1) Business understanding: Clarify the project’s objectives and define priority and suc-
cess criteria;

(2) Data understanding: Gain a comprehensive understanding of the project’s data and 
evaluate it as necessary;

(3) Data preparation: Execute essential data transformations, such as extracting target 
data, handling missing values, and dataset reconstruction;

(4) Modeling: Select an appropriate data processing model or framework;
(5) Evaluation: Utilize an application to assess the model’s accuracy and versatility;
(6) Deployment: Summarize the process and share knowledge gained from the 

analysis.
In data science applications, The CRISP-DM model can be slightly adapted to many 

different domains, such as health care [41, 42], signal processing [43], sensor applica-
tions [40], production [44, 45], and so on. In the domain of physical-sensor big data 
processing, the automated preprocessing for data mining (APREP-DM) model has been 
proposed as a framework for sensor data analysis [40]. Physical-sensor data in this study 
are time-related tabular data with timestamps. This model replaces the data preparation 
step in the CRISP-DM model with the data preprocessing step, focusing on data clean-
ing and data transformation. Figure 2 shows the DLC model combining both APREP-
DM and CRISP-DM frameworks, guiding the process of physical-sensor data science 
projects.

The definition of the seven steps is introduced as follows:
(1) Business understanding: Clarify the project’s objectives and define priority and suc-

cess criteria;
(2) Data understanding: Gain a comprehensive understanding of the sensor-data char-

acteristics in the project;

Fig. 1  Original CRISP-DM process model [39]
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(3) Challenge understanding: Discover the challenges of physical-sensor data analytics 
based on data characteristics;

(4) Data preprocessing: Perform essential data preprocessing technologies, such as 
data cleaning and data transformations;

(5) Modeling: Select an appropriate data processing model or framework;
(6) Evaluation: Utilize applications to assess the data quality, and the model’s accuracy 

and versatility;
(7) Deployment: Summarize the process and share knowledge gained from the 

analysis.
The framework in Fig. 2 focuses on the understanding and data preprocessing steps, 

which are the most essential parts of data science projects [40]. The objectives and crite-
ria in the business understanding step are used to determine the criteria of data charac-
teristic understanding, and the results of data understanding are employed as feedback 
to optimize the business objectives and investigate the challenges of data preprocessing 
and modeling. Next, the data preprocessing strategies such as detecting outliers, han-
dling missing data, and dimension reduction are selected based on the potential chal-
lenges. Subsequently, the developed model analyzes the preprocessed data, and the 
resulting insights offer valuable information for enhancing the data preprocessing. The 
evaluation step includes assessing the raw data quality based on the data understanding 
and challenge understanding and evaluating the model’s accuracy and versatility. Finally, 
the results are concluded and discussed in the deployment step. This paper focuses on 
the data understanding and challenge understanding steps because they are essential 
tasks before data preprocessing. A systematic framework for understanding the charac-
teristics and challenges of data empowers data scientists to gain valuable insights from 
raw data and make informed decisions regarding data preprocessing.

Fig. 2  The DLC model for physical-sensor data

 



Page 7 of 37Ma et al. Journal of Big Data           (2024) 11:84 

Big data characteristics in vs models

The big data characteristics and challenges are defined as Vs, and the initial 3Vs are 
named Volume (large scale of data), Variety (various data formats and sources), and 
Velocity (rapid data generation and interaction) [10, 11]. Afterward, the initial 3Vs 
model, proposed to explain the technical and business implications of novel data man-
agement strategies, is extended to 6Vs to capture intricate big-data characteristics by 
incorporating veracity (trustworthiness and reliability of data), value (data with huge 
value) and variability (consistency in data formats, units, and scales) [13, 23, 46]. In 
recent research, many new criteria have been proposed to broaden the data character-
istic understanding, such as visualization, validity, vitality, etc [15–19]. Table 1 outlines 
the different Vs in the analyzed literature. Such novel criteria are still in the development 
stage and potentially overlap the existing Vs concepts [20]; therefore, the 6Vs criteria are 
widely adopted in most literature to understand the big-data characteristics.

Volume is the most visible big data characteristic, referring to the size and scale of data 
[47]. The evaluation 201 of data volumes is relative, making it impractical to define a 
specific threshold for categorizing data volumes 202 in big data analysis. Variety empha-
sizes the roles of structured, unstructured, and semi-structured data, which 203 indi-
cates the diversity of data forms in big data [19]. Velocity represents the speed at which 
data is received, 204 stored, and processed, sometimes regarding real-time or near-real-
time systems [6]. Veracity indicates the 205 reliability and accuracy of data in terms of 
collection, processing methods, and trusted infrastructure [19]. In 206 the context of sci-
entific data, veracity has been partly defined as the aspect of data consistency that can 
be 207 precisely characterized through statistical reliability [47]. Value emphasizes the 
significance of deriving 208 actionable insights and value from big data. The concept of 
“low-value density” signifies that the value of big 209 data is not strongly correlated with 
its volume; however, significant value can be achieved by processing large-210 volume 
data [6]. Variability denotes the inconsistency of data formats and structures due to mul-
tiple data sources with different characteristics [16]. The 6Vs framework shown in Fig. 3 
provides a holistic perspective on the big data characteristics with consensus definitions, 
helping navigate the challenges and opportunities that arise from managing and analyz-
ing large and diverse datasets.

Although The existing Vs models are capable of measuring big data characteristics 
in multiple dimensions, they still have limitations in comprehensively understand-
ing big data. Firstly, the conventional 3Vs model falls short in covering the data attri-
butes with the explosive growth of data size. However, the state-of-the-art Vs models 
involve several dimensions without mutual definitions, such as volatility and valence. 
Moreover, many developed Vs models only provide qualitative definitions or the bound-
ary limit of each dimension. However, these models do not comprehensively reveal 
the data characteristics and the explanation of the boundary limits remains in a black 
box. Lastly, existing models concentrate on general big data characteristics and lack 
the incorporation of time-related indicators specific to physical-sensor data. Therefore, 
the proposed data characteristic understanding framework in this article utilizes a 6Vs 
model to measure physical-sensor data characteristics. This 6Vs model includes three 
conventional dimensions (Volume, Variety, and Velocity) and three novel and widely-
used dimensions (Veracity, Value, and Variability) with mutual definitions in the litera-
ture study. Subsequently, each dimension is mapped with multiple statistical indicators 
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to comprehensively understand the characteristics of physical-sensor big data. Some 
of these indicators involve time-related statistical metrics, such as timestamp-related 
measurements.

Data characteristic understanding framework for physical-sensor big data
Overview

Figure 4 shows the general framework of data characteristics understanding for physi-
cal-sensor data and the corresponding big-data challenges. Physical-sensor data in this 
study are time-related tabular data with timestamps. The 6Vs model is selected as the 
base of this framework because it is a mature and comprehensive framework in data 
characteristic understanding. This 6Vs model includes volume, variety, velocity, verac-
ity, value, and variability. Each of these six dimensions has clarified definitions in many 
studies [13, 23, 46] and does not overlap with others, ensuring distinct boundaries and 
precision within scholarly discourse. The models with less than six dimensions might 
lose several important data characteristics, whereas additional dimensions such as valid-
ity and volatility have no mature definitions and partly overlap with other dimensions.

In each dimension, some statistical indicators are selected or proposed to quantify the 
physical-sensor data characteristics. The objective of quantification is to provide pre-
cise and accurate measurements of each dimension of data characteristics. Moreover, 
quantification involves using standardized measurements, ensuring consistency and 
comparability across different studies, so that the proposed framework can be utilized in 
different datasets and to compare the results for better decision-making. The indicators 
in this study are specifically utilized for physical-sensor data analysis. Physical-sensor 
sensor data represents the data recorded by sensors to detect the parameters of real-
world environments, machine operations, production qualities, and so on. The data of 
physical sensors are mainly recorded as temporal data and in numerical forms; there-
fore, the indicators regarding timestamps, probability distributions, and other relevant 
information are essential in data characteristic understanding. The details of the indica-
tors, including the full name of the abbreviations, the definitions, and the calculation 
formulas, are described in Section Data characteristic indicators and evaluation metrics.

The third part introduces the evaluation metrics for each dimension. Each metric inte-
grates the general information from all indicators in the respective dimension to assess 
the overall quality of a dataset. The evaluation metrics indicate the quality of the data-
set in the specific dimension, with the indicators providing detailed characteristics to 
substantiate the quality assessment. Therefore, to achieve a comprehensive understand-
ing of data characteristics, it is essential to consider both the indicators and the metrics. 
The details of the metrics, including the definitions and the calculation formulas, are 
described in Section Data characteristic indicators and evaluation metrics following the 
presentation of the metrics in each dimension.

The fourth part of the proposed framework is the big data challenges. The challenges 
regarding physical-sensor data are identified through the analysis of data characteris-
tic indicators, and based on the definition of each dimension of the 6Vs model. These 
challenges have a direct impact on data quality and provide valuable insights for effec-
tive data preprocessing. The details of the data challenges, involving the definition and 
the relationship with data characteristic indicators, are introduced in Section Big data 
challenges.
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Data characteristic indicators and evaluation metrics

The data characteristic indicators are formulated based on the definition of the six 
dimensions outlined in the 6Vs model, aiming at quantifying the big data characteristics 
and providing precise and accurate insights on the physical-sensor data. These indica-
tors serve as a valuable tool for analyzing the challenges posed by physical-sensor big 
data and shaping the methodologies for data preprocessing. Subsequently, an evaluation 
metric is defined in each dimension to quantitatively measure the overall quality of a 
dataset in each V-dimension.

Volume

Data volume corresponds to the size and scale of a dataset, and the number of features 
and instances (NF & NI) are two key indicators to represent the extent of the volume. A 
feature is a unique characteristic or attribute that provides valuable information about 
individual instances in a dataset [48, 49]. The uniqueness of features has a significant 
impact on the complexity and accuracy of data analysis, and a large number of features 
in the raw dataset provides an opportunity to choose informative, discriminating, and 
independent features that enable effective decision-making. An instance is a data point 
with multiple features in a dataset, and each instance has the same feature structure as 
the dataset [3]. The large instance size provides a reliable statistical representation of 
data distribution, allowing strong inferences on the data quality [50]. Moreover, more 
data instances can support to select of more informative and relevant features, which 
enhances the feature-selection model performance. However, it is impractical to define a 
universal threshold for big data volume, owing to the diverse influencing factors such as 
time, data type, and specific task requirements [6]. Different contexts necessitate distinct 
data volumes, reflecting the unique demands of various tasks.

The evaluation metric of the volume of a dataset DS  is defined as Eq. 1 shows:

Fig. 3  6Vs big data characteristics
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V ol (DS) = NF (DS)×NI (DS)� (1)

where V ol (DS)  represents the score of the volume of the dataset DS , while NF (DS) 
and NI (DS)  denote the two indicators NF and NI of the dataset DS .

A higher value of V ol  indicates a larger data volume, enabling the comparison of the 
data-processing task’s demand to ascertain whether the data volume is adequate for the 
task.

Variety

Variety refers to the data forms in a dataset, including structured data, semi-structured 
data, and unstructured data [19]. Structured data is highly organized and easily deci-
pherable by machine learning algorithms, stored in relational databases [3, 6]. In real-
world applications, structured data involves sensor data, market data, consumption data, 
and so on [51]. Unstructured data are difficult to be analyzed by conventional data pro-
cessing tools and methods, which typically include text and social media data [52, 53]. 
Semi-structured data does not follow the format of tabular data and cannot be stored 
in relational databases; however, it contains several structural elements such as tags and 
metadata in favor of data understanding [3, 6]. The most typical semi-structured data in 
physical-sensor systems are IoT data [51].

Fig. 4  Data Characteristic Framework towards Data Challenges
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The distribution of data forms is the indicator to represent the variety characteristics 
as Table 2 demonstrates, including the percentage of structured data (PSD), percentage 
of unstructured data (PUD), and percentage of semi-structured data (PSSD). Each indi-
cator represents the percentage of the volume of a particular form of data and the sum of 
these three indicators should equal one.

Equations 2–4 show the calculation of each indicator of data variety.

PSD =
volume of structured data

volume of all data
× 100%� (2)

PUD =
volume of unstructured data

volume of all data
× 100%� (3)

PSSD =
volume of semi − structured data

volume of all data
× 100%� (4)

Equation 5 demonstrates the evaluation metric of the variety of a dataset DS .

V arie (DS) =
PSD (DS)

PUD (DS) + PSSD (DS)
� (5)

where V arie (DS)  represents the score of the variety of the dataset DS , while the ele-
ments on the right side of the equation denote the data-variety indicators of the dataset 
DS .

This metric signifies the ratio between the structured data and non-structured data. A 
value greater than 1 suggests that a majority of the data is structured, while a value lower 
than 1 indicates that strategies should be implemented to convert most data into struc-
tured formats. If all data instances in the dataset are structured data, the V arie (DS)  is 
recorded as ‘+∞ ’ to represent the best performance in data variety.

The classification of data forms can guide further data processing. While march-
ing learning algorithms can be directly employed to analyze structured data, it is chal-
lenging to efficiently analyze unstructured and semi-structured data. This is due to the 
heterogeneous nature of the data sources, which present a variety of data types and rep-
resentations. Therefore, it is necessary to convert them into structured data with data 
preprocessing techniques, including data cleaning, data integration, and data transfor-
mation [54–56].

Velocity

Velocity comprises the speed of data producing and data processing [3]. Big data does 
not always require immediate utilization; however, in certain domains, there exists a 
substantial advantage in acquiring up-to-the-second information and having the capa-
bility to respond accordingly. For example, devices in the cyber-physical system usually 
rely on the real-time operating system that enforces strict timing standards for execution 
[3]. As a result, they may encounter issues when data from a big data application fails to 

Table 2  Distribution of data forms
Percentage of structured data 
(PSD)

Percentage of unstructured data 
(PUD)

Percentage of semi-structured 
data (PSSD)

(PSD + PUD + PSSD = 1)
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be delivered punctually. The speed of data producing (SDP) is utilized as the indicator of 
velocity because this study primarily focuses on data characteristics before processing. 
SDP denotes the frequency of data updated in the data storage platform such as IoT sys-
tems. In numerous domains such as cyber-physical systems and real-time applications, 
data is continuously generated and ingested by storage platforms. This constant stream 
of data presents unique demands on data storage, retrieval, and transmission systems, all 
of which need to keep pace with the SDP to ensure timely and accurate data processing.

Equation  6 defines the evaluation metric V el (DS) of the velocity of a dataset DS . 
Since only one indicator is defined in this dimension, it naturally serves as the metric for 
assessing data velocity.

V el (DS) = SDP (DS)� (6)

Veracity

Veracity represents the accuracy and reliability of big data, which is most relevant to 
the data quality and trustworthiness [3, 19]. Because of the increasing diversity of data 
sources and variety of big data, data can be incomplete, inconsistent, and noisy, nega-
tively impacting big data analytics [1, 53]. In this study, several quantitative indicators, 
serving as measures of data quality and trustworthiness, are chosen or developed to 
illustrate data veracity in multiple dimensions.

The correctness of data formats (CDF) denotes the extent to which the data format of 
each feature matches the data processing requirements. For example, the correct data 
format of the feature “the number of the productions” should be integer. The CDF is 
recorded as “YES” or “NO”, representing the correctness or not. For multi-feature data-
sets, the percentage of the correctness of data formats (PCDF) can be utilized as the 
assessing criterion as Eq. 7 shows.

PCDF =
Equation Number of features with correct data format

Equation Number of features
× 100% � (7)

The abnormal spikes represent the anomalous data points or subsequences in the time 
series, indicating the important abnormal events, such as production faults, system 
defects, and so on, which reflects the reliability of physical-sensor data collection [38, 
50]. Data spikes are detected by rule-based strategies [57] or machine learning algo-
rithms [58], and then the abnormal spikes are selected based on the real-world sys-
tem properties. The number of abnormal spikes (NAS) is utilized to demonstrate the 
data reliability, and the happening time of the spikes as well as the spike values are also 
recorded for analyzing the abnormal spikes more comprehensively and systematically.

A time interval represents the amount of time between two given time points in the 
time series, and it should be constant in a stable system [24, 59]. However, owing to data 
communication delays in IoT systems or the presence of missing values, time intervals 
in real-world datasets may vary in different positions. This variability leads to inconve-
niences in time series analysis since many time series analysis strategies, such as first-
order differencing and sliding windows, assume a fixed time interval. In this research, 
the percentage of normal time intervals (PTI) serves as the chosen evaluation criterion 
as Eq. 8 displays. A normal time interval is defined by the system settings.
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PTI =
Equation Number of normal time intervals

Equation Number of time intervals
× 100% � (8)

In a time series, each timestamp should record only one value, whether in a single 
dimension or multiple dimensions. Duplicate timestamps indicate that multiple values 
are associated with the same timestamp, typically as a result of recording errors. There-
fore, duplicate timestamps should be recorded as abnormal data. The duplicate time-
stamps are classified into two categories: duplicate timestamps with the same value 
(DTS) and duplicate timestamps with different values (DTD). In further processing, DTS 
can be easily integrated into one data instance by removing repeated records, whereas 
in DTD some advanced methods should be developed to find out the most trustworthy 
value among the records.

The presence of missing values degrades the data quality and adds complication and 
uncertainty to big data processing [1, 60]. The missing data are categorized into three 
types, including missing completely at random (MCAR), missing at random (MAR), 
and missing not at random (MNAR) [60, 61]. The majority of the missing physical-sen-
sor data are assumed to be MAR, where there exist differences between missing and 
observed values but these differences can be explained by other observed data [62, 63]. 
The percentage of missing values for each feature (PMV) can be utilized to assess the 
data complementation as Eq. 9 shows.

PMV =
Equation Number of missing values in a certain feature

Equation Number of values in this feature
× 100%� (9)

Except for the PMV, the missing time span is another important index demonstrating 
the information of missing values, which indicates a time span during which all values 
are missing. Different length of time span requires distinct imputation methods. For 
example, in the short span, some statistical values based on the distribution such as 
mean, median, and mode [60] can be used to impute the missing values. However, in the 
long span, the data distribution is unclear and the advanced deep-learning algorithms 
should be used to estimate the missing values [62]. In this study, the missing time spans 
are classified into three groups based on their length, including short-term missing span 
(SMS), medium-term missing span (MMS), and long-term missing span (LMS). The 
classification threshold is determined by the application requirements and constraints.

Equation 10 demonstrates the evaluation metric V er (DS) of the veracity of a dataset 
DS .

V er (DS) = (1− PCDF (DS))×W41 +
NAS (DS)

NI (DS)− 2
×W42 + (1 − PTI (DS))×W43 + PMV (DS)×W44� (10)

V er (DS) consists of four components associated with the weights W41 - W44 respec-
tively. Each component is represented by a percentage value derived from the veracity 
indicators with values ranging from 0 to 1. The indicators ‘NAS’ and ‘PMV’ are com-
puted for each feature, and the average values of these two indicators across all features 
are utilized as the values in Eq. 10. The values of all five weights are set at 14  by default 
and can be further adjusted according to the application requirements. The sum of the 
four weight values should equal 1. Therefore, the value of V er  ranges from 0 to 1, and a 
higher value indicates lower veracity.
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Value

Value represents the context and usefulness of data for deriving insights and facilitating 
informed decision-making, which is the ultimate goal of working with data [19, 35]. It is 
essential to identify how data can contribute to the attainment of application objectives 
and create a beneficial impact. Deriving value from big data is unique in different proj-
ects and is intricately related to the techniques employed for data processing. To Investi-
gate the potential value of big data, the statistical metrics about data distribution can be 
calculated and analyzed. Table 3 lists the definitions of the 15 factors of data values.

Continuous features and categorical features are two distinct types of variables. Con-
tinuous features consist of numeric variables with an infinite number of values between 
any two data points, whereas categorical features represent characteristics that can be 
divided into different categories without any inherent order or priority. Consequently, 
due to their distinct data properties, the factors revealing their data values are also dif-
ferent. Tables 4 and 5 show the statistical data characteristics of a continuous feature and 
a categorical feature respectively. The factors associated with continuous features reveal 
the characteristics of a distribution. However, unlike continuous data, categorical data 
does not adhere to a mathematical distribution of values. Therefore, the factors revealing 
the percentage and distribution of each category are employed.

Table 3  Definitions of the factors of data values [32, 64–66]
Factors Definitions
cardinality the number of unique values
min the minimum value of the data
1st qrt the value located at the first quarter of the values in ascending order
mean the average value of the data
median the median value of the data
3rd qrt the value located at the third quarter of the values in ascending order
max the maximum value of the data
std the standard deviation of the data
skewness Skewness is a measure of the asymmetry of the probability distribution of a real-valued 

random variable about its mean. The negative skew indicates that the tail is on the left 
side of the distribution, and the positive skew indicates that the tail is on the right.

kurtosis Kurtosis is a measure of the “tailedness” of the probability distribution of a real-valued 
random variable. The kurtosis for a standard normal distribution is 3. Kurtosis more than 
3 indicates a “peaked” distribution and kurtosis less than 3 indicates a “flat” distribution.

seasonality repeating cycle in the series with fixed frequencies (hour of the day, week, month, year, 
etc.). A seasonal pattern exists in a fixed known period.

autocorrelation the correlation of a signal with a delayed copy of itself
mode the most frequent value in the feature
mode freq the frequency of the mode value in the feature
%mode the percentage of the mode value

Table 4  Statistical data characteristic factors of a continuous feature
cardinality min 1st 

qrt
mean median 3rd 

qrt
max std skewness kurtosis seasonality autocor-

relation

Table 5  Statistical data characteristic factors of a categorical feature
cardinality mode mode freq mode% seasonality autocorrelation
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Equation 11 displays the evaluation metric V ar (DS) of the value of a dataset DS .

V ar (DS) =
Equation Number of invalid indicators

Equation Number of all potential indicators
� (11)

V ar (DS) signifies the percentage of the invalid indicators regarding data values, whose 
value ranges from 0 to 1. A higher V ar  value indicates a less comprehensive data value 
representation.

Variability

Variability signifies the inconsistency in data flows, measuring the spread or dispersion 
of data values and providing insights into the extent to which individual data points 
diverge from the central or mean value [16]. Data patterns and characteristics are sub-
ject to change over time or in response to different scenarios and operations. Variability 
provides users with a tool to quantify the extent of variation in datasets, thereby aiding 
in the assessment of the uncertainty or unpredictability in a dataset. The standard devia-
tion (std) in Section Value quantifies the dispersion of values and can thus serve as an 
index of variability.

An outlier is a data instance that significantly differs from the other observations, rep-
resenting the abnormal variability of the dataset [67, 68]. Outliers can be detected by the 
IQR rule and graphically illustrated by the boxplot. Equations 12–14 outline the formu-
las to identify outliers.

upper boundary = Q3 + 1.5× IQR � (12)

where Q3 represents the 75th percentile of the data and IQR is the interquartile range 
shown in Eq. 14.

lower boundary = Q1− 1.5× IQR � (13)

Where Q1 denotes the 25th percentile of the data.

IQR = Q3−Q1� (14)

The values larger than the upper boundary or smaller than the lower boundary are 
defined as outliers. In practical applications, the quartile values Q1 and Q3, as well as the 
coefficient ‘1.5,’ can be adjusted to suit specific requirements. In physical-sensor systems, 
it is advisable to incorporate additional constraints, which may be derived from estab-
lished rules of thumb or system settings, in order to effectively limit outlier detections.

outlierrate =
Equation Number of outliers in a certain feature

Equation Number of values in this feature
� (15)

The outlier rate in Eq. 15 is calculated as an indicator to represent the overall outliers in 
each feature.

Correlation measures the variability between features, referring to the degree to which 
a pair of features are related [66, 69]. Cross correlation is an established and reliable cor-
relation measure between two univariate time series by considering the time delay. For 
two time series X = {X1, . . . , Xn}  and Y = {Y1, . . . , Yn} , the cross correlation with 
time delay k Rk(X, Y ) is
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Rk (X, Y ) =

∑
(Xt−

−
X)(Yt−

−
Y )√

∑(
Xt−

−
X

)2
√

∑(
Yt−

−
Y

)2 � (16)

where −
X,

−
Y  denote the mean of X  and Y  respectively.

Equation  17 demonstrates the evaluation metric V aria (DS)  of the variability of a 
dataset DS .

V aria (DS) = Nstd (DS)×W51 + PO (DS)×W52 + (1− V C (DS))×W53� (17)

where V aria (DS)  denotes the score of the variability of DS , Nstd (DS)  represents the 
normalized standard deviation defined in Eq. 18, PO (DS) stands for the percentage of 
outliers defined in Eq. 19, and V C (DS) signifies the validity of cross correlation defined 
in Eq. 20.

The indicator ‘std’ represents the standard deviations of each feature in a dataset. In 
Eq. 18, to calculate the Nstd  and ensure that its value falls in the range of [0, 1], the ‘std’ 
values are transformed to the range [0, 1] via min-max scaling. Subsequently, the average 
value of the transformed ‘std’ values are computed to obtain Nstd .

Nstd (DS) = Ave (Scaling( std ))� (18)

The ‘outlier rate’ denotes the percentage of outliers in a feature as Eq. 15 shows. The PO  
in Eq. 19 computes the average of all values regarding ‘outlier rate’ in the dataset to show 
the dataset-level percentage of outliers.

PO (DS) = Ave (outlier rate)� (19)

The V C  stands for the validity of cross correlation, indicating the percentage of high 
correlation values. The high correlation value is defined as the value larger than 0.7 in 
this paper.

V C (DS) =
Equation Number of high correlation values

Equation Number of correlation values
� (20)

V aria (DS)  is composed of three components associated with the weights W51 - W53 
respectively. Each component is represented by a percentage value derived from the 
veracity indicators with values ranging from 0 to 1. The values of all three weights are 
set at 13  by default and can be further adjusted according to the application requirements. 
The sum of the three weight values should equal 1. Therefore, the value of V aria  ranges 
from 0 to 1, and a higher value indicates high data variability and high data inconsistency.

Big data challenges

The big data challenges are generated through a literature study, and then mapped to 
distinct dimensions in the 6Vs model based on their definitions. The objective is to pro-
pose a framework that guides future research in addressing these challenges effectively. 
The data preprocessing recommendations to address the challenges are formulated 
based on the characteristic indicators outlined in Section Data characteristic indicators 
and evaluation metrics.
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Volume

The challenge in data volume is to develop adequate technologies to effectively handle 
massive data [70]. Managing, storing, and processing datasets with a substantial number 
of instances and features poses significant difficulties. For instance, large-scale datasets 
might not be processed rapidly due to the limited computational ability of processors. 
Moreover, high-dimensional data have the “curse of dimensionality” due to the sparse 
data distribution, less reliable nearest neighbors, and so on. The characteristic indicators 
of data volume are NF and NI, representing the number of features and instances. This 
dimension serves as the general representation of the size of a dataset. Consequently, the 
methods to mitigate the negative impacts of the large data size, such as feature selection, 
dimensionality reduction, and data splitting, should be chosen by combining the infor-
mation generated from other data characteristic dimensions.

Variety

Handling data heterogeneity is a challenge in data variety because traditional tools like 
SQL do not perform well in storing semi-structured or unstructured data [71]. In phys-
ical-sensor data, there exists some semi-structured and unstructured data. Semi-struc-
tured physical-sensor data are text-based representations of structured data and stored 
as key-value pairs and ordered lists, such as JSON and XML data. Unstructured physical 
sensor data involves log files in the IoT devices. As most popular AI algorithms only per-
form well in processing structured data, it is essential to transform all unstructured data 
and semi-structured data into structured data. ML and AI technologies can be employed 
to extract relevant information from unstructured data and map the extracted informa-
tion to the defined schema for the structured data. For example, the information in the 
text data is extracted through natural language processing methods, and the necessary 
entities such as dates, names, and locations are mapped to a defined structure. The semi-
structured data are easier to transform, as specific transformation tools have been devel-
oped and can be directly utilized to transform the semi-structured data into the desired 
structured format.

Velocity

The traditional algorithms and systems cannot provide sufficient data processing power 
while the business partners require real-time response and in-time predictive mainte-
nance of the system [72]. The scope of this study does not encompass data processing 
velocity, as the primary focus is on the examination of raw data before undergoing pre-
processing. Data velocity in this study represents SDP (speed of data producing), denot-
ing the frequency of data updated in the data storage platform. Data should be updated 
in a short time interval to avoid significant information loss; however, the hardware 
might pose a challenge in achieving the required data update velocity. The challenge in 
data update velocity stems from the time required for sensors to record data, coupled 
with the inherent time delay in communication between the sensors and the storage 
platform. Therefore, high-quality sensors and communication devices should be imple-
mented in the data processing systems to improve the velocity.
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Veracity

The challenges associated with data veracity highlight the issues of big data quality, 
including incorrect data format, abnormal spikes, inconsistent time intervals, duplicate 
timestamps, and missing values. Despite large-scale data being available for utilization, 
low-quality data could result in inaccurate and unreliable decision-making [73].

Incorrect data formats can lead to computing errors and system failures. For instance, 
recording an integer value as a string can result in calculation failures since a string lacks 
the inherent capability to participate in mathematical operations. Therefore, all data 
formats should undergo assessment, and any formats found to be improper should be 
corrected.

The abnormal spikes represent the anomalous data points or subsequences in the 
time series, indicating the important abnormal events detected by sensors. The abnor-
mal spikes can be detected by rule-based strategies [51] or machine learning algorithms 
[52]. Next, the extracted abnormal spikes can be analyzed to identify potential system 
faults, enhancing the overall diagnostic capabilities. Moreover, the values of the abnor-
mal spikes should be replaced with reasonable alternatives to improve the reliability of 
the analysis conducted on the entire sequence. The missing data imputation technolo-
gies introduced at the end of this section can be utilized to estimate the alternatives.

Due to data communication delays in IoT systems or the occurrence of missing values, 
time intervals in physical-sensor datasets may exhibit variations in different positions, 
despite the default settings requiring constant time intervals. This variability results in 
challenges in time series analysis since several time series analysis strategies, such as 
first-order differencing and sliding windows, assume a fixed time interval. The irregular 
time intervals can be adjusted by considering the underlying reasons for the inconsis-
tency. If the inconsistency is attributed to time delays, the timestamps can be directly 
adjusted according to the default settings. In cases where missing values contribute to 
the variability, employing missing data imputation technologies can effectively address 
this challenge.

The duplicate timestamps are the result of recording errors, and they are categorized 
into DTS (duplicate timestamps with the same value) and DTD (duplicate timestamps 
with different values) in this study. In further processing, DTS can be straightforwardly 
integrated into one data instance by removing repeated records, whereas in DTD some 
advanced methods, including statistical analysis and AI algorithms, should be developed 
to determine the most reliable value among the records.

The prevalence of missing data not only diminishes performance in monitoring deci-
sions but also influences the immediate utilization of data analytics applications that 
rely on reliable access to accurate data in the system. The most straightforward strat-
egy to deal with missing values is to delete the corresponding data points. However, this 
method results in inconsistent time intervals in time series analysis, as the removal of 
values leads to gaps in the temporal sequence, affecting the overall integrity of the anal-
ysis. As an alternative solution, one can select a continuous subsequence without any 
missing values for further analysis. This method is effective for time series data with a 
small number of missing values, particularly when they are concentrated within limited 
periods. However, when numerous missing values are distributed throughout the data-
set, the selected subset may be of a small size and may not adequately capture the char-
acteristics of the entire dataset. In such scenarios, missing data imputation methods, 
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such as regression models [74] and GANs [75] can be employed to estimate and fill in 
the gaps in the dataset.

Value

The challenge in the data value dimension lies in the inability to extract useful informa-
tion from numerous data sources and uncover the hidden value within the recorded data 
[70, 73]. The data characteristics introduced in Value are statistical metrics pertaining to 
data distribution. To extract valuable insights from the data, it is imperative to conduct 
further analysis of the statistical values. The preprocessing steps, including data clean-
ing and transformation, heavily depend on the information derived from the data dis-
tribution. For instance, the decisions for dealing with missing values rely on a thorough 
understanding of the distribution of gaps in the sequence. Therefore, the computed sta-
tistical values ought to be connected with calculations in other characteristic dimensions 
to obtain a more comprehensive and accurate understanding of the collected physical-
sensor big data. This approach contributes to making more reliable recommendations 
for data preprocessing.

Variability

Data variability signifies the inconsistency of the data points and features by measur-
ing the outliers and cross-correlation between features. Outliers have the potential to 
introduce noise during model training, thereby distorting the outcomes of data analyt-
ics. Additionally, interpreting cross-correlation results in time series analysis is challeng-
ing due to the presence of time lags. To mitigate bias in datasets and uncover variables 
linked to target features, it is imperative to employ various strategies addressing the 
challenges posed by data inconsistency.

Detected outliers should be substituted with reasonable values, and models designed 
for imputing missing values can be utilized to estimate the data points. Furthermore, 
it is crucial to analyze the factors contributing to the outliers, such as potential sensor 
recording errors or operational faults.

Cross-correlation stands out as an easy-implemented method for examining the rela-
tionship between features utilizing a coefficient. However, for a more comprehensive 
analysis of feature relationships, it is advisable to incorporate additional techniques such 
as feature engineering [76] and causal inference [77] in the data preprocessing stage.

Pipeline of data characteristic understanding
Figure 5 demonstrates the data characteristic understanding pipeline. Data characteris-
tic understanding in 578 this pipeline includes timestamp understanding, value under-
standing, and feature understanding, which are 579 shown in three dashed rectangle 
blocks, in which the light-blue blocks represent the calculation of data 580 characteristic 
indicators, and the light-orange blocks represent the necessary data adjustment.

In the first stage - timestamp understanding, DTS and DTD are first calculated to find 
out duplicate timestamps. If the duplicate timestamps share the same value, it is easy to 
select one of them and remove other repeated records. If one timestamp matches dif-
ferent values, the most trustworthy value needs to be selected or computed based on 
the system property, expert recommendation, or statistical distributions. After remov-
ing duplications, PTI is computed to detect irregular time intervals. The standard time 
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interval is a fixed value established by the system settings in the data acquisition stage. 
When consolidating all features into a dataset, irregular time intervals can lead to issues 
with value mapping. For instance, if it is assumed that values in the same row should 
correspond to the same time, discrepancies in time intervals among different features 
can result in values in the same row being recorded at different times. This discrepancy 
can subsequently disrupt the seamless processing of data. Therefore, the PTI computed 
in the stage will be utilized in the feature understanding to reset timestamps.

Following timestamp understanding, value understanding is employed. This begins 
with calculating PCDF to check the correctness of the data format, as an incorrect data 
format may lead to calculation issues. For instance, when a floating-point number is mis-
takenly recorded as an integer, it results in the loss of decimal information. After modi-
fying the data formats, data forms are analyzed by computing PSD, PUD, and PSSD. The 
semi-structured and unstructured data should be converted into structured data as only 
structured data can be easily processed by most present machine learning algorithms 
and other data analytic approaches. Next, missing values are systematically analyzed by 
calculating PMV, SMS, MMS, and LMS. Missing values have a negative impact on the 

Fig. 5  The pipeline of data characteristic understanding
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calculation of statistical values since they occupy a position in the dataset but do not 
contribute a value for computation. Although missing value imputation is a significant 
research topic in data preprocessing, it is not in the scope of this study, which aims to 
analyze data characteristics and make recommendations for data preprocessing to solve 
big data challenges. Therefore, this study employs a straightforward approach by sim-
ply removing the missing values. Then, the statistical values, outliers, and NAS are com-
puted or detected to identify the characteristics regarding the statistical distribution 
of the time series. Subsequently, the missing values that were previously removed are 
reinstated for calculating autocorrelation. Autocorrelation relies on the time lag, and the 
removal of missing values disrupts the continuity of the time series.

The third stage is the feature characteristic understanding. To address the inconsis-
tency of timestamps, irregular timestamps are detected by the PTI of all features in the 
first stage. New timestamps are established with proper intervals in the dataset. Values 
associated with irregular timestamps are then allocated to the nearest proper timestamp. 
In cases where multiple values need to be assigned to the same position, the appropri-
ate one should be selected based on system characteristics or computed using statistical 
measures such as mean and median values. The new data instances lacking associated 
values are marked as missing values. Subsequently, the changes in data volumes result in 
an increased occurrence of missing values; therefore, the indicator PMV is re-calculated 
to monitor the current state of missing values. The adjustment of timestamps does not 
influence outliers and abnormal spikes, and they can be directly combined and utilized 
in this stage. Next, the computation of cross-correlations between features is performed 
to detect and analyze potential feature relationships.

After computing all characteristic indicators, evaluation metrics are calculated to 
demonstrate the overall quality of the dataset. These metrics provide valuable insights 
into the suitability of this pipeline for facilitating further decision-making of data 
preprocessing.

Case study
In this section, the proposed framework is employed to understand data characteristics 
and evaluate big data challenges of two physical-sensor datasets originating from the 
manufacturing and transportation sectors respectively. The experiments are conducted 
in the Visual Studio Code platform (version: 1.85.2) and all codes are written in Python 
(version: 3.10.9). Section Data description provides detailed information about the data-
sets. Subsequently, the findings related to data characteristics are presented in Section 
Results of data characteristics understanding.

Data description

Datasets in the manufacturing sector

The datasets are generated from a large Danish foundry, which is one of the largest 
foundries in Northern Europe. Figure 6 illustrates the foundry production process. The 
small light blue rectangles within the larger rectangle, labeled with the stages, represent 
the facilities associated with each stage. For instance, there are six induction furnaces 
depicted. The solid blue rectangles represent the movement of materials, and the circle 
with a cross denotes the completion of processing. Solid lines with arrows indicate the 
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mandatory production flow, while dashed lines with arrows signify elective production 
flow, as ladle preheating may not be necessary for every production flow.

The production flow begins with collecting and sorting material from the scrap metal 
pits. Following this, iron is added to the induction furnaces and heated to a specified 
temperature, accounting for ferromagnetic losses. Once the melt reaches the desired 
temperature, it is transferred to a pre-heated transfer ladle. In this step, doping may be 
performed to impart specific alloy capabilities, aligning with the properties of the melt 
currently in the holding furnaces. The melt is then moved to a holding furnace, where it 
can be stored for a predetermined period. The transfer to the holding furnace signifies 
the completion of the melting phase of the foundry process. Subsequently, the primary 
forming stage commences to manufacture a variety of products.

The datasets used in this case study are generated by an IoT system, which includes a 
sensor network to monitor the operation conditions in the foundry production process. 
This study selects the data detecting the induction furnaces, the second stage in Fig. 6, 
as they represent the most important step in the melting phase. In this case study, one 
of the six induction furnaces within the process is selected for analysis. It’s noteworthy 
that all induction furnaces operate in parallel, and identical sensors are installed across 
all facilities. These sensors are responsible for detecting working temperatures and elec-
tricity consumption levels. The setting period for generating data is from December 21, 
2022, to July 4, 2023 and the default time interval is 10 s. The seven features of the data-
set are encoded to ‘F1’ - ‘F7’ respectively as Table 6 shows, which is designed to simplify 
and clarify the result presentation.

Table 6  Feature name encoding in the furnace dataset
Original name Encoded name
TemperatureAct F1
PowerAct F2
CoolingFlowTemperature F3
CoolingReturnTemperature1 F4
CoolingReturnTemperature2 F5
CoolingReturnTemperature3 F6
CoolingReturnTemperature4 F7

Fig. 6  Industrial processing operations in the foundry
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Datasets in the transportation sector

The datasets are acquired from the Danish public transportation system, and each repre-
sents the operational 660 data of a bus on a specific route. The data are collected through 
both the embedded sensor system in the bus 661 such as CANbus (Controller Area Net-
work) and additional devices such as GPS and the acceleration meter. 662 Fig. 7 illus-
trates an example of a route, where the blue line refers to the route and the black hollow 
circles 663 represent bus stops.

The dataset in this case study involves one-day operational data with variables regard-
ing speed, acceleration, and fuel consumption. The setting period of recording data is 
from 6:36:15 on August 7, 2023, to 21:12:12 on August 7, 2023 and the default time 
interval is 1 s. The ten features of the dataset are encoded to ‘R1’ - ‘R10’ respectively as 
Table 7 shows.

Table 7  Feature name encoding in the transportation dataset
Original name Encoded name
TimeToLastMoment R1
Speed R2
CurrentAcceleration R3
ProcessedAcceleration R4
ConsumptionLastSecond R5
ComsumptionTotal R6
FuelRate R7
InstantFuelEco R8
TotalFuelUsed R9
TotalregenerativeEnergy R10

Fig. 7  Example of a route
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Results of data characteristics understanding

Results of manufacturing data

This section shows the results of data characteristic understanding in the manufacturing 
case. Table 8 displays the evaluation scores of the 6Vs data characteristics quantified by 
the metrics defined in Section Data characteristic indicators and evaluation metrics. The 
findings reveal a large data volume, and good data variety but limited data velocity. The 
low score in data veracity underscores the commendable accuracy and reliability of the 
dataset. Moreover, the score of data value signifies a comprehensive data value represen-
tation, while the score of data variability indicates low data inconsistency.

Table 9 shows the results of the data characteristic understanding of the furnace data-
set, which is generalized based on the data characteristic indicators under 6Vs illustrated 
in Fig. 3. Data volume includes indicators NF and NI, which represent the number of 
features and instances in the dataset. Results in the data variety show that all records in 
this dataset are structured data. Data velocity shows that the update speed is ten seconds 
because of the default settings of the IoT system.

Data veracity consists of metrics regarding data formats, time intervals, duplicate time, 
abnormal spikes, and missing values. The results show that all data formats in this data-
set are correct, and 99.98% of time intervals in all features follow the default settings. In 
the case of all features, duplicate timestamps are associated with identical values, indi-
cating that the data has been recorded erroneously on more than one occasion. ‘F1’ and 
‘F2’ contain more abnormal spikes than other features, which might be the false temper-
ature and power records due to sensor errors in high temperatures. The missing values 
are recorded in two datasets. The PMV (old) calculates the rate of missing values in the 
raw dataset, whereas the PMV (new) computes the rate of missing values in the adjusted 
dataset, whose timestamps are reset based on the pipeline introduced in Fig. 5. It shows 

Table 8  Evaluation scores of data characteristic understanding of the furnace dataset
6Vs Volume Variety Velocity Veracity Value Variability
Evaluation metrics Vol Varie Vel Ver Val Varia
Scores 11,317,010 +∞ 10s 1.128e-4 0.1571 0.1945

Table 9  Indicators of data characteristic understanding of the furnace dataset
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that the adjusted dataset contains more missing values because some timestamps are 
missed in the raw dataset. This is because certain sensors are closed in some specific 
operational conditions. Moreover, the majority of the missing time slices are short-term. 
In this metric, the short-term missing span is defined as 30-minute record missing, the 
medium-term missing span is 30-minute – 6-hour missing, and the long-term missing 
span is over 6-hour missing.

The metrics in the data value dimension are recorded in Table 10. The data validity 
dimension involves standard deviation in Table 10, cross correlation in Fig. 8, and out-
lier rate. The results show that ‘F1’ has 1.282% outliers, ‘F4’ contains 0.01% outliers and 

Table 10  Statistical values of each feature in the furnace dataset
F1 F2 F3 F4 F5 F6 F7

cardinality 1331 40,902 246 682 571 579 605
min 0 0 0 0 0 0 0
max 62260.0 1200.0 37.4 95.2 80.8 79.4 80.9
mean 2238.45 320.59 24.3 29.08 32.34 31.85 32.12
median 1462.0 0.0 23.6 26.2 27.4 26.4 26.4
std 6837.38 461.15 5.28 11.68 14.55 14.18 14.79
skewness 8.66 0.82 0.03 1.13 0.63 0.64 0.63
excess kurtosis 70.05 -4.22 -4.1 -2.23 -4.17 -4.19 -4.24
1st qrt 1411.0 0 19.2 19.3 19.5 19.6 19.3
3rd qrt 1543.0 977.82 30.1 37.4 50.8 50.9 51.9
seasonality No No No No No No No
autocorrelation See Fig. 9

Fig. 8  Cross correlation of different features in furnace dataset
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others have no outliers. In the data preprocessing phase, it is imperative to replace these 
outlier values with appropriate and reasonable substitutes.

Table 10 shows the statistical values of each feature in the furnace dataset as the results 
of the data value. All these metrics show the distribution of each feature and the auto-
correlation is illustrated in Fig. 9. The minimum values for all features are zero because 
it is the default setting of the IoT system when the working mode is on standby. The sea-
sonality of a univariate time series is detected using the ‘seasonal_decompose’ model in 
the Python library ‘statesmodels 0.13.5’ [78]. This model decomposes the time series into 
trend, seasonality, and noise in the additive form or the multiplicative form as Eqs. 21 
and 22 show respectively.

x (t) = trend (t) + seasonality (t) + noise (t)� (21)

x (t) = trend (t)× seasonality (t)× noise (t)� (22)

where x (t) represents the value of a time series x  at time t , trend (t)  refers to the value 
of the trend at time t , seasonality (t)  is the value of the trend at time t , and noise (t)  
refers to the value of the noise at time t .

The additive form is selected in this case because the amplitude of the cycles is stable 
with time. The time series has no seasonality when the curve of the seasonality part is a 
line with constant values.

Figure 8 demonstrates the cross correlation of different features in the dataset, where 
the time delay is set at 300 s and the largest correlation value is selected as the result. 
It indicates that ‘F1’ has weak correlations with other features but others are strongly 
correlated, especially ‘F5’, ‘F6’, and ‘F7’. This is because the operation temperature (‘F1’) 
changes frequently in the heating processing but the other features rely on the power 
settings.

Figure 9 shows the autocorrelation results of each feature in the dataset. The lags in 
the figure denote the number of lagged values and a lag is 10 s due to the setting time 
interval. Hence, the maximum time lag is 600 s. The findings suggest that past opera-
tional activities have a significant impact on current operations within a 10-minute time-
frame. However, this impact diminishes as time progresses.

Fig. 9  Autocorrelation of each feature in the furnace dataset
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Results of transportation data

Table  11 displays the evaluation scores of the 6Vs data characteristics of the trans-
portation dataset. The findings reveal a large data volume, good data variety, and fast 
data velocity. The low score in data veracity suggests the commendable accuracy and 
reliability of the dataset. However, the score of data value signifies a less comprehen-
sive representation of data value, while the score of data variability indicates high data 
inconsistency.

Table 12 shows the results of data characteristic understanding of the transportation 
dataset and the structure is similar to that in Section Results of manufacturing data. 
Data volume includes indicators NF and NI, representing the number of features and 
instances in the dataset. An analysis of data variety reveals that all records in this data-
set are structured data. Data velocity shows that the update speed is 1 s because of the 
default settings of the IoT system monitoring the vehicle operations.

Data veracity consists of metrics regarding data formats, time intervals, duplicate 
time, abnormal spikes, and missing values. The results show that all data formats in 
this dataset are correct, and 99.99% of time intervals in all features follow the default 
settings. There is no duplicate timestamp in the dataset. The features ‘R1’, ‘R3’, and ‘R4’ 
contain several abnormal spikes. The abnormal spikes observed in ‘R1’ can be attributed 
to variations in recording gaps resulting from changes in vehicle operation modes. The 
irregular acceleration and braking patterns might result in the abnormal spikes detected 
in ‘R3’ and ‘R4’. The missing values are recorded in two datasets as explained in Section 
Results of manufacturing data. It shows that the adjusted dataset contains more missing 
values because some timestamps are missed in the raw dataset. This is because some 
specific sensors are deactivated when the vehicle motor is turned off or in standby mode. 
Moreover, the missing time slices in all features are long-term. In this metric, the short-
term missing span is defined as 1-minute record missing, the medium-term missing 

Table 11  Evaluation scores of data characteristic understanding of the transportation dataset
6Vs Volume Variety Velocity Veracity Value Variability
Evaluation metrics Vol Varie Vel Ver Val Varia
Scores 435,230 +∞ 1s 3.818e-3 0.36 0.4229

Table 12  Data characteristic understanding of the transportation dataset
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span is 1-minute – 30-minute missing, and the long-term missing span is over 30-min-
ute missing.

The metrics in the data value dimension are recorded in Table 13. The data validity 
dimension involves standard deviation in Table 13, cross correlation in Fig. 10, and out-
lier rate. The results show that the features ‘R1’, ‘R3’, ‘R4’, and ‘R5’ contain outliers and 
others have no outliers. In the data preprocessing phase, it is imperative to replace these 
outlier values with appropriate and reasonable substitutes.

Table 13 presents the statistical values of each feature in the transportation dataset, 
serving as the outcomes of the data value. These metrics provide insights into the dis-
tribution of individual features, while autocorrelation is visually depicted in Fig. 11. The 
additive form is selected in this case as the amplitude of the cycles is stable with time. 

Table 13  Statistical values of each feature in the transportation dataset
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

cardinality 52 7579 29,290 30,036 2 201 1 1 201 1
min 0 0 -3.0 -8.44 0 374940.5 0 0 749881.0 0
max 1066 87.83 4.62 19.49 0.5 375040.5 0 0 750081.0 0
mean 1000.59 22.5 -0.02 -0.07 0 374998.5 0 0 749996.99 0
median 1001.0 12.77 0 0 0 374996.5 0 0 749993.0 0
std 6.99 25.04 0.43 0.5 0.03 31.23 0 0 62.46 0
skewness -134.67 0.76 -0.55 0.66 14.54 -0.09 N/A N/A -0.09 N/A
excess kurtosis 19275.84 -3.69 3.14 59.16 206.39 -4.3 N/A N/A -4.3 N/A
1st qrt 1000 0.03 -0.17 -0.24 0 374965.5 0 0 749931.0 0
3rd qrt 1001 46.17 0.16 0.14 0 375034.0 0 0 750068.0 0
seasonality No No No No No No No No No No
autocorrelation See Fig. 11

Fig. 10  Cross correlation of different features in the transportation dataset
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Notably, the time series exhibits no seasonality, as evidenced by a seasonality part repre-
sented by a constant value line in the curve.

Figure 10 illustrates the cross correlation of various features in the dataset, with a time 
delay set at 300 s, and the largest correlation value is selected as the result. It indicates a 
strong correlation between features ‘R3’ and ‘R4’, as well as between features ‘R6’ and ‘R9’. 
‘R3’ and ‘R4’ represent two different measurements of acceleration, while ‘R6’ and ‘R9’ 
are two different detection of fuel consumption.

Figure 11 illustrates the autocorrelation results of each feature in the dataset. The lags 
in the figure denote the number of lagged values and a lag is 10 s due to the setting time 
interval. Hence, the maximum time lag is 600 s. The present time series recorded in fea-
tures ‘R1’, ‘R5’, ‘R7’, ‘R8’, and ‘R10’ appear to be unaffected by their historical data, suggest-
ing that the trend of historical data is not suitable for technical analysis. Additionally, the 
autocorrelation coefficients of the data in features ‘R3’ and ‘R4’ rapidly diminish from 
high values, indicating a strong correlation within a 20-second timeframe. The data in 
features ‘R2’, ‘R6’, and ‘R9’ suggest that past vehicle operations have a significant impact 
on current modes within a 10-minute timeframe although this impact diminishes as 
time progresses.

Discussions
In this section, firstly the big data challenges in the furnace dataset and transportation 
dataset are discussed based on the results in Section Case study, followed by specific 
preprocessing recommendations tailored to each dataset. Furthermore, the proposed 
data characteristic understanding model with existing models is compared, followed by 
highlighting the advantages of incorporating selected dimensions and providing statisti-
cal indicators for a more comprehensive analysis.

Fig. 11  Autocorrelation of each feature in the transportation dataset
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Data challenge analysis and data preprocessing recommendation

In this subsection, an in-depth analysis of the big data challenges for each dataset is con-
ducted, and corresponding data preprocessing recommendations are presented, draw-
ing from the discussions outlined in Section Big data challenges. The assessment of big 
data challenges relies on the outcomes of data characteristic understanding as detailed 
in Section Data challenges and preprocessing in the transportation dataset, guiding the 
formulation of preprocessing recommendations tailored to address the identified chal-
lenges. Because the challenges in the data volume and value dimensions need to be dis-
cussed alongside other dimensions as explained in Section Volume and Section Value, 
this section exclusively addresses the remaining four dimensions.

Data challenges and preprocessing in the furnace dataset

Firstly, all data points in the furnace dataset are structured data, eliminating challenges 
in the data variety dimension. However, a notable concern arises with the data being 
updated every 10 s, posing a challenge in the data velocity dimension as this time inter-
val is relatively long, leading to the loss of valuable information, such as mode changes. 
It is recommended to increase the frequency of data recording to 1 s for each data point. 
This adjustment aims to capture more detailed information and mitigate the loss of valu-
able data.

The challenges in the data variety are derived from the indicators regarding data qual-
ity. The data formats are all correct and no corrections are needed. Abnormal spikes 
can be addressed by replacing the values through linear interpolation. This method is 
easily implemented although it may have lower accuracy compared to machine learn-
ing algorithms. However, given that the abnormal spikes constitute less than 0.01% in 
four of the seven features, the impact on the overall dataset analytics is minimal, making 
this a pragmatic and efficient solution. Next, the inconsistent time intervals have been 
addressed in the data characteristic understanding pipeline in Section Pipeline of data 
characteristic understanding. Furthermore, since all duplicate timestamps have identi-
cal values, they can be seamlessly integrated into a single data instance by removing the 
redundant records. Finally, the missing values are the largest challenge in this dataset. 
The short-term and medium-term missing spans can be imputed through some AI algo-
rithms. However, the long-term missing spans cannot be reliably imputed due to the 
absence of seasonality in the time series. Therefore, the recommended approach is to 
select a subset that excludes the segments with long-term missing spans.

The challenge of data inconsistency in the data variability dimension consists of the 
outliers and the cross-correlation. The features ‘F1’ and ‘F4’ contain outliers and the 
processing decision should be made in collaboration with the maximum and minimum 
values provided in Table  9. The range of temperatures in feature ‘F4’ spans from 0  °C 
to 95.2  °C, which falls in a reasonable and expected range of the water in the cooling 
loop. However, the maximum action temperature is 62,260  °C, which is much higher 
than the default setting (1460 °C). In this case, it is essential to examine the operation 
mode, and reasonable values can be estimated based on both the operation modes and 
the surrounding values. Furthermore, following the cross-correlation analysis, it is evi-
dent that no features demonstrate a strong relationship with the feature ‘F1.’ However, it 
is crucial to highlight the related features with the action temperature in the context of 
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this industrial processing. Therefore, some other technologies such as feature engineer-
ing and causal inference should be applied to identify the feature relationships.

Data challenges and preprocessing in the transportation dataset

In the transportation dataset, all data points are characterized by structured data, 
thereby mitigating challenges associated with data variety. Furthermore, the time inter-
val for data collection is set at 1 s, ensuring a rapid update rate that facilitates the timely 
gathering of information.

The challenges related to data variety stem from the indicators assessing data qual-
ity. The data formats are all correct, requiring no corrections. Abnormal spikes can be 
addressed by replacing the values through linear interpolation because they constitute 
less than 1% in three of the ten features. Next, the inconsistent time intervals have been 
addressed in the data characteristic understanding pipeline in Section Pipeline of data 
characteristic understanding. Furthermore, there are no duplicate timestamps in the 
dataset. Finally, the missing values should be addressed in this dataset. As explained in 
Section Data challenge analysis and data preprocessing recommendation, the short-term 
missing spans can be effectively imputed using various AI algorithms, and a subset can 
be chosen excluding segments that encompass the long-term missing spans.

The challenge of data inconsistency in the data variability dimension encompasses the 
outliers and the cross-correlation. The features ‘R1’, ‘R3’, ‘R4’, and ‘R5’ contain outliers and 
the processing decision should be made in collaboration with the maximum and mini-
mum values provided in Table 11. The values in these four features fall within reason-
able ranges, negating the need for outlier processing as all values fall within valid ranges. 
Furthermore, the cross-correlation analysis reveals no meaningful results regarding fea-
tures ‘R7’, ‘R8’, and ‘R10’ as their values constantly remain zero. Therefore, it is advisable 
to exclude these three features from further analytics due to their inability to provide 
meaningful information.

Comparison with existing models

The results of the proposed data characteristic understanding model are compared to 
seven existing models to verify the contributions of this paper. The evaluation and com-
parison of data characteristic understanding models encompass five dimensions: the 
number of Vs dimensions (Dim.), the number of indicators (Indi.), quantitative ability 
(Quanti.), capacity for processing panel data (Panel), and capability for processing time 
series (Time). The results are presented in Table 14. In Table 14, ‘n/a’ denotes no appli-
cable data, while ‘Y’ and ‘N’ represent yes and no, respectively.

Table 14  Model comparison under five dimensions
Ref. Dim. Indi. Quanti. Panel Time
 [7] 4 4 Y Y N
 [8] 6 13 Y Y Y
 [9] 5 n/a N Y Y
 [12] 6 n/a N Y N
 [13] 6 n/a N Y N
 [14] 6 n/a N Y N
 [66] n/a 26 Y N Y
Proposed Framework 6 30 Y Y Y
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Based on the comparison in Table  14, the three limitations of the existing models 
introduced in Section Big data characteristics in Vs models have been addressed by the 
proposed framework. Firstly, the selected dimensions of the proposed 6Vs model have 
mutual and unique definitions and there is no overlap among them.

The proposed framework exhibits the highest number of dimensions and the most 
clearly defined mutual understanding of these dimensions compared to the other seven 
models. Moreover, it encompasses the largest array of indicators, thereby effectively 
quantifying the Vs dimensions. For example, The data quality evaluation framework 
developed in [7] employs volume, velocity, variety, and veracity to assess data quality. 
However, the model presented in this article incorporates two additional dimensions, 
namely value and variability, offering more comprehensive and valuable information. 
The model in [8] introduces vincularity in its 6Vs model and quantifies this dimension 
using an indicator named traceability. However, the popularity of this dimension is lim-
ited in the literature discussed in Section Big data characteristics in Vs models, rendering 
its definition less convincing. In contrast, the dimension ‘Variability’ enjoys widespread 
usage, with its definition being consistently mutual in many scholarly works.

Secondly, the existing 6Vs models in [9, 12–14] only provide qualitative definitions and 
analyses, lacking quantitative metrics. This limitation restricts a thorough assessment of 
data characteristics. In contrast, the proposed framework assigns statistical indicators 
to each dimension and unveils the big data challenges. Additionally, data preprocessing 
recommendations are derived from these indicators to improve the data quality.

Lastly, no data characteristic understanding models are developed specifically for 
the physical-sensor datasets in the literature study. Many models [7, 9, 12–14] can be 
employed to analyze all types of big data and do not involve time-related characteristic 
indicators. The study in [66] analyzes diverse and controllable time-series characteristics 
for generating new high-quality time series. However, this framework lacks a systematic 
analysis of data characteristics and does not examine timestamps. The proposed frame-
work incorporates a comprehensive set of characteristic indicators for physical-sensor 
data. This includes indicators for panel data values, time series, and timestamps.

Model generalizability

The proposed framework is developed for understanding physical-sensor data charac-
teristics, which has the potential to be applied to explore other types of datasets and in 
other domains. The indicators in the framework elucidate the characteristics of panel 
data values, time series and timestamps, which are the general properties not only in 
the physical-sensor data. Some of these indicators can be employed to understand other 
types of data. For instance, survey data typically exhibit panel data attributes, encom-
passing both continuous and categorical features. The indicators aimed at characterizing 
these features, irrespective of temporal considerations, can be employed in such scenar-
ios. Additionally, financial data are usually time series, and the indicators detecting the 
temporal trends, seasonality, autocorrelation and so on can provide valuable insights in 
such scenarios. The flexibility of the framework lies in its ability to accommodate differ-
ent data formats by leveraging various techniques such as statistical modeling, data visu-
alization, time series analysis and so on. Through systematic adaptation and refinement, 
it shows promise for advancing understanding and analysis beyond physical sensor data, 
contributing to a broader understanding of big data characteristics.
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Conclusion
The characteristics of big data have captured the interest of researchers in the context 
of physical-sensor big data. These data characteristics provide high-quality insights and 
recommendations for further data analytics, enabling data-driven decisions to effectively 
tackle various data challenges. This article proposes a systematic model for understand-
ing data characteristics, aiming to analyze the quantitative aspects of physical-sensor 
data characteristics and the associated data challenges. The insights gained from under-
standing data characteristics can be employed to aid in the data preprocessing.

The data characteristics understanding is based on a 6Vs model, including volume, 
variety, velocity, veracity, value, and variability. Each dimension incorporates a set of 
statistical indicators, enhancing the objectivity of the model for understanding data 
characteristics. Moreover, several indicators are associated with the temporal data char-
acteristics, given that physical-sensor data are inherently time-related. Furthermore, a 
big-data challenge is linked to each data characteristic dimension in the 6Vs model to 
comprehend the challenges posed by the physical-sensor data. The potential data pre-
processing strategies are recommended to effectively address these challenges. Finally, a 
pipeline to implement the proposed framework for understanding the characteristics of 
the physical-sensor data is developed in this article, and the pipeline encompasses time-
stamp understanding, value understanding, and feature understanding. Two case studies 
are conducted to visualize the utilization of the proposed framework. The data are gen-
erated from the industrial processing and transportation sectors respectively, and both 
datasets are collected by the physical sensors. The results reveal the data characteristics 
of each dataset in six dimensions. Data challenges are then derived from the characteris-
tic indicators, and recommendations for data preprocessing to address these challenges 
are also discussed.

Data characteristics and challenging understanding constitute the initial stages of the 
CRISP-DM-based data lifecycle, aiming to provide precise and accurate information 
to enhance data quality for subsequent data analytics. In future studies, a data quality 
evaluation framework should be developed for quantitative data quality profiling and 
assessment. Furthermore, a comprehensive data preprocessing framework should be 
developed based on the results of data characteristics understanding and data quality 
assessment.
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