
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

METHODOLOGY

Sun et al. Journal of Big Data (2024) 11:83
https://doi.org/10.1186/s40537-024-00940-7

Journal of Big Data

On data efficiency of univariate time series
anomaly detection models
Wu Sun1, Hui Li1*, Qingqing Liang1,2, Xiaofeng Zou1, Mei Chen1 and Yanhao Wang2*

Abstract

In machine learning (ML) problems, it is widely believed that more training samples
lead to improved predictive accuracy but incur higher computational costs. Con-
sequently, achieving better data efficiency, that is, the trade-off between the size
of the training set and the accuracy of the output model, becomes a key problem
in ML applications. In this research, we systematically investigate the data efficiency
of Univariate Time Series Anomaly Detection (UTS-AD) models. We first experimentally
examine the performance of nine popular UTS-AD algorithms as a function of the train-
ing sample size on several benchmark datasets. Our findings confirm that most
algorithms become more accurate when more training samples are used, whereas
the marginal gain for adding more samples gradually decreases. Based on the above
observations, we propose a novel framework called FastUTS-AD that achieves
improved data efficiency and reduced computational overhead compared to exist-
ing UTS-AD models with little loss of accuracy. Specifically, FastUTS-AD is compatible
with different UTS-AD models, utilizing a sampling- and scaling law-based heuristic
method to automatically determine the number of training samples a UTS-AD model
needs to achieve predictive performance close to that when all samples in the train-
ing set are used. Comprehensive experimental results show that, for the nine popu-
lar UTS-AD algorithms tested, FastUTS-AD reduces the number of training samples
and the training time by 91.09–91.49% and 93.49–93.82% on average without signifi-
cant decreases in accuracy.

Keywords: Univariate time-series anomaly detection, Data efficiency, Sampling

Introduction
With the rapid advancement of sensor [2] and Internet of Things (IoT) [14] technologies,
large volumes of time-series data are generated at an unprecedented speed. Such big
time-series data has been widely used to assist real-time decision making in many areas,
including IT operations [64], finance [4], and healthcare [28]. For example, cloud service
providers collect a series of key performance indicators (KPIs), such as CPU utilization,
memory usage, and network I/O, to analyze and optimize the performance and health of
their servers. As another example, wearable sensors continuously monitor heart rates,
blood pressure, and other measures of body conditions, which can be analyzed to pro-
vide actionable information on the health and well-being of patients.

*Correspondence:
cse.HuiLi@gzu.edu.cn;
yhwang@dase.ecnu.edu.cn

1 State Key Laboratory of Public
Big Data, College of Computer
Science and Technology,
Guizhou University,
Guiyang 550025, China
2 School of Data Science
and Engineering, East
China Normal University,
Shanghai 200062, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00940-7&domain=pdf

Page 2 of 31Sun et al. Journal of Big Data (2024) 11:83

Among various problems with time series data, anomaly detection plays a central
role due to its prevalence and importance in industrial applications. Specifically,
time-series anomaly detection (TSAD) aims to identify unexpected patterns that do
not follow the expected behavior from a series of data points observed over time.
Those unexpected patterns, or anomalies, typically signify unusual events, such as
attacks in enterprise networks [54], structural defects in jet turbine engineering [58],
seizures in brain activities [31], and ecosystem disturbances in earth sciences [16].
Accurate anomaly detection can therefore trigger prompt warnings and troubleshoot-
ing, helping to avoid potential losses. As such, to detect different types of anoma-
lies from time-series data in various domains, numerous TSAD algorithms have been
proposed over the last decades. For example, [48] reported 158 different methods to
detect time series anomalies, ranging from statistical analysis, signal processing, and
data mining to deep learning models.

Despite extensive studies on TSAD in the literature, to the best of our knowledge,
there have not yet been many explorations on their efficiency, that is, how to build a
TSAD model with high accuracy using fewer computational resources. Generally, exist-
ing studies follow the common assumption that more training samples (typically slid-
ing windows in the time series for TSAD) lead to better predictive performance, known
as scaling laws [27]. Meanwhile, building a large-scale machine learning (ML) model
for TSAD also incurs high costs, especially when computational resources are limited.
According to our experimental results, building a deep learning model, e.g., LSTM-AD
[37], on the electrocardiogram (ECG) [40] dataset with more than 200k training samples
takes nearly 1 week using an Nvidia RTX A6000 GPU (with batch size 128, subsequence
length 64, and number of epochs 50). Furthermore, training a classic ML model such as
LOF [11] on the same ECG dataset takes about 11 h using a server with 16 CPU cores at
2.40 GHz. Consequently, they fail to support real-time decision making when time series
are generated rapidly. Improving the efficiency of TSAD models becomes imperative for
their industrial implementation. Toward this end, we aim to improve the data efficiency
of the TSAD models, that is, the trade-off between the size of the training set and the
accuracy of the output model, as fewer data naturally leads to higher time efficiency and
lower computational resource consumption.

In this paper, we systematically investigate the data efficiency of Univariate Time Series
Anomaly Detection (UTS-AD) models, for which the data points in the time series con-
sist of only one variable without inter-variable dependencies and correlations. In addi-
tion, we focus on the task of detecting subsequence anomalies over sliding windows in
time series. We first benchmark nine popular UTS-AD methods in different areas (data
mining, classic ML, and deep learning) with different learning paradigms (unsupervised
and semi-supervised) on univariate time series randomly sampled from three datasets
with various anomaly ratios and average subsequence lengths. Based on the benchmark
results (see Fig. 1 for details), we obtain three key observations. First, the accuracy of
the output model initially improves when the number of training samples increases but
then becomes stable or even decreases. Second, the accuracy of the output model built
on only a small fraction of sliding windows can be very close to that of all sliding win-
dows. Third, in most cases, the time to build a model with little loss of accuracy on the
“small” data is much less than the time to build a model on the full “big” data. These

Page 3 of 31Sun et al. Journal of Big Data (2024) 11:83

findings demonstrate that there is much room to improve the data efficiency of the UTS-
AD methods, thus providing strong support for our motivation.

Based on the above experimental observations, we propose a novel and generic frame-
work called FastUTS-AD to improve the data efficiency and reduce the computational
overhead of different UTS-AD models with little loss of accuracy. Specifically, instead of
feeding all training data to the UTS-AD model at once, FastUTS-AD trains the model
in multiple stages, each of which only inputs a small fraction of the training set. Then,
inspired by scaling laws [27], FastUTS-AD utilizes a heuristic method, based on the
observation that the accuracy of the model remains nearly unchanged when too much
data is used, to automatically and adaptively determine the number of sliding windows
the UTS-AD model requires. In this way, once the model performance becomes stable,
FastUTS-AD will terminate the incremental training procedure and output the model
trained only on the sampled data.

Finally, we conduct extensive experiments among eight benchmark datasets and nine
popular UTS-AD methods. The results indicate that our FastUTS-AD framework exhib-
its much higher data efficiency than existing methods. For all the UTS-AD methods that
we test, FastUTS-AD reduces the number of training samples and the training time by
91.09–91.49% and 93.49–93.82% on average without significant decreases in different
accuracy measures.

The main contributions of this paper are summarized as follows:

• We experimentally explore the relationship between the training sample size, train-
ing time, and accuracy of different UTS-AD algorithms on large benchmark datasets,
thus finding a chance to improve their data efficiencies.

• We propose a novel FastUTS-AD framework that improves data efficiency and
reduces computational overhead for UTS-AD tasks at little expense of accuracy. In
the FastUTS-AD framework, we design a multi-step continual training (MCT) strat-

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

10

20

30

40

50

60

70

80

90

100

(a) AE

VUS ROC VUS PR RF Training time

A
cc
ur
ac

y

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

20

40

60

80

100

120

140

(b) VAE

20
25
30
35
40
45
50
55
60
65
70
75

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

0

50

100

150

200

250

(c) LSTM-AD

Tr
ai
ni
ng

tim
e
(m

in
)

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

10

20

30

40

50

60

70

80

(d) CNN

A
cc
ur
ac

y

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

0
20
40
60
80
100
120
140
160
180
200
220

(e) DAGMM

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

0

0

1

2

2

2

3

4

4

(f) HBOS

Tr
ai
ni
ng

tim
e
(m

in
)

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

1

2

3

4

5

6

7

(g) IForest

A
cc
ur
ac

y

The number of training sliding windows

20

30

40

50

60

70

80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

0

10

20

30

40

50

60

(h) LOF

The number of training sliding windows

25
30
35
40
45
50
55
60
65
70
75
80

2 4 8 16 32 64 128
256

512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240

0

2

4

6

8

10

12

14

16

18

(i) OCSVM

Tr
ai
ni
ng

tim
e
(m

in
)

The number of training sliding windows

Fig. 1 Accuracy measures (VUS ROC, VUS PR, and RF) and training time (in minutes) of different UTS-AD
methods with varying numbers of randomly sampled training sliding windows

Page 4 of 31Sun et al. Journal of Big Data (2024) 11:83

egy to automatically determine the appropriate training data size for a given dataset
and a UTS-AD model to achieve the desired performance.

• We perform comprehensive experiments on eight benchmark datasets to confirm
the superior performance of FastUTS-AD for the trade-off between data efficiency
and model accuracy.

Paper Organization: The rest of this paper is organized as follows. Section Related
work reviews the related work. Section Background introduces the basic concepts and
formally defines the UTS-AD problem. Section Experimental observations on data effi-
ciency of UTS-AD methods provides our key observations from an experimental study
on the relationship between model performance and the number of training samples.
Section The FastUTS-AD framework presents the FastUTS-AD framework in detail.
Section Experimental evaluation for FastUTS-AD demonstrates the experimental
results to evaluate the performance of FastUTS-AD. Section Conclusion concludes this
work and indicates possible future directions.

Related work
Univariate time series anomaly detection

Numerous algorithms have been proposed for the problem of univariate time series
anomaly detection (UTS-AD). We broadly categorize existing UTS-AD algorithms into
three types: unsupervised, semi-supervised, and supervised methods, based on whether
and how the training sliding windows are labeled. We refer interested readers to [13, 17,
18, 44, 48, 64] for extensive surveys on UTS-AD methods. Next, we briefly discuss algo-
rithms of each kind separately.

Unsupervised UTS‑AD methods

Methods of this type do not require training sliding windows to be labeled and are thus
widely applicable in different scenarios. They implicitly assume that anomalous instances
of the time series can be distinguished from their normal counterparts since they are
scarce and generated from a different distribution. Generally, they consider using differ-
ent measures to assign an anomaly score to each instance and find those with the highest
anomaly scores as anomalies. Histogram-based Outlier Score (HBOS) [22] is a histo-
gram-based anomaly detection algorithm. It models the densities of instance features
using histograms with a fixed or dynamic bin width and then computes the anomaly
score of each instance by computing how likely the instance is to fall within the histo-
gram bins for each dimension. The Local Outlier Factor (LOF) [11] is a local density-
based method that measures the degree to which a data point is isolated by comparing
it with its neighbors. LOF finds data points with lower local densities than their neigh-
bors as anomalies. Isolation Forest (IForest) [56] is a tree-based method for anomaly
detection. Its basic idea is that anomalous instances are easier to separate from the rest
of the samples. As such, it recursively generates random partitions on the samples and
organizes them hierarchically in a tree structure, where an instance closer to the root
of the tree is assigned a higher anomaly score. The Deep Autoencoding Gaussian Mix-
ture Model (DAGMM) [65] is a deep learning method for anomaly detection based on
reconstruction, which assumes that anomalies cannot be effectively reconstructed from

Page 5 of 31Sun et al. Journal of Big Data (2024) 11:83

low-dimensional projections. DAGMM utilizes the autoencoder to reconstruct the input
data and the Gaussian Mixture Model (GMM) for density estimation.

Semi‑supervised UTS‑AD methods

Methods of this type assume that only the normal class of time series is labeled and build
models to identify normal patterns. Consequently, new instances will be recognized
as abnormal if they diverge from the expected patterns. The one-class support vector
machine (OC-SVM) [49] is a classic support vector method that identifies the boundary
of normal data and regards instances outside the boundary as anomalies. Autoencoder
(AE) [47] is a neural network-based method that performs a nonlinear dimensionality
reduction to detect subtle anomalies in which the linear principal component analysis
fails. AE is to detect anomalies by learning the representation of normal patterns and
computing the reconstruction errors as anomaly scores. The variable autoencoder (VAE)
[5, 29] is a deep generative Bayesian network, a.k.a. probabilistic encoders and decod-
ers, with the latent variable and the observed variable. VAE computes the reconstruc-
tion probability [5] between the input and output as anomaly scores. DeepAnT [42] is
a convolutional neural network (CNN) model that uses the concept of forecasting. It
uses a CNN to predict the next value of l, where l is the prediction length. Then, the
predicted errors between the real values and the predicted values are seen as anomaly
scores. LSTM-AD [37] is a forecasting model that trains a Long Short-Term Memory
(LSTM) network on non-anomalous data to forecast future values and uses the predic-
tion error as an indicator of anomalies. The main difference between semi-supervised
and unsupervised methods is that semi-supervised methods represent normal patterns
based on labeled normal instances, whereas unsupervised methods depend only on the
data distribution.

Supervised UTS‑AD methods

Methods of this type consider that the training sets contain labeled instances of normal
and abnormal classes and build predictive models to distinguish differences between the
two classes, which are then applied to unseen instances for prediction. Opprentice [33]
is an ensemble method in which multiple existing detectors are used to extract anomaly
features and a random forest classifier is applied to automatically select the appropriate
combinations of detector parameters and thresholds. RobustTAD [21] is a time series
anomaly detection framework that combines time series decomposition and CNNs to
handle complicated anomaly patterns. TCQSA [34] is a generic time series anomaly
detection method consisting of a two-level clustering-based segmentation algorithm and
a hybrid attentional LSTM-CNN model. Random Forest (RF) [10] is a tree-based ensem-
ble method that fits several decision trees on different subsamples of the subsequence
and uses averaging to improve predictive accuracy and reduce overfitting. It is widely
used for UTS-AD, such as [33, 36, 48]. [36] proposed a novel framework that supports
anomaly detection in uncertain data streams based on effective period pattern recogni-
tion and feature extraction techniques. However, supervised methods are very restricted
for UTS-AD because labeled instances are often unavailable [48]. Therefore, most of the
recent literature, such as [9, 44, 48, 51], mainly focuses on semi-supervised and unsuper-
vised methods for UTS-AD.

Page 6 of 31Sun et al. Journal of Big Data (2024) 11:83

Despite the extensive methods for UTS-AD in the literature, to the best of our knowl-
edge, they have paid little attention to data efficiency. In this work, we propose to improve
the data efficiency for two of the three types of UTS-AD methods in a generic framework.
We do not consider supervised algorithms because labeled instances are often unavailable
in real-life scenarios [48].

Data efficiency of ML models

The data efficiency of ML models has been extensively studied in the literature. Existing
studies on data efficiency exploit the relationship between accuracy and training data size
for many ML models and problems, including CNNs [25], meta-learning [3], graph neu-
ral networks (GNNs) [62], and reinforcement learning [61]. Their results mostly indicate
that using more training samples can lead to better model performance to some extent.
However, excessive training samples bring little gain in accuracy, but, on the contrary, incur
unnecessary computational costs. Note that no prior work on data efficiency is specific to
UTS-AD models, to the best of our knowledge.

A fundamental approach to improving the data efficiency of ML models is to perform
sampling on the training set. There are three main types of sampling methods for ML
tasks [46]: uniform, importance, and grid. Uniform sampling methods [32], which include
each sample in the training set with equal probability, are the simplest and most common
method that works on a wide spectrum of ML tasks. Importance sampling methods, often
based on the notion of coresets [26], extract a small subset of samples based on their impor-
tance for the given ML problem. Grid sampling methods [1] are to divide the input space
into small groups, extract the representatives from each group, and then weight them by
the number of input points in the group. Although these methods have been applied to
many ML tasks, as far as we know, we are the first to study the data efficiency of UTS-AD.

Background
This section provides an overview of the fundamental concepts considered in this paper,
followed by a formal definition of the problem under investigation.

Univariate time series

Time series data can be divided into univariate time series (UTS) and multivariate time
series. In this work, we focus on the UTS data. UTS data refers to a series of observations
at a single variable, which are usually collected at regular time intervals, such as 1 min. For-
mally, a UTS is denoted as D = Dn = {d1, d2, . . . , dn} , where n is the length of the UTS
and di is an observation at timestamp i. Each data point di has a label (0 or 1) that indicates
whether the data point is an anomaly or not. By default, we use “0” for a normal data point
and “1” for an anomaly data point. Therefore, a data point in UTS can be represented as a
triple di = (ti, vi, li) , where ti is the timestamp at which di is observed, vi is the observation
value, and li is the label for di . For example,

is a UTS with five data points. In this example, the first data point d1 = (12:30, 0.5, 0) is
observed at 12:30 with a value of 0.5 and labeled as 0 (i.e., normal), and the third point

(1)D = {(12:30, 0.5, 0), (12:31, 0.1, 0), (12:32, 0.9, 1), (12:33, 0.2, 0), (12:34, 0.1, 0)}

Page 7 of 31Sun et al. Journal of Big Data (2024) 11:83

d3 = (12:32, 0.9, 1) is the only anomaly data point observed. The time interval for this
UTS is ti − ti−1 = 1.

Sliding window

A sliding window is a consecutive subsequence of length l from a UTS D. We use WD to
denote all sliding windows generated from D with length l and time step tstep . Formally,
a sliding window wi is defined as wi = {di−l+1, di−l+2, . . . , di} ∈ WDn (l ≤ n), where l is
the length of the sliding window and n is the length of the UTS D. Taking the UTS D in
Eq. 1 as an example, the first sliding window contains the first three data points in D when
the window size l = 3 and the time step tstep = 1 , i.e., w3 = {d1, d2, d3} (w1,w2 are omit-
ted because they do not have enough points). The second and third sliding windows are
w4 = {d2, d3, d4} and w5 = {d3, d4, d5} . Therefore, WD consists of three sliding windows:
w3 , w4 , and w5 . The sliding window is an effective method for processing UTS data and has
been widely used in the literature [15, 24, 41, 55, 59, 60]. It captures the correlation between
the data point di and neighboring data points. In addition, it allows us to divide a UTS into
multiple subsequences with fixed length l and time step tstep as input for ML algorithms.

Range‑based anomaly detection

We need to convert point labels to window labels when using sliding windows for semi-
supervised anomaly detection since anomaly windows should be removed. In this work,
following the existing literature [15, 41, 55, 59, 60], we consider a sliding window to be
abnormal if it contains any anomaly data points. Also taking the UTS D in Eq. 1 as an exam-
ple, the first window w3 = {d1, d2, d3} is anomalous since d3 is an anomaly data point. For-
mally, if ∃dj ∈ wi is an anomaly, then wi is labeled as an anomalous sliding window.

We consider detecting anomalies based on ranges, that is, anomalies that occur con-
secutively over a period of time [52]. For example, if the window labels of a UTS are
{a, b, c, d, e} = {1, 0, 1, 1, 0} , then the UTS contains two range anomalies instead of three
(there are three 1’s in the labels, but only two consecutive ranges), where the first range
anomaly only contains the first value a, and the second range anomaly consists of the third
and fourth values {c, d} . The normal labels act as a separator for dividing the original con-
tinuous labels into multiple sub-intervals. Each sub-interval with continuous anomalies
indicates a range anomaly.

Problem formulation

Our goal in this paper is to improve the data efficiency of a specified UTS-AD algorithm.
We treat the problem of improving data efficiency as identifying the minimum set of sliding
window training W ∗

D ⊆ WD , where WD is the set of all sliding windows generated from D,
on which the trained model can achieve a performance close to that trained on WD . Given a
UTS D and an anomaly detection algorithm A , the problem is formalized as follows:

where W ′
D is a subset of training sliding windows sampled from WD , AccA(WD) and

AccA(W ′
D)

 are the accuracy measures of A trained on the original and sampled sets of
sliding windows, and θ ∈ (0, 1) is the threshold to control the accuracy loss. Note that we

(2)W ∗
D = arg min

W ′
D⊆WD

|W ′
D| s.t. AccA(WD) − AccA(W ′

D)
≤ θ ,

Page 8 of 31Sun et al. Journal of Big Data (2024) 11:83

evaluate the accuracy of an algorithm at a UTS level and perform hypothesis testing at a
dataset level. Because for a specific UTS D, the number of accuracy values (AccA(WD)
and AccA(W ′

D)
) is not enough to perform hypothesis testing. For a dataset consisting of m

individual UTS D1, . . . ,Dm , we obtain m different (original) models
A(WD1), . . . ,A(WDm) by running A on all windows of each UTS. Meanwhile, by solving
Eq. 2, we also obtain m models A(W ∗

D1
), . . . ,A(W ∗

Dm
) by running A on the windows

sampled from each UTS. We use Welch’s t-test to decide whether the accuracy signifi-
cantly decreases between A(WD1), . . . ,A(WDm) and A(W ∗

D1
), . . . ,A(W ∗

Dm
) since the

variances of the accuracy measures are often not available. The null hypothesis is that
the accuracy measures AccA(W ∗

D1
), . . . ,AccA(W ∗

Dm
) on A(W ∗

D1
), . . . ,A(W ∗

Dm
) are not less

than the accuracy measures AccA(WD1
), . . . ,AccA(WDm) on A(WD1), . . . ,A(WDm) . If the

p-value of Welch’s t-test is larger than or equal to the significant level (e.g., 0.01), we say
that the hypothesis is supported.

Experimental observations on data efficiency of UTS‑AD methods
In this section, we will start by examining the UTS-AD approaches that are under exper-
imental evaluation. Subsequently, the accuracy measures, datasets, and fundamental set-
tings of our experimental investigation are presented. Finally, we present the primary
observations on the data efficiency of existing UTS-AD approaches.

Review of UTS‑AD methods

Local outlier factor (LOF)

LOF [11] is an unsupervised density-based method for anomaly detection. It computes
the local density deviation of a given data instance (a sliding window wi in our context)
with respect to its neighbors. The data point will be regarded as an anomaly if its local
density is lower than that of its neighbors. On the contrary, the local density of a normal
data instance is typically similar to that of its neighbors.

LOF follows the following two steps to detect anomalies: 1) Calculate the Local Reach-
ability Density (LRD) of a data instance x in its k-neighborhoods as Eq. 3.

where k is the number of neighbors, Nk(x) is the set of k-nearest neighbors of x, and rk
is the reachability distance of the data instance x. The reachability distance is used to
reduce statistical fluctuations in the assessment of the anomaly score. 2) Calculate the
anomaly score sLOF as the average of the ratio between the LRD of x and those of the
k-nearest neighbors of x by Eq. 4.

where LRDk(·) is the local reachability density of a data instance computed by Eq. 3. It
is easy to see that the lower LRDk(x) is and the higher

∑

o∈Nk (x)
LRDk(o) is, the higher

sLOF(x) is. For LOF and all remaining methods, a higher anomaly score indicates a high
probability of being an anomaly.

(3)LRDk(x) =
|Nk(x)|

∑

o∈Nk (x)
(rk(x, o))

,

(4)sLOF(x) =

∑

o∈Nk (x)
LRDk(o)

|Nk(x)| · LRDk(x)
,

Page 9 of 31Sun et al. Journal of Big Data (2024) 11:83

Histogram‑based outlier score (HBOS)

HBOS [22] is an unsupervised histogram-based method for anomaly detection. It creates
a histogram for each dimension (feature) and calculates the anomaly score based on the
density estimation of each feature on the corresponding histogram bins. Then, the anomaly
score is used to determine whether a data instance is an anomaly.

The HBOS anomaly detection procedure is presented as follows: 1) Compute an indi-
vidual histogram for each of the d dimensions (features), where the height of each single
bin represents a density estimation. 2) Normalize each histogram to ensure an equiva-
lent weight of each dimension in the outlier score. 3) Calculate the HBOS score of an
instance x using the corresponding height of the bins where the instance is located by
Eq. 5.

where d is the number of features of data x (the window length l in our context). The
score sHBOS(x) is a multiplication of the inverse of the estimated densities, assuming the
independence of each feature.

Isolation Forest (IForest)

IForest [35] is an unsupervised tree-based method for anomaly detection. IForest uses
the concept of isolation instead of measuring distance or density to detect anomalies
and assumes that an anomaly can be isolated in a few steps. A short path indicates that
a data instance is easy to isolate because its attribute values are significantly different
from other values. IForest builds multiple trees by performing recursive random splits
on attribute values. Then, the anomaly score of a given data instance x is defined as the
average path length from a particular sample to the root in Eq. 6.

where h(x) is the length of the path for a data point from its leaf to the tree root, E(h(x))
is the average of h(x) from a collection of the build trees, c(n) is the average path length
of an unsuccessful search in a binary search tree, and n is the number of the original data
instances. According to Eq. 6, the lower the path to the root of x, the higher the anomaly
score of x.

One‑class support vector machine (OCSVM)

OCSVM [49] is a semi-supervised SVM-based method for anomaly detection. It learns
a decision boundary (a.k.a. hyperplane) from the normal data instances. Then, data
instances outside the boundary are considered anomalies. The distance of an instance
from the boundary is used to compute an anomaly score. The larger the distance (out-
side the hyperplane), the higher the anomaly score. OCSVM solves the following quad-
ratic problem to learn a decision boundary around normal instances:

(5)sHBOS(x) =

d
∑

j=0

log

(

1

Histj(x)

)

,

(6)sIForest(x) = 2
− E(h(x))

c(n)

(7)minω,ρ,ξi
1
2�ω�

2 + 1
νN

∑N
i=1 ξi − ρ

subject to ω�(xi) ≥ ρ − ξi, ξi ≥ 0, ∀i ∈ {1, . . . , n}

Page 10 of 31Sun et al. Journal of Big Data (2024) 11:83

where N is the number of training samples, �(·) is a nonlinear feature map that can
be computed by evaluating a kernel function k(·, ·) , ξ is a parameter to avoid overfit-
ting, ω and ρ are the parameters to define the hyperplane, ν ∈ [0, 1] controls the trade-
off between the training classification error and the margin maximization in one class.
Once ω and ρ are obtained, the anomaly score is computed by

where ai, i ∈ {1, 2, . . . , n} is the Lagrange parameter and k(·) is a kernel function. We
use the RBF kernel kγ (x, y) = exp(−γ �x − y�2) in our experiments. To ensure that the
notion of an anomaly score is consistent, we assign the original decision score a nega-
tive sign. The modified socsvm(xi) represents the signed distance to the separating hyper-
plane, where a positive value is given for an outlier and a negative value for an inlier.

AutoEncoder (AE)

AE [39] is a semi-supervised reconstruction-based method for anomaly detection. AE
tries to learn the normal pattern of the given data to minimize the reconstruction errors
for normal instances. Then, new data instances with large reconstruction errors are con-
sidered anomalies. AE consists of two components: an encoder network and a decoder
network. The encoder f (·) compresses the input data x into a low-dimension represen-
tation z, and then the decoder g(·) projects z to the original dimension as the output x′ ,
where x′ = g(f (x)) . The objective function of AE is given in Eq. 9.

where N is the number of training samples and θ is the parameter of AE. In Eq. 9, the
mean squared error (MSE) is used to measure the reconstruction error. Other error
measures, such as the mean absolute error (MAE), cross entropy, and binary cross
entropy, can be used in place of the MSE. We also note that some variants of AE [39]
introduce additional regularization terms to Eq. 9 to improve robustness. In this work,
we use MSE-based AE without regularization following existing UTS-AD methods [44,
63]. After solving the parameters θ , the anomaly score can be calculated from the recon-
struction error in Eq. 10.

Variational auto‑encoder (VAE)

VAE [5, 29] is also a semi-supervised reconstruction-based method for anomaly detec-
tion. Its main component is a deep generative Bayesian network, a.k.a. probabilistic
encoders and decoders, with the latent variable z and the observed variable x. The idea
of VAE for anomaly detection is similar to that of AE, which first trains a VAE using nor-
mal data and then considers a new data instance with a large deviation as an anomaly.
VAE consists of a probabilistic encoder network and a decoder network, with the latent
variable z and the observed variable x (i.e., data instances). The generative process of

(8)socsvm(xi) = −

n
∑

i=1

aik(xi, x)− ρ

(9)J (θ) =
1

2N

N
∑

i=1

�xi − x′i�
2,

(10)sAE(x) = �x − g(f (x))�.

Page 11 of 31Sun et al. Journal of Big Data (2024) 11:83

VAE starts with a variable z with a prior distribution p(z). Then, the decoder network g is
applied to z and then outputs x′ with distribution p(x′|g(z)) . Variational inference tech-
niques are applied to perform posterior inference of q(z|x). The posterior inference aims
to train a separated distribution q(z|f(x)) to approximate q(z|x) by the encoder network f.
The overall objective of VAE is to maximize the likelihood of the observation x in Eq. 11.

where p(z) is the prior distribution and p(x|z) is the posterior distribution of variable x.
Since sampling from z is a stochastic process, the gradients may not be correctly esti-
mated. To overcome this issue, the reparameterization trick is introduced to maximize
the evidence lower bound through variational inference for each observation x. Thus,
Eq. 11 can be rewritten as Eq. 12.

where KL(·) is the KL divergence. Since KL(·) ≥ 0 , we only need to maximize Lb . Thus,
VAE uses q(z|x) to approximate p(z|x) by the encoder network f. After p and q are solved,
the reconstruction probability [5] is computed as the anomaly score, i.e.,

where L is the number of samples from z, µx̂, σx̂ are the distribution sampled from z.

Deep autoencoding Gaussian mixture model (DAGMM)

DAGMM [65] is an unsupervised method that combines AE with the Gaussian mixture
model (GMM) to detect anomalies. DAGMM consists of an AE-based representation
network to generate a low-dimensional representation of input data instances and a
GMM-based estimation network to compute reconstruction errors and anomaly scores.
The objective function of DAGMM is given in Eq. 14.

where L(xi, x′i) is the reconstruction error, E(zi) is the probabilities of observed input
samples, N is the number of input instances, P(�̂) is a penalty term to tackle the sin-
gularity of GMM, �1 and �2 are hyper-parameters. Once the unknown parameters are
solved, the anomaly score is given by

(11)P(x) =

∫

z
p(z)p(x|z)dz,

(12)
log P(x) =

∫

z
q(z|x) log(

p(z, x)

q(z|x)
)dz +

∫

z
q(z|x) log(

q(z|x)

p(z|x)
)dz

= Lb + KL(q(z|x)�p(z|x)) ≥ Lb,

(13)sVAE(x) =
1

L

L
∑

l=1

p
(

x|µx̂, σx̂
)

,

(14)J (θe, θd , θm) =
1

N

N
∑

i=1

L
(

xi, x
′
i

)

+
�1

N

N
∑

i=1

E(zi)+ �2P(�̂),

(15)sdagmm(x) = − log
(

K
∑

k=1

φ̂k
exp(− 1

2

(

ϕ(x)− µ̂k

)T
�̂−1

k

(

ϕ(x)− µ̂k

)

)
√

∣

∣

∣
2π�̂k

∣

∣

∣

)

,

Page 12 of 31Sun et al. Journal of Big Data (2024) 11:83

where φ̂k , µ̂k , �̂k are the mixture probability, mean, and covariance for the k-th compo-
nent in GMM, and ϕ(x) is the features (combining zc and zr) generated by the compres-
sion network.

LSTM‑AD

LSTM-AD [37] is an LSTM-based semi-supervised model for anomaly detection.
LSTM-AD trains an LSTM network on normal data instances to forecast future values
and uses the prediction error as an indicator of anomalies. For a new data instance, a
higher prediction error implies a more likely anomaly. LSTM-AD detects anomalies in
the following steps. First, it uses a stacked LSTM network trained on normal data to pre-
dict the next l value, where l is the prediction length. The prediction errors are then fed
to a multivariate Gaussian distribution to compute the anomaly score. In this work, we
use prediction errors as anomaly scores. The anomaly score is given by

where ϕ(x) is the last value of the input data instance x (x is a sliding window in our con-
text) and g(·) is the value predicted by LSTM-AD.

DeepAnT

DeepAnT [42] is a semi-supervised CNN-based model for anomaly detection. It uses a
convolutional neural network (CNN) to predict the next l value, where l is the prediction
length. The objective function of DeepAnT is given by

where f (xi) is the actual value of the sliding window and f (x′i) is the predicted value of
the sliding window associated with xi . Then, the predicted value is fed to an anomaly
detector, which uses the Euclidean distance to compute the anomaly score:

where ϕ(x) is the last value of the input data instance x (x is a sliding window in our con-
text) and g(·) is the value predicted by DeepAnT.

Accuracy measures

In the UTS-AD task, the accuracy metrics in most existing studies [8, 21, 43, 44, 48,
57] are computed by the anomaly score. Following the existing literature, we calculate a
score for each corresponding sliding window wi , where a higher score means a high like-
lihood that the window is an anomaly. Furthermore, we evaluate the accuracy metrics
of a UTS method based on the predicted window labels and their corresponding real
window labels. Based on the anomaly score, several accuracy measures have been pro-
posed to quantitatively assess the effectiveness of the UTS-AD methods. Subsequently,
we review these measures and present some of their limitations.

(16)sLSTM-AD(x) =

√

(

ϕ(x)− g(x)
)2
,

(17)J (θ) =
1

N

N
∑

u=1

|f (xi)− f (x′i)|,

(18)sDeepAnT(x) =

√

(

ϕ(x)− g(x)
)2
,

Page 13 of 31Sun et al. Journal of Big Data (2024) 11:83

Precision, recall, and F‑score

Let P and N be the number of actual positive and negative windows, and TP, FP, TN, and
FN be the number of true positive, false positive, true negative, and false negative classifica-
tion results. The precision and recall of a classification method are defined as:

However, one limitation of these two measures is that high precision may cause low
recall and vice versa. To overcome the shortcomings of precision and recall, the F-score
is proposed. The F-Score is calculated as the harmonic mean of precision and recall:

Range‑precision, range‑recall, and range‑F‑Score (RF)

The original precision, recall, and F-Score are designed primarily for point anomalies.
However, time series anomalies are range-based, which means that they occur over a
period of time [52]. In other words, the three measures suffer from the inability to rep-
resent range-based time series anomalies. To alleviate the shortcomings of traditional
measures, [52] expanded the well-known definitions of precision and recall to measure
ranges instead of points. They proposed two measures, Range-Precision and Range-
Recall, accordingly. Note that although the point labels have been converted to window
labels in our study, the converted window labels are also a continuous sequence. The
Range-Recall is defined as

Here, R is a set of real anomaly ranges R = {R1, . . . ,RNr } and P is a set of predicted
anomaly ranges P = {P1, . . . ,PNp} . In our context, Ri and Pi are subsequences of the real
window labels and the predicted window labels, respectively. Nr and Np are the total
numbers of the real and predicted anomaly ranges. ER(·, ·) indicates whether a true
anomaly range is detected; OR(·, ·) evaluates the overlap between the real and predicted
anomaly ranges in three aspects: (1) ω measures how many points in Ri are detected;
(2) δ measures the position bias between the real and predicted anomaly ranges; and (3)
CF(·, ·) measures the number of fragmented regions corresponding to a given anomaly
range Ri . A typical choice for CF(Ri,P) is 1x , where x is the number of distinct overlapped

(19)Precision =
TP

TP + FP
,

(20)Recall =
TP

TP + FN
.

(21)F-Score =
2 · Precision · Recall

Precision+ Recall
.

(22)

Range-Recall(R,P) =

∑Nr
i=1 Recallr(Ri,P)

Nr
,

Recallr(Ri,P) = α · ER(Ri,P)+ (1− α) ·OR(Ri,P),

ER(Ri,P) =

{

1 if
∑Np

j=1 |Ri ∩ Pj| ≥ 1

0 otherwise
,

OR(Ri,P) = CF(Ri,P) ·

Np
∑

j=1

ω(Ri,Ri ∩ Pj , δ).

Page 14 of 31Sun et al. Journal of Big Data (2024) 11:83

ranges. Finally, the value of α controls the trade-off between ER(·, ·) and OR(·, ·) . Simi-
larly, Range-Precision is defined as

Finally, Range-F-Score (RF) is defined as

AUC ROC

The above measures depend on a predefined threshold in the anomaly score to decide
whether a window is anomalous. Typically, the threshold θ is set to µ+ 3σ according
to [7], where µ is the mean and σ is the standard deviation. Given a threshold θ and an
anomaly score si of the sliding window wi , one can decide whether a sliding window wi is
an anomaly or not:

However, threshold-based measures are sensitive to the threshold value. To remove
the effect of the threshold, the Area Under the Receiver Operating Characteris-
tics Curve (AUC ROC) [20] is introduced. AUC ROC is defined as the area under
the curve that represents the relationship between the true positive rate (TPR) on
the y-axis and the false positive rate (FPR) on the x-axis as we vary the anomaly
score threshold. The area under the curve is calculated by the trapezoidal rule. Let
� = {θ0, θ1, . . . , θN }, θi < θj , i < j; θi ∈ [0, 1] be a set of thresholds. Then, AUC ROC is
defined as

AUC PR

Since the AUC ROC may be excessively optimistic when applied to unbalanced sam-
ples, another AUC-based metric, the Area Under the Precision-Recall Curve (AUC
PR) [19], is introduced. The AUC PR is defined as the area under the curve corre-
sponding to the recall on the x-axis and precision on the y-axis when we vary the

(23)

Range-Precision(R,P) =

∑Np

i=1 Precisionr(R,Pi)

Nr
,

Precisionr(R,Pi) = CF(Pi,R) ·

Nr
∑

j=1

ω(Pi,Pi ∩ Rj , δ).

(24)RF =
2 · Range-Precision · Range-Recall

Range-Precision+ Range-Recall
.

(25)wi is

{

abnormal if si ≥ θ

normal otherwise

(26)
AUC ROC =

1

2

N
∑

k=1

△k
TPR · △k

FPR

where

{

△k
FPR = FPR(θk)− FPR(θk−1)

△k
TPR = TPR(θk−1)+ TPR(θk).

Page 15 of 31Sun et al. Journal of Big Data (2024) 11:83

anomaly score threshold. The area under the curve is calculated by the trapezoidal
rule. Let � = {θ0, θ1, . . . , θN }, θi < θj , i < j; θi ∈ [0, 1] be a set of thresholds, AUC PR is
defined as

VUS ROC and VUS PR

As mentioned above, range-based measures are better than point-based measures in
the UTS-AD task. However, AUC ROC and AUC PR [43] are point-based metrics. To
address this issue, [43] proposed the Volume Under the Surface (VUS) for the ROC
and PR curves: AUC ROC and AUC PR. AUC-based measures are robust to lag, noise,
anomaly cardinality ratio, and high separability between accurate and inaccurate AD
methods [43]. Let � = {θ0, θ1, . . . , θN }, θi < θj , i < j; θi ∈ [0, 1] be a set of thresholds,
L = {ℓ0, ℓ1, . . . , ℓl}, ℓ ∈ [0, 1]; ℓi < ℓj , i < j be the buffer length introduced based on the
idea that there should be a transition region between the normal and abnormal subse-
quences. The ℓ is used to accommodate the false tolerance of the labeling in the ground
truth. Then, the VUS ROC is defined as

Here, TPRℓ and FPRℓ are range-based versions of TPR and FPR . Similarly, VUS PR is
defined as

Here, Recallℓ and Precisionℓ are the range-based measures corresponding to traditional
recall and precision in the AUC PR.

Key observations

To evaluate the data efficiency of different UTS-AD methods, we first observe the
relationship between the number of sliding windows sampled nsw for training and

(27)
AUC PR =

1

2

N
∑

k=1

△k
Precision · △

k
Recall

where

{

△k
Recall = Recall(θk)− Recall(θk−1)

△k
Precision = Precision(θk−1)+ Precision(θk).

(28)

VUS ROC =
1

4

L
�

w=1

N
�

k=1

�(k ,w) ·�w

where

�(k ,w) = �k
TPRℓw

·�k
FPRℓw

+�k
TPRℓw−1

·�k
FPRℓw−1

�k
FPRℓw

= FPRℓw (θk)− FPRℓw

�

θk−1

�

�k
TPRℓw

= TPRℓw

�

θk−1

�

+ TPRℓw (θ)

�w = |ℓw − ℓw−1|.

(29)

VUS PR =
1

4

L
�

w=1

N
�

k=1

�(k ,w) ·�w

where

�(k ,w) = �k
Prℓw

·�k
Reℓw

+�k
Prℓw−1

·�k
Reℓw−1

�k
Reℓw

= Recallℓw (θk)− Recallℓw
�

θk−1

�

�k
Prℓw

= Precisionℓw
�

θk−1

�

+ Precisionℓw (θ)

�w = |ℓw − ℓw−1|.

Page 16 of 31Sun et al. Journal of Big Data (2024) 11:83

their performance (accuracy and training time). We evaluate all UTS-AD methods
in section Review of UTS-AD methods, as summarized in Table 1. We evaluate these
methods on 45 randomly selected time series from three benchmark datasets, namely
YAHOO, SMD, and DAP in Table 2, which span two different domains: YAHOO and
SMD include KPIs of computer servers, while DAP consists of healthcare data. The
selected datasets also vary in length and anomaly rates, with YAHOO having an aver-
age length of 1.54k and an anomaly rate of 0.45%, SMD having an average length of
25.37k and an anomaly rate of 3.52%, and DAP having an average length of 20.3k and
an anomaly rate of 10.37%. A more detailed description of the datasets is provided
in section Experimental setup. The accuracy and training time of each method on all
sliding windows are shown in Table 3 and these results by varying the number of slid-
ing windows sampled are shown in Fig. 1. Based on the results, we draw three main
observations.

Table 1 Summary of UTS-AD methods in the evaluation

Learning paradigm UTS‑AD method Description

Semi-supervised AE [47] Autoencoder-based algorithm

Semi-supervised VAE [5, 29] Variational autoencoder-based
algorithm

Semi-supervised CNN [42] Convolutional neural network-based
algorithm

Semi-supervised LSTM-AD [37] Long short-term memory network-
based algorithm

Semi-supervised OC-SVM [49] One-class support vector machine-
based algorithm

Unsupervised DAGMM [65] Deep autoencoding Gaussian mix-
ture algorithm

Unsupervised HBOS [22] Histogram-based algorithm

Unsupervised LOF [11] Local density-based algorithm

Unsupervised IForest [56] Isolation forest algorithm

Table 2 Summary of benchmark datasets in our experiments

For each dataset, we randomly selected 15 UTS for evaluation. For MGAB, we picked 10 UTS since it only has 10 UTS

Dataset Anomaly rate (%) Average length Description

SVDB [23] 11.33 230,400 Electrocardiogram record-
ings

DAP [6] 10.37 20,309 Acceleration sensors on Par-
kinson’s disease patients

ECG [40] 8.25 229,900 Standard electrocardiogram
dataset

OPP [45] 4.03 34,042 Motion sensors for human
activity recognition

IOPS [12] 3.57 96,474 Performance indicators of
web servers

SMD [50] 3.52 25,365 Server Machine Dateset

YAHOO [30] 0.45 1543 Real and synthetic data
from Yahoo! production
systems

MGAB [53] 0.20 100,000 Mackey-Glass time series
with non-trivial anomalies

Page 17 of 31Sun et al. Journal of Big Data (2024) 11:83

Observation 1: As the amount of data increases, most accuracy metrics initially
improve and then tend to stabilize or decrease. In other words, a method generally
becomes more accurate when more training windows are fed, but the marginal util-
ity of the extra windows gradually diminishes. Taking the AE model as an example,
the VUS ROC shows a growing trend with increasing nsw ∈ [2, 16] , where nsw is the
number of sliding windows used to train the model. However, the VUS ROC does not
increase when nsw ∈ [16, 10240] . A counterintuitive fact is that only 16 sliding win-
dows can train an AE model with good accuracy. This can be explained by the UTS
in Fig. 2: two sliding windows (nsw = 2) can be used to train a good semi-supervised
model because they have represented typical regular patterns of the UTS, which the
AE model needs to learn the normal pattern of the UTS.

Observation 2: The accuracy of the model obtained with a small number of sliding
windows is essentially equal to the accuracy obtained with all sliding windows. Tak-
ing AE as an example, the VUS ROC value has reached 71.90 when nsw = 16 , which
is higher than the VUS ROC value of 69.62, as shown in Table 3. In other words, one
can train a model with a small number of sliding windows instead of all. This finding
can be verified across all nine methods with different nsw , as shown in Fig. 1.

Observation 3: In most cases, the time to train a model on a small number of sliding
windows is much shorter than the time to train it on full sliding windows. Also, taking
AE as an example, the training time on a few sliding windows is much less than the full
training time of 23.88 h (as shown in Table 3). Combining the above observations, we
can reduce the number of training data instances and time and improve the data effi-
ciency if we develop a strategy to find the smallest nsw (denoted by n∗sw) for each algo-
rithm and UTS. Here, we use W ∗

D to denote the smallest training windows by the strategy
and len(W ∗

D) = n∗sw , where len(W ∗
D) is the number of sliding windows in W ∗

D.
Remark: The above three observations clearly imply great opportunities to improve

the data efficiency of UTS-AD methods. However, there are four challenges to address
for such improvements. First, the accuracy increase is not always continuing, that is, the
accuracy can decrease with increasing nsw . Second, different accuracy measures can show
different trends, that is, there exist various accuracy measures (e.g., VUS ROC, VUS PR,
and RF in our evaluation) and they can show different trends when the number of slid-
ing windows for training increases. Third, anomaly detection methods and datasets vary

Table 3 Accuracy and training time (in hours) of UTS-AD methods on the original datasets

Method RF VUS PR VUS ROC Training
time
(hour)

LSTM-AD 18.55 31.37 64.98 158.94

OCSVM 27.49 40.57 69.65 132.38

LOF 28.18 43.54 73.40 98.68

DAGMM 6.49 42.02 60.05 74.00

VAE 19.59 40.28 69.62 36.49

CNN 20.23 35.61 69.01 28.31

AE 21.10 40.09 69.24 23.88

IForest 17.61 39.87 70.94 3.52

HBOS 21.33 38.92 67.50 1.32

Page 18 of 31Sun et al. Journal of Big Data (2024) 11:83

with each other, that is, different combinations of algorithms and datasets have different
appropriate n∗sw . Fourth, most methods have an extremely long training time, as shown
in Table 3. In the following, we will elaborate on how to design a generic framework to
improve data efficiency and address the above challenges.

The FastUTS‑AD framework
Overview of FastUTS‑AD

To solve the problem of finding the smallest training sliding windows W ∗
D , we pro-

pose the FastUTS-AD framework. The basic idea of FastUTS-AD involves integrating
sampling techniques with scaling laws. This integration can be succinctly described
as a multi-step continual training (MCT) technique that trains the model A itera-
tively in many steps, as opposed to a single training process with full training sliding
windows WD . In each step, we gradually increase the number of sliding windows nsw
sampled from the original sliding windows for training. We observe an increase in
model accuracy Accinc (such as VUS ROC, VUS PR, and RF). If Accinc is too small (i.e.,
Accinc < α for some prespecified small α), we will stop the training process and return
the best algorithm A∗ and the smallest training windows W ∗

D found so far. Otherwise,
we increase the number of training windows nsw and then retrain the model A . In
the MCT process, the value of α reflects the sensitivity of FastUTS-AD: A smaller α
means that FastUTS-AD will train the model with more training windows, although
the increase in accuracy has been small. Figure 3 illustrates the architecture of the
FastUTS-AD framework. In subsequent subsections, we will describe each compo-
nent of FastUTS-AD in more detail.

Fig. 2 Illustration of the training process for semi-supervised and unsupervised UTS-AD methods on
sampled UTS data (red: abnormal, black: normal). In this case, two sliding windows (nsw = 2) may be used to
train a good semi-supervised model because they have represented typical regular patterns of the UTS

Page 19 of 31Sun et al. Journal of Big Data (2024) 11:83

Input of FastUTS‑AD

The input of FastUTS-AD consists of three parts: (1) a UTS, (2) an anomaly detection algo-
rithm, and (3) the configuration settings of FastUTS-AD. We consider that the UTS con-
tains labels for the accuracy calculation to help decide whether to stop training progress.
The algorithm can be any UTS-AD algorithm that works on sliding windows. The configu-
ration consists of the sampling method used, the sampling gap sgap , and the stop threshold
α . Here, the sampling gap sgap indicates how many training windows will increase in the
next iteration. In practice, we typically set sgap to a constant, e.g., 256. The stop threshold α
controls when FastUTS-AD terminates the training process and is usually set to 0.1%.

Data processing

The first step of the FastUTS-AD framework is data processing, which consists of data
imputation, data standardization, conversion to sliding windows, and data splitting. First,
data imputation fills in the missing value by the mean of the original UTS. Second, the UTS
is standardized by mean and standard deviation. Formally, v∗i = vi−µ

σ
 , where vi is the origi-

nal value, σ is the standard deviation, and v∗i is the standardized value. Third, the standard-
ized UTS is converted to sliding windows with a window size of 64 and a time step of 1. We
note that the window size and time step are flexible in FastUTS-AD and can be changed
to other values. Finally, we use a five-fold cross-validation to split the dataset into training,
test, and validation sets in order to fairly evaluate each algorithm’s accuracy.

Data sampling

The second step of the FastUTS-AD framework is data sampling, which draws a subset
of sliding windows from the original training sliding windows. We consider the following
three sampling methods for FastUTS-AD, namely simple random sampling, Latin hyper-
cube sampling, and distance sampling.

Simple Random Sampling: Random sampling is a basic method that randomly and uni-
formly samples sliding windows with a given size nsw from WD without replacement. It does
not assume data distribution and reduces sampling bias [38].

Fig. 3 The architecture of FastUTS-AD

Page 20 of 31Sun et al. Journal of Big Data (2024) 11:83

Latin Hypercube Sampling (LHS): Latin hypercube sampling divides the UTS into nsw
equally spaced intervals and randomly draws a sample sliding window from each interval to
achieve a uniform distribution over time.

Distance Sampling: Distance sampling refers to sample data based on their distances,
which is specific to time series data over sliding windows. Its basic idea is similar to that
of stratified sampling: it calculates the distances of instances (i.e., sliding windows) and
then divides them into multiple groups of equal distance intervals accordingly. Finally, we
randomly draw samples of equal size from each group. The distance calculation takes into
account three aspects of each sliding window wi : the 95% maximum value, the 5% mini-
mum value, and the Euclidean distance from the zero vector. Formally,

where L is the length of the sliding window wi.

Model training and performance collecting

The third step of the FastUTS-AD framework is to perform the training procedure of
the UTS-AD algorithm with the sampled windows, instead of the original sliding win-
dows. Then, the full test set is used to evaluate the accuracy of the algorithm. Notice
that the accuracy is averaged in five folds. Regarding the evaluation of algorithm
accuracy, we adopt all 13 accuracy measures as used by [44]. Furthermore, we also
collect measures of time efficiency, including training time and data processing time.
The training time only contains the time to perform the training procedure, where the
test time is excluded. Data processing time consists mainly of sampling time and dis-
tance computation time. Data sampling time refers to the time to sample the subset
of the original training sliding windows, and distance computation time refers to the
time to calculate the distances of all sliding windows using Eq. 30.

Heuristic MCT method

The fourth step of the FastUTS-AD framework is to run the heuristic multi-step con-
tinual training (MCT) strategy, which considers the accuracy measures in the most
recent three iterations, i.e., those from iteration i − 2 to i in the i-th iteration, to deter-
mine whether to increase the number of training sliding windows in the next iteration or
terminate the training procedure. MCT proceeds in the following subroutines. First, it
calculates the increase in accuracy Accinc in the i-th iteration by comparing the accuracy
measures Acci−1 and Acci−2 in the previous two iterations with Acci . Formally,

In Eq. 31, we consider the accuracy measures in the previous two iterations for two
reasons. On the one hand, MCT provides a relatively loose condition for incremental
training. On the other hand, MCT increases the robustness of FastUTS-AD. Accord-
ing to our observations in the experiments, the accuracy of a UTS-AD algorithm might
not always improve when more training samples are used. For example, the increment
Accinc is small between the i-th iteration and the (i − 1)-th iteration, but it becomes

(30)Dist(wi) = max95%(wi)
2 +min5%(wi)

2 +

L
∑

i=1

w2
i ,

(31)Accinc = max({Acci,Acci−1})− Acci−2.

Page 21 of 31Sun et al. Journal of Big Data (2024) 11:83

large enough between the i-th iteration and the (i − 2)-th iteration. Then, MCT decides
whether the training process is continued. If Accinc < α , we break the training loops and
return the best A∗ and W ∗

D found so far. If Accinc ≥ α , we increase the number of training
windows from nswi to nswi+1 = nswi + sgap and continue to train the algorithm with nswi+1
samples in the next iteration.

Experimental evaluation for FastUTS‑AD
In this section, we evaluate the performance of FastUTS-AD on the eight benchmark
datasets in Table 2, as well as compare it with the nine widely recognized UTS-AD
methods in Table 1. The experimental setup is briefly described at the beginning of
the experiment.

Experimental setup

Datasets: To systematically evaluate FastUTS-AD, we used the eight datasets in
Table 2. These datasets span three different domains: computer systems, healthcare,
and social. In addition, they also vary in length and distribution (anomaly rates). For
each dataset, we randomly selected 15 UTS as representatives. In total, we selected
115 UTS to evacuate FastUTS-AD (note that MGAB contains only 10 UTS). Every
point in a UTS is associated with a label of either “normal” (0) or “abnormal” (1).
Table 2 summarizes the relevant characteristics of the datasets, including their size,
length, and distribution. Here, the length indicates the average size of every UTS in
the corresponding dataset. We run each anomaly detection method on each UTS sep-
arately. We briefly describe the eight datasets in the following.

• SVDB (MIT-BIH Supraventricular Arrhythmia Database) [23] includes 78 half-hour
ECG recordings chosen to supplement the examples of supraventricular arrhythmias
in the MIT-BIH Arrhythmia Database.

• DAP (Daphnet) [6] contains the annotated readings of three acceleration sensors at
the hip and leg of Parkinson’s disease patients that experience freezing of gait (FoG)
during walking tasks.

• ECG [40] is a standard electrocardiogram dataset, and the anomalies represent ven-
tricular premature contractions. The long series (MBA_ECG14046) of length ∼ 107
was divided into 47 series by identifying the periodicity of the signal according to
TSB-UAD.

• OPP (OPPORTUNITY) [45] is a dataset for human activity recognition from wear-
able, object, and ambient sensors, which is devised to benchmark human activity
recognition algorithms (classification, automatic data segmentation, sensor fusion,
feature extraction, etc.).

• IOPS [12] is a public dataset consisting of 27 key performance indicators (KPIs) for
artificial intelligence-based IT operations (AIOps), which was collected from five
large internet companies, including Sougo, eBay, Baidu, Tencent and Alibaba.

• SMD (Server Machine Dataset) [50] is a 5-week-long dataset collected from a large
Internet company, which contains 3 groups of entities from 28 different machines.

Page 22 of 31Sun et al. Journal of Big Data (2024) 11:83

• YAHOO [30] is a dataset published by Yahoo! Labs consisting of real and synthetic
time series based on the real production traffic to some of the Yahoo! production sys-
tems.

• MGAB (Mackey-Glass anomaly benchmark) [53] is composed of Mackey-Glass time
series with non-trivial anomalies. Mackey-Glass time series exhibit chaotic behavior
that is difficult for humans to distinguish.

Algorithms: To evaluate the robustness and effectiveness of FastUTS-AD, we used the
nine popular anomaly detection algorithms as described in Table 1.

Hyperparameters: For each algorithm, most of the hyperparameters are kept default
configurations as [44, 48]. The following hyperparameters are changed for better perfor-
mance. The length of the sliding window is set to 64, and the time step is set to 1 when
we convert the UTS to sliding windows. For deep learning methods, the batch size is set
to 128 and the epoch is set to 50. Other parameters we have not mentioned here can be
found in [44, 48].

Performance Metrics: In this work, we consider three accuracy metrics: VUS ROC,
VUS PR, and range-base F1 score (RF). According to [43], threshold-independent met-
rics are more suitable for time series. Therefore, we selected two threshold-independent
metrics: VUS ROC and VUS PR. VUS ROC measures the overall performance of a clas-
sification algorithm at different classification thresholds, and VUS PR measures the pre-
cision and recall at different thresholds. To fairly assess the accuracy of the model, we
also selected a threshold RF metric, and the threshold θ is set to µ+ 3σ according to [7],
where µ is the mean and σ is the standard deviation. Furthermore, we collected metrics
for time efficiency, including algorithm training time and data processing time, as in sec-
tion Model training and performance collecting.

Environment and Implementation: We conducted the experiments on two servers with
the following hardware configuration. For non-deep learning methods, we train them on
a server with an Intel (R) Xeon (R) CPU E5–2630 v3 (2 sockets, 72 cores) at 2.40GHz
and 256GB of memory. We use 64 cores in parallel when training the algorithms. For
deep learning algorithms, we train them on a server with eight Nvidia A6000 GPUs.
Each GPU runs six jobs in parallel when training those algorithms. We implemented our
algorithms using Python 3.8, scikit-learn 1.2.0, TensorFlow 2.9.1, and PyTorch 1.10.0.

Overall results

We demonstrate the performance of FastUTS-AD in three aspects: (1) accuracy; (2)
data efficiency; and (3) time efficiency. We compare the accuracy measures (VUS ROC,
VUS PR, and RF) between the original model (Accori) and FastUTS-AD (Accfast). We
also used statistical hypothesis testing to verify whether the accuracy measures of each
method in each dataset have decreased significantly. In detail, we use Welch’s t-test to
test Accfast and Accori for each method on each dataset since we do not know the vari-
ance of the accuracy measures. The null hypothesis is that Accfast is not less than Accori .
Both Accori and Accfast are the averaged values among 5-folds. Data efficiency shows the
smallest training sliding windows n∗sw (%) found by FastUTS-AD. Time efficiency shows
how much training time FastUTS-AD can reduce. The default parameters of FastUTS-
AD are set as follows. The sampling method is simple random sampling. The sampling

Page 23 of 31Sun et al. Journal of Big Data (2024) 11:83

gap sgap is set to 256 (as described in Section Overall results). Consequently, the training
sample sizes nsw are {256, 512, 768, . . . ,N } over iterations, where N is the number of slid-
ing windows in a given UTS. The stop condition α is fixed to 0.1% . The significance level
is set to 0.01. The hyperparameters of the models are discussed in section Experimental
setup. The results for the accuracy and data efficiency of different algorithms are shown
in Table 4, and their time efficiency is shown in Table 5.

Accuracy: In general, the accuracy of the model returned by FastUTS-AD does not
decrease significantly compared to the original model. As shown in Table 4, the mini-
mum p-values for RF, VUS ROC, and VUS PR are 0.16, 0.55, and 0.63, respectively.
According to the null hypothesis (Accfast is not less than Accori) and ∀p-value > 0.01 , we
do not have enough evidence to reject the null hypothesis. Therefore, we accept the null
hypothesis: Accfast is not less than Accori at the significant level of 0.01. The main reason
why the accuracy of the model does not decrease is that a small number of sliding win-
dows is enough to train a good model.

Furthermore, the average accuracy found by FastUTS-AD is greater than the origi-
nal accuracy of 6.55–17.58% for different accuracy metrics. The FastUTS-AD model

Table 4 Accuracy and data efficiency of FastUTS-AD for different measures and AD methods, where
Accori is the model accuracy trained by the full dataset, Accfast is the model accuracy trained by
FastUTS-AD, n∗sw is the number of sliding windows sampled by FastUTS-AD (%)

Measure Method p‑value n∗sw (%) Accori Accfast

AE 0.59 8.45± 5.34 20.36± 10.10 21.07± 11.40

CNN 0.99 7.51± 5.38 19.57± 6.39 23.38± 6.76

DAGMM 1.00 7.79± 5.29 6.35± 4.83 20.90± 8.32

HBOS 0.16 9.76± 4.75 20.47± 12.52 18.09± 10.62

RF IForest 0.88 8.77± 5.38 16.94± 9.90 19.26± 9.94

LOF 0.71 9.45± 6.71 29.60± 13.94 28.79± 11.45

LSTM-AD 1.00 8.06± 4.25 17.95± 7.11 22.69± 6.88

OCSVM 0.97 8.65± 4.46 26.54± 12.96 32.35± 14.22

VAE 0.81 8.11± 5.06 18.86± 10.23 21.23± 11.46

AE 0.55 9.22± 5.33 38.71± 15.71 39.14± 15.67

CNN 0.91 10.25± 5.96 34.47± 13.04 38.50± 13.47

DAGMM 0.62 6.45± 4.19 40.77± 9.89 41.86± 13.90

HBOS 0.62 7.90± 5.16 37.51± 14.37 38.57± 14.59

VUS PR IForest 0.63 10.37± 4.70 38.47± 15.05 39.56± 15.78

LOF 1.00 12.76± 8.53 43.71± 17.62 50.64± 15.94

LSTM-AD 0.95 7.54± 4.38 30.34± 12.52 34.88± 14.05

OCSVM 0.87 7.62± 4.36 39.16± 15.40 42.95± 15.97

VAE 0.59 8.08± 4.93 38.91± 14.32 39.70± 15.01

AE 0.63 8.57± 4.99 68.79± 10.63 69.54± 10.16

CNN 1.00 10.18± 5.89 68.68± 7.86 73.61± 6.61

DAGMM 1.00 7.11± 4.98 60.07± 7.07 75.32± 7.99

HBOS 0.88 7.99± 5.15 67.05± 11.01 69.56± 10.16

VUS ROC IForest 0.67 9.97± 5.33 70.43± 9.84 71.33± 9.98

LOF 1.00 12.02± 7.47 73.75± 11.72 78.91± 9.64

LSTM-AD 1.00 7.93± 5.17 64.78± 7.86 70.68± 7.21

OCSVM 0.96 6.89± 4.45 69.16± 10.03 72.82± 10.11

VAE 0.67 7.63± 4.83 69.21± 9.58 70.17± 9.52

Page 24 of 31Sun et al. Journal of Big Data (2024) 11:83

shows an increase in accuracy compared to the original accuracy for the three accu-
racy metrics. Specifically, for the RF, Accfast is 23.08 on average, which is 17.58% more
than the original Accori of 19.63. Similarly, for the VUS PR, Accfast is 40.64, which is
6.92% higher than Accori of 38.01. Lastly, for the VUS ROC, Accfast is 72.44, which is
6.55% higher than Accori of 67.99. It should be noted that Accfast is higher than Accori
for all accuracy metrics. The main reason is that more training windows will cause the
model to overfit the training set and thus perform poorly on the test set. To explain
the relationship between the number of training windows and accuracy, we explore
the relationship between the training loss and the test loss on the number of training
windows since a lower test loss usually means better accuracy. We randomly sample
a UTS from the IOPS dataset and plot the relationship between training/test loss and
the percentage of training windows, as shown in Fig. 4. The test loss at 30% of the
original windows is the lowest, instead of 100% of the windows. Therefore, we believe
that 30% of the training sliding windows can achieve better accuracy than the original
sliding windows. In addition, 80% to 100% of the original windows will have a lower
training loss but a higher test loss, a.k.a. overfitting.

Table 5 Time efficiency of FastUTS-AD for different measures and AD methods, where Tori is the
training time on original sliding windows, Tfast is the training time of FastUTS-AD, Tdp is the data
processing time, and Tredu is the time reduced by FastUTS-AD, all in hours

Measure Method Tori Tfast Tdp Tredu (%)

AE 26.69± 0.00 2.51± 0.00 0.01± 0.00 90.57

CNN 31.85± 0.00 2.73± 0.00 0.01± 0.00 91.39

DAGMM 81.89± 0.00 5.65± 0.00 0.01± 0.00 93.08

HBOS 1.46± 0.00 0.09± 0.00 0.02± 0.00 91.86

RF IForest 3.81± 0.00 0.35± 0.00 0.02± 0.00 90.16

LOF 106.58± 0.01 0.13± 0.00 0.03± 0.00 99.84

LSTM-AD 177.43± 0.02 6.20± 0.00 0.01± 0.00 96.50

OCSVM 139.48± 0.01 0.04± 0.00 0.02± 0.00 99.95

VAE 40.71± 0.00 3.66± 0.00 0.01± 0.00 91.00

AE 26.69± 0.00 2.67± 0.00 0.01± 0.00 89.96

CNN 31.85± 0.00 2.96± 0.00 0.01± 0.00 90.68

DAGMM 81.89± 0.00 4.15± 0.00 0.01± 0.00 94.92

HBOS 1.46± 0.00 0.12± 0.00 0.03± 0.00 90.27

VUS PR IForest 3.81± 0.00 0.37± 0.00 0.03± 0.00 89.64

LOF 106.58± 0.01 0.40± 0.00 0.05± 0.00 99.59

LSTM-AD 177.43± 0.02 7.11± 0.00 0.01± 0.00 95.98

OCSVM 139.48± 0.01 0.05± 0.00 0.02± 0.00 99.95

VAE 40.71± 0.00 3.90± 0.00 0.01± 0.00 90.39

AE 26.69± 0.00 2.82± 0.00 0.01± 0.00 89.39

CNN 31.85± 0.00 2.62± 0.00 0.01± 0.00 91.73

DAGMM 81.89± 0.00 4.68± 0.00 0.01± 0.00 94.28

HBOS 1.46± 0.00 0.09± 0.00 0.02± 0.00 92.20

VUS ROC IForest 3.81± 0.00 0.37± 0.00 0.03± 0.00 89.57

LOF 106.58± 0.01 0.51± 0.00 0.05± 0.00 99.47

LSTM-AD 177.43± 0.02 6.85± 0.00 0.01± 0.00 96.13

OCSVM 139.48± 0.01 0.05± 0.00 0.02± 0.00 99.95

VAE 40.71± 0.00 3.80± 0.00 0.01± 0.00 90.64

Page 25 of 31Sun et al. Journal of Big Data (2024) 11:83

Data Efficiency: According to the previous section, FastUTS-AD can achieve good
accuracy on average. Here, we show that FastUTS-AD only needs a small number of
sliding windows (8.51–8.91% for different accuracy metrics) to train a model with the
promised accuracy. In detail, with respect to the accuracy metric RF, FastUTS-AD
only needs 8.51% on average of the original training sliding windows to train a model,
that of 8.91% for VUS PR, and that of 8.70% for VUS ROC. In summary, training a
model without significantly losing model accuracy does not need to use all the slid-
ing windows. Instead, a small number of training sliding windows are enough (8.51–
8.91%). To clear the distribution of n∗sw , we counted the number of times on different
n∗sw on the selected 9 algorithms and 115 UTS. We show the results in Fig. 5. Accord-
ing to Fig. 5, 85% of the models only need less than 30% of the original windows. A
small number of models need more than 30% of the original windows. These models
are trained on the YAHOO dataset. Since the average length of YAHOO is small, this
ratio becomes higher. See more information in section Effect of data size.

Time Efficiency: According to the above two sections, FastUTS-AD has been shown to
achieve better model accuracy and reduce the model training sliding windows. Because
the sliding windows in model training are reduced, the training time is naturally reduced.
As shown in Table 5, we reduced model training from 67.77 h to less than 2.5 h. In sum-
mary, FastUTS-AD can reduce the model training time by about 93.49–93.82% without
significantly losing algorithm accuracy within the significant level of 0.01. Here, we have
gained some new insights about UTS-AD tasks: (1) More training data do not necessar-
ily lead to better model performance when the training data is huge; (2) Scaling laws may
work in classical algorithms.

Fig. 4 The relationship between the training/test loss and the percentage of sliding windows for training

Fig. 5 Occurrences of different n∗sw (%) for three accuracy measures

Page 26 of 31Sun et al. Journal of Big Data (2024) 11:83

Effects of sampling methods and gaps

In this section, we show the effect of sampling methods (Random, LHS, and Dist) and
sampling gaps (64, 128, 256, 512, and 1024) on model accuracy (VUS ROC, VUS PR,
and RF) and training time (hour). These performance metrics are the averaged value
over five folds. The results are shown in Fig. 6. According to Fig. 6, the Dist is shown
to have poor accuracy on both three accuracy metrics (e.g., VUS ROC). Instead, the
random method can achieve the best accuracy on all three measures with a sample
gap of 256. It achieves the best accuracy on all three accuracy metrics, and the train-
ing time is minimal. The Dist sampling method achieved the worst accuracy because
it changed the distribution (anomaly rate) of the anomaly sliding windows. To verify
the distribution of the sampling window, we draw 8.5% sliding windows (achieved the
best result in section Experimental observations on data efficiency of UTS-AD meth-
ods) from the 115 WD generated from the selected 115 UTS. We then calculated the
anomaly rate of the sampled sliding windows. We find that the anomaly rate of the
Dist method is 21.84%, which is significantly different from the original anomaly rate
of 10.44%. That is, the distribution of the sliding windows has changed by the Dist
method. Therefore, Dist performs worse than LHS and random. Instead, the sam-
pling distribution of LHS and random is the same as the original distribution (LHS is
10.44%, random is 10.46%). This could explain why the effect of LHS is often similar
to that of random in Fig. 6.

Effect of stop threshold

This subsection evaluates the influence of different stop thresholds α in FastUTS-AD.
As shown in Table 6, it can be seen that all accuracy measures decrease with increas-
ing α . Similarly, the computation time Tfast of FastUTS decreases. This means that the

Fig. 6 Effect of sampling methods and gaps on model accuracy and training time (in hours)

Page 27 of 31Sun et al. Journal of Big Data (2024) 11:83

smaller the value of α is, the better FastUTS-AD performs. However, the model training
time used by FastUTS-AD will be large. The reason is that with a larger α , FastUTS-AD
becomes stricter, that is, requiring a larger Accinc . And it is easy to stop training after the
first three steps. That is, it can stop before finding the optimal sliding windows for train-
ing W ∗

D . Hence, it exhibits worse accuracy. The value of α depends on whether the user
is concerned with time or accuracy. If the user cares about time, one can choose a larger
α such as 0.1. If the user cares about accuracy, one can choose a smaller α such as 0.001.

Effect of data size

In this section, we explore how the size of the original training data affects the mini-
mal training sliding windows W ∗

D FastUTS-AD found. We computed the mean, median,
and standard deviation of W ∗

D on all algorithms and UTS corresponding to the specified
dataset. The results of W ∗

D for the different datasets are shown in Table 7. As shown in
Table 7, YAHOO has the highest mean, median, and standard deviation, as the origi-
nal data size is small (1.54k data points). Therefore, W ∗

D will be large. For large datasets
(≥ 230k) such as SVDB, FastUTS-AD only needs a small proportion (0.45%) of the origi-
nal sliding windows to train a model without nearly losing the accuracy of the model.
Therefore, W ∗

D will be small.

Conclusion
In this paper, we introduce FastUTS-AD, a new framework that improves the data effi-
ciency of UTS-AD methods. In detail, FastUTS-AD reduces the number of training slid-
ing windows and the training time of existing UTS-AD methods without significantly
reducing their accuracy. It features a highly adaptable and expandable architecture
with different sampling methods and a heuristic MCT method to decide the smallest

Table 6 Average accuracy measures and training time (hours) of FastUTS-AD at different α values

α VUS PR VUS ROC RF

Accfast Tfast Accfast Tfast Accfast Tfast

0.001 40.64± 14.93 2.41 72.44± 9.04 2.42 23.09± 10.12 2.37

0.01 40.38± 14.79 1.99 72.27± 9.07 1.97 22.81± 10.05 1.95

0.1 39.58± 14.55 1.37 71.70± 9.10 1.39 22.34± 9.87 1.40

0.5 39.36± 14.53 1.29 71.46± 9.25 1.29 22.21± 9.84 1.29

Table 7 Mean, median, and standard deviation of W∗
D (%) on each dataset

Dataset Mean Median Std.

DAP 5.98 3.36 5.56

ECG 0.46 0.42 0.36

IOPS 3.52 0.90 6.37

MGAB 1.26 0.96 1.12

OPP 3.13 2.51 2.59

SMD 3.86 3.35 2.61

SVDB 0.45 0.42 0.37

YAHOO 50.99 47.15 26.95

Page 28 of 31Sun et al. Journal of Big Data (2024) 11:83

number of training windows a UTS-AD method requires. We evaluate FastUTS-AD
on nine UTS-AD algorithms on eight benchmark datasets. The experiments show that
FastUTS-AD reduces the training data and the training time by about 91.09–91.49% and
93.49–93.82% without significantly losing model accuracy at a significant level of 0.01.
In general, FastUTS-AD provides significant insights on improving the data efficiency
of UTS-AD methods, which can facilitate the deployment of UTS-AD models in real-
world industrial scenarios.

There are still several problems that we have not addressed in this work. First, we have
not yet considered anomaly detection on multivariate time series. Second, we focus
on subsequence-based anomaly detection but ignore point-based anomaly detection.
Finally, FastUTS-AD can only work well on large datasets. We will continue our efforts
in future work to overcome these limitations.

Abbreviations
TSAD Time series anomaly detection
UTS-AD Univariate time series anomaly detection
FastUTS-AD The framework we propose in this research
UTS Univariate time series
MTS Multivariate time series
D A univariate time series
l The size (length) of a sliding window on a UTS
tstep The time step for generating sliding windows
W The sliding windows generated from a UTS D
wi A sliding window in W, wi ∈ W

W∗
D The smallest training sliding windows found by FastUTS-AD

A An algorithm for UTS-AD
nsw The number of sampled sliding windows
n∗sw The minimal number of sampled sliding windows
Accinc The increased accuracy
MCT Multi-step continual training strategy
Accori The model accuracy trained by the original sliding windows
Accfast The model accuracy trained by FastUTS-AD
Tori The training time on the original sliding windows
Tfast The training time by the FastUTS-AD
Tdp The time for data processing
Tredu The time reduction by the FastUTS-AD
α The stop threshold of the MCT
sgap The sampling gap of the MCT

Author contributions
Conceptualization, HL and WS; investigation, WS; methodology, WS; administration, HL; software, WS; supervision, HL,
QL, MC, XZ, and YW; validation, HL, YW, and QL; visualization, WS and QL; analysis, WS and QL; writing—original draft, WS;
writing-review and editing, HL and YW. All authors have read and agreed to the published version of the manuscript.

Funding
The National Natural Science Foundation of China (No. 61562010), National Key Research and Development Program
of China (No. 2023YFC3341205), and the Research Projects of the Science and Technology Plan of Guizhou Province
(Nos. [2021] 449, [2021] 261, [2023] 010, [2023] 276, and [2023] 338) funded this work.

Availability of data and materials
In this work, we used eight publicly available datasets and nine popular algorithms to validate our proposed framework.
The datasets are available at https:// www. theda tum. org/ datas ets/ TSB- UAD- Public. zip. The algorithms used in this study
are modified from public algorithms, which are available at https:// github. com/ TheDa tumOrg/ TSB- UAD and https://
github. com/ timee val/ timee val- algor ithms.

Code availability
The source code will be available upon publication.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals performed by any authors.

https://www.thedatum.org/datasets/TSB-UAD-Public.zip
https://github.com/TheDatumOrg/TSB-UAD
https://github.com/timeeval/timeeval-algorithms
https://github.com/timeeval/timeeval-algorithms

Page 29 of 31Sun et al. Journal of Big Data (2024) 11:83

Consent for publication
I hereby give my consent to publish the research article. I confirm that all authors have agreed to the publication. I
understand that the article will be made publicly available.

Competing interests
The authors declare that they have no conflict of interest.

Received: 23 November 2023 Accepted: 31 May 2024

References
 1. Agarwal PK, Har-Peled S, Varadarajan KR. Geometric approximation via coresets. Comb Comput Geom.

2005;52(1):1–30.
 2. Akyildiz IF, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks. IEEE Commun Mag. 2002;40(8):102–14.

https:// doi. org/ 10. 1109/ MCOM. 2002. 10244 22.
 3. Al-Shedivat M, Li L, Xing EP, et al (2021) On data efficiency of meta-learning. In: Proceedings of the 24th International

Conference on Artificial Intelligence and Statistics, pp 1369–1377, http:// proce edings. mlr. press/ v130/ al- shedi vat21a.
html

 4. Amihud Y. Illiquidity and stock returns: cross-section and time-series effects. J Financial Markets. 2002;5(1):31–56.
https:// doi. org/ 10. 1016/ S1386- 4181(01) 00024-6.

 5. An J, Cho S. Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture IE.
2015;2(1):1–18.

 6. Bachlin M, Plotnik M, Roggen D, et al. Wearable assistant for parkinson’s disease patients with the freezing of gait
symptom. IEEE Trans Inf Technol Biomed. 2009;14(2):436–46. https:// doi. org/ 10. 1109/ TITB. 2009. 20361 65.

 7. Barnett V, Lewis T. Outliers in statistical data. New York: Wiley; 1994.
 8. Boniol P, Linardi M, Roncallo F, et al. Unsupervised and scalable subsequence anomaly detection in large data series.

VLDB J. 2021;30(6):909–31. https:// doi. org/ 10. 1007/ s00778- 021- 00655-8.
 9. Boniol P, Paparrizos J, Kang Y, et al. Theseus: navigating the labyrinth of time-series anomaly detection. Proc VLDB

Endow 2022;15(12):3702–05.
 10. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324.
 11. Breunig MM, Kriegel HP, Ng RT, et al. LOF: Identifying density-based local outliers. In: Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, pp 93–104, 2000; https:// doi. org/ 10. 1145/ 342009.
335388

 12. Challenge A (2018) Kpi anomaly detection competition. https:// compe tition. aiops- chall enge. com/ home/ compe
tition/ 14844 52272 20003 2281. Accessed 7 Nov 2023

 13. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41(3):1–58. https:// doi. org/
10. 1145/ 15418 80. 15418 82

 14. Chatterjee A, Ahmed BS. IoT anomaly detection methods and applications: a survey. Internet of Things. 2022;19:
100568. https:// doi. org/ 10. 1016/j. iot. 2022. 100568.

 15. Chen W, Xu H, Li Z, et al. Unsupervised anomaly detection for intricate kpis via adversarial training of VAE. In: IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications; 2019, p. 1891–1899

 16. Cheng H, Tan PN, Potter C, et al. Detection and characterization of anomalies in multivariate time series. In: Proceed-
ings of the 2009 SIAM International Conference on Data Mining (SDM), pp 413–424; 2009. https:// doi. org/ 10. 1137/1.
97816 11972 795. 36

 17. Cook AA, Misirli G, Fan Z. Anomaly detection for iot time-series data: A survey. IEEE Internet Things J. 2020;7(7):6481–
94. https:// doi. org/ 10. 1109/ JIOT. 2019. 29581 85.

 18. Darban ZZ, Webb GI, Pan S, et al (2022) Deep learning for time series anomaly detection: a survey. CoRR
abs/2211.05244. https:// doi. org/ 10. 48550/ arXiv. 2211. 05244

 19. Davis J, Goadrich M. The relationship between precision-recall and ROC curves. In: Proceedings of the Twenty-Third
International Conference on Machine Learning, 2006, pp 233–240, https:// doi. org/ 10. 1145/ 11438 44. 11438 74

 20. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74. https:// doi. org/ 10. 1016/J.
PATREC. 2005. 10. 010.

 21. Gao J, Song X, Wen Q, et al. Robusttad: robust time series anomaly detection via decomposition and convolutional
neural networks. CoRR abs/2002.09545. 2020; https:// doi. org/ 10. 48550/ arXiv. 2002. 09545.

 22. Goldstein M, Dengel A. Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm. In:
Poster and Demo Track of the 35th German Conference on Artificial Intelligence (KI-2012), 2012, pp 59–63.

 23. Greenwald SD, Patil RS, Mark RG. Improved detection and classification of arrhythmias in noise-corrupted electrocar-
diograms using contextual information. In: [1990] Proceedings Computers in Cardiology; 1990, p. 461–464. https://
doi. org/ 10. 1109/ CIC. 1990. 144257.

 24. de Haan P, Löwe S. Contrastive predictive coding for anomaly detection. CoRR abs/2107.07820. 2021. https://arxiv.
org/abs/2107.07820.

 25. Hlynsson HD, Escalante-B. AN, Wiskott L. Measuring the data efficiency of deep learning methods. In: Proceedings of
the 8th International Conference on Pattern Recognition Applications and Methods (ICPRAM) - Volume 1, 2019, pp
691–698, https:// doi. org/ 10. 5220/ 00074 56306 910698

 26. Jubran I, Maalouf A, Feldman D. Overview of accurate coresets. WIREs Data Mining and Knowl Discov. 2021;11(6):
e1429. https:// doi. org/ 10. 1002/ widm. 1429.

 27. Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for neural language models. 2020; CoRR abs/2001.08361.
https:// doi. org/ 10. 48550/ arXiv. 2001. 08361

https://doi.org/10.1109/MCOM.2002.1024422
http://proceedings.mlr.press/v130/al-shedivat21a.html
http://proceedings.mlr.press/v130/al-shedivat21a.html
https://doi.org/10.1016/S1386-4181(01)00024-6
https://doi.org/10.1109/TITB.2009.2036165
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://competition.aiops-challenge.com/home/competition/1484452272200032281
https://competition.aiops-challenge.com/home/competition/1484452272200032281
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.iot.2022.100568
https://doi.org/10.1137/1.9781611972795.36
https://doi.org/10.1137/1.9781611972795.36
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.48550/arXiv.2211.05244
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1016/J.PATREC.2005.10.010
https://doi.org/10.1016/J.PATREC.2005.10.010
https://doi.org/10.48550/arXiv.2002.09545
https://doi.org/10.1109/CIC.1990.144257
https://doi.org/10.1109/CIC.1990.144257
https://doi.org/10.5220/0007456306910698
https://doi.org/10.1002/widm.1429
https://doi.org/10.48550/arXiv.2001.08361

Page 30 of 31Sun et al. Journal of Big Data (2024) 11:83

 28. Kaushik S, Choudhury A, Sheron PK, et al. AI in healthcare: Time-series forecasting using statistical, neural, and
ensemble architectures. Front Big Data. 2020;3:4. https:// doi. org/ 10. 3389/ fdata. 2020. 00004.

 29. Kingma DP, Welling M. Auto-encoding variational bayes. In: 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, arXiv: 1312. 6114

 30. Laptev N, Amizadeh S, Billawala Y (2015) S5-a labeled anomaly detection dataset, version 1.0 (16m). 2015. https://
websc ope. sandb ox. yahoo. com/ catal og. php

 31. Lehnertz K, Elger CE. Can epileptic seizures be predicted? evidence from nonlinear time series analysis of brain
electrical activity. Phys Rev Lett. 1998;80(22):5019. https:// doi. org/ 10. 1103/ PhysR evLett. 80. 5019.

 32. Li Y, Long PM, Srinivasan A. Improved bounds on the sample complexity of learning. J Comput Syst Sci.
2001;62(3):516–27. https:// doi. org/ 10. 1006/ JCSS. 2000. 1741.

 33. Liu D, Zhao Y, Xu H, et al. Opprentice: towards practical and automatic anomaly detection through machine learn-
ing. In: Proceedings of the 2015 ACM Internet Measurement Conference, 2015, pp 211–224, https:// doi. org/ 10.
1145/ 28156 75. 28156 79

 34. Liu F, Zhou X, Cao J, et al. Anomaly detection in quasi-periodic time series based on automatic data segmentation
and attentional LSTM-CNN. IEEE Trans Knowl Data Eng. 2022;34(6):2626–40. https:// doi. org/ 10. 1109/ TKDE. 2020.
30148 06.

 35. Liu FT, Ting KM, Zhou Z. Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, 2008, pp
413–422, https:// doi. org/ 10. 1109/ ICDM. 2008. 17

 36. Ma J, Sun L, Wang H, et al. Supervised anomaly detection in uncertain pseudo-periodic data streams. ACM Trans
Internet Technol (TOIT). 2016;16(1):1–20.

 37. Malhotra P, Vig L, Shroff G, et al. Long short term memory networks for anomaly detection in time series. In: 23rd
European Symposium on Artificial Neural Networks, ESANN 2015, Bruges, Belgium, April 22–24, 2015, pp 89–94,
https:// www. esann. org/ sites/ defau lt/ files/ proce edings/ legacy/ es2015- 56. pdf

 38. Mayeza CA, Munyeka W. The socialization of first entering students: an exploratory study at south african university.
Int J Educ Excell. 2021;7(1):99–115.

 39. Michelucci U (2022) An introduction to autoencoders. arXiv preprint arXiv: 2201. 03898
 40. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.

https:// doi. org/ 10. 1109/ 51. 932724.
 41. Moon J, Yu J, Sohn K. An ensemble approach to anomaly detection using high- and low-variance principal compo-

nents. Comput Electr Eng. 2022;99: 107773.
 42. Munir M, Siddiqui SA, Dengel A, et al. DeepAnT: a deep learning approach for unsupervised anomaly detection in

time series. IEEE Access. 2019;7:1991–2005.
 43. Paparrizos J, Boniol P, Palpanas T, et al. Volume under the surface: a new accuracy evaluation measure for time-series

anomaly detection. Proc VLDB Endow. 2022;15(11):2774–87.
 44. Paparrizos J, Kang Y, Boniol P, et al. TSB-UAD: An end-to-end benchmark suite for univariate time-series anomaly

detection. Proc VLDB Endow. 2022;15(8):1697–711. https:// doi. org/ 10. 14778/ 35293 37. 35293 54.
 45. Roggen D, Calatroni A, Rossi M, et al. Collecting complex activity datasets in highly rich networked sensor environ-

ments. In: Seventh International Conference on Networked Sensing Systems (INSS), 2010, pp 233–240, https:// doi.
org/ 10. 1109/ INSS. 2010. 55734 62

 46. Ros F, Guillaume S. Sampling techniques for supervised or unsupervised tasks. Springer. 2020. https:// doi. org/ 10.
1007/ 978-3- 030- 29349-9.

 47. Sakurada M, Yairi T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceed-
ings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, pp. 4–11.

 48. Schmidl S, Wenig P, Papenbrock T. Anomaly detection in time series: a comprehensive evaluation. Proc VLDB Endow.
2022;15(9):1779–97. https:// doi. org/ 10. 14778/ 35385 98. 35386 02.

 49. Schölkopf B, Williamson RC, Smola A, et al. Support vector method for novelty detection. Adv Neural Inf Process
Syst. 1999;12:582–588.

 50. Su Y, Zhao Y, Niu C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural
network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, 2019, pp. 2828–2837.

 51. Sylligardos E, Boniol P, Paparrizos J, et al. Choose wisely: an extensive evaluation of model selection for anomaly
detection in time series. Proc VLDB Endow. 2023;16(11):3418–32.

 52. Tatbul N, Lee TJ, Zdonik S, et al. Precision and recall for time series. Adv Neural Inf Process Syst. 2018:31.
 53. Thill M, Konen W, B ̈ack T (2020) Time series encodings with temporal convolu- tional networks. In: Bioinspired opti-

mization methods and their applications - 9th international conference, BIOMA 2020, Brussels, Belgium, November
19–20, 2020, Proceedings, pp 161–173.

 54. Van NT, Thinh TN, et al (2017) An anomaly-based network intrusion detection system using deep learning. In: 2017
international conference on system science and engineering (ICSSE), IEEE, pp 210–214

 55. Wagner D, Michels T, Schulz FCF, et al. Timesead: benchmarking deep multivariate time-series anomaly detection.
Trans Mach Learn Res. 2023. https:// openr eview. net/ forum? id= iMmsC I0JsS.

 56. Wang R, Nie F, Wang Z, et al. Multiple features and isolation forest-based fast anomaly detector for hyperspectral
imagery. IEEE Tran Geosci Remote Sens. 2020;58(9):6664–76. https:// doi. org/ 10. 1109/ TGRS. 2020. 29784 91.

 57. Wang R, Liu C, Mou X, et al. Deep contrastive one-class time series anomaly detection. In: Proceedings of the 2023
SIAM International Conference on Data Mining (SDM), pp 694–702, 2023;https:// doi. org/ 10. 1137/1. 97816 11977 653.
ch78.

 58. Woike M, Abdul-Aziz A, Clem M. Structural health monitoring on turbine engines using microwave blade tip clear-
ance sensors. In: Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2014. SPIE, p 90620L,
2014; https:// doi. org/ 10. 1117/ 12. 20449 67.

 59. Xu H, Chen W, Zhao N, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web
applications. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, 2018, pp. 187–196

https://doi.org/10.3389/fdata.2020.00004
http://arxiv.org/abs/1312.6114
https://webscope.sandbox.yahoo.com/catalog.php
https://webscope.sandbox.yahoo.com/catalog.php
https://doi.org/10.1103/PhysRevLett.80.5019
https://doi.org/10.1006/JCSS.2000.1741
https://doi.org/10.1145/2815675.2815679
https://doi.org/10.1145/2815675.2815679
https://doi.org/10.1109/TKDE.2020.3014806
https://doi.org/10.1109/TKDE.2020.3014806
https://doi.org/10.1109/ICDM.2008.17
https://www.esann.org/sites/default/files/proceedings/legacy/es2015-56.pdf
http://arxiv.org/abs/2201.03898
https://doi.org/10.1109/51.932724
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.1109/INSS.2010.5573462
https://doi.org/10.1109/INSS.2010.5573462
https://doi.org/10.1007/978-3-030-29349-9
https://doi.org/10.1007/978-3-030-29349-9
https://doi.org/10.14778/3538598.3538602
https://openreview.net/forum?id=iMmsCI0JsS
https://doi.org/10.1109/TGRS.2020.2978491
https://doi.org/10.1137/1.9781611977653.ch78
https://doi.org/10.1137/1.9781611977653.ch78
https://doi.org/10.1117/12.2044967

Page 31 of 31Sun et al. Journal of Big Data (2024) 11:83

 60. Yao Y, Ma J, Ye Y. Regularizing autoencoders with wavelet transform for sequence anomaly detection. Pattern Recog-
nit. 2023;134: 109084.

 61. Yuan Y, Yu ZL, Gu Z, et al. A novel multi-step q-learning method to improve data efficiency for deep reinforcement
learning. Knowl Based Syst. 2019;175:107–17. https:// doi. org/ 10. 1016/j. knosys. 2019. 03. 018.

 62. Zhang W, Yang Z, Wang Y, et al. Grain: Improving data efficiency of graph neural networks via diversified influence
maximization. Proc VLDB Endow. 2021;14(11):2473–82. https:// doi. org/ 10. 14778/ 34762 49. 34762 95.

 63. Zhao Y, Nasrullah Z, Li Z. Pyod: a python toolbox for scalable outlier detection. J Mach Learn Res. 2019;20(96):1–7.
 64. Zhong Z, Fan Q, Zhang J, et al (2023) A survey of time series anomaly detection methods in the AIOps domain.

CoRR abs/2308.00393. https:// doi. org/ 10. 48550/ arXiv. 2308. 00393
 65. Zong B, Song Q, Min MR, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection.

In: Conference Track Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018.
https:// openr eview. net/ forum? id= BJJLH bb0-

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.knosys.2019.03.018
https://doi.org/10.14778/3476249.3476295
https://doi.org/10.48550/arXiv.2308.00393
https://openreview.net/forum?id=BJJLHbb0-

	On data efficiency of univariate time series anomaly detection models
	Abstract
	Introduction
	Related work
	Univariate time series anomaly detection
	Unsupervised UTS-AD methods
	Semi-supervised UTS-AD methods
	Supervised UTS-AD methods

	Data efficiency of ML models

	Background
	Univariate time series
	Sliding window
	Range-based anomaly detection
	Problem formulation

	Experimental observations on data efficiency of UTS-AD methods
	Review of UTS-AD methods
	Local outlier factor (LOF)
	Histogram-based outlier score (HBOS)
	Isolation Forest (IForest)
	One-class support vector machine (OCSVM)
	AutoEncoder (AE)
	Variational auto-encoder (VAE)
	Deep autoencoding Gaussian mixture model (DAGMM)
	LSTM-AD
	DeepAnT

	Accuracy measures
	Precision, recall, and F-score
	Range-precision, range-recall, and range-F-Score (RF)
	AUC ROC
	AUC PR
	VUS ROC and VUS PR

	Key observations

	The FastUTS-AD framework
	Overview of FastUTS-AD
	Input of FastUTS-AD
	Data processing
	Data sampling
	Model training and performance collecting
	Heuristic MCT method

	Experimental evaluation for FastUTS-AD
	Experimental setup
	Overall results
	Effects of sampling methods and gaps
	Effect of stop threshold
	Effect of data size

	Conclusion
	References

