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Abstract 

Subway button detection is paramount for passenger safety, yet the occurrence 
of inadvertent touches poses operational threats. Camera-based detection is indispen-
sable for identifying touch occurrences, ascertaining person identity, and implement-
ing scientific measures. Existing methods suffer from inaccuracies due to the small 
size of buttons, complex environments, and challenges such as occlusion. We present 
YOLOv8-DETR-P2-DCNv2-Dynamic-NWD-DA, which enhances occlusion awareness, 
reduces redundant annotations, and improves contextual feature extraction. The 
model integrates the RTDETRDecoder, P2 small target detection layer, DCNv2-Dynamic 
algorithm, and the NWD loss function for multiscale feature extraction. Dataset 
augmentation and the GAN algorithm refine the model, aligning feature distributions 
and enhancing precision by 6.5%, 5%, and 5.8% in precision, recall, and mAP50, respec-
tively. These advancements denote significant improvements in key performance 
indicators.

Keywords: Touch button detection, Camera, YOLOV8, RTDETRDecoder, P2, DCNv2-
Dynamic, Small target, NWD, GAN, Multiscale, Indicators

Introduction
High-speed railway stations require the implementation of image analysis through cam-
eras toachieve passenger flow statistics and abnormal behavior analysis, thereby enhanc-
ing the safety of high-speed rail operations [1]. The European Union has achieved the 
detection of abnormal conditions, such as fighting, rogue behavior, and foreign body 
detection on railway tracks. Figure  1 illustrates the emergency button in the subway. 
Upon pressing the button, it sends a warning signal (such as a bell) to the staff and auto-
matically initiates relevant control procedures. For instance, activating the fire alarm 
button triggers the subway’s fire alarm system, initiating evacuation procedures and 
emergency measures. Pressing the emergency stop button halts the train, leading to pas-
senger evacuation. Similarly, engaging the emergency stop button on an escalator imme-
diately halts its operation, posing potential safety risks such as passenger falls. Touching 
the gas extinguishing button automatically releases fire-suppressing gas, but inadvertent 
button presses may result in gas wastage and economic losses. 
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In modern metro systems, ensuring passenger safety and operational efficiency are 
paramount. With advancements in surveillance technology, video surveillance systems 
have become instrumental in monitoring passenger behavior and preventing potential 
terrorist activities. Particularly, the ability to detect and identify abnormal behaviors 
such as accidental activations of emergency buttons in real-time is crucial for maintain-
ing the normal operation of the metro system.

Despite numerous studies focusing on video-based passenger behavior analysis, the 
detection of accidental button presses still presents challenges. These challenges include 
the uncertainty and diversity of accidental behavior, as well as the adaptability of detec-
tion algorithms in complex environments. Existing methods often require extensive 
annotated data for model training and may perform poorly under varying lighting con-
ditions, background noise, and passenger flow rates.

Recent years have seen significant progress in deep learning techniques for anomaly 
detection. For instance, Espinosa et al. introduced the UP-Fall Detection dataset and uti-
lized deep learning algorithms for fall detection [2]. Khraief et al. designed a four-stream 
CNN architecture, integrating motion, shape, RGB, and depth appearance information, 
as well as transfer learning and data augmentation techniques [3]. Cao et al. proposed the 
RailDet method, an effective railway intrusion image recognition technique using deep 
learning [4]. Ling et al. built the SCAU-SD dataset by introducing self-attention mecha-
nisms and post-processing modules, with the code available on GitHub [5].

Currently, there is a lack of systems that can prompt events after a button is touched, 
leading to difficulties in determining the touch location and identity. This uncertainty 
affects rapid decision-making and response. By adopting video/image-based button 
touch detection, abnormal touches can be timely identified, emergency plans can be 
formulated, and operational efficiency and passenger safety can be improved, which is 
of significant importance for quickly understanding and addressing on-site situations. 
Camera systems can monitor and record touch events in real-time, eliminate false 
alarms, and ensure resource allocation, promoting an orderly operational environment. 
Therefore, the proposed use of cameras for touch button detection has practical and far-
reaching implications for enhancing metro system operational efficiency and safety.

However, the detection of touch behavior on small buttons presents technical chal-
lenges due to increased detection difficulty (e.g., occlusion, lighting changes, complex 
backgrounds, and the small size of the buttons themselves). Additionally, there are cur-
rently no systems that can immediately alert to "button touch" events after an incident, 
leading to inefficiency and response delays as operators often need to be on-site for 
inspection.

Fig. 1 Subway Emergency button a Emergency stop b Emergency stop c fire alarm d vehicle emergency 
intercom e gas fire extinguishing
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This paper aims to explore how video and image analysis techniques can be utilized to 
detect and identify accidental button presses in metro systems. We will outline the cur-
rent technical challenges, introduce the latest research advancements, and discuss future 
research directions, aiming to provide practical technical support for safety monitoring 
in metro systems.

However, the identification of button touches presents two primary challenges. Firstly, 
there is a deficiency in sufficient datasets and exemplary scene recognition network 
models. Current focus primarily revolves around single-scene detection. Secondly, the 
accuracy of recognition is insufficient, failing to meet the demands of actual operations 
and rendering application in real scenarios challenging. Experimental results indicate 
suboptimal detection accuracy for behaviors such as bar delivery, crossing gate interac-
tions, and crossing fence activities, with an abnormality rate reaching up to 90%. How-
ever, the accuracy of touch button behavior detection remains below 80%.

The primary contributions of this paper are outlined below:
1. We introduce an application framework for touch button detection. Upon anomaly 

detection, it enables functionalities including toucher identification, trajectory tracking, 
situational context comprehension, and event handling record storage. This proposed 
framework establishes an applied technological architecture to enhance subway security 
and ensure safe travel.

2. Addressing the constraint of limited touch button data samples, we adopted an inductive 
methodology to construct a dataset. Through the integration of image processing and Gen-
erative Adversarial Network (GAN) techniques, we effectively executed data augmentation. 
We introduced a pioneering dataset tailored for the identification of abnormal touch button 
interactions within subway environments. Employing an inventive image processing approach 
to augment the training set, we achieved a noteworthy expansion in sample diversity. This 
methodology played a pivotal role in elevating the overall performance of the network.

3. Our paper presents the YOLOv8-DETR-P2-DCNv2-Dynamic-NWD-DA method, 
signifying a noteworthy advancement. This methodology significantly boosts network per-
formance, especially within the YOLOv8 framework. Notably, it demonstrates substantial 
enhancements in small target detection, establishing high accuracy as a key advantage.

4. The innovative DCNv2-Dynamic module and M_CA_Attention attention mecha-
nism are introduced. The DCNv2-Dynamic, incorporating the M_CA_Attention atten-
tion mechanism, enhances the generation capability of the DCN mask. This innovation 
significantly contributes to the overall effectiveness of the network, particularly in cap-
turing intricate details and improving the accuracy of the detection process. Through 
comparative experiments, it is evident that our M_CA_Attention attention mechanism 
outperforms other attention mechanisms.

5. The efficacy of the proposed method, module, and attention mechanism is validated 
across multiple datasets, providing empirical evidence for the effectiveness of the pro-
posed architecture.

Related work
Routine method for touch‑button detection

In contemporary subway stations within China, automation of emergency stop but-
ton activation is at a nascent stage, encompassing emergency stop buttons, emergency 
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stop escalator buttons, fire trigger buttons, and gas extinguishing buttons. Nevertheless, 
on trains, the installation of emergency intercom buttons enables the subway control 
center to receive and respond to information when activated, facilitating communica-
tion. Simultaneously, the activation of these buttons triggers nearby cameras, allowing 
dispatchers to monitor the interior of the train. This approach integrates technologies 
such as the Internet of Things (IoT) and voice communication, necessitating the trans-
mission of alarm signals via the train-ground wireless network and the interconnection 
of on-board video surveillance systems, voice intercom systems, train-ground wireless 
systems, on-board dispatch systems, signal systems, and vehicle control management 
systems. This intricate network necessitates frequent information exchange, and any sys-
tem malfunction may diminish the functionality’s effectiveness.

Our proposed computer vision approach, in contrast, is straightforward, featur-
ing a unified network architecture, reduced points of failure, minimal investment, and 
simplified construction. It is well-suited for the detection of emergency stop buttons, 
emergency stop escalator buttons, fire trigger buttons, and gas extinguishing buttons, 
extending beyond the limitations of onboard voice intercom systems. Computer vision 
enables the annotation of button touch regions in footage (typically at a resolution of 
1920*1080 or higher), facilitating rapid issue identification by operational staff. This 
functionality is not inherent to traditional onboard voice intercom systems.

Touch Button Recognition Method: In China’s subway stations, emergency stop but-
ton activation does not proactively link to video images, lacking intelligence. Onboard, 
an emergency intercom button is installed, which, upon activation, informs the control 
center and enables communication. The camera near the button is activated, aiding in 
dispatcher observation. This method employs IoT and voice communication, requir-
ing alarm signal transmission via the vehicle-ground wireless network. Integration of 
the onboard video surveillance system, voice intercom, wireless network, dispatching 
system, signaling, and vehicle control is crucial. The network’s complexity and high fre-
quency of information exchange render it susceptible to failure, potentially diminishing 
functionality.

In China’s subway systems, emergency stop button activation triggers a buzzer warn-
ing in the control room’s IBP panel. Pressing the fire alarm button prompts a message on 
the fire alarm system’s workstation. However, this method has limitations: it depends on 
the network connectivity of the buttons and the station control room, and it lacks direct 
on-site situational awareness.

Our machine vision approach, on the other hand, is characterized by its simplicity, a 
single network architecture, reduced points of failure, low resource investment, mini-
mal system interfaces, and straightforward implementation. It is specifically designed to 
detect emergency stop buttons, emergency stop ladder buttons, fire trigger buttons, and 
air extinguishing buttons, offering broader applicability. Operators can quickly identify 
issues on the screen (typically at resolutions of 1920 * 1080 and above), a capability not 
present in traditional vehicle voice intercom systems.

Unlike the conventional approach, where network failure can prevent remote com-
munication, the machine vision method is not reliant on network accessibility and can 
continuously monitor scene imagery. Alarms are triggered in response to detected 
anomalies.
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Method of target detection

Following the research literature, the application of machine vision for subway but-
ton touch detection has not been explicitly documented. However, this domain aligns 
with the broader field of target detection, which has been extensively studied. Target 
detection is a pivotal visual task that encompasses both recognition and localization. 
Contemporary target detection systems are characterized by two predominant archi-
tectures: Convolutional Neural Network (CNN)-based, exemplified by YOLOV8, and 
Transformer-based, represented by DETR and RT-DETR. Despite DETR’s computa-
tional cost drawback, the current research focus has shifted towards the remarkable 
precision and efficiency exhibited by RT-DETR [6]. YOLO-NAS [7] employs strat-
egies such as knowledge distillation and Distribution Focal Loss, achieving a mAP 
value that surpasses YOLOV8 by over 1 percentage point.

RT-DETR stands out for its efficiency, balancing high accuracy and rapid process-
ing speed. To mitigate the Non-Maximum Suppression (NMS) delay, an end-to-end 
detector is employed. Notably, on the COCO dataset, RT-DETR-X has achieved 
exceptional performance, attaining a substantial 54.8% Average Precision (AP) at a 
remarkable speed of 74 Frames Per Second (FPS). This underscores the significance 
of RT-DETR-X in addressing the demands of target detection tasks with both efficacy 
and efficiency. Li et al. [8] combined YOLOv8 and mt-DETR to achieve more accurate 
detection of fish. However, RT-DETR is not much used in related industrial fields.

With the rapid development of deep learning, target detection technology has become 
a focal point of research. Common two-stage algorithms include R-CNN, Fast R-CNN, 
and Faster R-CNN. On the other hand, single-stage methods include the You Only Look 
Once (YOLO) series and the Single Shot MultiBox Detector (SSD). The YOLO algo-
rithm predicts both object boundaries and classifications for each grid within a mul-
titude of grids. The evolution of YOLO from versions YOLOV1 to YOLOV8 has seen 
enhancements in various components. This includes improvements in the backbone 
network, such as the introduction of Darknet19 in V2, feature extraction modules like 
FPN, C3, and SPPF in V3, V5, and V7, and activation functions like the wish function 
in V4. These developments aim to boost feature extraction capabilities and enhance the 
expression of semantic information, ultimately optimizing target detection. Numerous 
studies have been conducted on the realization and improvement of YOLOV8. Some 
notable enhancements include the adoption of the Global Attention Mechanism (GAM) 
to address occluded foreign bodies and the replacement of the SPPF module with the 
SPPCSPC module for automatic detection of power grid anomalies, thereby improving 
inspection efficiency [9]. Yaping et  al. [10] provided a comprehensive summary of the 
single-stage YOLO series detection algorithm, its improvement methods, and an analy-
sis of its advantages and disadvantages.

Improvements in YOLOV8 mainly focus on performance and model parameters. 
These enhancements encompass the addition of attention mechanisms, changes in 
network architecture, improvements in loss functions, and modifications to convo-
lution types. Model parameter improvements include model pruning and enhance-
ments to convolution functions. Table  1 provides a summary of the methods and 
ideas for algorithmic improvement.
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Method
Application architecture for the button detection

The depicted Fig. 2 illustrates the application architecture for button detection. Initially, 
the camera adjusts its focus to the location of the buttons, and the AI model is employed 
to detect the occurrence of button touches. If a button touch is detected, three valuable 
applications ensue.

1. Real-time Scene Understanding: Upon identifying a button touch, the system cap-
tures a segment of video before and after the incident. This video data is then transmitted 
to mobile terminals, enabling on-the-go work for operational personnel. It eliminates the 
necessity of being in the control room to receive alerts and video sequences.

2. Identification and Trajectory Tracking of Button Touchers: Upon detecting a but-
ton touch event, facial recognition algorithms are employed to capture the face region. 
The individual’s identity is confirmed against existing subway identity systems, such as 
card systems or facial entry systems. Concurrently, the algorithm extracts the person’s 
body region and utilizes pedestrian re-identification algorithms to track the individual’s 
movements, establishing a trajectory. This application enables rapid identity confirma-
tion, expediting information dissemination to law enforcement, thereby reducing search 
time and mitigating secondary impacts.

3. Archiving Event Processes: The system archives the process of the event, storing 
images and information on the handling process. This allows for quick searches and 
replays of the event. Moreover, it automatically generates event reports, enriches the 
abnormal image sample library, retrains the model, and enhances network performance. 
This iterative process elevates the accuracy of button touch detection.

The system architecture encompasses multiple application functionalities, and effec-
tive alarm processing methods are integral to its operation. As depicted in the Fig.  3, 
the alarm processing workflow involves pre-configuring AI settings rules (such as detec-
tion locations, areas, timeframes, etc.). Following the diagnosis of anomalies by AI algo-
rithms, the alarm management process is executed, encompassing alarm notifications, 
storage, utilization of alarm data, and post-event handling. This workflow constitutes a 
series of tasks and functions related to monitoring, security, and event processing.

Fig. 2 Application architecture of the button detection
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In summary, these tasks involve the alarm processing flow of the system, including the 
collection, analysis, confirmation, disposition, and archiving of alarm data. Real-time 
alarm notifications are pushed to the platform and mobile terminals, supporting both 
conditional and personalized retrieval. The functionalities include handling alarm data, 
generating alarm confirmation forms, and storing disposition materials. These tasks and 
functions are designed to enhance the efficiency of the monitoring system, strengthen 
security management, and enable rapid response and handling of various events and 
alarms, thus realizing the functionalities depicted in the application architecture 
diagram.

Algorithmic architecture for the push‑button detection

In this paper, we introduce a novel and improved model, YOLOv8-DETR-P2-DCNv2-
Dynamic-NWD-DA. A key modification is the replacement of the last layer of YOLOv8 
with RTDETRDecoder. To enhance the accuracy of small target detection, we incor-
porate the P2 small target detection layer, enabling YOLOv8 to more effectively detect 
small target objects. The innovative DCNv2-Dynamic algorithm, along with the NWD 
loss function (Normalized Gaussian Wasserstein Distance) and the DA algorithm, are 
employed to further optimize the model.

The feature map layers of the neck network are transformed from the original P3, 
P4, P5 to P2, P3, P4, P5. The detection head is then replaced with the detection head 
from RT-DETR. The SPPF layer preceding the C2f module in the backbone network 
is swapped with the C2f-DCNv2-Dynamic module, where the Dynamic component 
employs the M_CA_Attention attention mechanism. This attention mechanism adjusts 
the generation parameters of DCNv2, which is further augmented with the NWD 
loss function to enhance small object extraction capabilities. To mitigate the distribu-
tion discrepancy between the training and test sets, data augmentation algorithms are 
incorporated into the dataset. Owing to prevalent necessity for button detection, the 

Fig. 3 The process of alarm disposal
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incorporation of each module within the algorithm has been innovatively applied. We 
delineate the underlying rationale for this approach.

Theoretically, the improvement of the network structure, which includes the adoption 
of a detection head and the capability for small object detection, enhances the model’s 
capacity and generalization ability. The NWD loss function is more effective in learn-
ing boundaries, which can help the model better detect small objects, maintaining good 
performance even in low-resolution or occluded scenarios. This encourages the model 
to learn more robust feature representations. Data augmentation techniques enhance 
the model’s generalization ability by increasing the diversity of samples. Data indicate 
that while maintaining a similar distribution, the diversity of the generated data is sig-
nificantly improved.

Our approach also integrates advanced techniques such as data set enhancement 
through image processing and the Generative Adversarial Network (GAN) algorithm. 
This combination of methods contributes to improved performance in detecting small 
target objects. The main network architecture diagram is provided below in Fig. 4 for 
reference.

The pseudo code is as follows in Table 2.
1) RTDETRDecoder: In our proposed model, YOLOv8-DETR-P2-DCNv2-Dynamic-

NWD-DA, a significant enhancement is made by replacing the last layer of YOLOv8 
with RTDETRDecoder. The RTDETRDecoder is a decoder module equipped with auxil-
iary predictive headers, which iteratively refines the object queries to generate box coor-
dinates and confidence scores. This decoder module is designed using the Transformer 
architecture and incorporates deformable convolution. This combination facilitates the 
more efficient prediction of button touch behaviors. The module predicts bounding 
boxes and class labels for objects in the image, integrating information from multiple 
layers and passing through a series of Transformer decoder layers to produce the final 
predictions. This strategic modification enhances the model’s capability to accurately 
detect and classify objects in the images, particularly optimizing the prediction of but-
ton touch behaviors.

The decoder component within the model, as depicted in Eq.  3, is responsi-
ble for processing feature map and generating object bounding boxes and classes. 

Fig. 4 Architecture diagram
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RTDETRDecoder(P2, P3, P4, P5) refers to the utilization of the decoder part within 
the model to handle four distinct feature map at various resolutions: P2, P3, P4, and P5. 
These feature map are sourced from the encoder part, representing different levels of 
abstraction within the image.

X1, X2, …, XN denote the feature map at different resolutions, with Encoder repre-
senting the encoder part and TransformerDecoder representing the decoder part.

2) P2 layer: Additionally, to enhance the accuracy of small target detection, we 
introduce the P2 small target detection layer in our YOLOv8-DETR-P2-DCNv2-
Dynamic-NWD-DA model. This integration transforms the original three-layer pyra-
mid architecture into a four-layer pyramid architecture, creating a deeper multi-scale 
feature pyramid network. This modification significantly improves the model’s feature 
extraction capabilities, leading to more accurate detection of small target objects. The 
expanded feature pyramid network captures more detailed feature information across 
multiple scales, encompassing both the high-resolution details and global characteristics 
of low-resolution features. This approach enhances the model’s adaptability and robust-
ness, providing a comprehensive understanding of the scene. The lower resolution of the 
feature pyramid can be particularly useful for accurately locating the bounding box of 
small targets. This precise localization improves the accuracy of detection results, ensur-
ing more precise target positioning and identification for touch button behaviors.

(1)Decoder(X1,X2, ...,XN ) = TransformerDecoder(Encoder(X1),Encoder(X2)...)

Table 2 Pseudo code

/* Define the Backbone Architecture */

Let B be the backbone network, which takes an input image and processes it through a sequence of 

convolutional layers and C2f modules with increasing filter sizes and strides, terminating in a SPPF 

module, and producing a feature map .

/* Define the Head Architecture */

Let H be the head network, which takes the feature map from the backbone and processes it through a 

series of upsampling layers, concatenation modules, C2f modules, and a final 

RTDETRDecoderModule to produce bounding boxes and class probabilities.

/* Define the Complete Model */

Let M be the model, consisting of the backbone B and head H, which takes an input image and outputs 

bounding boxes and class probabilities.

/* Data and Loss */

Input images are augmented using function DA, and the model's loss is computed as a combination of 

giou and normalized weighted distance (nwd) losses.

/* Training and Testing */

The model M is trained using the augmented data and loss function to learn to predict accurate 

bounding boxes and class probabilities. The trained model is then tested on a separate set of images to 

evaluate its performance.

pseudo code
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As the pixel size of an object decreases, the error in feature extraction increases. 
Therefore, enhancing the accuracy of small object detection is essential. In datasets con-
taining small objects, issues such as missed detections or suboptimal detection results 
may arise. feature map are typically generated at different resolution levels, denoted as 
p2, p3, p4, p5, etc., with P2 being one of these levels. Each level represents a feature 
map at a different scale, with P2 typically referring to a higher resolution level capable of 
capturing finer-grained details. The incorporation of a P2 small object detection layer in 
feature fusion enables more effective detection of small objects, which typically occupy 
fewer pixels in the final image and are more prone to being overlooked or misclassi-
fied. A dedicated P2 layer allows the network to more acutely detect and localize small 
objects, thereby enhancing the accuracy of small object detection.

y represents the discriminative information regarding the target’s location and category 
by the network, with P2 denoting the small object detection layer.

(3) DCNv2-Dynamic module and M_CA_Attention
In our model YOLOv8-DETR-P2-DCNv2-Dynamic-NWD-DA, we leverage the inno-

vative DCNv2-Dynamic algorithm. A notable modification involves replacing the c2f 
module in front of the SPPF with the C2f_DCNv2_Dynamic module. This modification 
is designed to enhance the capabilities of the feature extraction process. The schematic 
diagram of this module is depicted below in Fig. 5 for reference.

The DCNv2 introduces additional parameters in a specific order. First, the data stream, 
denoted as x, is processed, followed by the convolution kernel or filter. Subsequently, in 
sequential order, we have the offset and mask. The offset signifies the displacement of 
each convolution window, while the mask represents the sampling weights at various 
positions within the window.

The integration of DCNv2 into YOLO contributes to an enhanced understanding of 
image content, particularly in complex scenes. This incorporation enables the model to 
discern subtle structures and patterns within the image, providing a more comprehen-
sive and abstract representation of features. DCNv2 significantly augments the model’s 
capacity to express image features. To bolster the robustness of the generated mask, 

(2)y = RTDETRDecoder(P2, P3, P4, P5)

Fig. 5 C2f _DCNv2 Dynamic module
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DCNv2 fully extracts the weight coefficients, optimizing the convolution operation at 
each sampling position to facilitate the extraction of superior features. The incorporation 
of a flexible, dynamically adjustable feature sampling location, along with the inclusion 
of an attention mechanism responsible for offsets and mask generation, synergistically 
enhances the overall effectiveness of the model.

M_CA_Attention: In the original DCNv2 [33], the mask generation method is relatively 
basic, utilizing conventional convolution, resulting in limited capabilities. To enhance 
this, we employ the convolution M_CA_Attention with multiplex feature extraction to 
generate the mask. This involves introducing the proposed attention mechanism after the 
convolution process to bolster mask generation, providing a more robust outcome. Fea-
tures are extracted at each location, contributing to a more effective result.

We enhance the attention mechanism by incorporating additional attention mecha-
nisms, such as CPCA [34] et al. Building upon the CoordAt attention [35], we further 
refine the attention mechanism by introducing a channel branch. This involves connect-
ing different-dimensional pooling data to facilitate information exchange and amplify-
ing the weight of the channel branches and pooling data alterations. Additionally, we 
reinforce the horizontal and vertical data dimension weights, resulting in a collaborative 
attention mechanism across multiple levels. The main architecture of M_CA_Attention 
is depicted in Fig. 6.

Utilizing a multi-path coordinate attention mechanism for feature map processing, 
this algorithm employs several steps. Firstly, it employs global average pooling to acquire 
overall features. Subsequently, adaptive average pooling in the vertical and horizontal 
directions captures information about rows and columns independently. After integrat-
ing this information, a convolution operation introduces a multi-path attention mecha-
nism, separately weighting the height and width. Finally, the weights obtained through 
a sigmoid function are applied to the input image, providing weighted representation in 
the channel, row, and column directions to attain a more representative feature repre-
sentation. The algorithm possesses the following advantages: (1) Comprehensive inte-
gration of multi-path information enables a more holistic understanding of features in 
different directions within the image. (2) The coordinate attention mechanism selectively 

Fig. 6 Architecture diagram of M_CA_Attention
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emphasizes or diminishes specific regions of the image, thereby better capturing the 
inherent structures and patterns. (3) Collaboration between global and local features aids 
in maintaining flexibility when dealing with features of different scales, adapting well to 
various image contents. (4) Enhanced model expressiveness enables better adaptation 
to the nonlinear relationships in the data. The spatial attention mechanism is applied by 
channel, and the final calculation involves element-by-element multiplication, followed 
by Sigmoid activation. Pseudocode is presented in the Table 3.

The pseudo-code uses mathematical symbols to describe a deep learning model’s 
operations. "∈" indicates membership in a set, "Let" defines a term, "Concatenate" joins 
tensors, "×" denotes element-wise multiplication, "σ(·)" is the Sigmoid activation func-
tion, "Γ_global(·)" represents global average pooling, "Mean(·)" calculates averages, and 
"permute" changes dimension order. These symbols are used in deep learning to pre-
cisely and succinctly describe our algorithms.

Efficient feature extraction is crucial for enhancing model performance and robust-
ness. Common techniques include channel attention, spatial attention, feature map 
stacking, up-sampling, multi-scale feature fusion, residual connections, advanced fea-
ture down-sampling, and attention residual networks. These techniques offer distinct 
advantages but also possess weaknesses. For instance, channel and spatial attention 
may increase computational complexity; feature map stacking may lead to an increase 
in model parameters; up-sampling and down-sampling operations may introduce 
additional computational overhead; and while residual connections and attention 
residual networks can enhance model performance, their design and implementation 
are more intricate. Given our task’s requirement for small object detection, we have 
devised a strategy that balances these advantages and weaknesses to design the atten-
tion mechanism presented in this paper.

M_CA_Attention is an enhanced attention mechanism that achieves more effec-
tive fusion of feature information at different levels by adding channel branches and 
enhancing weights. This mechanism facilitates information exchange between data 
from different dimension pooling operations, heightens the model’s attention to 
critical features, and enables collaborative attention across multiple levels, thereby 
improving the model’s capability for recognition and detection in complex scenarios.

In the context of the attention mechanism, ’avg’ denotes the pooling operation, ’Sig-
moid’ represents the activation function, ’F’ denotes the input feature, and ’GAP’ sig-
nifies global average pooling.

(4) NWD loss function. We adopt the NWD [36] loss function, specifically the 
Normalized Gaussian Wasserstein Distance. The primary advantage of Wasserstein 

(3)y1 = σ(cat([avgx(F), avgy(F)]))

(4)y2 = gap(F) ∗ σ(y1)

(5)y3, y4 = split(y1), split(y2)

(6)out = F ∗ gap(F) ∗ [y3(1) ∗ y4(1)] ∗ [y3(2) ∗ y4(2)]
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distance lies in its ability to measure distribution similarity even in cases where there 
is no overlap or the overlap is minimal. This characteristic makes it particularly suita-
ble for measuring the similarity between small objects. Given that the proposed touch 
button behavior involves smaller targets, this loss function is well-suited for the task. 
Consequently, the detection performance is consistently enhanced, facilitating the 
estimation of position deviations for small objects.

Table 3 Pseudocode of the proposed attention mechanism
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Inspired by the literature, this paper explores the fusion of the GIOU loss function 
with the NWD loss. The combined loss function is formulated as follows in (7)–(9). 
This integrated loss function leverages the strengths of both GIOU and NWD, aiming 
to further improve the model’s ability to accurately estimate the position deviation of 
small objects, particularly beneficial for our touch button detection task.

In the formulation below, A and B represent the true and predicted target boxes, 
respectively, while C represents the maximum external rectangle encompassing both 
A and B:

Here, Loss NWD represents the loss function corresponding to NWD, and a is the 
relative weight coefficient that balances the GIOU loss and the NWD loss. This com-
bined loss function allows for a flexible and weighted integration of the GIOU loss 
and the NWD loss, optimizing the trade-off between the two for improved accuracy 
in estimating the position deviation of small objects.

It is imperative to establish the definition of the Normalized Wasserstein Dis-
tance (NWD). NWD is a normalized variant of the Wasserstein distance, employed 
to quantify the discrepancy between two probability distributions. In the context of 
object detection, the NWD loss function serves as a guide for the model to learn how 
to predict bounding boxes more effectively.

The Wasserstein distance is defined as:

where (P) and (Q) are two probability distributions, and (P,Q) represents the set of all 
probability measures that can be formed by mixing P and Q. The Euclidean distance 
between two points, x and y, is denoted as ||x − y||.

The Normalized Wasserstein Distance (NWD) represents an improvement upon 
the Wasserstein distance by normalizing it through division by the size of the sup-
ports of the two distributions. This normalization serves to mitigate the bias towards 
larger distributions when comparing distributions of different sizes. The definition of 
NWD is as follows:

where H(P) and H(Q) are the entropies of P and Q, respectively.
In object detection, the NWD loss function is utilized to direct the model’s learn-

ing in the prediction of bounding boxes. Specifically, the Normalized Gaussian 

(7)giou = iou−
|C\(A ∪ B)|

|C|

(8)iou =
|A ∩ B|
|A ∪ B|

(9)loss (giou, nwd) = a ∗ lossgiou + (1− a) ∗ lossnwd

(10)W(P,Q) = inf
π∈�(P,Q)

∫

X×Y

∣

∣x− y
∣

∣dπ
(

x, y
)

(11)NWD(P,Q) =
W(P,Q)

√
H(P)H(Q)
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Wasserstein Distance (NGWD) loss function is applied to ensure consistency between 
the predicted and the actual bounding boxes. This approach leverages the Was-
serstein distance from optimal transport theory to compute the distance between 
distributions.

In practice, we utilize the ‘wasserstein_loss’ function to calculate the Wasserstein 
distance loss between the predicted and the actual bounding boxes. This involves 
computing the Euclidean distance (centroid distance) and the width-height difference 
(wh_distance) between the two centers of the bounding boxes. These are then summed 
to obtain the Wasserstein distance (wasserstein_2). Finally, the loss is returned as the 
negative exponential function of the square root of wasserstein_2 divided by a constant 
(i.e., -torch.sqrt(wasserstein_2)/constant). This is the final form of the Wasserstein loss. 
The formula is represented as:

where sqrt denotes the square root, and exp denotes the exponential function.
(5) DA using GAN and image processing. The DA (Data Augmentation) algorithm 

employed in this study integrates both image processing and the Generative Adversarial 
Network (GAN) algorithm. The primary ideas behind this approach are as follows:

(1) Acquisition of New Target Sample Sets:

Begin with the original samples labeled as targets.
Extract the targets from these samples and perform image processing.
First, identify positions corresponding to human skin color.
Next, identify positions corresponding to the red area.
Merge the two identified parts to create a region of interest (ROI) representing the tar-

get after image processing.
Utilize this processed sample set in the DCGAN algorithm to expand the sample set 

and generate a new target sample set, denoted as Set A.

(2) Data Enhancement of the Training Sample Set:

From the test set, randomly select 1000 samples.
For each sample in this subset, randomly select data from the sample set A and append 

it to the original sample.
The augmented samples are then added to the training set, while the test set remains 

unchanged.
This process effectively augments the dataset, introducing variations and diversifying 

the training samples to improve the model’s ability to generalize and perform well on 
unseen data.

The image change process is shown in the Fig. 7, and we can see the extraction of the 
skin color area and the red area.

It appears that the figure above illustrates the results of image transformations applied 
to a sample image. The sequence involves operations such as skin color positioning, red 

(12)loss = −exp
−
√

wasserstein_22

constant
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positioning, merging of skin color and red positioning, and finally, the extraction of the 
region of interest. This series of operations effectively eliminates a substantial number of 
non-button areas, enhancing feature perception in the processed image. The highlighted 
region of interest after these changes likely isolates the target button area, facilitating 
more accurate and efficient detection of touch button behavior in subsequent model 
training and testing processes.

As can be seen from the Fig. 8, the method adopted by DCGAN can generate some 
effective data sets, laying the foundation for the expansion of subsequent data sets.

Experimental result
Experimental setting and dataset

Hardware configurations for our experiments include Python-3.9.13 torch-2.0.1 + cu118 
CUDA:(NVIDIA A100, GPU, 40  GB),i7CPU, 32  GB RAM, The software environment 
includes Linux, During the experiments, To ensure uniformity, all input images were 
resized to dimensions of 512 × 512 pixels, The hyperparameters settings for the different 
models are shown in Appendix 4.

Accommodating variations in sample sizes. These configurations provide the compu-
tational foundation for our experiments, allowing for efficient training and evaluation of 
our model for touch button behavior detection.

We enlisted volunteers for artificial simulation, mimicking the touch button behav-
ior by placing their hands on the subway emergency button without actually pressing it. 
Subsequently, we gathered action photos as experimental samples. Figure 9 illustrates a 
subset of these sample cases, focusing on diverse touch scenarios at different stations, 
locations, and scenes. The buttons include the emergency stop button and the automatic 
fire alarm button, representing various forms of touch button abnormal behavior.

Fig. 7 Image changes and ROI region extraction

Fig. 8 The dataset generated by the DCGAN network
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We address these challenges by constructing a dataset comprising 10,947 images, with 
5381 allocated as training samples and 5566 as test samples. Leveraging the YOLOv8n as 
the benchmark network, our research introduces innovative methodologies.

Evaluation indicators

In this paper, we employ a range of evaluation metrics to comprehensively assess the 
performance of our model. The classified comprehensive evaluation index (F1) and 
mean Average Precision (mAP) are used to measure the accuracy of the model in clas-
sification and object detection tasks, while the number of parameters (Params) and Giga 
floating point operations per second (GFLOPs) reflect the complexity and computa-
tional efficiency of the model. Additionally, Frames Per Second (FPS) evaluates the mod-
el’s capability for real-time processing. Together, these metrics ensure a thorough and 
multi-faceted understanding of the model’s performance.

Ablation experiments and contrast experiments

Choosing to improve the different networks based on YOLOv8n yields the following 
results as follows in Table 4.

Upon examination of performance curves in Fig.  10, including the F1-confidence 
curve, Precision-Recall (P-R) curve, and the mean Average Precision (mAP) curve, it 
is evident that the enhanced YOLOv8 outperforms the original YOLOv8. Notably, the 
improved model exhibits clear advantages in various performance indicators. Note-
worthy improvements are observed even at 100 iterations, surpassing the performance 
achieved by the original YOLOv8 at 120 iterations. This demonstrates the effectiveness 
of our algorithm in achieving superior performance metrics within a shorter timeframe.

In summary, our model exhibits substantial improvements over the baseline network 
YOLOv8. The Precision, recall rate, and mAP values have seen significant increases of 
6.5%, 5%, and 5.8%, respectively, with a 1.3 percentage point improvement in mAP50:95. 
These enhancements demonstrate a notable and effective improvement in the model’s 
performance, making it particularly well-suited for the button touch scenario explored 
in this study.

Fig. 9 The sample case of the button touching
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Fig. 10 Results of the different algorithms
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In the course of our analysis, the effectiveness of each module was assessed as follows. 
Starting with the baseline YOLOv8, the introduction of the decoding detection head of 

Fig. 10 continued
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RT-DETER alone resulted in notable improvements. Precision, recall, and mAP50 values 
increased by 6%, 2.1%, and 3.8%, respectively. Upon incorporating the P2 test head, preci-
sion, recall, mAP50, and mAP50:95 values saw increments of 0.4%, 0.6%, 0.4%, and 0.5%, 
respectively. Reintroducing the DCNv2 module increased the mAP50:95 value by 0.6%. 
The introduction of the Dynamic module led to a 0.1% increase in mAP50. The inclu-
sion of the NWD loss function resulted in improvements of 0.4%, 1.2%, 0.6%, and 0.6% in 
precision, recall, mAP50, and mAP50:95, respectively. Finally, employing the DA dataset 
enhancement strategy increased recall, mAP50, and mAP50:95 by 1.2%, 0.9%, and 0.3%, 
respectively. In-depth analysis revealed that the decoding detection head of RT-DETER, 
with its ability to extract features effectively, led to substantial improvements. The 
Dynamic module further optimized the DCNv2 module, resulting in significant enhance-
ments in mAP values and better performance on the distribution of test data, making 
it more applicable for practical scenarios. The NWD loss function demonstrated clear 
effectiveness, particularly in measuring similarity between bounding boxes, proving to be 
more suitable for small object detection. The subsequent use of the DA dataset augmen-
tation strategy demonstrated a strong fit to the linear relationship between the training 
set and the test set, resulting in a significant increase in test set indices.

Simultaneously, control experiments were conducted using YOLOv8-DETR-P2-Or-
tho, YOLOv8-DETR-P2-C2f_Faster_Rep_EMA, and YOLOv8-DETR-P2-Ortho-Inne-
rIoU. In these experiments, Ortho represented a classical algorithm, while InnerIoU 
served as an alternative GIOU parameter. YOLOv8-DETR-P2-C2f_Faster_Rep_EMA 
involved replacing the original C2f module with Faster_Rep_EMA, where Faster_Rep is 
based on convolution.

A comprehensive analysis across Precision rate, recall, mAP50, and mAP50:95 metrics 
revealed that the control experiments’ algorithms exhibited lower measurements com-
pared to the DCNv2-Dynamic module. This further substantiates the effectiveness of the 
improved algorithm in outperforming classical and alternative configurations.

Effect of the NWD weights: As shown in Eq. 9, a represents the weight of the NWD. 
In order to verify the influence of NWD weight on the network and the weight of NWD 
loss function a, five parameters of 0.1,0.3,0.5,0.7 and 0.9 were selected to record mAP 
and other parameters to form the radar mAP shown below in Fig. 11. It can be seen that 
at the fit of 0.5, the value of mAP50 is the largest, so the weight is 0.5.

The mechanism of attention methods on DCNv2 Dynamic: Just as shown in Fig.  3 
Architecture diagram of M_CA_Attention, we proposed an attention mechanism, 
named M_CA_Attention, which can help DCNv2 to achieve more effective feature 
extraction. Of course, we can replace the attention mechanism. In order to verify the 
effectiveness of M_CA_Attention, a comparative experiment was done, and the results 
are as follows.

To prove the effectiveness of attention proposed in this paper, several methods are 
compared in the following forms ‘CoordAtt [35]’; ’SegNext-Attention [37]’; ’deformable-
LKA [38]’; ’BAMBlock [39]’; ’CPCA [34]’; ’LSKA [40]’; ’LSKBlock [41]’; ’SE [42]’; ’Spatial-
GroupEnhance [43]’; ’M-CA-Attention’.

As can be seen from Fig. 12, our proposed scheme, which yields the largest max value 
and outperformed the SE and CPCA attention mechanism, can extract more reasonable 
feature data and make target detection more accurate.
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Comparison with different versions of the YOLO and RT‑DETR algorithms

In this article, we conducted a comprehensive comparison of the proposed algo-
rithm metrics with several other algorithms, including YOLOv3, YOLOv5, YOLOv6, 
RTDETR versions, and relevant improvements. The comparison encompasses various 
model sizes denoted by labels such as YOLOv3-tiny, YOLOv8-C2f-SCConv, and dif-
ferent versions represented by letters like l, x, m, s, etc. Additionally, RTDETR-lsknet 
involves embedding the lsknet into the network, where r50 and r101 denote the back-
bone networks of ResNet.

Throughout this comparative analysis, we recorded the precision, recall, mAP50, 
and F1 for each algorithm and variant. The summarized results are presented below 
in Table 5 for reference and further examination.

As evident from the Table 5 and Fig. 13, our proposed algorithm outperforms oth-
ers in terms of mAP and F1 indices. The mAP is 3.5% higher than RTDETR-L, and the 
F1 index is 1.3% higher than RTDETR-L. Although the precision is only 0.4% higher 
compared to the highest RTDETR-L, and the recall is 0.1% lower than YOLOv8x, the 
substantial advantage in the mAP value suggests that our algorithm excels in captur-
ing more detailed features related to button touch.

Fig. 11 Effect of NWD weights at different values
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Experimental discussion of datasets

We designed a training process for a Generative Adversarial Network (GAN). The gener-
ator aims to produce images that resemble real data, while the discriminator attempts to 
distinguish between real and generated images. During training, the generator attempts 
to deceive the discriminator, and the discriminator tries to identify the generated images. 
This competitive relationship drives the generator to continuously improve its genera-
tion capabilities, resulting in increasingly realistic images.

The generator and discriminator are two key components of a Deep Convolutional 
Generative Adversarial Network (DCGAN).

Generator: It receives random noise as input and outputs a realistic image. In DCGAN, 
the generator typically includes multiple transposed convolutional layers, each layer 
containing convolution, batch normalization, and ReLU activation functions. These lay-
ers work together to generate increasingly realistic images.

Discriminator: The discriminator’s task is to distinguish between real and generated 
images. In DCGAN, the discriminator typically includes multiple convolutional layers, 

Fig. 12 mAP indicators of different attention mechanisms a epoch: 1–100 b epoch: 80–100
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each layer containing convolution, batch normalization, and Leaky ReLU activation 
functions. These layers work together to accurately determine the authenticity of the 
image.

Table 5 Results of YOLO and RT-DETR algorithms

MODEL Precision Recall mAP50 F1

RTDETR-X 0.82787 0.78441 0.78174 0.805554254

RTDETR-l 0.83356 0.78441 0.79339 0.808238471

RTDETR-lsknet 0.81924 0.77578 0.78526 0.796917916

RTDETR-r101 0.8241 0.79447 0.79958 0.809013792

RTDETR-r50 0.82904 0.79483 0.79991 0.81157465

RTDETR-repvit 0.82292 0.78567 0.77756 0.803863702

YOLOv3 0.80975 0.80141 0.79897 0.805558414

YOLOv3-spp 0.8132 0.80273 0.80352 0.807931081

YOLOv3-tiny 0.81693 0.78458 0.80137 0.80042827

YOLOv5 0.77547 0.74596 0.766 0.760428809

YOLOv5-C3-ODConv 0.72668 0.68163 0.71857 0.703434455

YOLOv5-LSKNet 0.71271 0.712 0.71529 0.712354823

YOLOv5-BiFPN 0.76515 0.72997 0.75271 0.747146109

YOLOv5-P6 0.76225 0.7341 0.75705 0.747910215

YOLOv5l 0.81837 0.79914 0.81495 0.808640691

YOLOv5m 0.82168 0.80466 0.81827 0.813080941

YOLOv5x 0.81002 0.79439 0.80389 0.802128867

YOLOv6 0.77426 0.73536 0.75779 0.754308811

YOLOv6l 0.79677 0.76949 0.79259 0.782892428

YOLOv8-C2f-SCConv 0.76971 0.73021 0.75535 0.749439889

YOLOv8-DETR-DWR 0.82687 0.77021 0.79716 0.79753493

YOLOv8-DETR-fasternet 0.74018 0.64804 0.67917 0.691052207

YOLOv8l 0.81939 0.80075 0.80728 0.809962772

YOLOv8m 0.82057 0.80165 0.81451 0.810999668

YOLOv8s 0.81333 0.7977 0.81456 0.80543918

YOLOv8x 0.81044 0.80668 0.80484 0.808555629

Faster-rcnn – – 0.661 –

ssd – – 0.598 –

ours 0.83793 0.80525 0.82855 0.821265026

Fig. 13 The index comparison diagram of multiple algorithms
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Peak Signal-to-Noise Ratio (PSNR): PSNR is an objective indicator for evaluating 
image reconstruction quality, commonly used to measure the difference between 
compressed and original images. It is calculated based on the mean squared error 
(MSE) of pixel differences. A higher PSNR value indicates better image quality.

Structural Similarity Index (SSIM): SSIM is an index for measuring the similarity 
between two images, considering changes in brightness, contrast, and structure. The 
SSIM value ranges from − 1 to 1, with 1 indicating identical images.

Fréchet Inception Distance (FID): FID is a commonly used method for evaluating 
the quality of generated images. It assesses image quality by calculating the distance 
between generated and real images in the feature space of the Inception network. A 
lower FID value indicates higher quality in the generated images.

We employed PSNR, SSIM, and FID as quality assessment metrics. The method 
involved selecting original and generated images after each training iteration, calcu-
lating the metrics between them, and saving the values. These metrics were then plot-
ted as curves. From the Fig. 14, it can be observed that the best performance occurs 
around iteration 175. We selected the weights from iteration 175 as the baseline con-
dition for generating data in the later stages.

Post DCGAN, the diversity of samples is enhanced, leading to improvements in the 
mAP and other indicators. To validate the effectiveness of the data enhancement algo-
rithm proposed in this paper, multiple dataset enhancement methods are employed 
for verification based on YOLOv8n and the advancements introduced in this method. 
The comparison aims to evaluate performance differences under various dataset strat-
egies. The primary strategies for dataset enhancement include:

A. Utilize the background map as the training sample data, overlay the added tar-
get map through image processing onto the background map. For each selected back-
ground map, superimpose 5 target maps to augment the training sample to 6977.

B. Employ the background map as the training sample data and incorporate the expanded 
target map through image processing, overlaying it onto the background map. Stack 3 target 
maps on each selected background map to augment the training sample to 9000.

C. Take the background map as the training sample data and integrate the aug-
mented target map through image processing onto the background map. Stack 3 tar-
get maps on each selected background map to expand the training sample to 7381.

D. Employ the enhancement scheme proposed in this paper, using the test set sam-
ple as the background map. Overlay the added target map through image processing 

Fig. 14 Quality assessment metrics curve
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onto the background map and stack 3 target maps on each selected background map to 
increase the training sample to 6381. The results obtained are shown below in Table 6.

In addition, the original methods without number enhancement are: ’YOLOv8-CBAM’, 
’YOLOv8-CoordAtt’, ’YOLOv8-EA’, ’YOLOv8-act’, ’YOLOv8-BiFPN’, ’YOLOv8-efficient-
ViT’, ’YOLOv8-EMA’, ’YOLOv8-P2’, ’YOLOv8-P6’, ’YOLOv8-repvit’, ’YOLOv8-SimAM’, 
’YOLOv8n’. The experimental methods include:

A: ’YOLOv8-CBAM’, ’YOLOv8-CoordAtt’, ’YOLOv8-SimAM’, ’YOLOv8-BiFPN’, 
’YOLOv8-efficient’, ’YOLOv8-P2’, ’YOLOv8-P6’, ’YOLOv8n’.

B: ’YOLOv8-CBAM’, ’YOLOv8-P6’, ’YOLOv8-SE_Attention’, ’YOLOv8-SimAM’, 
’YOLOv8-act’, ’YOLOv8-efficientvit’, ’YOLOv8-P2’, ’YOLOv8’.

C: ’YOLOv8-BiFPN’, ’YOLOv8act’, ’YOLOv8efficient-vit’, ’YOLOv8n’, ’YOLOv8l’.
D: ’YOLOv8-CBAM’, ’YOLOv8-CoordAtt’, ’YOLOv8-EMA’, ’YOLOv8-SimAM’, 

’YOLOv8-BiFPN’, ’YOLOv8-efficientViT’, ’YOLOv8-P2’, ’YOLOv8-P6’, ’YOLOv8-repvit’, 
’YOLOv8n’, ’YOLOv8-act’.

Due to the length, instead of listing the index value of each algorithm, the data is pre-
sented according to the enhancement method, and the following results are obtained in 
Fig. 15 and Table 6.

It is evident in Fig. 15 that the proposed data enhancement method in this paper effec-
tively leads to improvements in performance indicators. In contrast, other schemes fail 
to achieve significant enhancements, and, in some cases, the indicators show a worsen-
ing effect. Therefore, the data enhancement scheme put forth in this paper is deemed 
effective.

Abnormal touch‑button detection result

In the provided images in Fig. 16, let’s analyze the performance of different algorithms. 
In image A, when detecting the occluded emergency button, both YOLOv5l and 
YOLOv8n fail to identify it. However, both RTDETR-L and our model are able to effec-
tively detect the small occluded target.

Moving on to image B, RTDETR-L incorrectly frames the human body, and YOLOv8n 
fails to detect the touch button behavior. On the other hand, both YOLOv5l and our 
model successfully detect the touch button behavior. It is worth noting that in our model, 
the detected probability is 0.62, which is higher than the 0.34 achieved by YOLOv5l.

Table 6 Results under different data-augmentation experiments

MODEL Precision Recall mAP50 mAP50‑95

No using DA YOLOv8n 0.77381 0.75663 0.7711 0.30456

A YOLOv8n 0.7783 0.76141 0.76552 0.30228

A YOLOv8n-CBAM 0.78428 0.7629 0.77612 0.3081

B YOLOv8n 0.74537 0.72925 0.73457 0.28646

B YOLOv8n-CBAM 0.76819 0.73468 0.74562 0.29373

C YOLOv8n 0.77024 0.72395 0.76407 0.30266

C YOLOv8n-BiFPN 0.77256 0.72889 0.76114 0.30201

D YOLOv8n 0.78271 0.76015 0.78312 0.31604

D YOLOv8n-CBAM 0.79392 0.76276 0.79203 0.32304
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Fig. 15 Different indicator data for different methods

Model A B C D 

RTDETR-

L 

YOL0v8n 

YOLOv5l 

OUR

Fig. 16 Detection results for the different algorithms
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In the case of image C, YOLOv5l, YOLOv8n, RTDETR-L, and our model can all effec-
tively identify small targets. However, RTDETR-L also incorrectly detects the human 
body, resulting in an apparent error.

Finally, in image D, YOLOv5l misses the detection, but the remaining three models 
can detect abnormalities. Among them, our model outputs the highest probabilities.

From these performance comparisons, it is evident that our algorithmic model 
improves target confidence, enhances the detection rate of small targets and occluded 
cases, eliminates error detections of the human body, and demonstrates high robustness.

Visual comparison of heatmap

Figure  17 shows a comparison of the thermal heatmap visualization results of the 
YOLOv8 et  al. with and without incorporating the proposed method. By adding our 
method to the model, we can improve the attention toward button touch behavior while 
reducing attention to the background. This enhances the credibility and accuracy of the 
detection.

Comparing figures (a) and (b), it is clear that after using DCNv2-Dynamic, the attention 
is more focused on the button position, increasing attention towards the correct area. 
This demonstrates the effectiveness of the module after its incorporation. Furthermore, 
from the other visual diagram, it can be observed that the model’s attention position is 
accurate with minimal errors. Specifically, the YOLOv8n has low probability of correctly 
detecting touch button areas as its attention is not focused on them, while the detection 
effect of YOLOv5l is poor. This proves that in the presence of occlusion, the algorithm 
proposed in this paper exhibits superior performance and robustness.

Non‑parametric validation experiments

Wilcoxon Rank-Sum Test: In the results of the Wilcoxon rank-sum test, the null hypoth-
esis can be rejected if the p-value is less than the significance level (e.g., 0.05), indicating 
a significant difference between the two samples. To scientifically validate the effective-
ness and robustness of the proposed method, this paper conducted 10 random selec-
tions of test samples to verify the outcomes of YOLOv8-det-tr-P2-DCNv2-Dynamic, 
YOLOv8, ours, and RTDETR-L, using mAP50 as the evaluation index. The results 
of each experiment, along with the corresponding test statistics and p-values, were 
recorded and analyzed to ascertain the satisfaction of the test results. The outcomes of 
each experiment are depicted in Fig. 18.

As evident from the figure, our algorithm exhibits exceptional robustness, sur-
passing other methods in terms of index data. Box plots are employed to compare 

Fig. 17 a YOLOv8-DETR-P2 b our c RTDETR-L d YOLOv8n e YOLOv5l
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the median and distribution of two samples, while QQ plots are utilized to compare 
quantiles. The box plot and QQ plot of the data provide comprehensive insights into 
the data characteristics, as illustrated in Fig. 19.

The CDF (Cumulative Distribution Function) describes the cumulative probability 
distribution, indicating the probability that a random variable is less than or equal to 
a specific value. On the x-axis, we have the values of the random variables, while the 
y-axis represents the cumulative probability of being less than or equal to the cor-
responding x-value. Figure  20 displays the scatter plot and CDF, revealing that our 
algorithm’s data is relatively concentrated with a discernible trend, demonstrating a 
pronounced advantage in the mAP 0.5 index.

In the experiment, the significance level was set to 0.05. The data from our algo-
rithm and three other algorithms were analyzed. As presented in Table  7, the Wil-
coxon Rank-Sum Test Statistic data was 155, yielding a P-value of 0.0002, which is less 
than the significance level. The results indicate the rejection of the null hypothesis, 
confirming significant differences in performance between each pair of algorithms. 
Therefore, it can be concluded that noteworthy distinctions exist in the performance 
of the compared algorithms.

In contrast to the SOTA

We selected state-of-the-art (SOTA) algorithms in the field of target detection for 
comparative experiments (Table  8), including the YOLOV6V3 model [44], YOLO-
NAS model [7], and DINO model (v1 version) [45]. The YOLOv6-S achieved 484 FPS 
on the COCO dataset, attaining a 45.0% AP. The YOLO-NAS L version exhibited a 
52.22 mAP value, showcasing superior performance. The DINO model demonstrated 
excellent performance with a 51.3 AP under the standard setting of ResNet-50. 

Leveraging these SOTA algorithms, we conducted comparative experiments using 
the button dataset as raw data without data augmentation. We adjusted the network 

Fig. 18 Results diagram of indicator data for different algorithms
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Fig. 19 Experimental data visualization a boxplot b QQ plot c Scatter plot, d CDF



Page 33 of 49An et al. Journal of Big Data          (2024) 11:119  

model configuration for optimization and calculated the target detection indices as 
the comparison metrics.It can be seen that our algorithm has obvious advantages, 
and it has obvious advantages in button touch detection.

Fig. 19 continued

Table 7 Box plots and QQ plots

Ours‑YOLOV8 Ours‑RTDETR‑L Ours‑YOLOv8‑DETR‑
P2‑DCNv2

Results

Wilcoxon Rank-Sum Test 
Statistic

155 155 155

P-value 0.0002 0.0002 0.0002  < 0.05
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Other performance comparisons and model advantages are discussed

(1) As evident from the above analysis, our model exhibits a substantial improve-
ment compared to YOLOV8n, with notable enhancements in mAP, recall, preci-
sion, and other indicators. In comparison to RT-DETR, our model outperforms 
RTDETR-L with a 3.5% higher mAP and a 1.3% higher F1 index, showcasing excellent 
performance.

The selection of parameters for comparison includes training time, the number of 
model parameters, and GFLOPs. Our model demonstrates a reduction in training time 
compared to the RT-DETR model, with the training time reduced from the original 
13 h to 9 h. This improvement in training efficiency is a noteworthy advantage of our 
model.

The reduction in the number of parameters is substantial when comparing with 
RT-DETR-L, which has 667 layers, 29,428,460 parameters, and 105.5 GFLOPs. In con-
trast, our model has 275 layers, 6,220,477 parameters, and 26.3 GFLOPs. It is evident 
that there is a significant reduction in the number of layers, parameters, and GFLOPs, 
while achieving improved performance.

(2) Our proposed model achieves excellent performance on the button touch 
dataset, and the analysis for this success includes the following factors: (1) The but-
ton touch dataset consists of many small targets, recognizing touches that involve 
sensing the part where the hand and button make contact. However, numer-
ous images in the dataset exhibit occlusion. The method employed in this paper, 
DCNv2-Dynamic, along with the M_CA attention mechanism, grants the network 
the ability to extract deformable features. The application of attention mechanisms 
enhances feature perception, enabling the network to capture more semantic infor-
mation, resulting in a significant performance improvement compared to YOLOV8; 
(2) The button touch dataset in this paper mainly contains single-object scenarios 
within single images. In RT-DETR, there is a significant issue of repetitive labe-
ling in the vicinity of button touches. However, the P2 layer in this paper refines 
contextual semantic extraction more accurately, and the adopted NWD loss func-
tion strengthens the capability to extract small target regions. Consequently, our 
algorithm mitigates the problem of repetitive labeling observed in RT-DETR, lead-
ing to significant improvements in performance metrics; (3) In our dataset, there 
is a notable discrepancy between the training and testing sets, resulting in a clear 
weakness of misaligned features. The introduction of data augmentation aligns the 
features between training and testing samples, contributing to improved metric 
performance.

Table 8 Results comparing our model with SOTA

MODEL Precision Recall mAP50 mAP50‑95

YOLOv6-v3 V6l6, EPOCH = 150 – – 0.706 0.274

YOLO-NAS EPOCH = 100 – – 0.746 –

DINO DINO_5scale, EPOCH = 80 – – 0.746 0.256

Ours – 0.838 0.806 0.829 0.317
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Validation in the other datasets

(1) Effectiveness Experiments of the Model with Different Test Sets

To validate the algorithm’s effectiveness, multiple datasets were chosen for experimental 
comparison, and the results are presented below in Table 9. The football dataset can be 
obtained via the reference https:// unive rse. robofl ow. com/ bronk scott ema/ footb all- playe rs- 
zm06l, while other datasets are available for download at https:// unive rse. robofl ow. com.

We took three data sets for experiments, in which our method is better than YOLOv8, 
where the Traffic Camera Object Detection (car) data set is 8 percentage points higher 
than YOLOv8. Although it is less than RTDETR-r101, it has an obvious advantage over 
YOLOv8n.

(2) Effectiveness Experiment of Module and Attention Mechanism

To assess the proposed model and attention mechanism’s effectiveness, separate com-
parison experiments were conducted. The experiments aimed to demonstrate the effi-
cacy of the DCNv2-Dynamic module and the M_CA attention mechanism. Various 
datasets were used for these experiments, with mAP50 as the evaluation index. Table 10 
results indicate that, on the NEU-DET dataset, adopting DCNv2-Dynamic led to an 
almost 6 percentage points increase in mAP data. For the coco128_person dataset, our 
module increased by 4 percentage points, and the attention mechanism increased by 1 
percentage point. However, in the BCCD data, RBC and WBC performed well, but the 
overall performance did not match YOLOV8n. After analyzing the reasons, it was found 
that the Platelets class had an impact on performance, particularly due to size considera-
tions, affecting our algorithm’s overall effectiveness.

Ablation experiments for DCNv2-Dynamic and M_CA_Attention. We did the experi-
ments with 3 datasets, containing coco128_person (Table  11), Traffic Camera Object 
Detection (Table 12), and electrictransafety (Table 13). datasets are available for download 
at https:// unive rse. robofl ow. com. We also record the index data of YOLOv8n + DETR + P2, 
YOLOv8n + DETR + P2 + DCNv2, YOLOv8n + DETR + P2 + DCNv2-Dynamic, and con-
clude that the module and attention mechanism proposed in this paper are effective.

Analysis of the table reveals that after the incorporation of the DCNv2-Dynamic 
module, there is a marked improvement in precision, recall, and mean average preci-
sion (mAP) values, indicating the effectiveness of the DCNv2-Dynamic module. Fur-
thermore, the enhancement in precision and mAP when DCNv2 is employed alone 
validates the efficacy of the DCNv2 module.

Table 9 The mAP 0.5 results for the different datasets

Data YOLOv8 RTDETR‑r101 RTDETR‑L YOLOv8‑DETR‑P2‑
DCNv2

Ours

Football 0.953 – 0.984 0.963 0.97

Traffic Camera Object 
Detection(car)

0.692 0.791 0.795 – 0.778

NEU-DET 0.737 [46] 0.822 0.742 0.756 0.775

https://universe.roboflow.com/bronkscottema/football-players-zm06l
https://universe.roboflow.com/bronkscottema/football-players-zm06l
https://universe.roboflow.com
https://universe.roboflow.com
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After adding P2-DCNv2-Dynamic, the precision rate increased by 0.4 percentage 
points.

As can be seen from the table, when the method is added, the index improvement 
effect is obvious.

Field application experiment

Installation of the system has been completed in a subway system in China, featuring an 
online control center platform installed in the rail control center. The monitoring videos 
from stations are transmitted to the central control via a network channel, where the 
platform is configured with algorithms to diagnose potential anomalies. Additionally, 
mobile terminals are set up at stations to receive alerts regarding button touches.

As depicted in the Fig.  20, the system platform is initially configured with AI rules, 
including model names, camera locations, server IP addresses, and task durations. This 
configuration equips the system with the capability to diagnose button touches.

Table 10 Results for the different datasets

Dataset Model mAP50 mAP

Crazing Inclusion Patches pitted_surface rolled‑in_
scale

Scratches

NEU-DET Faster-rcnn [46] 0.35 0.685 0.927 0.84 0.647 0.898 0.725

Ssd [46] 0.302 0.641 0.866 0.741 0.575 0.71 0.639

YOLOv8n [46] 0.333 0.827 0.941 0.825 0.566 0.930 0.737

YOLOv8n + DCNv2-
Dynamic module

0.428 0.723 0.977 0.995 0.706 0.889 0.786

YOLOv8n + M_CA 
attention

0.554 0.748 0.937 0.995 0.674 0.869 0.796

BCCD Model mAP50 mAP

Platelets’, ’RBC’, WBC’

Faster-rcnn [46] 0.976 0.849 0.868 0.897

Ssd [46] 0.974 0.846 0.869 0.896

YOLOv8n47 0.976 0.883 0.942 0.934

YOLOv8n + DCNv2-
Dynamic module

0.908 0.896 0.987 0.931

YOLOv8n + M_CA 
attention

0.912 0.889 0.971 0.924

coco128_
person

model Precision Recall mAP50 mAP50-95

YOLOv8n 0.698 0.379 0.54 0.317

YOLOv8n + M_CA 
attention

0.534 0.592 0.551 0.318

YOLOv8n + DCNv2-
Dynamic module

0.587 0.668 0.582 0.349

Table 11 Ablation experiments of coco128_person

Model Precision Recall mAP50 mAP50‑95

YOLOv8n + DETR + P2 0.466 0.407 0.37 0.18

YOLOv8n + DETR + P2 + DCNv2 0.472 0.387 0.357 0.182

YOLOv8n + DETR + P2 + DCNv2-Dynamic 0.626 0.42 0.394 0.199
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As depicted in the Figs. 21, 22, when an abnormality is detected, the platform triggers 
an alarm notification, displaying details such as event location, occurrence time, rail line 
number, BIM map, and event type. Simultaneously, it establishes a language connection 
with the mobile terminal, providing spoken alerts about the button touch event. Upon 
answering the call, the system presents essential information about the event, including 
alarm content and recommended handling procedures.

As depicted in the Fig. 23. The system further tracks the event process and automati-
cally generates a comprehensive report. This entire process achieves the detection of 
button touches, automating the confirmation of personnel identity, on-site situations, 
and the documentation of handling processes. The system further tracks the event pro-
cess and automatically generates a comprehensive report. This entire process achieves 
the detection of button touches, automating the confirmation of personnel identity, on-
site situations, and the documentation of handling processes.

Table 12 Traffic camera object detection

Model Precision Recall mAP50 mAP50‑95

YOLO-DETR-P2 0.819 0.735 0.788 0.403

YOLO-DETR-P2-DCNv2 0.821 0.74 0.786 0.401

YOLO-DETR-P2-DCNv2-Dynamic 0.825 0.723 0.778 0.402

Table 13 Electrictransafety

Model Precision Recall mAP50 mAP50‑95

YOLO-DETR-P2 0.7 0.715 0.753 0.555

YOLO-DETR-P2-DCNv2 0.721 0.747 0.79 0.572

YOLO-DETR-P2-DCNv2-Dynamic 0.725 0.759 0.784 0.578

Fig. 20 AI setting rules interface (including configuration model name, camera name, analysis server IP 
address, etc.)
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Conclusion and outlook
This paper introduces an abnormal touch button detection model built upon an 
enhanced YOLOv8 architecture. Our model exhibits the capability to autonomously 
identify instances of abnormal button touches, consequently alleviating the workload 
associated with abnormal detection. This timely recognition of button touches allows for 
a prompt understanding of the actual situation, facilitating the formulation of pertinent 
operational plans and the implementation of emergency procedures as needed.

Fig. 21 The alarm prompt of the platform can display the description of the alarm event, so as to facilitate 
the operation personnel to grasp what abnormal events occur in where

Fig. 22 The interface of the mobile terminal shows a answering the voice phone b the alarm event interface 
c the alarm image
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To address the challenges posed by the detection of small targets, particularly in 
the context of touch buttons, we implemented a crucial improvement: the YOLOv8-
DETR-P2-DCNv2-Dynamic-NWD-DA method. This approach aims to enhance the 
model’s capability to detect small targets effectively. The key modifications include 
replacing the last layer of YOLOv8 with RTDETRDecoder and introducing the P2 
small target detection layer. Additionally, to address the diversity and complex back-
ground of abnormal images, we introduced the DCNv2-Dynamic algorithm along 
with the NWD loss function for multiscale feature extraction. During dataset analy-
sis, we identified a disparity in feature distribution between the training and test sets. 
To mitigate this, we proposed dataset augmentation methods using image processing 
and the GAN algorithm to enhance detection accuracy. The improved model demon-
strated significant enhancements. In comparison to YOLOv8n, the precision, recall 

Fig. 23 Generation of event reports a System platform generation template b Report generation results
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rate, and mAP50 values increased by 6.5%, 5%, and 5.8%, respectively, showcasing a 
notable improvement in overall performance.

In the existing literature, there is a lack of publicly available datasets specifically 
designed for subway touch buttons, posing a challenge for experiments in anomaly 
detection. To address this limitation, our study utilizes a dataset obtained from field 
pendulum photos, containing a substantial number of touch button images. Following 
proper permissions and deductions, we intend to make this dataset publicly accessi-
ble, aiming to support future research in related fields.

While the upgraded model exhibits potential for practical detection scenarios, it is 
acknowledged that the model’s size and detection speed are currently constrained. 
Future efforts will concentrate on the implementation of lighter models, such as prun-
ing and distillation models, to enhance the model’s detection speed while preserving 
its accuracy.

In future research, we plan to investigate video collection methods for touch but-
tons, identify the causes of touches, and explore solutions for automatic pedestrian 
tracking. Additionally, we aim to establish connections between the existing ticketing 
system and the public security system. When the system detects an illegal touch but-
ton, it will facilitate seamless information transfer to the public security system with a 
simple one-click process.

Appendices
Appendix 1: Ablation experiments and contrast experiments in tensorboard (4.3)
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Results under different data-augmentation experiments
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Appendix 2: 4.5 Experimental discussion of datasets

Method MODEL Precision Recall mAP50 mAP50‑95 F1

B YOLOv8-CBAM 0.78428 0.76294 0.77612 0.3081 0.773462834

YOLOv8-CoordAtt 0.78134 0.77219 0.77329 0.30616 0.776738054

YOLOv8-SimAM 0.77587 0.74881 0.75796 0.29868 0.76209987

YOLOv8-BiFPN 0.76953 0.73877 0.75013 0.29379 0.753836343

YOLOv8-efficienet 0.7802 0.75782 0.75838 0.29844 0.768847172

YOLOv8-P2 0.77395 0.75548 0.76752 0.30504 0.764603474

YOLOv8-P6 0.76234 0.75871 0.7554 0.29967 0.760520668

YOLO8n 0.7783 0.76141 0.76552 0.30228 0.769762362

A YOLOv8-CBAM 0.78428 0.76294 0.77612 0.3081 0.773462834

YOLOv8-CoordAtt 0.78134 0.77219 0.77329 0.30616 0.776738054

YOLOv8-SimAM 0.77587 0.74881 0.75796 0.29868 0.76209987

YOLOv8-BiFPN 0.76953 0.73877 0.75013 0.29379 0.753836343

YOLOv8-efficienet 0.7802 0.75782 0.75838 0.29844 0.768847172

YOLOv8-P2 0.77395 0.75548 0.76752 0.30504 0.764603474

YOLOv8-P6 0.76234 0.75871 0.7554 0.29967 0.760520668

YOLO8n 0.7783 0.76141 0.76552 0.30228 0.769762362

C YOLOv8-BiFPN 0.77256 0.72889 0.76114 0.30201 0.750089924

YOLOv8act 0.69342 0.65749 0.68194 0.25952 0.674977187

YOLOv8efficient-vit’ 0.77821 0.74576 0.76466 0.29745 0.76163952

YOLOv8 0.77024 0.72395 0.76407 0.30266 0.746377968

YOLOv8l’ 0.79627 0.78013 0.79151 0.31225 0.788117375

D YOLOv8-CBAM 0.79392 0.76276 0.79203 0.32304 0.778028136

YOLOv8-CoordAtt 0.77573 0.77381 0.78122 0.32016 0.77476881

YOLOv8-EMA 0.78337 0.75979 0.77453 0.31521 0.771399845

YOLOv8-SimAM 0.78337 0.75979 0.77453 0.31521 0.771399845

YOLOv8-BiFPN 0.79535 0.75278 0.78452 0.32104 0.773479712

YOLOv8-efficientViT’ 0.79094 0.76333 0.79215 0.31968 0.776889768

YOLOv8-P2 0.77841 0.75943 0.77664 0.31686 0.768802875

YOLOv8-P6 0.78081 0.75422 0.78401 0.31914 0.767284702

YOLOv8-repvit 0.79508 0.76788 0.78291 0.31367 0.781243321

YOLOv8 0.78271 0.76015 0.78312 0.31604 0.771265062

YOLOv8-act 0.7571 0.70571 0.74731 0.2971 0.730502309

NO using DA YOLOv8-CBAM 0.76885 0.75836 0.76496 0.30439 0.763568973

YOLOv8-CoordAtt 0.76539 0.75871 0.76166 0.30195 0.762035361

YOLOv8-EA 0.78526 0.7668 0.77448 0.30714 0.77592022

YOLOv8-act 0.74991 0.69691 0.74681 0.29507 0.72243925

YOLOv8-BiFPN 0.77484 0.75244 0.76325 0.30211 0.763475734

YOLOv8-efficientViT’ 0.78062 0.76033 0.76355 0.30195 0.770341419

YOLOv8-ema 0.78777 0.75359 0.77316 0.30625 0.770301025

YOLOv8-P2 0.77596 0.75225 0.76364 0.30381 0.763921071

YOLOv8-P6 0.7831 0.75907 0.7678 0.30194 0.770897783

YOLOv8-repvit 0.77554 0.7553 0.76326 0.29737 0.765286198

YOLOv8-simam 0.79299 0.75746 0.77097 0.30207 0.774817899

YOLOv8n 0.77381 0.75663 0.7711 0.30456 0.765123573
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Appendix 3 The resulting data of the network

YOLOv8-DCNv2-dynamic on DEU-DET

YOLOv8-M_CA on DEU-DET

YOLOv8 on coco128_person

YOLOv8-MCA on coco128_person
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YOLOv8_DCNV2dynamic on coco128_person

SSD on our dataset(button)

RT-DETR-l on Traffic Camera Object Detection

DINO on our dataset(button)
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YOLONAS on our dataset(button)

YOLOv6v3(6 l)

RTDETR-101 on DEU-DET
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RTDETR-l on DEU-DET

Appendix 4 The profiles for the individual networks

1. DINO
Options = {’dn_scalar’: 100, ’embed_init_tgt’: True, ’dn_label_coef ’: 1.0, ’dn_bbox_

coef ’: 1.0, ’use_ema’: False, ’dn_box_noise_scale’: 1.0}, dataset_file = ’coco’, coco_path = ’./
coco_path’, coco_panoptic_path = None, remove_difficult = False, fix_size = False, 
output_dir = ’logs/DINO/R50_custom_finetune’, note = ’’, device = ’cuda’, seed = 42, 
resume = ’’, pretrain_model_path = None, finetune_ignore = None, start_epoch = 0, 
eval = False, num_workers = 10, test = False, debug = False, find_unused_params = False, 
save_results = False, save_log = False, world_size = 1, dist_url = ’env://’, rank = 0, local_
rank = 0, amp = False, distributed = False, data_aug_scales = [480, 512, 544, 576, 608, 
640, 672, 704, 736, 768, 800], data_aug_max_size = 1333, data_aug_scales2_resize = [400, 
500, 600], data_aug_scales2_crop = [384, 600], data_aug_scale_overlap = None, 
num_classes = 2, lr = 0.0001, param_dict_type = ’default’, lr_backbone = 1e-05, lr_
backbone_names = [’backbone.0’], lr_linear_proj_names = [’reference_points’, ’sam-
pling_offsets’], lr_linear_proj_mult = 0.1, dDETR_lr_param = False, batch_size = 1, 
weight_decay = 0.0001, epochs = 100, lr_drop = 11, save_checkpoint_interval = 1, 
clip_max_norm = 0.1, onecyclelr = False, multi_step_lr = False, lr_drop_list = [33, 
45], modelname = ’dino’, frozen_weights = None, backbone = ’resnet50’, use_check-
point = False, dilation = False, position_embedding = ’sine’, pe_temperatureH = 20, 
pe_temperatureW = 20, return_interm_indices = [0, 1, 2, 3], backbone_freeze_key-
words = None, enc_layers = 6, dec_layers = 6, unic_layers = 0, pre_norm = False, dim_
feedforward = 2048, hidden_dim = 256, dropout = 0.0, nheads = 8, num_queries = 900, 
query_dim = 4, num_patterns = 0, pDETR3_bbox_embed_diff_each_layer = False, 
pDETR3_refHW = -1, random_refpoints_xy = False, fix_refpoints_hw = -1, dab-
DETR_YOLO_like_anchor_update = False, dabDETR_deformable_encoder = False, 
dabDETR_deformable_decoder = False, use_deformable_box_attn = False, box_attn_
type = ’roi_align’, dec_layer_number = None, num_feature_levels = 5, enc_n_points = 4, 
dec_n_points = 4, decoder_layer_noise = False, dln_xy_noise = 0.2, dln_hw_noise = 0.2, 
add_chann.

2. YOLOv8, ours
Atience = 50, batch = 16, imgsz = 512, save = True, save_period = -1, cache = False, 

device = 0, workers = 0, project = runs/voc_2012_person, name = YOLOv8-C2f-
MCA.yaml, exist_ok = False, pretrained = True, optimizer = SGD, verbose = True, 
seed = 0, deterministic = True, single_cls = False, rect = False, cos_lr = False, 
close_mosaic = 10, resume = False, amp = True, fraction = 1.0, profile = False, 
freeze = None, overlap_mask = True, mask_ratio = 4, dropout = 0.0, val = True, 
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split = val, save_json = False, save_hybrid = False, conf = None, iou = 0.7, max_
det = 300, half = False, dnn = False, plots = True, source = None, show = False, 
save_txt = False, save_conf = False, save_crop = False, show_labels = True, 
show_conf = True, vid_stride = 1, stream_buffer = False, line_width = None, vis-
ualize = False, augment = False, agnostic_nms = False, classes = None, retina_
masks = False, boxes = True, format = torchscript, keras = False, optimize = False, 
int8 = False, dynamic = False, simplify = False, opset = None, workspace = 4, 
nms = False, lr0 = 0.01, lrf = 0.01, momentum = 0.937, weight_decay = 0.0005, war-
mup_epochs = 3.0, warmup_momentum = 0.8, warmup_bias_lr = 0.1, box = 7.5, 
cls = 0.5, dfl = 1.5, pose = 12.0, kobj = 1.0, label_smoothing = 0.0, nbs = 64, 
hsv_h = 0.015, hsv_s = 0.7, hsv_v = 0.4, degrees = 0.0, translate = 0.1, scale = 0.5, 
shear = 0.0, perspective = 0.0, flipud = 0.0, fliplr = 0.5, mosaic = 1.0, mixup = 0.0, 
copy_paste = 0.0,

3. RT-DETR
Epochs = 100, patience = 50, batch = 16, imgsz = 640, save = True, save_

period = -1, cache = False, device = 0, workers = 0, project = runs/voc_2012_person, 
name = YOLOv8-DETR-l, exist_ok = False, pretrained = True, optimizer = SGD, 
verbose = True, seed = 0, deterministic = True, single_cls = False, rect = False, 
cos_lr = False, close_mosaic = 10, resume = False, amp = True, fraction = 1.0, pro-
file = False, freeze = None, overlap_mask = True, mask_ratio = 4, dropout = 0.0, 
val = True, split = val, save_json = False, save_hybrid = False, conf = None, iou = 0.7, 
max_det = 300, half = False, dnn = False, plots = True, source = None, show = False, 
save_txt = False, save_conf = False, save_crop = False, show_labels = True, 
show_conf = True, vid_stride = 1, stream_buffer = False, line_width = None, vis-
ualize = False, augment = False, agnostic_nms = False, classes = None, retina_
masks = False, boxes = True, format = torchscript, keras = False, optimize = False, 
int8 = False, dynamic = False, simplify = False, opset = None, workspace = 4, 
nms = False, lr0 = 0.01, lrf = 0.01, momentum = 0.937, weight_decay = 0.0005, war-
mup_epochs = 3.0, warmup_momentum = 0.8, warmup_bias_lr = 0.1, box = 7.5, 
cls = 0.5, dfl = 1.5, pose = 12.0, kobj = 1.0, label_smoothing = 0.0, nbs = 64, 
hsv_h = 0.015, hsv_s = 0.7, hsv_v = 0.4, degrees = 0.0, translate = 0.1, scale = 0.5, 
shear = 0.0, perspective = 0.0, flipud = 0.0, fliplr = 0.5, mosaic = 1.0, mixup = 0.0, 
copy_paste = 0.0,
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