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Abstract 

Serverless computing has gained significant popularity due to its scalability, cost‑
effectiveness, and ease of deployment. With the exponential growth of data, organiza‑
tions face the challenge of efficiently processing and analyzing vast amounts of data 
in a serverless environment. Data pipelines play a crucial role in managing and trans‑
forming data within serverless architectures. This paper provides a taxonomy of data 
pipeline approaches in serverless computing. Classification is based on architectural 
features, data processing techniques, and workflow orchestration mechanisms, these 
approaches are categorized into three primary methods: heuristic‑based approach, 
Machine learning‑based approach, and framework‑based approach. Furthermore, 
a systematic review of existing data pipeline frameworks and tools is provided, encom‑
passing their strengths, limitations, and real‑world use cases. The advantages and dis‑
advantages of each approach, also the challenges and performance metrics that influ‑
ence their effectuality have been examined. Every data pipeline approach has certain 
advantages and disadvantages, whether it is framework‑based, heuristic‑based, 
or machine learning‑based. Each approach is suitable for specific use cases. Hence, it 
is crucial assess the trade‑offs between complexity, performance, cost, and scalability, 
while selecting a data pipeline approach. In the end, the paper highlights a number 
of open issues and future investigations directions for data pipeline in the server‑
less computing, which involve scalability, fault tolerance, data real time processing, 
data workflow orchestration, function state management with performance and cost 
in the serverless computing environments.

Keywords: Data pipeline, Data parallelism, Serverless computing, Function as a 
service, Big data, Data analysis, Data stream processing, Cloud computing

Introduction
Serverless computing, as a new form of cloud computing execution paradigm, has gained 
popularity. Such that, the cloud provider takes care of running the server and handles 
the allocation of resources in a dynamic manner. The serverless does not mean not hav-
ing a server; indeed, it means an architecture in which the control and management of 
the server is the responsibility of the cloud service providers [1–4]. The serverless com-
puting platforms offer the advantages of automatic scaling, on-demand computational 
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resources, high availability, fault tolerance, and cost-effective billing based on actual 
compute time. These platforms require minimal setup and configuration, making it 
easier for developers to focus on their applications. Serverless computing has gained 
immense popularity due to its ability to simplify the deployment and management of 
applications.

Research motivation

With the increasing adoption of serverless architectures, the need for efficient data pro-
cessing and analysis has become paramount. This has led to the development of vari-
ous data pipeline approaches in serverless computing, aimed at enabling seamless data 
integration, transformation, and delivery. In data-driven era, efficient and reliable data 
pipelines are crucial for handling the seamless flow of information from diverse sources 
to target systems. And provides a compelling approach to creating efficient, scalable, and 
cost-effective data processing workflows. Data pipelines in serverless computing orches-
trate the flow of data through various processing stages without the need to manage 
servers directly. Serverless is presented for linear algebra problems [5], matrix multipli-
cation [6], large-scale optimization [7] and distributed computing [8]. Serverless meth-
odologies have been also applied in the fields of DNA and RNA computing [9, 10], as 
well as in the development of on-demand high-performance serverless infrastructures 
and approaches for biomedical computing [11].

Our contribution

This study aims to offer insights into the current of data pipeline approaches in server-
less computing through a taxonomy and review. This review guides developers and 
researchers in the selection of data pipeline approaches so that they can make decisions 
based on their specific use. The paper provides a thorough examination of existing data 
pipeline approaches in the realm of serverless computing, assessing their advantages and 
disadvantages, and presenting potential avenues for future directions. The review’s main 
contributions can be described as follows:

• Offering a comprehensive overview of the current state in data pipeline approaches 
for serverless computing.

• Introducing a taxonomy that categorizes and defines the various types of approaches 
available, aiding readers in understanding and selecting the most appropriate 
approach for their specific requirements.

• Providing a review of the latest research advancements in this field, and updating 
readers with the latest developments.

• Discussing open issues and suggesting future research directions, encouraging 
researchers to explore and enhance data pipeline approaches in the context of server-
less computing.

Organization of the paper

The structure of this paper is as follows: “Background” section provides an explanation 
of serverless computing concepts and data pipeline in the serverless context. “Related 
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works” section discusses related works and provides background information on server-
less computing. “Research methodology” section outlines the research methodology 
employed in the study of serverless computing. “Data pipeline approaches in server-
less computing” section examines various data pipeline approaches within serverless 
computing. In “Discussion” section, discussions and comparisons of the approaches are 
presented. “Open issues and challenges” section highlights previously unexplored data 
pipeline issues in serverless computing, introducing them as new challenges for future 
exploration. Finally, “Conclusions” section presents the conclusion of the paper.

Background
In this section, we explain a conception of serverless computing and data pipeline in 
serverless computing.

Serverless computing

Serverless computing allows developers to focus on writing code without the need to 
manage or provision servers, hence the term “serverless”. This approach providing a more 
efficient and scalable model for running applications. Due to its simple management and 
lightweight nature, serverless computing has gained popularity as an execution model 
in cloud computing. Within this model, developers can use high-level programming 
languages such as Java or Python to write functions. They just need to configure some 
simple parameters and then upload functions to a serverless platform. Then, the appli-
cations are broken down into smaller, independent functions or microservices. These 
functions are event-driven and executed in ephemeral containers that are automatically 
provisioned and managed by the cloud provider. Each function performs a specific task 
and can be triggered by events, such as HTTP requests, database updates, or scheduled 
events. These functions can be invoked through API calls or HTTP requests to perform 
specific computational tasks. Unlike traditional server-based computing models, devel-
opers leveraging serverless computing are relieved from the burden of managing infra-
structure resources, as the platforms handle these operational details on their behalf.

Serverless is used to describe the architecture of applications that deploy their ser-
vices entirely on the infrastructure of a cloud service provider. In this architecture, the 
management of services is completely in charge of service providers. Serverless com-
panies have developed third-party applications and services that programmers can use 
(from authentication services to e-mail services to image processing services). These 
services are called Backend-as-a-Service (BaaS). Another application that can be imag-
ined for serverless computing is that a serverless program is a program that, in order to 
implement the logic of the program, we must break it into smaller services and execute 
functions in a stateless state. This computing feature in serverless architecture is called 
Function-as-a-Service (FaaS).

Serverless can be called an execution model in cloud computing that is implemented 
in BaaS and FaaS formats. Serverless computing offers developers a simplified approach 
to deploying code, leveraging high-level abstractions like functions, also known as FaaS, 
and can be effortlessly deployed without the need for server management [12].
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The features of serverless computing are listed below:

• Client transparency: The execution environment is kept hidden from the client. In 
the serverless model, the client does not need to know the details of the program 
execution, such as the code storage environment, information about the virtual 
machine, the container, and the operating system that executes the code. In terms of 
openness, serverless architecture gives little information to customers.

• Function-centric: Basic elements in serverless architecture are functions, whose 
resources need to be hidden from the service provider.

• Auto-scaling: The provider must have enabled autoscaling for its services. Resources 
can be increased upon request.

• Pay-per-use pricing: Serverless services operate on a pay-as-you-go or pay-per-use 
pricing model. Customers are billed based on the actual usage of resources or the 
duration of execution. Customers only pay for the resources consumed during the 
execution of their code, resulting in cost efficiency.

• Compliance with the service level agreement (SLA): The cloud service provider, like 
all other cloud services, is required to comply with the service level agreement (Ser-
vice Level Agreement).

Due to its scalability, high elasticity and cost-effective, serverless computing has been 
widely utilized in various data science applications, including database analysis [13–15] 
and model training [16–18].

Data pipeline in serverless computing

Data pipelines play a crucial role in contemporary data-driven environments, serving 
as the foundation for processing, analysis, and decision-making activities. These pipe-
lines facilitate the seamless and dependable movement of data from diverse sources to 
designated systems, enabling efficient data processing. In other words, a data pipeline 
refers to a series of processes that extract, transform, and load (ETL) data from various 
sources to a target destination. It involves steps such as data ingestion, data transforma-
tion, data enrichment, and data loading. In a serverless environment, data pipelines can 
be designed as a series of functions triggered by events like new data arriving in a storage 
system. Each function performs a specific processing task and can pass the processed 
data to the next function. This approach provides flexibility and scalability as functions 
can be added or removed based on workload and processing requirements.

Traditionally, data pipelines were built using on-premises or cloud-based serv-
ers, requiring manual provisioning, scaling, and management. But, with the advent of 
serverless computing, data pipeline management has become more streamlined and effi-
cient. By leveraging serverless architectures, data engineers can build and orchestrate 
data pipelines using managed services offered by cloud providers. This enables them 
to focus on business logic and data transformations rather than infrastructure mainte-
nance. A data pipeline typically comprises a sequence of stages or steps that collectively 
handle the extraction, transformation, and storage of data. There are two primary para-
digms commonly used to implement data pipelines: Extract, Transform, Load (ETL) and 
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Extract, Load, Transform (ELT) [19]. In a serverless data pipeline, each step of the ETL 
process can be implemented as a function, triggered by events or schedules. These func-
tions are executed in ephemeral compute environments, automatically provisioned and 
managed by the cloud provider.

Consequently, modern software engineering practices like DevOps [20] and Continu-
ous Integration Continuous Delivery (CI/CD) pipelines [21] have embraced serverless 
computing to accelerate the development of cloud-native applications. These method-
ologies endorse the decomposition of an application into multiple functions that are 
invoked periodically or in response to events. Each function invocation triggers the exe-
cution of one or more stateless microservices in the background [22].

Serverless technologies used in data pipeline management include AWS Lambda, 
Azure Functions, Google Cloud Functions, and Apache OpenWhisk. These services pro-
vide the necessary infrastructure to build, deploy, and manage serverless functions.

Related works
This section provides a study of review articles on data pipeline approaches in serverless 
computing.

Recently, Werner et al. [23] have conducted a study and discusses application-platform 
co-design, focusing on serverless data processing (SDP). It analyzes the state-of-the-art 
of FaaS platforms, highlighting differences and ongoing platform (re-)design processes. 
The article emphasizes the need for specialized serverless platforms and addresses chal-
lenges in application design. It proposes the creation of new SDP platforms and stresses 
the importance of engineering methods and tools for guiding application-platform co-
design. But the review article appears to have the following limitations:

• The advantages and disadvantages of the approaches are not presented in a tabulated 
format, limiting the clarity of the findings.

• The method used to select the articles has not been specified and no specific classifi-
cation has been done.

• Performance improvements are not shown in a chart, and the case studies and per-
formance metrics have not been specified.

Garcia-Lopez et al. [24] have conducted a study and review the trade-offs and chal-
lenges of serverless data analytics. It highlights the limitations of current serverless com-
puting models in supporting various types of analytics workloads. The article explores 
three fundamental trade-offs: disaggregation, isolation, and simple scheduling, and how 
relaxing these trade-offs can improve computing performance but may compromise 
aspects such as elasticity, security, and sub-second activations. The article suggests that a 
hybrid approach combining serverless and serverful components, known as ServerMix, 
may be necessary for efficient data analytics applications. But the key limitations of the 
reviewed article appear to be:

• The method used for selecting the articles and the specific classification criteria are 
not mentioned, which could have enhanced the thoroughness and transparency of 
the review.
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• Performance improvements are not demonstrated through charts, and the perfor-
mance metrics as well as the case studies have not been specified.

Wu et al. [25] have investigated the practicality of using serverless computing as a 
primary platform for model serving in data science applications. The authors conduct 
a performance and cost comparison between serverless and other model serving sys-
tems on Amazon Web Services and Google Cloud Platform. The findings reveal that 
serverless outperforms several cloud-based alternatives and can even exhibit superior 
performance compared to GPU-based systems under specific conditions. The article 
further delves into the design considerations for serverless model serving and offers 
recommendations to data scientists on optimizing the utilization of serverless tech-
nology. However, limitations of the reviewed article are:

• The advantages and disadvantages are not presented in a clear, tabulated format. 
That could have improved the comprehensiveness and clarity of the review.

• The method used for selecting the articles and the specific classification criteria 
are not mentioned.

Cordingly et  al. [26] have performed an analysis and explored the impact of pro-
gramming language selection on serverless data processing pipelines. The authors 
conducted experiments using Java, Python, Go, and Node.js and found that different 
languages had varying runtime speeds. They highlight the need to carefully consider 
programming language choice to optimize performance and cost efficiency in server-
less applications. However, main flaws in the reviewed article are:

• A systematic approach was not used to select the reviewed articles, and the 
method of selecting the articles was not clearly defined.

• The advantages and disadvantages are not presented in a clear, tabulated format. 
That could have improved the comprehensiveness and clarity of the review.

Grzesik et  al. [27] have performed an analysis and explored the use of serverless 
computing in bioinformatics and omics data analysis. It discusses how serverless 
computing simplifies resource management and enables scalable and parallel execu-
tion. The paper emphasizes the application of serverless solutions in integrating and 
analyzing multiple omics data sources, particularly in relation to the COVID-19 pan-
demic. But the reviewed article has the following flaws:

• The articles are not classified and the method of selecting the articles is not speci-
fied.

• Performance improvements are not demonstrated through charts or other visualiza-
tions.

Patel et al. [28] have introduced the DSServe, a serverless framework for data science 
workflows. It addresses the fluctuating computational needs and bursty nature of tasks 
in these workflows. By leveraging serverless computing, DSServe enables on-demand 
scalability and efficient execution of various steps, including automated model selection, 
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in popular tools like Jupyter Notebooks. The framework optimizes resource utilization 
and aims to enhance the efficiency of data science projects. But the reviewed article has 
the following flaws:

• The advantages and disadvantages are not presented in a clear, tabulated format. That 
could have improved the comprehensiveness and clarity of the review.

• The articles are not classified and the method of selecting the articles is not specified.
• Performance improvements are not demonstrated through charts or other visualiza-

tions. And case studies and performance metrics are not stated.

Ihor et al. [29] have explored the use of serverless computing for data processing in 
open learning and research environments. It proposes a hybrid serverless cloud archi-
tecture and presents a case study on wave file processing. The article discusses the 
challenges and opportunities of integrating serverless components and envisions a 
cloud-based learning and research environment that enhances education and research 
accessibility. But the reviewed article has the following flaws:

• The articles are not classified and the method of selecting the articles is not specified.
• Performance improvements are not demonstrated through charts or other visualiza-

tions.

Alonso et al. [30] have discussed the concept of serverless computing and its poten-
tial benefits for data analytics. It explores the perspectives of users, cloud providers, 
and researchers on serverless platforms. The article highlights the limitations of current 
serverless offerings for data analytics and proposes a research agenda to improve the 
performance and efficiency of serverless computing, particularly in the context of data 
analytics. But the reviewed article has the following flaws:

• Performance improvements are not demonstrated through charts or other visualiza-
tions. And case studies and performance metrics are not stated.

• A systematic approach was not used to select the reviewed articles, and the method 
of selecting the articles was not clearly defined.

Other papers in the field of data pipeline approaches in serverless computing are fully 
researched and studied [6, 13, 31–70].

Based on the conducted studies and investigations, efforts are being made to fix the 
weaknesses and shortcomings, and research and investigations are carried out in this 
direction.

• Current research papers do not provide a comprehensive classification or detailed 
comparison of different data pipeline approaches used in serverless computing envi-
ronments.

• Some of the existing reviews and studies have unclear organization and do not clearly 
specify the methodology used to select the reviewed research articles.
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• Some research papers do not accurately describe the methods or verification tech-
niques used to validate their proposed approaches or findings and lack sufficient 
specifications.

The main motivation for writing this paper is the importance of processing, analyzing 
and managing big data in serverless computing environments, which has attracted a lot 
of attention in recent years. Due to the relevance of this issue, there is a need to analyze 
and review the various data pipeline approaches used in serverless processing. Also, it is 
tried to provide future research directions in this field.

Research methodology
Research articles in this section were obtained through a systematic literature review 
(SLR) process that included searching for relevant keywords, titles, abstracts, and 
publications.

Keyword search

The validated articles related to data pipelines in serverless computing were searched 
in various online databases. The online databases utilized for conducting the search 
included:

• IEEE (http:// ieeex plore. ieee. org/)
• Springer (http:// www. sprin ger. com)
• Elsevier (http:// www. scien cedir ect. com)
• ACM (http:// dl. acm. org/)
• arXiv (https:// www. arxiv. org)
• Oxford (https:// acade mic. oup. com)
• Usenix (https:// www. usenix. org)
• MDPI (https:// www. mdpi. com)
• CEUR (http:// www. ceur- ws. org)
• ETH (http:// www. resea rch- colle ction. ethz. ch)

In the database, the following keywords are searched:

• (“Data pipeline” OR “Data stream processing” OR “Data science”) AND (“Serverless”) 
OR (“Serverless computing”) OR (“Serverless data”) OR (“Big data”) OR (“Function-
as-a-Service”) OR (“FaaS”)).

Question formalization

The goal of this study is to pinpoint the essential elements and techniques highlighted 
in a range of articles concerning serverless computing and data pipeline strategies. It 
also examines the primary themes and challenges linked to data pipeline approaches 
within the realm of serverless computing. To fulfill the main aim of the study, which is 
to thoroughly explore data pipeline strategies in serverless computing, a series of queries 
regarding the subject should be addressed.

http://ieeexplore.ieee.org/
http://www.springer.com
http://www.sciencedirect.com
http://dl.acm.org/
https://www.arxiv.org
https://academic.oup.com
https://www.usenix.org
https://www.mdpi.com
http://www.ceur-ws.org
http://www.research-collection.ethz.ch
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The following are the research technical questions:

TQ1: In serverless computing, what taxonomy is employed in data pipeline 
approaches? This query is addressed in “Discussion” section.
TQ2: What performance metrics are commonly used for data pipeline approaches in 
serverless computing? This question is discussed in “Discussion” section.
TQ3: Which case studies are utilized in data pipeline approaches within serverless 
computing? This question is discussed in “Discussion” section.
TQ4: What evaluation tools are employed for data pipeline approaches in serverless 
computing? This is explored in “Discussion” section.
TQ5: What are the advantage and disadvantage of data pipeline approaches in 
serverless computing? This is explored in “Discussion” section.
TQ6: What future research directions and open issues exist for data pipeline 
approaches in serverless computing? This is discussed in “Open issues and chal-
lenges” section.

Data analysis and papers selection

In the research conducted, both conference and journal articles were reviewed and 
analyzed. Figure 1 illustrates a total of 50 articles analyzed using the Systematic Liter-
ature Review (SLR) method, categorized by their publication year. The highest num-
ber of articles related to data pipeline approaches in serverless computing was found 
to be published in 2023.

Figure 2 displays the trend of published papers over time for select publishers [6, 13, 
23–70].

Figure 3 shows how the articles were selected and evaluated. The following guide-
lines and criteria are used to select articles:

• Only taken into account online articles published after 2017.
• The papers must have undergone review in the field of serverless data pipeline.
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• The qualitative aspect of the investigations is considered.

During the exclusion phase, thesis, books, and articles that do not meet the required 
standards of quality and fail to provide scientifically rigorous and valuable informa-
tion are excluded. During the elimination stage, the following principles and rules are 
applied to remove articles:

• Online articles from databases are examined and assessed.
• Articles not included in the ISI (International Scientific Indexing) are deleted.
• Articles that lacking undergone scientific and systematic review are eliminated.
• Articles not written in English are deleted.

Table 1 presents the Reference of the articles, their publication year, and the names of 
the publications. Only those papers that have been indexed in reputable publications are 
considered for examination and analysis.
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Table 1 Selected articles

No References Year Publisher Type

1 Related work [23] 2021 Springer Conference

2 Related work [24] 2021 Springer Conference

3 Related work [25] 2022 ACM Conference

4 Related work [26] 2020 IEEE Conference

5 Related work [27] 2022 Oxford Journal

6 Related work [28] 2022 IEEE Conference

7 Related work [29] 2023 CEUR Conference

8 Related work [30] 2023 CEUR Conference

9 Machine learning‑based [31] 2021 ACM Conference

10 Machine learning‑based [32] 2021 Elsevier Journal

11 Machine learning‑based [33] 2022 Springer Conference

12 Machine learning‑based [34] 2023 ACM Conference

13 Machine learning‑based [35] 2023 IEEE Journal

14 Machine learning‑based [36] 2020 IJSTR Journal

15 Machine learning‑based [37] 2019 Usenix Conference

16 Heuristic‑based [38] 2020 Elsevier Journal

17 Heuristic‑based [39] 2019 IEEE Conference

18 Heuristic‑based [6] 2018 IEEE Conference

19 Heuristic‑based [40] 2022 Elsevier Journal

20 Heuristic‑based [41] 2019 IEEE Conference

21 Heuristic‑based [42] 2023 ACM Conference

22 Heuristic‑based [43] 2023 IEEE Conference

23 Heuristic‑based [44] 2020 MDPI Journal

24 Heuristic‑based [45] 2021 Springer Conference

25 Heuristic‑based [46] 2023 IEEE Conference

26 Heuristic‑based [47] 2021 Frontiers Journal

27 Heuristic‑based [48] 2022 MDPI Journal

28 Heuristic‑based [49] 2023 Springer Journal

29 Heuristic‑based [50] 2023 CEUR Conference

30 Heuristic‑based [51] 2023 IEEE Conference

31 Framework‑based [52] 2024 Elsevier Journal

32 Framework‑based [53] 2022 Elsevier Journal

33 Framework‑based [13] 2020 ACM Conference

34 Framework‑based [54] 2023 Springer Journal

35 Framework‑based [55] 2021 ACM Conference

36 Framework‑based [56] 2023 arXiv Preprint

37 Framework‑based [57] 2023 arXiv Preprint

38 Framework‑based [58] 2023 ACM Conference

39 Framework‑based [59] 2023 arXiv Preprint

40 Framework‑based [60] 2023 ACM Conference

41 Framework‑based [61] 2023 ACM Conference

42 Framework‑based [62] 2018 ACM Conference

43 Framework‑based [63] 2023 CEUR Conference

44 Framework‑based [64] 2021 ETH Conference

45 Framework‑based [65] 2017 ACM Conference

46 Framework‑based [66] 2019 Elsevier Journal

47 Framework‑based [67] 2023 CEUR Conference

48 Framework‑based [68] 2021 IEEE/ACM Conference

49 Framework‑based [69] 2020 MDPI Journal
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Data pipeline approaches in serverless computing
In this section, according to the articles that have used the SLR method; a detailed 
review and evaluation of various approaches and techniques in serverless computing has 
been done. Data pipeline approaches in serverless computing reviewed and studied in 
selected articles are analyzed. These methods are classified into three main categories: 
heuristic-based, machine learning-based, and framework-based approaches. The taxon-
omy of data pipeline approaches categorizes the data pipeline approaches in serverless 
computing into three main types, as shown in Fig. 4. Besides, we provide a more detailed 
taxonomy in Fig. 5 and the selected papers are shown in this classification:

• Machine Learning-based mechanisms: These mechanisms employing predictive 
models or adaptive techniques to optimize pipeline performance [31–37]. In this 
study, we categorized the machine learning-based mechanisms into three classes, as 
following:

Table 1 (continued)

No References Year Publisher Type

50 Framework‑based [70] 2021 ACM Conference

Data pipeline
approaches 

Machine learning-
based

[31], [32], [33], [34],
[35], [36], [37]

Heuristic-based

[38], [39], [6] , [40], [41], 
[42], [43], [44], [45], [46], 
[47], [48], [49], [50], [51]

Framework-based

[52], [53], [13], [54], [55], 
[56], [57], [58], [59], [60], 
[61], [62], [63], [64], [65], 
[66], [67], [68], [69], [70] 

Fig. 4 Taxonomy of data pipeline approaches in serverless computing

Data pipeline 
approaches 

Machine 
learning-based

Predictive

[31, 34,
35,37]

Adaptive Unsupervised

Deep 
learning

[33,36]

Cluste
r

[32]

Heuristic-
based

Rule-
based

[38, 42,
48]

Threshold-
based

Expert 
system

[39, 6,
41, 43, 44,

46, 50]

Framewor
k-based

Serverless 
Data Pipeline 
Frameworks

Event-
driven

[52, 53, 13,
54, 69]

Workflow-
based

[56, 59, 61,
62, 63, 66,

67, 68]

Big Data 
Processing 

Frameworks

Batch 
processing

[55]

Stream 
processing

[60, 64, 70]

Fig. 5 A detailed taxonomy of data pipeline approaches in serverless computing



Page 13 of 42Shojaee Rad and Ghobaei‑Arani  Journal of Big Data           (2024) 11:82  

• Predictive: Utilizes machine learning models to predict and optimize pipeline per-
formance.

• Adaptive: Employs machine learning techniques to dynamically adapt the pipeline 
based on evolving data patterns.

• Unsupervised learning: Identify patterns and relationships in the data to automate 
pipeline tasks like data selection, feature engineering, or anomaly detection.

• Heuristic-based mechanisms: These mechanisms relied on predefined rules or 
thresholds to manage and orchestrate the data pipeline [6, 38–51]. In this work, we 
categorized the heuristic-based mechanisms into three classes, as following:

• Rule-based: Uses predefined rules or heuristics to manage and orchestrate the 
data pipeline.

• Threshold-based: Leverages thresholds or triggers to determine when to scale or 
modify the pipeline.

• Expert systems: Capture human expertise and decision-making processes into 
rules or models to automate specific pipeline tasks.

• Framework-based mechanisms: These mechanisms utilizing serverless data pipeline 
frameworks or big data processing frameworks to orchestrate the pipeline [13, 52–
70]. In this work, we categorized the framework-based mechanisms into two classes, 
as following:

• Serverless data pipeline frameworks

• Event-driven: Orchestrates the pipeline based on event triggers (e.g., AWS 
Lambda, Google Cloud Functions).

• Workflow-based: Provides a workflow engine to define and manage the pipe-
line (e.g., AWS Step Functions, Azure Durable Functions).

• Big data processing frameworks

• Batch processing: Leverages batch-oriented big data frameworks (e.g., Apache 
Spark, Apache Flink).

• Stream processing: Utilizes stream-oriented big data frameworks (e.g., Apache 
Kafka, Apache Storm).

Machine learning‑based approaches

This section describes the characteristics of the machine learning technique utilized for 
data pipeline strategies in serverless computing. Machine learning-based approaches 
in data pipelines in serverless computing involve incorporating machine learning algo-
rithms and techniques within the data processing and transformation stages of the pipe-
line. These approaches leverage serverless computing capabilities to perform machine 
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learning tasks efficiently and effectively. In the following, the studied articles in this field 
are evaluated and analyzed.

Overview on the machine learning‑based approaches

Nesen et  al. [31] have discusses the importance of extracting useful knowledge from 
large amounts of data and processing it in a fast and scalable manner. It proposes a 
framework for processing data from multiple modalities, such as text, video, and sen-
sor data, using serverless computing. Also highlights the application of this framework 
in public safety solutions to increase situational awareness. Although the article lacks 
specific implementation details and evaluation of the proposed framework for process-
ing multimodal data. It may have limitations such as possible latency issues and resource 
access restrictions.

Rausch et  al. [32] have introduced Skippy, a container scheduling system that opti-
mizes the placement of serverless edge functions. Skippy addresses limitations of exist-
ing serverless platforms in managing data-intensive applications on edge systems by 
considering factors like data proximity, compute capabilities, and edge/cloud locality. 
It improves task placement and enables operational goals to be met in edge computing 
scenarios. Although the proposed method requires manual fine-tuning of timing con-
straints. This approach may introduce limitations and inefficiencies in the scheduling 
process. It requires extensive operational data and expert knowledge, and may not scale 
well in dynamic edge environments.

León-Sandoval et al. [33] have discussed the use of big data and serverless architec-
ture to monitor and measure the emotional response of the Mexican population to the 
COVID-19 pandemic. The study utilizes a large dataset of public domain tweets Twit-
ter and applies sentiment analysis tools to analyze the changes in sentiment towards the 
pandemic, news cycles, and government policies. The article highlights the advantages 
and challenges of implementing serverless cloud-based architectures for large-scale nat-
ural language processing projects. Although social media data, such as Twitter, can be a 
valuable source, it still requires significant computing resources to process and analyze 
and can be expensive and time-consuming.

Anshuman et  al. [34] have introduced a system called Smartpick, which combines 
serverless (SL) and virtual machine (VM) resources to optimize cost and performance in 
data analytics systems. Smartpick uses machine learning prediction models to determine 
the optimal configuration of SL and VM instances based on workload characteristics. 
It also supports a mechanism called relay-instances to improve performance and offers 
a simple knob for applications to explore the tradeoff between cost and performance. 
Experimental results demonstrate significant cost reduction and efficient handling of 
workload dynamics with Smartpick. However, one disadvantage could be the complex-
ity involved in determining optimal configurations of serverless and virtual machine 
instances. Factors such as varying compute resource characteristics, workload predic-
tion, diverse cost-performance goals, and workload dynamics make this task challeng-
ing. While the Smartpick system utilizes machine learning techniques to address these 
challenges, accurately predicting and optimizing configurations may pose difficulties or 
limitations.
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Efterpi et al. [35] have discussed the use of serverless computing and Function-as-a-
Service (FaaS) to facilitate Machine Learning Functions-as-a-Service (MLFaaS). It pre-
sents an approach for creating composite services, or workflows, of ML tasks within a 
serverless architecture, allowing data scientists to focus on the complete data path func-
tions required for their analysis. Also, addresses the challenge of function selection and 
recommends an AI-based technique for optimizing the number of functions in a pipe-
line to improve performance. However, extending functions through attached containers 
to overcome serverless constraints may introduce additional complexity to the develop-
ment and deployment process. Besides, the introduction of extended containers may 
add overhead in terms of latency and overall execution time.

Rahman et al. [36] have discussed the use of serverless computing for big data analyt-
ics, focusing on a personalized recommendation system, and how serverless computing 
can provide a cost-effective and high-performance solution for processing and analyzing 
large amounts of data. The article proposes a serverless architecture using Amazon Web 
Services (AWS) and evaluates it using a real-world case study involving the Movielens 
dataset and Amazon Personalization Hierarchical Recurrent Neural Networks (HRNN) 
algorithm. However, disadvantage could be the complexity of designing and imple-
menting an effective architecture that ensures scalability, security, and cost efficiency. 
Additionally, AWS serverless does not have all the capabilities to create a data lake, and 
processing and analyzing data in the cloud can still be costly.

Bhattacharjee et al. [37] have introduced “Stratum”, a serverless framework designed 
for the lifecycle management of machine learning-based data analytics tasks. It addresses 
the challenges of ML model development and deployment by providing an end-to-end 
platform that can deploy, schedule, and dynamically manage various data analytics tools 
and services across the cloud, fog, and edge computing environments. Stratum aims to 
simplify ML development, enhance performance, and minimize costs associated with 
resource management. However, the complexity of deploying and managing ML models 
across cloud, fog, and edge resources may require a certain level of expertise with the 
framework.

Summary and discussion

According to reviewed studies, research papers propose approaches and systems of 
serverless computing in different domains, such as data processing, edge comput-
ing, sentiment analysis, data analytics, and machine learning. Some challenges include 
latency issues, resource access restrictions, manual fine-tuning, complexity in determin-
ing optimal configurations, and the introduction of additional complexity or overhead in 
the development and deployment process. Articles describe the advantages of serverless 
architectures, such as scalability, cost-effectiveness, and simple development. However, 
one repeated challenge is the complexity involved in determining optimal configura-
tions of serverless and virtual machine instances. Factors like workload characteristics, 
diverse cost-performance goals, and workload dynamics make this task challenging. 
While machine learning techniques can help address these challenges, accurately pre-
dicting and optimizing configurations may still pose difficulties. Another limitation is 
the need for extensive computing resources to process and analyze large datasets. While 
serverless architectures offer scalability, processing social media data, for example, can 
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still be expensive and time-consuming. Additionally, the complexity of designing and 
implementing effective architectures that ensure scalability, security, and cost efficiency 
remains a challenge.

Finally, Tables 2 and 3 provide a complete comparison of the main idea, advantages, 
and disadvantage, case study, performance metric, technique used, evaluation tool, for 
each paper.

Heuristic‑based approaches

This section describes on the characteristics associated with heuristic-based meth-
ods utilized for data pipeline approaches in serverless computing. Heuristic-based 
approaches in data pipelines in serverless computing involve using heuristics method 
or a novel approach developed by the researchers or rule-based methods to make deci-
sions and perform data processing and transformation tasks within the pipeline. These 
approaches leverage defined rules or algorithms to guide the data pipeline’s behavior and 
achieve specific objectives.

Table 2 Comparison of machine learning‑based data pipeline approaches

Article Main idea Advantage Disadvantage

[31] • Presenting a framework for 
processing data from multi‑
modal sources using a serverless 
computing approach

• Processing it in a fast and 
scalable
• Optimize cost

• Latency
• Resource access restrictions

[32] • Skippy
• Introducing a container sched‑
uling system for serverless edge 
computing

• Efficient edge resource utiliza‑
tion
• Cost optimization
• Minimizing execution time

• Complexity
• Expert knowledge requirement

[33] • Proposing a resilient and flex‑
ible system that utilizes big data 
and serverless architecture to 
track and measure the changes 
in sentiment

• Analyze a vast amount of data 
in a short period
• Availability of real‑time analysis

• High cost of acquiring emotional 
data
• Complexity of handling hetero‑
geneous data

[34] • Introducing Smartpick, a 
serverless‑enabled scalable data 
analytics system that combines 
the benefits of serverless (SL) 
and virtual machine (VM) com‑
pute resources

• Prediction accuracy
• Cost Reduction

• SL performance and cost 
(Smartpick aims to mitigate the 
performance and cost issues with 
SL, but SL may offer worse per‑
formance and be more expensive 
than VM)
• Complexity

[35] • Proposing an approach for 
facilitating the provision of 
Machine Learning Functions‑as‑
a‑Service (MLFaaS)

• Scalability
• Flexibility
• Abstraction and efficiency
• Quality‑of‑service (QoS)‑
Awareness

• Resource limitations
• Complexity for data analysts

[36] • Investigating the application of 
serverless computing in the field 
of big data analytics, particularly 
in a personalized recommenda‑
tion system

• Low cost
• High performance
• Scalability
• Security
• Focus on application develop‑
ment
• Simplicity of the development 
and deployment process

• Vendor lock‑in
• Limited control
• Cold start latency
• Complexity of designing

[37] • Introducing a serverless 
framework called “Stratum” for 
the lifecycle management of 
machine learning‑based data 
analytics tasks

• Rapid development
• Rapid deployment
• Minimize cost
• Model transfer and flexibility
• Extensibility and reusability

• Cold start latency
• Limited execution time
• Complexity
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Overview on the heuristic‑based approaches

Enes et al. [38] have introduced a novel platform for scaling resources in real time for 
Big Data workloads on serverless environments. It proposes a system that dynamically 
adjusts container resources without the need for restarts, using operating-system-level 
virtualization. The platform is evaluated using representative Big Data workloads and 
demonstrates improved CPU utilization and scalability while maintaining performance. 
But the platform relies on operating-system-level virtualization, specifically Linux Con-
tainers (LXC). While LXC offers lightweight virtualization capabilities, it may have cer-
tain limitations compared to other virtualization technologies.

Kuhlenkamp et al. [39] have discussed the evaluation of Function-as-a-Service (FaaS) 
platforms as a foundation for serverless big data processing. It introduces a Serverless 
Infrastructure Evaluation Method (SIEM) to understand the impact of automatic infra-
structure management on serverless big data applications. The authors propose new 
metrics and evaluate four major FaaS providers, providing insights for FaaS-based big 
data processing. But introducing new metrics and a novel evaluation method might add 

Table 3 A side‑by‑side comparison of machine learning‑based data pipeline approaches

Article Utilized technique Performance metric Evaluation tools Case study

[31] • Machine learning
• Feature and pattern 
extraction
• Data fusion

• Cost
• Speed

• AWS
• EC2
• S3

• Use of multimodal data 
in police investigations, 
where information is 
gathered from surveil‑
lance cameras, incident 
reports, and social 
networks

[32] • Skippy, is an online 
scheduler that imple‑
ments a greedy multi‑
criteria decision‑making 
(MCDM) algorithm

• Execution time
• Resource utilization
• Cost

• OpenFaaS
• Apache
• Python
• Simulator

• Optimized container 
scheduling for data‑
intensive serverless edge 
computing

[33] • Deep learning • Efficiency
• Scalability
• Accuracy

• Google cloud platform 
(GCP)
• Python

• Tracking and measuring 
the sentiment changes of 
the Mexican population 
in response to the COVID‑
19 pandemic

[34] • Machine learning
• Decision‑tree based 
Random Forest (RF)
• Bayesian optimizer 
(BO)
• Relay‑instances

• Cost reduction
• prediction accuracy
• Workload perfor‑
mance

• Amazon AWS
• Google cloud platform 
(GCP)
• Spark

• A system called Smart‑
pick, which is a serverless‑
enabled scalable data 
analytics system

[35] • Machine learning
• Artificial intelligence 
techniques

• Latency
• Execution time
• Scalability
• Resource utilization

• Apache OpenWhisk
• Python

• Design and realization 
of a chain/pipeline of 
Machine Learning (ML) 
functions using a server‑
less architecture

[36] • Hierarchical recurrent 
neural networks (HRNN) 
algorithm

• Execution time • Amazon Web Services 
(AWS)
• Amazon S3
• Amazon EC2

• Using Movielens data 
for personalized recom‑
mendation using Amazon 
personalized hierarchical 
recurrent neural networks 
(HRNN) algorithm

[37] • Use of machine 
learning libraries and 
frameworks

• Performance
• Cost

• Modeling language 
DSML
• Python (TensorFlow, 
Scikit Learn, PyTorch)

• Smart traffic manage‑
ment system where traffic 
cameras collect videos
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complexity. Also, implementing SIEM might require specific expertise or custom tools, 
potentially creating barriers for broader adoption.

Werner et al. [6] have discussed the feasibility and benefits of using serverless comput-
ing for big data processing. They use matrix multiplication. They define requirements for 
serverless big data applications, present a prototype using Function-as-a-Service (FaaS), 
and conduct extensive experiments to evaluate the performance and scalability. The 
results show that serverless big data processing can reduce operational and infrastruc-
ture costs while maintaining system qualities, and it can even outperform traditional 
cluster-based distributed compute frameworks. Although relying on a specific FaaS pro-
vider might limit portability and flexibility that’s mean vendor lock-in. Also, serverless 
functions execute on ephemeral containers, leading to cold start delays when invoked 
after inactivity.

Shivananda et al. [40] have explored the use of serverless computing and data pipelines 
for handling Internet of Things (IoT) data in fog and cloud computing environments. It 
investigates three different approaches for designing serverless data pipelines and evalu-
ates their performance using real-time fog computing workloads. The study highlights 
the benefits and challenges of combining serverless computing and data pipelines in 
IoT applications, considering factors such as computation time, network communica-
tion, disk access time, and resource utilization. However, the serverless functions run in 
a shared environment, which can raise security concerns for sensitive data. Additionally, 
managing access control and permissions for serverless functions can be complex.

Toader et al. [41] have introduced a serverless graph-processing system called “Graph-
less” designed to make graph processing more accessible. Graphless combines the 
serverless computing paradigm with the data-intensive nature of graph processing 
through an architectural approach and backend services. Real-world experiments show 
that Graphless performs similarly to existing graph-processing systems but is easier to 
deploy and offers both push and pull operation. Although rely on a specific serverless 
provider (e.g., Amazon Lambda) could limit portability and introduce vendor lock-in. 
Also, Serverless functions may experience a cold start when called, which affects perfor-
mance for latency-sensitive workloads compared to dedicated graph processing systems.

Bian et al. [42] have discussed the use of cloud function (CF) services, such as AWS 
Lambda, as accelerators for elastic data analytics. It compares CFs to traditional query 
engines running on virtual machines (VMs) and explores their limitations in terms of 
storage, network, and higher resource unit prices. The article proposes a hybrid query 
engine called Pixels-Turbo, which leverages CFs to accelerate processing during work-
load spikes while using a scalable VM cluster for regular query processing. The evalu-
ation shows that this approach achieves a higher performance/price ratio compared to 
existing serverless query engines. However, managing and optimizing a hybrid system 
can be more complex than using either VMs or CFs alone.

Jarachanthan et  al. [43] have introduced ACTS, an autonomous cost-efficient task 
orchestration framework for serverless analytics. It addresses the challenges in adapt-
ing data analytics applications to the serverless environment by mitigating cold-start 
latency, reducing state sharing overhead, and optimizing cost efficiency. Extensive exper-
iments show that ACTS achieves significant monetary cost reduction while maintaining 
superior job completion time performance compared to existing baselines. While this 
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approach may not be efficient for scenarios with high data volumes or complex data 
dependencies between functions. Also managing and coordinating the execution of 
functions through calls may introduce complexity and performance bottlenecks.

Pogiatzis et  al. [44] have presented a serverless architecture for Extract, Transform, 
and Load (ETL) pipelines on the AWS platform. The architecture is event-driven, allow-
ing for real-time data processing and scalability. The article includes an evaluation of the 
architecture’s performance and discusses its advantages and limitations. But the utiliza-
tion of an SQS queue for data transfer can become a bottleneck for large-sized event 
payloads. This means that when dealing with a high volume of data, the efficiency of data 
transfer may decrease.

Bharti et  al. [45] have proposed a novel design approach for serverless applica-
tions that leverages data parallelism in embarrassingly parallel computations. The 
approach aims to overcome limitations imposed by serverless platforms on compute-
intensive tasks, allowing them to be successfully executed. The research presents a 
design methodology, a case study on distributed matrix multiplication, and valida-
tion through load testing and performance comparison. Although proposed method 
is focuses on embarrassingly parallel computations, which are simple and efficient 
algorithms that can be easily divided into independent subproblems. Therefore, the 
proposed method may have limited applicability in scenarios that involve complex 
dependencies or non-parallelizable tasks.

Sanchez-Gallegos et  al. [46] have introduced a model called MeshStore, which is 
a serverless storage system designed for edge-fog-cloud continuum systems. The 
model aims to integrate heterogeneous storage resources into a unified storage ser-
vice that supports data sharing through serverless functions. It provides mechanisms 
for managing data allocation, load balancing, and synchronization in distributed envi-
ronments. However, it increases the complexity of managing operations required for 
functions to retrieve received data and provide results to other functions. Addition-
ally, there are security and privacy concerns associated with storing and sharing sen-
sitive data in a distributed manner.

Mrozek et  al. [47] have presented a large-scale and serverless computational 
approach for improving the quality of next-generation sequencing (NGS) data in 
support of big multi-omics data analyses. They propose the use of a Data Lake for 
storing and processing NGS data, along with a dedicated library for cleaning DNA/
RNA sequences. Their solution is scalable on the Cloud and provides capabilities for 
data extraction, processing, and storing, supporting the requirements of NGS-based 
multi-omics data analyses. However, relies on the serverless nature of the Data Lake 
Analytics service. While this approach offers benefits in terms of reduced operational 
overhead, it may also have limitations in terms of the capabilities and performance of 
the data lake platform.

Pakdil et al. [48] have discussed the design of a serverless geospatial data processing 
workflow system. It explores how the serverless paradigm can be utilized for geospa-
tial data processes using open standards. They propose a system design and archi-
tecture that minimizes human intervention and resource consumption, while also 
incorporating new models for workflow and task definitions. They implemented the 
system on a public cloud provider and evaluated it with sample geospatial workflows. 
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However, may require a certain level of expertise in cloud computing technologies. 
In addition, relying on cloud computing platforms creates a dependency on external 
service providers, which can affect system availability and reliability.

Rivera et al. [49] have presented a study on event-driven serverless pipelines for video 
coding and quality metrics. It discusses the implementation of serverless functions using 
an adapted version of embedded Tomcat and explores their behavior in terms of scala-
bility and resource consumption. The study shows that the proposed serverless functions 
perform well in terms of encoding time and distribution of jobs. However, in server-
less architectures, control over the infrastructure is lost and the cloud service provider 
manages the infrastructure, meaning users have limited customization and optimization 
options. This lack of control is a drawback for applications or organizations that require 
specific infrastructure configurations or optimizations to meet their unique needs.

Spiegelberg et al. [50] have discussed of hyper-specialized compilation for serverless 
data analytics. It argues that while existing serverless frameworks generate and compile 
code on the client, it is more beneficial to generate specialized code on each serverless 
function based on the specific input data. Preliminary experiments show that hyper 
specialization outperforms client-based compilation in terms of cost and performance. 
However, this method lead to the increased overhead and complexity of generating and 
compiling code on individual serverless functions. This approach requires additional 
resources and time for code generation and compilation, which could impact the overall 
efficiency and scalability of the system.

Cinaglia et al. [51] have presented a method for modeling and executing customized 
pipelines in serverless computing. The method is applied to the transcript-level expres-
sion analysis of samples from RNA sequencing (RNA-seq). The authors implemented 
the method as an Amazon Web Services (AWS) Lambda function within their own 
serverless architecture. The method demonstrates improved computational time com-
pared to local environments, with potential advantages for parallel analysis of large-scale 
genomic data. But disadvantage of this method could be the reliance on specific cloud 
service providers, such as Amazon Web Services (AWS), for the implementation of the 
serverless architecture. This may limit the portability and flexibility.

Summary and discussion

These articles provide insights into the benefits and challenges of using serverless com-
puting for big data processing and related applications. Serverless computing offers 
advantages such as improved resource utilization, scalability, reduced operational and 
infrastructure costs, and ease of deployment. However, there are also limitations and 
challenges to consider.

One concern is vendor lock-in, where reliance on specific serverless providers may 
limit portability and flexibility. Another challenge is cold start delays, where serverless 
functions experience latency when invoked after inactivity. This can impact the perfor-
mance of latency-sensitive workloads. Security and privacy are also important, as server-
less functions run in shared environments and managing access control and permissions 
can be complex. Additionally, the utilization of certain technologies, such as Linux Con-
tainers (LXC), may have limitations compared to other virtualization technologies. Some 
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Table 4 Comparison of heuristic‑based data pipeline approaches

Article Main idea Advantage Disadvantage

[38] • Introducing a novel platform for 
scaling resources in real time for 
Big Data workloads on serverless 
environments

• Improve CPU utilization
• Improve scalability

• Platform compatibility limit

[39] • SIEM
• Introducing a serverless 
infrastructure evaluation method 
(SIEM) to understand the impact 
of automatic infrastructure 
management on serverless big 
data applications

• Introducing new metrics and 
evaluation methods

• Complexity

[6] • Feasibility and benefits of using 
serverless computing for big 
data processing

• Reduce cost
• Performance

• Limit portability
• Limit flexibility
• Vonder lock‑in
• Cold start delay

[40] • Use of serverless computing 
and data pipelines for handling 
Internet of Things (IoT) data 
in fog and cloud computing 
environments

• Auto‑scaling
• Increased productivity
• Migration of tasks between 
edge and cloud
• Dynamic execution of tasks

• Complexity
• Security concerns

[41] • Graphless
• Introduce a serverless graph‑
processing system called “Graph‑
less” designed to make graph 
processing more accessible

• Easier to deploy • Limited portability
• Vendor lock‑in
• Cold start delay

[42] • Use of cloud function (CF) 
services, such as AWS Lambda, 
as accelerators for elastic data 
analytics
• Pixels‑turbo

• Accelerate processing
Scalable

• Complexity
• Less security
• Less privacy

[43] • ACTS
• ACTS, an autonomous 
cost‑efficient task orchestra‑
tion framework for serverless 
analytics

• Reduced cold‑start latency
• Reduce overhead
• Cost reduction

• Complexity
• Performance bottleneck in high 
data volume

[44] • A serverless architecture for 
extract, transform, and load (ETL) 
pipelines on the AWS platform

• Scalable
• Easy concurrency control
• Easy data slicing

• Reduction of data transmission 
efficiency in high data volume

[45] • A novel design approach for 
serverless applications that lever‑
ages data parallelism in embar‑
rassingly parallel computations

• Auto‑scalability • Limited applicability in complex 
dependencies
• Limited applicability in non‑
parallelizable tasks

[46] • MeshStore
• MeshStore, which is a server‑
less storage system designed 
for edge‑fog‑cloud continuum 
systems

• Managing data allocation
• Load balancing
• Data synchronization

• Complexity
• Less security
• Less privacy

[47] • A large‑scale and serverless 
computational approach for 
improving the quality of next‑
generation sequencing (NGS) 
data in support of big multi‑
omics data analyses

• Scalability
• Data cleaning
• Simplified data analysis

• Limitations of data lake platform

[48] • Design of a serverless geospa‑
tial data processing workflow 
system

• Minimizing human interven‑
tion
• Reduce resource consumption

• Vendor lock‑in
• Reduce availability
• Reduce reliability

[49] • Event‑driven serverless 
pipelines for video coding and 
quality metrics

• Reduce encoding time
• Well distribution of jobs

• Loss of control over infrastruc‑
ture
• Limited customization

[50] • Hyper‑specialized compilation 
for serverless data analytics

• Cost reduction
• Better performance

• Overhead increase
• Complexity
• Additional resources and time
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articles propose novel evaluation methods or metrics, to address specific challenges, but 
these may introduce complexity or require specific expertise or custom tools, creating 
barriers for broader adoption.

Finally, Tables 4 and 5 provide a complete comparison of the main idea, advantages, 
and disadvantage, case study, performance metric, technique used, evaluation tool, for 
each paper.

Framework‑based approaches

This section describes the characteristics concerning framework-based approaches 
employed in data pipeline implementations within serverless computing. Indeed, there 
exist techniques leveraging framework, platform, architecture, etc. Framework-based 
approaches in data pipeline in serverless computing refer to the utilization of frame-
works or platforms that provide a structured and efficient way to design, develop, and 
deploy data pipelines.

Overview on the framework‑based approaches

Mirampalli et  al. [52] have discussed the evaluation of two serverless data pipeline 
approaches, NiFi and Message Queuing Telemetry Transport (MQTT), in fog comput-
ing environments. The study focuses on image streaming data and compares the perfor-
mance of the two approaches in terms of pipeline execution time, memory usage, and 
CPU usage. The results indicate that while the NiFi-based serverless pipeline consumes 
more CPU, it outperforms the MQTT-based pipeline in terms of execution time and 
memory utilization. Although disadvantage of this method is the higher CPU usage 
associated with the NiFi-based serverless data pipeline. This could be a limitation in 
resource-constrained environments where minimizing CPU utilization is crucial.

Dehury et al. [53] proposes an extension to the TOSCA standard called TOSCAdata, 
which focuses on modeling data pipeline-based cloud applications. Keeping the require-
ments of modern data pipeline cloud applications, TOSCAdata provides a number of 
TOSCA models that are independently deployable, schedulable, scalable, and re-usable. 
TOSCAdata provides models that enable the efficient handling of data flow and trans-
formation in a pipeline manner. But may introduce additional complexity to the TOSCA 
modeling language. While TOSCAdata aims to address the challenge of designing and 
orchestrating data-intensive cloud applications.

Müller et  al. [13] have presented Lambada, a serverless distributed data processing 
framework designed for data analytics. They explore the suitability of serverless com-
puting for data processing and demonstrate its cost and performance advantages in cer-
tain scenarios. They provide examples where serverless outperforms existing solutions. 

Table 4 (continued)

Article Main idea Advantage Disadvantage

[51] • A method for modeling and 
executing customized pipelines 
in serverless computing

• Improved run time
• High scalability

• Vendor lock‑in
• Reliance on specific cloud 
service providers
• Limited portability
• Limited flexibility
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However, disadvantage of the proposed method is the limited network connectivity 
and stateless operation of serverless functions. Additionally, the lack of control over the 
scheduling of functions can introduce uncertainty in the execution and response times 
of queries.

Sedlak et  al. [54] have proposed a novel approach for sharing privacy-sensitive data 
within federations of independent organizations. The approach combines data meshes 
and serverless computing to streamline data sharing processes and address the specific 
requirements of variable data sharing constellations, with a focus on flexibility and effi-
ciency. However, it may introduce additional complexity and dependencies on serverless 
computing infrastructure. Additionally, there may be challenges in managing and coor-
dinating the serverless functions across multiple organizations within the federation.

Romero et  al. [55] have introduced Llama, a heterogeneous and serverless frame-
work for auto-tuning video analytics pipelines. Llama optimizes pipeline configura-
tions to meet latency and cost targets by dynamically assigning configurations across 
different hardware resources. The framework addresses the challenges of handling 
input-dependent behavior, conditional branches in the pipeline, and execution vari-
ability. Experimental results demonstrate that Llama outperforms existing video 
analytics and processing systems in terms of latency reduction and cost efficiency. 
Although complexity and computational overhead involved in dynamically optimiz-
ing configurations for each operation invocation. Additionally, the offline profiling 
phase required for the framework’s initial setup may be time-consuming and may 
need to be repeated for different pipelines or input videos.

Ríos-Monje et  al. [56] have discussed the application of FaaS or Serverless com-
puting in the context of scientific data processing, focusing on the Square Kilometer 
Array (SKA), a large radio telescope project. They explore the feasibility of designing 
and deploying functions and applications commonly used in radio astronomy work-
flows within a FaaS platform. They emphasize the scalability, cost-effectiveness, and 
potential value of FaaS models for scientific data processing in distributed projects 
like SKA. But disadvantage is the complexity of integrating and deploying scientific 
functions and applications within a FaaS platform. And it is likely that integrating and 
adapting existing scientific workflows and applications to a serverless architecture 
may require significant effort and expertise.

Tagliabue et  al. [57] have discussed the design and implementation of Bauplan, a 
serverless platform aimed at realizing the vision of a Data Lakehouse architecture. 
Bauplan is built by reusing existing tools and focusing on improving developer experi-
ence. The article covers user experience, architecture, and future development plans. 
However, disadvantage of this method is the reliance on reusing existing tools rather 
than building a system from scratch. It may also limit the flexibility and customization 
options available. Additionally, using multiple tools and integrating them into a plat-
form can introduce complexity and compatibility issues.

Zahra et al. [58] have introduced Laminar, a new serverless framework called Lami-
nar that enhances serverless computing by efficiently managing streaming workflows 
and components. It incorporates semantic code search, code summarization, and 
code completion using large language models. Laminar aims to simplify the execution 
of streaming computations, improve data stream management. Although it heavily 
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relies on large language models for semantic code search and completion. These mod-
els also come with computational and resource requirements. Depending on the 
size and complexity of the codebase, using large language models for real-time code 
search and completion may introduce latency and performance issues. Additionally, 
the reliance on external language models may introduce dependencies and compat-
ibility issues with future model versions or updates.

Li et  al. [59] have proposed an architecture called Marvel that integrates server-
less platforms and Apache Hadoop to enable stateful big data analytics. It addresses 
the challenges of supporting stateful workloads in serverless platforms by leveraging 
modern storage technologies such as Intel Optane DC Persistent Memory. The evalu-
ation shows that Marvel significantly reduces the execution time of big data applica-
tions compared to current implementations on AWS Lambda. But it relies on specific 
hardware technology, Intel Optane DC Persistent Memory (PMEM). Also, HDFS 
storage integration with PMEM support is more complex to configure and manage 
compared to standard HDFS.

Spenger et  al. [60] have introduced Portals, a framework for multi-dataflow stateful 
serverless applications. Portals enable the dynamic composition of dataflow pipelines 
and provide services for inter-dataflow communication. Portals supports decentralized 
runtime execution on both cloud and edge devices, offering end-to-end exactly-once 
processing guarantees. But disadvantage of this method is the complexity of managing 
and coordinating multiple dataflow pipelines and their interactions. Additionally, the 
scalability challenges may arise when dealing with a large number of interconnected 
dataflow pipelines.

Lei et al. [61] have proposed a method called asynchronous state replication pipelines 
(ASRP) to accelerate serverless workflows. The ASRP approach is based on delivering 
changes of differentiable data types (DDT) in real-time, enabling downstream functions 
to consume the objects without waiting for upstream functions to finish. The authors 
implemented their approach in a framework called Chitu, compared it with other server-
less workflow frameworks, and evaluated it with different cases, showing improvements 
in data transmission and end-to-end application speed. Although may introduce addi-
tional complexity and overhead. Implementing asynchronous state replication pipelines 
and managing the continuous delivery of changes in real-time can require careful design 
and coordination.

Sampé et al. [62] have introduced IBM-PyWren, a serverless framework designed for 
data analytics on IBM Cloud. The framework extends the functionality of PyWren and 
enables users to run MapReduce jobs, perform data discovery and partitioning, and 
achieve dynamic function composability. However, this method is the relies on specific 
cloud platforms, such as IBM Cloud Functions and IBM Cloud Object Storage. This may 
limit the portability and flexibility of the framework, as it may not be easily adaptable to 
other cloud providers or environments. Users who prefer or are locked into other cloud 
platforms may not be able to leverage the features and benefits of IBM-PyWren.

Mahling et  al. [63] have presented BabelMR, a framework for serverless MapRe-
duce data processing. BabelMR allows arbitrary containerized applications to use the 
MapReduce programming model on serverless cloud infrastructure. It simplifies the 
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development process and integrates efficiently with serverless storage systems. The eval-
uation shows that BabelMR reduces the entry hurdle to analyzing data in a distributed 
serverless environment and performs competitively with other serverless MapReduce 
systems. However, this method relies on serverless cloud infrastructure. While serverless 
computing offers benefits such as automatic scaling and reduced operational overhead, 
it also introduces dependencies on cloud providers and their services. Additionally, the 
cost structure of serverless computing can be complex and may result in costs for users.

Wawrzoniak et  al. [64] have presented a system called Boxer that enables direct 
function-to-function communication in serverless platforms. It addresses the limita-
tions of existing serverless platforms, such as short-lived functions, lack of communi-
cation between functions, and limited caching options. They demonstrate that Boxer 
improves the efficiency of data processing on serverless platforms, resulting in faster 
query execution and cost reduction. But this method relies on TCP hole-punching 
techniques, which may introduce additional complexity and security risks. TCP hole-
punching involves bypassing network constraints to establish direct communication 
between functions.

Sampé et  al. [65] have presented a data-driven serverless computing middleware 
called Zion for object storage. It argues that traditional active storage techniques are 
not well-suited for cloud storage due to lack of elasticity and resource contention. 
Zion aims to provide painless scalability and simplify the development of disaggre-
gated computing tasks by allowing users to create small, stateless functions that inter-
cept and operate on data flows in a scalable manner without the need for server or 
runtime environment management. But it may introduce additional overhead due to 
the interception and processing of data flows by the serverless functions. While the 
article mentions that Zion has minimal overhead, to consider that there will always 
be some level of computational cost associated with intercepting and processing data, 
which could impact overall system performance.

Giménez-Alventosa et al. [66] have introduced a framework called MARLA (MApRe-
duce on LAmbda) that enables the execution of MapReduce jobs on AWS Lambda, a 
serverless computing platform. The framework is implemented in Python and utilizes 
Amazon S3 as the storage backend. The article also presents a performance assessment 
of AWS Lambda, highlighting its suitability for general-purpose applications but not-
ing performance fluctuations that may hinder its adoption for tightly coupled computing 
jobs. Although disadvantage of this method is the inhomogeneous performance behav-
ior of AWS Lambda identified in the performance assessment. This variability in perfor-
mance can affect the timeliness of tightly coupled jobs, such as MapReduce applications, 
which rely on consistent and predictable execution times. This limitation may limit the 
applicability of AWS Lambda for certain types of computing workloads.

Wawrzoniak et  al. [67] have discussed the concept of ephemeral per-query engines 
(EPQE) for serverless analytics. It challenges the traditional approach of using pre-con-
figured, long-running query engines and proposes dynamically instantiating a data pro-
cessing engine for each query using Function-as-a-Service (FaaS) platforms. The goal is 
to optimize engine selection and configuration on a per-query basis, providing flexibility, 
cost efficiency, and improved performance in data processing. Although ensuring data 
security and isolation in a dynamic environment with multiple engines running might 
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require additional considerations. and FaaS platforms might have resource constraints 
or limitations unsuitable for complex data processing tasks. Also, adapting existing data 
processing engines for dynamic deployment on FaaS platforms could be complexity.

Bhat et  al. [68] have discussed the evaluation of serverless architecture for big data 
enterprise applications. It explores the use of serverless computing environments, such 
as AWS Lambda, for large-scale data processing. The paper highlights the benefits of 
serverless architecture, including better resource utilization, lower costs, and simplified 
infrastructure management. But disadvantage of this method is the learning curve and 
complexity. developers new to these platforms may face a steep learning curve to get 
started. Also, serverless functions are often relying on a specific cloud provider’s server-
less platform can create vendor lock-in, making it difficult to switch providers in the 
future. Data processed in serverless environments might be stored and processed across 
servers managed by the cloud provider, which could raise security concerns.

Bebortta et al. [69] have discussed the use of serverless computing frameworks, such 
as Amazon Web Services Lambda, Google Cloud Functions, and Microsoft Azure Func-
tions, for managing geospatial big data. They address the limitations of existing systems 
in terms of reliability, scalability, and computational costs. The proposed framework 
aims to improve the performance of geospatial data processing and includes case studies 
using mineral resources data and household prediction data. Although, it may rely heav-
ily on cloud computing infrastructure and services, which can introduce dependencies 
and issues related to data security. Also, may require a learning curve for developers and 
users.

Zhang et  al. [70] proposes a system called CEVAS (Cloud-Edge collaborative Video 
Analytics with fine-grained serverless pipelines) that aims to address the challenges of 
cloud-edge collaborative online video analytics. CEVAS leverages serverless comput-
ing to achieve fine-grained resource partitioning and adaptive workload management 
between the cloud and edge, resulting in reduced costs, improved analysis throughput, 
and real-time responses to dynamic input workloads. However, this method is rely on 
serverless computing. It may introduce additional complexity in terms of deployment, 
monitoring, and debugging compared to traditional computing approaches. Addition-
ally, serverless platforms may have limitations on resources and execution time.

Summary and discussion

These papers discuss various aspects of serverless computing and its application in dif-
ferent domains including performance evaluation, modeling data pipelines, privacy-sen-
sitive data sharing, video analytics, scientific data processing, and more. While serverless 
computing offers benefits such as cost efficiency, scalability, and reduced management 
overhead, there are also challenges and considerations to address.

Challenges include complexity in managing serverless functions, potential perfor-
mance variability, compatibility issues with existing workflows and applications, reliance 
on specific cloud providers, and security concerns. Additionally, some methods intro-
duce additional complexity or dependencies, such as using large language models or 
specific hardware technologies.
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Table 6 Comparison of framework‑based data pipeline approaches

Article Main idea Advantage Disadvantage

[52] • Evaluating of two serverless 
data pipeline approaches, NiFi 
and MQTT, in fog computing 
environments

• Flexibility
• Cost‑effectiveness
• Event‑driven processing

• CPU usage
• Complexity

[53] • Extension to the TOSCA 
standard called TOSCAdata, 
which focuses on modeling data 
pipeline‑based cloud applica‑
tions

• Easy migration
• Scalable
• Reusable
• Deployable
• Reducing data lock‑in

• Complexity

[13] • Lambada
• Lambada, a serverless distrib‑
uted data processing framework 
designed for data analytics

• Cost advantage
• Performance
• Elasticity
• Operational simplicity

• Restricted network connectivity
• Limited running time

[54] • A novel approach for sharing 
privacy‑sensitive data

• Flexibility
• Efficiency
• Scalability

• Vendor lock‑in
• Complexity

[55] • Llama
• Llama, a heterogeneous and 
serverless framework for auto‑
tuning video analytics pipelines

• Latency reduction
• Cost efficiency

• Complexity
• Overhead
• Cold start
• Dependency on serverless envi‑
ronment (vendor lock‑in)

[56] • Application of Function‑as‑
a‑Service (FaaS) or serverless 
computing in the context of sci‑
entific data processing, focusing 
on SKA, a large radio telescope 
project

• Scalability
• Cost‑effectiveness
• Abstraction and ease of use

• Complexity
• Security

[57] • Design and implementation of 
Bauplan, a serverless platform 
aimed at realizing the vision of a 
Data Lakehouse architecture

• Flexibility
• Reproducibility and versioning
• Separation of storage and 
compute
• Full auditability

• Complexity
• Dependency on external 
projects

[58] • Laminar
• A new serverless framework 
called Laminar that enhances 
serverless computing by 
efficiently managing streaming 
workflows and components

• Efficient streaming workflows
• Stateful computations
• Easy deployment and develop‑
ment

• Dependency on Dispel4py
• Limitations or compatibility 
issues with workflows

[59] • Marvel
• Addressing the challenges 
posed by the stateless nature 
of serverless platforms when 
supporting stateful I/O intensive 
workloads in big data applica‑
tions

• Improved I/O throughput
• Better performance
• Reduce execution time

• Complexity
• Relies on specific hardware

[60] • Portals
• Portals, a framework for multi‑
dataflow stateful serverless 
applications

• Flexible composition
• Decentralized Execution

• Complexity
• Low scalability
• Overhead

[61] • A method called asynchro‑
nous state replication pipelines 
(ASRP) to accelerate serverless 
workflows

• Speed improvement
• Improve data transmission

• Complexity
• Overhead

[62] • IBM‑PyWren
• IBM‑PyWren, a serverless frame‑
work designed for data analytics 
on IBM Cloud

• Automatic data discovery and 
partitioning
• Dynamic function compos‑
ability
• Performance improvement
• Democratization of massive‑
scale data parallelism

• Limited portability
• Limited flexibility
• Limited to IBM Cloud
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They highlight the need for careful consideration and evaluation when adopting 
serverless architectures, taking into account factors such as performance, scalability, 
complexity, and compatibility with existing systems.

Finally, Tables 6 and 7 provide a complete comparison of the main idea, advantages, 
and disadvantage, case study, performance metric, technique used, evaluation tool, for 
each paper.

Discussion
This section provides a coherent examination and assessment of data pipeline method-
ologies within serverless computing. The analytical insights and evaluations with respect 
to the technical questions (TQ) of “Research methodology” section are presented:

• TQ1: In serverless computing, what taxonomy is employed in data pipeline 
approaches?

Table 6 (continued)

Article Main idea Advantage Disadvantage

[63] • BabelMR, a framework for 
serverless MapReduce data 
processing

• Simple development
• Language flexibility
• Efficient integration

• Dependency on serverless cloud 
infrastructure (vendor lock‑in)
• Learning curve
• Cost

[64] • A system called Boxer that ena‑
bles direct function‑to‑function 
communication in serverless 
platforms

• Performance improvement
• Low cost
• Speedup queries

• Complexity
• Security risks
• Dependency on TCP hole‑
punching techniques
• Limited caching possibilities

[65] • Data‑driven serverless comput‑
ing middleware called Zion for 
object storage

• Scalability
• Simplify the development
• Resource contention

• Limitations of active storage
• Overhead

[66] • Framework called MARLA 
(MApReduce on LAmbda) 
that enables the execution 
of MapReduce jobs on AWS 
Lambda, a serverless computing 
platform

• Highly scalable
• Cost‑effective (pay‑per‑use)
• High throughput

• Inhomogeneous performance 
behavior of AWS Lambd

[67] • Ephemeral per‑query engines 
(EPQE) for serverless analytics

• Flexibility
• Cost effective
• Improve performance

• FaaS platform limitations
• Security and isolation
• Complexity

[68] • Evaluation of serverless archi‑
tecture for big data enterprise 
applications

• Resource utilization
• Lower costs
• Simplified infrastructure man‑
agement

• Learning curve
• Complexity
• Vendor lock‑in
• Security

[69] • Use of serverless comput‑
ing frameworks, for managing 
geospatial big data

• Scalability
• Cost‑effectiveness
• Reduced latency
• Versatility

• Learning curve
• Limited execution time
• Vendor lock‑in

[70] • System called CEVAS that aims 
to address the challenges of 
cloud‑edge collaborative online 
video analytics

• Cost reduction
• Real‑time responses
• Adaptability
• Scalability

• Vendor lock‑in
• Complexity
• Limitation on resource
• Cold start delay
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Fig. 6 Classification of data pipeline approaches in serverless computing
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 According to the proposed taxonomy Fig. 4, three approaches are examined based 
on the classification presented: machine learning-based approaches, heuristic 
techniques-based approaches, and framework-based approaches. Figure 6 demon-
strates that the majority of the selected research articles are associated with the 
framework-based approach, covering 47% of the articles.

• TQ2: What performance metrics are commonly used for data pipeline approaches 
in serverless computing?

 Figure 7 shows various performance metrics for data pipeline approaches within 
serverless computing. Since some research papers had multiple objectives, certain 
criteria may overlap in the papers. Analysis of these metrics illustrate that cost 
23% and execution time 16% are the most commonly examined aspects in data 
pipeline approaches within serverless computing. Scalability with 14% follows 
behind. Consequently, features like overhead, data transmission acceleration, and 
invocation time receive less attention due to their limited coverage, while open 
challenges remain a in data pipeline approaches within serverless computing.

• TQ3: Which case studies are utilized in data pipeline approaches within serverless 
computing?

 Figure 8 shows the case studies used to investigate data pipeline approaches within 
serverless computing. This collection of case studies consists of tasks such as data 
analytics, data processing, data storage, data sharing, workflow, evaluation, predict, 
design and realizing, scaling, map reduce, and improving quality within serverless 
platforms. The methodologies proposed in these studies serve diverse objectives, 
ranging from specific to more versatile applications. Consequently, some articles 
have multiple case studies in their research. In the reviews, data analytics was deter-
mined as the most frequently utilized case study, representing 31% of the studies 
analyzed.
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Fig. 9 Evaluation tools the data pipeline in serverless computing
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• TQ4: What evaluation tools are employed for data pipeline approaches in serverless 
computing?

 Figure  9 shows that 24% of the research papers utilized the AWS Lambda tools. 
Additionally, certain articles utilized various tools for their proposed models. The 
ranking of other tools is shown in the chart. Certain evaluation tools were excluded 
due to limited coverage.

• TQ5: What are the advantage and disadvantage of data pipeline approaches in 
serverless computing?

 Finally, Table 8 displays the advantages and disadvantages of different data pipeline 
methods in serverless computing. Based on this comparison and analysis, it can be 
concluded that each data pipeline approach, heuristic-based, framework-based, or 
machine learning-based, has set of advantages and disadvantages, and each approach 
is suitable for a specific task.

 Machine learning-based data pipeline methods can handle complex data processing 
tasks, such as feature extraction and pattern recognition. And improve the accuracy 
and predictive capabilities through iterative model modification. Heuristic-based 
data pipeline methods can handle specific data processing requirements that may 

Table 8 Comparison of advantages and disadvantages of data pipeline approaches

Approach Advantage Disadvantage

Machine learning‑based • Improving accuracy and efficiency: ML 
models can learn and adapt to changing 
data patterns, leading to better data pro‑
cessing and reduced resource utilization
• Automated optimization: ML algorithms 
can automatically identify and optimize 
pipeline parameters, reducing manual 
intervention
• Scalability and elasticity: ML models 
can scale to handle large data volumes 
efficiently and automatically adjust to 
varying workloads

• Complexity: Building and maintaining ML 
models can be complex
• Development cost: building and main‑
taining ML models is complex and requires 
expertise and increases development costs
• Require specialized expertise: ML models 
can be difficult to understand and explain 
their decision‑making process

Heuristic‑based • Simplicity and ease of implementation: 
heuristics‑based pipelines are typically 
easier to understand and implement 
compared to ML‑based approaches
• Predictability and control: heuristics 
are well‑defined rules that provide more 
control over the steps and results of data 
processing
• Less data dependency: heuristics often 
require less data to train compared to ML 
models, making them suitable for smaller 
data sets

• Limited adaptability: heuristics struggle to 
adapt to changing data patterns or unex‑
pected scenarios, leading to inaccuracies
• Manual maintenance: heuristics must be 
updated manually as data or requirements 
change, increasing maintenance costs
• Performance inefficient for complex 
data processing tasks: heuristics may not 
achieve optimal performance for complex 
data or tasks

Framework‑based • Integrations: frameworks often provide 
built‑in integrations with various tools 
and services, simplifying deployment and 
management
• Faster development: frameworks can 
speed up pipeline development by 
providing ready‑made solutions for com‑
mon tasks
• Reusability and standardization: frame‑
works provide pre‑built components and 
workflows that enable code reuse and 
standardization

• Vendor lock‑in: Choosing a specific frame‑
work can limit flexibility and customization 
options
• Learning curve: frameworks may have 
their own syntax and complexities to learn. 
Familiarity with the chosen framework is 
necessary for development and trouble‑
shooting
• Performance overhead: frameworks can 
introduce additional overhead compared 
to custom‑built pipelines
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not require complex models. And Faster and more efficient processing as it doesn’t 
involve training and deploying models. Framework-based data pipeline methods can 
support integration with various data sources and tools for seamless data processing. 
And offers a wide range of pre-built components and functionalities for data pipeline 
development.

In the following, we discuss the three approaches in terms of complexity, flexibility, 
and vendor lock-in, as following:

• Complexity vs. simplicity: Heuristic-based approaches are simpler to implement, 
while ML-based solutions offer more advanced features and therefore higher com-
plexity.

• Flexibility vs. rigidity: Machine learning-based pipelines are highly adaptable, while 
heuristic-based approaches are more rigid and dependent on predefined rules.

• Vendor lock-in: Framework-based approaches often limit the data pipeline to a spe-
cific vendor or platform, while heuristic and ML-based approaches may provide 
more vendor unknown solutions.

Each approach has its own advantages and disadvantages, and the selection of the 
appropriate approach depends on the specific requirements of the use case, such as 
data volume, processing needs, real-time requirements, and cost considerations. And it 
should be based on the specific requirements of the use case, such as the complexity of 
the data, the need for adaptability, the importance of performance and reliability, and 
the available resources and expertise within the organization.

Open issues and challenges
This section addresses open issues regarding data pipeline approaches and barriers that 
exist in serverless computing systems. Data pipeline management is very important in 
serverless computing and can be effectively managed using different approaches such as 

Open issues in 
data pipeline

Security and privacy Hybrid architectures

Cost

Workflow 
orchestration

State management 

Real-time 
processing

Fault tolerance

Scalability

Fig. 10 Open issues of data pipeline
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machine learning, heuristics and frameworks. TQ6 outlines open issues and challenges 
ahead.

• TQ6: What future research directions and open issues exist for data pipeline 
approaches in serverless computing?

Figure 10 provides a discussion of the challenges and open issues in the realm of data 
pipelines in serverless computing and explores different aspects.

• Scalability: Serverless computing needs to guarantee function scalability and elas-
ticity [38]. And explore techniques for efficiently scaling data pipelines in serverless 
computing environments to manage large and complex data sets. This involves inves-
tigating auto-scaling mechanisms, load balancing strategies, and resource allocation 
algorithms to optimize pipeline performance.

• Fault tolerance: Fault mostly occurs when some containers fail. To overcome this 
challenge, a basic retry mechanism is used [71, 72]. Research can focus on develop-
ing mechanisms to handle failures, such as automatic retry mechanisms, error han-
dling strategies, and fault detection and recovery techniques, ensuring robustness 
and reliability of the pipeline.

• Security and privacy: Investigate methods to ensure data security and privacy in 
serverless data pipelines. This includes exploring techniques for secure data trans-
fer and storage, encryption methods, access control mechanisms, and compliance 
with privacy regulations to protect sensitive data throughout the pipeline. Isolation 
is also a security issue, as functions are executed on a shared platform by many users. 
Therefore, strong isolation is required [73–75].

• Cost optimization: Cost is a fundamental challenge [76–78]. Cost optimization that’s 
mean Developing approaches to optimize the cost of executing data pipelines in 
serverless environments. This involves analyzing the cost implications of different 
pipeline configurations, considering factors such as resource allocation, function siz-
ing, and data transfer costs, to minimize overall expenses while maintaining perfor-
mance.

• Workflow orchestration: Exploring techniques for managing and orchestrating 
complex workflows in serverless data pipelines. This includes investigating work-
flow specification languages, coordination mechanisms, vector machine to predict, 
dynamic programming and task scheduling algorithms to streamline the execution 
and coordination of multiple functions within the pipeline [79–81].

• Real-time processing: Investigating techniques to enable real-time data processing in 
serverless data pipelines. This involves exploring mechanisms for event-driven pro-
cessing, stream processing, and near real-time analytics, allowing for timely insights 
and decision-making based on streaming data sources [82, 83].

• Hybrid architectures: Integration of serverless computing with other computing par-
adigms, such as edge computing or hybrid cloud approaches [84]. This can involve 
exploring hybrid architectures that leverage the strengths of serverless computing for 
data processing while considering data locality, latency, and data governance require-
ments.
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• State management: Serverless functions are inherently stateless, but pipelines often 
require data persistence. Research into efficient state management solutions that 
integrate seamlessly with serverless architecture is needed.

Conclusions
Serverless computing offers a scalable and cost-effective solution for handling data pipe-
lines, as it eliminates the need for managing and provisioning servers. This paper, pro-
vides a taxonomy of data pipeline approaches in the context of serverless computing. 
Approaches are classified based on architectural features, data processing techniques, 
and workflow orchestration mechanisms. These methods are divided into three cat-
egories: a machine learning-based approach, a heuristic-based approach, and a frame-
work-based approach. Each of these methods have been examined and Its advantages 
and disadvantages have been highlighted along with key factors affecting their effective-
ness. Optimal data pipeline strategy whether it’s heuristic-driven, framework-centric, 
or machine learning-based, carries its own set of pros and cons. The suitability of each 
method varies depending on the specific use case. Therefore, careful evaluation of the 
trade-offs between performance, cost, and complexity is essential when choosing a data 
pipeline strategy. There are several open issues and future directions for investigating in 
the field of data pipelines in serverless computing. These include exploring techniques 
to enable real-time data processing in serverless data pipelines, hybrid architectures, 
ensuring data security and privacy, the challenge of fault tolerance, cost optimization, 
scalability and state management. The hybrid approaches offer a solution for building 
real-time, scalable, and cost-efficient serverless data pipelines while addressing issues 
like fault tolerance and data security. Overall, event-driven architectures and serverless 
stream processing are emerging areas that can enhance the real-time processing capa-
bilities of data pipelines and managing complex workflows, ensuring data consistency 
and reliability, and optimizing resource allocation.
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