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Abstract 

The increasing pervasiveness of ICT technologies and sensor infrastructures is enabling 
police departments to gather and store increasing volumes of spatio-temporal crime 
data. This offers the opportunity to apply data analytics methodologies to extract use-
ful crime predictive models, which can effectively detect spatial and temporal patterns 
of crime events, and can support police departments in implementing more effective 
strategies for crime prevention. The detection of crime hotspots from geo-referenced 
data is a crucial aspect of discovering effective predictive models and implementing 
efficient crime prevention decisions. In particular, since metropolitan cities are heav-
ily characterized by variable spatial densities of crime events, multi-density clustering 
seems to be more effective than classic techniques for discovering crime hotspots. This 
paper presents the design and implementation of MD-CrimePredictor (Multi- Density 
Crime Predictor), an approach based on multi-density crime hotspots and regres-
sive models to automatically detect high-risk crime areas in urban environments, 
and to reliably forecast crime trends in each area. The algorithm result is a spatio-tem-
poral crime forecasting model, composed of a set of multi-density crime hotspots, their 
densities and a set of associated crime predictors, each one representing a predictive 
model to forecast the number of crimes that are estimated to happen in its specific 
hotspot. The experimental evaluation of the proposed approach has been performed 
by analyzing a large area of Chicago, involving more than two million crime events 
(over a period of 19 years). This evaluation shows that the proposed approach, based 
on multi-density clustering and regressive models, achieves good accuracy in spa-
tial and temporal crime forecasting over rolling prediction horizons. It also presents 
a comparative analysis between SARIMA and LSTM models, showing higher accuracy 
of the first method with respect to the second one.

Keywords: Crime data mining, Crime forecasting, Crime hotspots, LSTM, Multi-density 
clustering, Urban crime data analysis, Smart cities

Introduction
Reference context

The increasing urbanization occurring during the last years is transforming every 
aspect of the urban society and affecting its sustainable development [1–4]. In fact, as 
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urbanization continues to grow, it is bringing significant social and economic benefits 
(i.e., additional urban services and employment opportunities), while also presenting 
challenges in city management issues, like resource planning (water, electricity), traffic, 
air and water quality, public policy and public safety services.

Among the main urban issues, criminal activities are one of the most important social 
problems in metropolitan areas, because they can severely affect public safety, harm the 
economy and sustainable development of a society, as well as reduce the quality of life 
and well-being of citizens. For such a reason, improving strategies to effectively manage 
and utilize limited public security resources has become a crucial issue for policymakers 
and urban management departments.

However, ICT technologies and sensor infrastructures are enabling public organiza-
tions and police departments to gather and store increasing volumes of crime-related 
data, with spatial and temporal information. This offers the opportunity to apply data 
analytics methodologies to extract useful knowledge models, which can effectively 
detect spatial and temporal patterns of crime events. By extracting useful predictive 
models and applying appropriate methods for data analysis, police departments are sup-
ported to better utilize their limited resources and implement more effective strategies 
for crime prevention.

Motivations and contributions

Several criminal justice studies show that the incidence of criminal events is not uni-
formly distributed within a city [2, 3, 5, 6]. In fact, crime trends are strongly affected 
by the geographic location of the area (there are low-risk and high-risk areas). Also, 
they can vary with respect to the period of the year (there could be seasonal patterns, 
peaks, and dips). For this reason, an effective predictive model must be able to automati-
cally determine which city neighborhoods are most affected by crime-related incidents, 
namely crime hotspots, as well as how the crime rate in each particular hotspot evolves 
over time. This knowledge can allow police departments to allocate their resources more 
efficiently over the urban territory, enabling the effective deployment of officers to high-
risk areas, or moving officers from areas expecting a decline in crime activities, thus 
more efficiently preventing or promptly responding to crimes.

In literature, classic density-based clustering algorithms are largely exploited to dis-
cover spatial hotspots [7–11]. However, due to the adoption of global parameters, they 
fail to identify multi-density hotspots (i.e., different regions having various densities [12, 
13]) unless the clusters (or hotspots) are clearly separated by sparse regions [14]. In par-
ticular, this is a key issue when analyzing crime data and thus correctly detecting the real 
crime hotspots. In fact, the density of population, traffic, or events in large cities can 
vary widely from one area to another area [5], which also makes the incidence of crime 
events extremely dissimilar in terms of density.

Such a spatial density variation in crime events challenges the discovery of proper hot-
spots when classic density-based algorithms perform the analysis. For example, the well-
known DBSCAN [14] receives two global input parameters ( ǫ and min− points ), which 
results in a minimum density threshold δmin that is exploited for clustering the whole 
dataset. The optimal value of δmin can affect the densities of the discovered hotspots and 
does not deal with large density variations in the urban data. Indeed, if the value of δmin 
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is too small, the algorithm can discover several small non-significant hotspots that actu-
ally do not represent dense crime regions, while if δmin is too large, it can discover a 
few large regions having high intra-cluster density variations. Thus, classic density-based 
clustering algorithms fail to identify proper hotspots characterized by different density 
levels, and their application to discover crime hotspots can produce inaccurate results, 
particularly in urban environments. A recent study in Cesario et al. [5] shows that multi-
density clustering achieves higher performance than classic approaches for discovering 
hotspots in multi-density urban environments.

This paper presents the design and implementation of MD-CrimePredictor (Multi-
Density Crime Predictor), an approach based on multi-density crime hotspots and 
regressive models to automatically detect high-risk crime areas in urban environments, 
and to forecast crime trends in each area reliably. The algorithm is composed of three 
main steps. First, multi-density crime hotspots are detected by applying a multi-density 
clustering algorithm (i.e., CHD) proposed in Cesario et al. [5], where densities, shapes, 
and number of the detected regions are automatically computed by the algorithm with-
out any pre-fixed division in areas. Then, a specific regressive model is discovered from 
each detected hotspot, analyzing the partitions discovered during the previous step. In 
this paper, this is done by exploiting both SARIMA [15] and LSTM [16] models, and 
a comparative experimental analysis is presented in terms of error measures. The final 
result of the algorithm is a spatio-temporal crime forecasting model, composed of a set 
of crime hotspots, their densities, and a set of associated crime predictors, each one rep-
resenting a predictive model to forecast the number of crimes that are estimated to hap-
pen in its specific hotspot. The experimental evaluation of the proposed approach has 
been performed by analyzing a large area of Chicago, involving more than two million 
crime events (over a period of 19 years). The experimental evaluation, aimed at assess-
ing the effectiveness of the approach over rolling prediction horizons, presents a com-
parative analysis between SARIMA and LSTM regression models, demonstrating higher 
accuracy of the first method with respect to the second one. We also provide a com-
parative assessment of the proposed approach with other studies proposed in literature, 
drawing a comparison in terms of hotspots detection and crime forecasting accuracy. 
Overall, the results show the effectiveness of the approach, by achieving good accuracy 
in spatial and temporal crime forecasting over rolling time horizons.

Plan of the paper

The rest of the paper is organized as follows. Section "Related work" reports the most 
important approaches proposed in the literature for crime hotspot detection and crime 
forecasting. Section "Problem Definition and Proposed Approach" outlines the problem 
statement and describes the approach proposed in the paper and reports its steps in 
detail. Section "Experimental Evaluation and Results" provides the experimental evalua-
tion of the proposed approach on a real-world scenario by showing a comparative analy-
sis between SARIMA and LSTM performances. The section also shows a comparison 
between the results achieved with the presented approach and other methodologies pro-
posed in the literature. Finally, Sect. "Conclusion" concludes the paper and plans future 
research works.
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Related work
Recently, crime hotspot detection and crime forecasting have been raised as hot top-
ics within the research community. This section briefly reviews the most representative 
research works in both areas.

Crime forecasting

One of the first frameworks proposed in the literature for crime data analysis is Crime-
Tracer [17], which is based on a probabilistic approach to model the spatial behavior of 
known offenders within areas they frequent, called activity spaces. This work is based 
on the assumption, based on crime pattern theories, that offenders frequently commit 
serial violent crimes in places they are most familiar with (namely, their activity space). 
Also, the authors claim that taxi flows can provide useful information to correlate activ-
ity spaces, even if they are not geographically connected. Experiments carried out on 
real-world crime data have shown that criminals frequently commit crimes within their 
activity spaces, rather than venture into unknown territories. CrimeTracer is indeed able 
to predict the location of the next crime committed by known offenders but it does not 
provide information about the time window for the next crime events. Also, it requires 
a dataset with information related to specific offenders, which could not be available in 
general.

The work in Catlett et al. [7] presented a predictive approach based on spatial analysis 
and auto-regressive models in order to detect high-risk regions in urban areas and to 
forecast crime trends in each region. The approach exploits the DBSCAN algorithm to 
detect high-risk regions and ARIMA models to fit crime predictors. The approach has 
been validated on two crime datasets (i.e., Chicago and New York City areas) comprising 
crime events spanning from 2001 to 2016. The study shows good performances on both 
datasets, considering a three-year ahead forecasting window, which is a long-term time 
horizon. The approach is capable of detecting crime-dense regions having any shapes, 
however the main drawback is that DBSCAN detects wide regions or a large number of 
outliers, as it cannot tackle the multi-density nature of urban datasets.

The study described in Zhu et al.  [3] proposes a hierarchical crime prediction frame-
work, which integrates a modified gated GCN (Graph Convolutional Networks) and 
VMD (variational mode decomposition), to holistically predict the short-term crime 
patterns in different communities and support proactive policing. The approach is com-
posed of several steps. First, the temporal dependency is decomposed in the frequency 
domain, and a network is constructed to capture the spatial relationships within the 
sub-frequencies. Then, human mobility traces are exploited to characterize the dynamic 
relationships within the network. The experimental evaluation has been focused on the 
crime distribution evolution of crimes in Chicago, to predict the short-term criminal 
events in the different communities holistically. The study concludes that social inter-
actions based on human activity data can characterize dynamic crime distribution 
relationships, as well as spatial crime distribution evolutions. The main strength of the 
research study proposed in Zhu et al. [3] leverages on the dynamic relationships between 
human mobility and crimes, which represents a relevant methodological difference with 
other approaches proposed in literature; in particular, the analysis of human mobility 
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allows to characterize also the dynamic distribution and evolution of crimes within and 
across areas, which is strongly affected by social interactions among individuals. How-
ever, while the approach exhibits reasonable effectiveness of taking a relationship-based 
perspective for crime forecasting, the theoretical description needs further verification 
(as also claimed by authors): in fact, as human activity data is multi-source, multi-gran-
ular, and multi-mode, and involves complex relationships, a more refined classifica-
tion of human mobility trends is needed to understand their effects on different crime 
evolutions.

A general framework for crime data mining, exploited for some analysis tasks in col-
laboration with the Tucson and Phoenix Police departments, is presented in Chen et al. 
[18]. In particular, the paper describes three examples of its use in practice. First, entity 
extraction algorithms have been used to automatically identify persons, addresses, vehi-
cles, and personal characteristics from police narrative reports (usually containing many 
typos, spelling errors, grammatical mistakes, etc.). Second, a text mining algorithm has 
been explored for deceptive identity detection, to discover the real identity of suspects 
that have given false names, faked birth dates, or false addresses. Third, a concept-based 
approach has been exploited to identify subgroups or key members in criminal net-
works, and to study interaction patterns among them. In our opinion, the main strength 
of this study is its innovativeness in providing investigators with a framework for auto-
matically applying crime entity-extraction techniques on crime data, aiming to extract 
serial offenders’ behavioral patterns. However, using only crime department data could 
limit the applicability and effectiveness of the framework; as also observed in Chen et al. 
[18], additional heterogeneous data (i.e., citizenship, secret services, immigration, web, 
social) could enable the development of more intuitive techniques for crime pattern and 
network visualization, and higher accuracy in criminal activity predictions.

Authors of Liang et al. [19] propose a framework, named CrimeTensor, to predict the 
number of crime incidents belonging to different categories within each target region. 
The framework, based on tensor learning with spatio-temporal consistency techniques, 
aims to offer fine-scale prediction results considering spatio-temporal categorical cor-
relations in crime events. Crime data is modeled as a tensor, and an objective function 
is presented, which leverages spatial, temporal, and categorical information. The predic-
tion task is done by applying CANDECOMP/PARAFAC decomposition to find an opti-
mal solution for the defined objective function. The approach is validated by conducting 
experiments on two real-world crime datasets, collected in the Xiaogan (China) and 
New York City (USA), each one collecting one year of data. The approach can forecast 
crimes while distinguishing between different crime types, but it considers only a pre-
defined set of regions. Furthermore, the experimental evaluation has been performed 
only on four months of data. Also, the resulting model requires several different infor-
mation (i.e., crimes, regions, demographics, road networks) to be trained.

The work in Zhu et al. [2] presents an approach based on K-means clustering, signal 
decomposition techniques, and neural networks to identify crime distribution in urban 
areas and forecast crime trends in each area. The approach has been evaluated on a Chi-
cago real-world dataset (collecting crime data from 2011 to 2018). As a main novelty 
of the approach, the authors exploited Bidirection Recurrent Neural Networks for the 
forecasting task. The results show good accuracy regarding one-day-ahead prediction 
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in terms of MAPE. The main strength of this study, as also reported by authors, con-
sists in its experimental results showing that the crime time series in different areas 
exhibit a correlation in the long term, but this long-term effect cannot be reflected in 
the short period. This contradiction affects a different perception of public safety qual-
ity between police departments and individuals. On the other side, three main issues 
could be overtaken: (i) the application of k-means for cluster detection tends to detect 
globular-shaped crime hotspots, which could be not completely appropriate in dynamic 
environments like metropolitan cities; (ii) the number of clusters (six) detected in the 
whole City of Chicago can lead to have very large clusters, someone even larger than 
the pre-defined administrative police districts of the city; (iii) the crime types and social 
impacts of the crime are not considered in the approach, and could add an important 
value to the whole process.

The work in Wang et  al.  [20] studies crime inference between neighbor areas by 
exploiting crime data, POIs, and taxi flows analyzed by Linear Regression and Negative 
Binomial Regression models. The authors evaluated the approach on the Chicago crime 
data for five years (2010 and 2015) and considered the city’s administrative boundaries 
to partition data. A wide set of experiments was performed to compare the results gath-
ered with different feature combinations. Even if the approach was proven to be effective 
in crime inference, the findings show that, on the tested data, the taxi flow distribution is 
highly skewed, and this causes a significant forecasting error in some areas.

In Han et  al. [21], the authors proposed an approach for predicting daily crimes by 
leveraging a combination of Long Short-Term Memory Network (LSTM) and Spatial-
Temporal Graph Convolutional Network (ST-GCN). The algorithm involves topological 
maps, crime transitions detected by ST-GCN, and temporal trends extracted by LSTM. 
Finally, a Gradient Boost Decision Tree (GBDT) integrates the predicted values from 
both modules to create a spatial-temporal model for crime prediction. The experimen-
tal evaluation has been assessed on Chicago crime data. It provides an analysis of 0.32 
million crimes over six years, considering only the communities with a large number of 
crime cases.

The approach presented in Li et al. [22], named ST-HSL, proposes a Spatial-Temporal 
Hypergraph Self-Supervised Learning framework. The approach focuses on the analysis 
of sparse crime data, with the aim of tackling the label scarcity issue in crime predic-
tion. Specifically, the authors propose a method to perform spatial-temporal prediction 
via Graph Neural Networks, based on a cross-region hypergraph structure learning to 
encode region-wise crime dependency within the entire urban space. Additionally, a 
dual-stage self-supervised learning approach is designed, with the two goals of (i) cap-
turing spatial-temporal crime patterns at both local and global levels, and (ii) enhanc-
ing the representation of sparse crime data by improving region-specific discrimination. 
The experimental evaluation has been carried out by integrating geographic grid-based 
regions and crime data on two real-world case studies, i.e., Chicago and New York City, 
by also performing a comparative analysis with several state-of-the-art baselines. In 
our opinion, the main strength of this approach consists in its capability of perform-
ing spatial-temporal representation with sparse crime data, and the ability of neural net-
work-based models to differentiate spatial-temporal category crime patterns of different 
regions and time periods under data scarcity. On the other side, the predefined hotspot 
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boundaries in grid-cells could limit the effectiveness of the approach to detect spatial 
dynamic distributions of crimes in the area under investigation.

The study presented in Zhou et  al. [23] takes inspiration from the fact that, due to 
municipal regulations and maintenance costs, it is not trivial for many cities to collect 
high-quality labeled crime data, whose availability is crucial for a further data analysis 
process. In such cases, authors propose to develop a crime prediction model for a target 
city without labeled crime data by learning knowledge from a source city with abundant 
data; the basic idea is to use common context data to train a model from the source 
city and then fine-tune this model to solve tasks in the target city. However, the authors 
highlight that the inconsistency of relevant context data between cities exacerbates the 
difficulty of this prediction task. To deal with this issue, the paper [23] proposes an unsu-
pervised domain adaptation model (UDAC) for crime risk prediction across cities while 
addressing data scarcity and inconsistency issues. More specifically, the approach is 
composed of three main steps. First, given a target city affected by a scarcity of labeled 
crime data, several similar source city grids for each target city grid are identified. Then, 
based on these source city grids, auxiliary contexts for the target city are built, to make 
contexts consistent between the two cities. Finally, a dense convolutional network with 
unsupervised domain adaptation is designed to learn high-level representations for 
accurate crime risk prediction and simultaneously learn domain-invariant features for 
domain adaptation. The approach has been evaluated through experiments performed 
on three real-world datasets from New York City, Chicago, and Los Angeles. In our 
opinion, the topic investigated by this paper is very interesting, as data scarcity is a major 
challenge when training machine- and deep-learning models. However, as also noted by 
the authors, this technique could be applied to other fine-grained unsupervised crime 
risk prediction, such as predicting crime risk in roads, where the data sparsity problem is 
very high [23]. Also, the identification of equal-sized grids in the target and source cities 
could statically partition the territory, not considering the evolution of crimes during the 
time.

A comparison between several crime prediction and forecasting approaches is pro-
vided in Safat et al. [24]. The paper compares different machine learning algorithms, i.e., 
logistic regression, support vector machines, naive-bayes, k-nearest neighbors, decision 
trees, autoregressive integrated moving average models, and long-short term memory 
neural networks. The evaluation has been based on crime data gathered in Chicago 
(2004–2020) and Los Angeles (1990–2020) cities. The experimental evaluation provides 
forecasting results over a five-year window, considering the whole city and not specific 
areas within the city.

A systematic review of several research works about crime hotspot detection and 
crime prediction is presented in Butt et  al. [1]. In particular, the paper analyzes the 
impact of clustering techniques on the discovery of crime hotspots, and how time series 
analysis and deep learning techniques can be exploited for crime trend prediction. The 
review shows that ARIMA and LSTM models are the most used techniques for predict-
ing crime trends in urban environments. The review also highlights the need, for com-
parison purposes, to exploit publicly available data to assess crime prediction results, 
and that the most widely exploited measurements for evaluating the effectiveness of 
the different approaches are MAE, MAPE, and RMSE, and suggest the use of relative 
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performance indexes, such as MAPE, to simplify the comparison between different 
approaches.

Table 1 reports a more detailed and critical comparison of the solutions proposed in 
the literature, including also our proposed approach MD-CrimePredictor. The compari-
son takes into account several features, as detailed below.

Goal of the approach. This feature describes the topic under investigation and the goal 
of the proposal. MD-CrimePredictor and the approaches presented in refs. [2, 3, 7, 17, 
21–23] are aimed at detecting crime hotspots (or crime locations) and crime forecasting 
models, while the approach proposed in Chen et al. [18] is more focused on deceptive 
identity detection and criminal-network analysis.

Data. This feature is related to the data the approaches have been tested on. All 
approaches have been evaluated on real-world crime datasets (mainly from Chicago, 
Vancouver, New York City, and Phoenix), in some cases integrated with human mobility 
data [3, 17, 20] and other contextual data [19, 20].

Methods. This feature differentiates the algorithms on the basis of the methodolo-
gies used for the faced crime analysis task. The approaches presented in refs. [2, 7] and 
MD-CrimePredictor exploit density-based clustering algorithms to detect interesting 
hotspots, and ARIMA-based and neural networks-based approaches to perform crime 
forecasting (with some differences among them). Another set of works exploits pre-
defined area boundaries and Artificial Neural Networks based methodologies to predict 
crimes [21–23]. On the other side, the algorithms described in   [3, 17, 18, 20] exploit 
other techniques, ranging from probabilistic approaches to variational mode decompo-
sitions, entity-detection, and text-mining approaches.

Main features. In addition to the listed comparative categories, we report in Table 1 
also a selection of the main features that characterize the revised approaches. The algo-
rithms described in refs. [3, 7] have the good peculiarity of automatically detecting hot-
spots of any shape (e.g., circular, rectangular, irregular), while the approaches proposed 
in refs. [2, 7, 17] share the effective capability to perform predictions on rolling forecast-
ing time-horizons. Also, some algorithms differentiate the predicted criminal activities 
on the basis of crime categories [18, 19, 22], which could be an added value knowledge 
aimed at supporting police prevention activities. Furthermore, some approaches [2, 17, 
19–23] deal with only pre-given or specific crime hotspots (activity spaces, grid-cells, 
etc.): this may reduce the forecasting effectiveness of such techniques, because they 
could not detect dynamic changes in spatial criminal evolutions. Moreover, the approach 
described in Catlett et al. [7] detects multi-shape hotspots, but the results exhibit a sig-
nificant number of noise points. Finally, the algorithms described in refs. [3, 17, 19, 20] 
rely on the availability and integration of multiple data (i.e., crimes, metro, taxi, demo-
graphic, land use, etc.): from one side the discovery of models correlating urban events 
and criminal activities is very interesting, from the other side this could be critical in 
cases where a part of such data are not available for the areas under investigation.

Crime hotspot detection

The systematic review presented in Butt et al. [1] reports that for what concerns hotspot 
detection techniques, RandomForest and DBSCAN are the most popular approaches 
exploited This specific aspect is also analyzed in Cesario et al. [25], which studies how other 



Page 9 of 39Cesario et al. Journal of Big Data           (2024) 11:75  

Ta
bl

e 
1 

Re
la

te
d 

w
or

k 
co

m
pa

ris
on

 ta
bl

e

Pu
bl

ic
at

io
n

G
oa

ls
D

at
a

M
et

ho
ds

Fe
at

ur
es

Ta
ye

b 
et

 a
l. 

 [1
7]

C
rim

e 
lo

ca
tio

n 
pr

ed
ic

tio
n

Ro
ad

s 
M

ap
 a

nd
 C

rim
es

 (2
00

1-
20

06
) i

n 
M

et
ro

 V
an

co
uv

er
Pr

ob
ab

ili
st

ic
 F

ra
m

ew
or

k 
ba

se
d 

on
 A

ct
iv

ity
 

Sp
ac

es
A

bl
e 

to
 p

re
di

ct
 th

e 
lo

ca
tio

n 
of

 th
e 

ne
xt

 
cr

im
e 

co
m

m
itt

ed
 b

y 
kn

ow
n 

off
en

de
rs

. A
 

cr
im

e 
da

ta
se

t c
on

ta
in

in
g 

in
fo

rm
at

io
n 

ab
ou

t 
off

en
de

rs
 is

 re
qu

ire
d,

 w
hi

ch
 c

ou
ld

 n
ot

 b
e 

av
ai

la
bl

e 
in

 g
en

er
al

. I
t d

oe
s 

no
t p

ro
vi

de
 a

 
tim

e 
w

in
do

w
 fo

r t
he

 n
ex

t c
rim

e 
ev

en
ts

.

Ca
tle

tt
 e

t a
l. 

 [7
]

C
rim

e 
ho

ts
po

t d
et

ec
tio

n 
an

d 
cr

im
e 

fo
re

ca
st

in
g

C
rim

es
 e

ve
nt

s 
in

 C
hi

ca
go

 (2
00

1-
20

16
) a

nd
 

N
ew

 Y
or

k 
C

ity
 (2

00
6-

20
16

)
D

BS
ca

n 
fo

r C
rim

e 
H

ot
sp

ot
 d

et
ec

tio
n,

 
A

RI
M

A
 m

od
el

s 
fo

r f
or

ec
as

tin
g.

It 
is

 a
bl

e 
to

 p
re

di
ct

 th
e 

ex
pe

ct
ed

 c
rim

es
 

nu
m

be
r o

n 
a 

lo
ng

-t
er

m
 ti

m
e 

ho
riz

on
 fo

r 
th

e 
de

te
ct

ed
 c

rim
e-

de
ns

e 
re

gi
on

s. 
It 

ca
n 

de
te

ct
 c

rim
e-

de
ns

e 
re

gi
on

s 
ha

vi
ng

 a
ny

 
sh

ap
es

. T
he

 e
xp

lo
ite

d 
D

BS
ca

n 
al

go
rit

hm
 c

an
 

de
te

ct
 w

id
e 

cr
im

e-
de

ns
e 

re
gi

on
s, 

or
 a

 la
rg

e 
nu

m
be

r o
f o

ut
lie

rs
.

Zh
u 

et
 a

l. 
 [3

]
C

rim
e 

pa
tt

er
n 

ch
ar

ac
te

riz
at

io
n 

an
d 

pr
ed

ic
-

tio
n

C
hi

ca
go

 C
rim

es
 e

ve
nt

s 
(2

00
4-

20
19

) a
nd

 
ta

xi
 m

ob
ili

ty
 (2

01
3-

20
17

)
G

ra
ph

 C
on

vo
lu

tio
na

l N
et

w
or

ks
 (G

C
N

) a
nd

 
Va

ria
tio

na
l M

od
e 

D
ec

om
po

si
tio

n 
(V

M
D

)
Ex

pl
oi

tin
g 

hu
m

an
 m

ob
ili

ty
 tr

ac
es

 a
llo

w
s 

to
 

dy
na

m
ic

al
ly

 m
od

el
 c

rim
e 

di
st

rib
ut

io
ns

 a
nd

 
ev

ol
ut

io
ns

. C
om

pl
ex

 h
um

an
 re

la
tio

ns
hi

ps
 

ne
ed

 m
or

e 
re

fin
ed

 c
la

ss
ifi

ca
tio

n 
m

od
el

s 
of

 
hu

m
an

 m
ob

ili
ty

.

C
he

n 
et

 a
l. 

 [1
8]

D
ec

ep
tiv

e 
id

en
tit

y 
de

te
ct

io
n,

 c
rim

in
al

- 
ne

tw
or

k 
an

al
ys

is
Tu

cs
on

 a
nd

 P
ho

en
ix

 P
ol

ic
e 

D
ep

ar
tm

en
t’s

 
cr

im
e 

da
ta

ba
se

En
tit

y 
ex

tr
ac

tio
n,

 te
xt

 m
in

in
g 

an
d 

co
nc

ep
t-

sp
ac

e 
ap

pr
oa

ch
es

Ex
tr

ac
ts

 b
eh

av
io

ra
l p

at
te

rn
s 

of
 s

er
ia

l o
ffe

nd
-

er
s. 

W
eb

 a
nd

 s
oc

ia
l d

at
a 

ar
e 

no
t c

on
si

de
re

d.

W
ei

 e
t a

l. 
 [1

9]
C

rim
es

 p
re

di
ct

io
n 

di
st

in
gu

is
hi

ng
 c

rim
es

 
ca

te
go

rie
s

C
rim

e 
ev

en
ts

 in
 X

ia
og

an
 a

nd
 N

ew
 Y

or
k 

C
ity

, p
lu

s 
re

la
te

d 
de

m
og

ra
ph

ic
, P

O
I, 

Ro
ad

 
N

et
w

or
k,

 a
nd

 L
an

d 
U

se
 d

at
a.

Te
ns

or
 re

pr
es

en
ta

tio
n,

 o
pt

im
iz

at
io

n 
th

ro
ug

h 
C

A
N

D
EC

O
M

P/
 P

A
RA

FA
C

 d
ec

om
-

po
si

tio
n,

 a
gg

lo
m

er
at

io
n 

ne
st

in
g.

D
iff

er
en

tia
te

s 
cr

im
e 

ca
te

go
rie

s, 
co

ns
id

er
s 

fe
at

ur
es

 o
th

er
 th

an
 c

rim
e 

da
ta

. P
re

-d
efi

ne
d 

se
t a

nd
 s

ha
pe

 o
f r

eg
io

ns
, c

us
to

m
-d

efi
ne

d 
pe

rf
or

m
an

ce
 in

de
xe

s.

Zh
u 

et
 a

l. 
 [2

]
C

rim
e 

ho
ts

po
ts

 d
et

ec
tio

n 
an

d 
fo

re
ca

st
in

g
C

rim
es

 e
ve

nt
s 

in
 C

hi
ca

go
 (2

00
1-

20
18

)
k-

m
ea

ns
 a

nd
ne

ur
al

 n
et

w
or

ks
Co

rr
el

at
io

n 
de

te
ct

ed
 fo

r l
on

g-
te

rm
 ti

m
e 

se
rie

s. 
G

lo
bu

la
r-

sh
ap

ed
 h

ot
sp

ot
s, 

cr
im

e 
ty

pe
s 

no
t c

on
si

de
re

d.

W
an

g 
et

 a
l. 

  [
20

]
C

rim
e 

ra
te

 in
fe

re
nc

e 
in

 c
om

m
un

iti
es

C
rim

es
 e

ve
nt

s 
in

 C
hi

ca
go

 (2
01

0-
20

14
), 

re
la

te
d 

de
m

og
ra

ph
ic

, g
eo

gr
ap

hi
c,

 P
O

I, 
an

d 
Ta

xi
 fl

ow
s 

da
ta

Li
ne

ar
 R

eg
re

ss
io

n.
 N

eg
at

iv
e 

bi
no

m
ia

l 
re

gr
es

si
on

.
Co

rr
el

at
es

 in
fo

rm
at

io
n 

ga
th

er
ed

 b
y 

di
ffe

r-
en

t d
at

as
et

. E
xp

lo
its

 a
 p

re
-d

efi
ne

d 
se

t a
nd

 
sh

ap
e 

of
 re

gi
on

s. 
Es

tim
at

io
n 

er
ro

r o
cc

ur
s 

in
 

so
m

e 
re

gi
on

s, 
du

e 
to

 s
ke

w
ne

ss
 o

f t
ax

i fl
ow

s 
da

ta
.



Page 10 of 39Cesario et al. Journal of Big Data           (2024) 11:75 

Ta
bl

e 
1 

(c
on

tin
ue

d)

Pu
bl

ic
at

io
n

G
oa

ls
D

at
a

M
et

ho
ds

Fe
at

ur
es

H
an

 e
t a

l. 
 [2

1]
C

rim
es

 p
re

di
ct

io
n 

w
ith

 fe
at

ur
e 

ex
tr

ac
tio

n
C

rim
es

 e
ve

nt
s 

in
 C

hi
ca

go
 (2

01
4-

20
20

)
Lo

ng
 S

ho
rt

-T
er

m
 M

em
or

y 
(L

ST
M

) a
nd

 
Sp

at
ia

l-T
em

po
ra

l G
ra

ph
 C

on
vo

lu
tio

na
l 

N
et

w
or

k 
(S

T-
G

C
N

)

D
et

ec
tio

n 
of

 tr
an

si
tio

n 
te

nd
en

ci
es

 o
f c

rim
es

 
be

tw
ee

n 
ne

ig
hb

or
in

g 
co

m
m

un
iti

es
 o

ve
r 

tim
e.

 C
om

m
un

iti
es

 w
ith

 lo
w

 n
um

be
r o

f 
cr

im
es

 n
ot

 c
on

si
de

re
d.

Li
 e

t a
l. 

 [2
2]

Sp
at

ia
l-t

em
po

ra
l p

re
di

ct
io

n 
fro

m
 s

pa
rs

e 
cr

im
e 

da
ta

C
rim

es
 e

ve
nt

s 
in

 C
hi

ca
go

 (2
01

6-
20

17
) a

nd
 

N
ew

 Y
or

k 
C

ity
 (2

01
4-

20
15

)
G

ra
ph

 N
eu

ra
lN

et
w

or
ks

C
rim

e 
fo

re
ca

st
s 

di
ffe

re
nt

ia
te

d 
by

 c
at

eg
or

ie
s. 

Pr
ed

efi
ne

d 
gr

id
-c

el
l h

ot
sp

ot
s 

co
ul

d 
no

t 
de

te
ct

dy
na

m
ic

 c
rim

e 
di

st
rib

ut
io

ns

Zh
ou

 e
t a

l. 
  [

23
]

D
et

ec
tin

g 
cr

im
e 

pr
ed

ic
tio

n 
m

od
el

s 
fo

r a
 

ci
ty

 w
ith

ou
t l

ab
el

ed
 c

rim
e 

da
ta

PO
Is

, C
rim

es
in

 C
hi

ca
go

,N
ew

 Y
or

k 
C

ity
an

d 
Lo

s 
A

ng
el

es
(2

01
5)

D
en

se
 C

on
vo

lu
tio

na
lN

et
w

or
ks

U
ns

up
er

vi
se

d 
do

m
ai

n 
ad

ap
ta

tio
n 

fo
r c

rim
e 

ris
k 

pr
ed

ic
tio

n 
ac

ro
ss

 c
iti

es
. P

ar
tit

io
ni

ng
 

ta
rg

et
 a

nd
 s

ou
rc

e 
ci

tie
s 

in
 e

qu
al

-s
iz

ed
 g

rid
s 

is
 a

 s
ta

tic
 s

ol
ut

io
n,

 n
ot

 c
on

si
de

rin
g 

th
e 

ev
ol

ut
io

n 
of

 c
rim

es
 d

ur
in

g 
th

e 
tim

e.

M
D

-C
rim

eP
re

di
ct

or
Sp

at
io

-t
em

po
ra

lc
rim

e 
fo

re
ca

st
in

gi
n 

m
ul

ti-
de

ns
ity

ho
ts

po
ts

C
rim

es
 e

ve
nt

si
n 

C
hi

ca
go

(2
00

1-
20

19
)

C
H

D
 fo

r C
rim

e 
H

ot
sp

ot
 d

et
ec

tio
n,

SA
RI

M
A

 
an

d 
LS

TM
 m

od
el

s 
fo

r c
rim

e 
fo

re
ca

st
in

g.
D

et
ec

tio
n 

of
 m

ul
ti-

de
ns

ity
 a

nd
 m

ul
ti-

sh
ap

e 
cr

im
e 

ho
ts

po
ts

, s
pe

ci
fic

 c
rim

e 
fo

re
ca

st
in

g 
m

od
el

 fo
r e

ac
h 

ho
ts

po
t. 

Co
rr

el
at

io
n 

w
ith

 
ot

he
r u

rb
an

 e
ve

nt
s 

no
t c

on
si

de
re

d.



Page 11 of 39Cesario et al. Journal of Big Data           (2024) 11:75  

clustering techniques, based on multi-density approaches, outperform classic approaches 
to discover urban hotspots. More specifically, the paper compares the DBSCAN, OPTICS-
xi, HDBSCAN, and CHD algorithms against two artificial and one real datasets, by select-
ing the best fitting algorithm parameters through a parameter sweeping approach. The 
results of the experimental evaluation on the artificial datasets, made in Cesario et al. [25], 
are reported in Tables 2 and 3, where the clustering results are compared by several perfor-
mance indexes (for each index, the best achieved result is reported in bold). The analysis 
shows that the HDBSCAN and CHD algorithms are the most effective in detecting clusters 
in multi-density dataset, and that CHD performs better than HDBSCAN on the second 
dataset (see Table 3). However, other approaches are presented in the literature, specifically 
tailored for clustering spatio-temporal data. The work in Nanni et al. [26] presents the TF-
OPTICS algorithm, designed for time-focused clustering. The algorithm processes a set 
of spatio-temporal objects, each one represented by a trajectory of values, as a function of 
time. TF-OPTICS focuses on computing distances between trajectories by searching for 
the best possible time interval. This algorithm, as well as those ones tailored for clustering 
trajectories of moving objects, does not suit to the proposed use case, because we focus 
on crime events characterized both in time and space, that can not be aggregated in a set 
of well-defined trajectories. A more fitting algorithm for clustering spatio-temporal data is 
presented in Agrawal et al. [27]. The algorithm, called ST-OPTICS, is density-based, and 
exploits two different ǫ parameters, one for clustering points in space and the other for clus-
tering points in time. A comparison between the proposed approach, based on CHD, and 
an alternative one, based on the ST-OPTICS algorithm, is provided in the Sect. "Compara-
tive analysis with ST-OPTICS on hotspots detection and crime forecasting".

Main differences and novelty of MD‑CrimePredictor

With respect to the summarized works, this paper presents two main novelties. First, it 
introduces MD-CrimePredictor, where a multi-density clustering algorithm (i.e., CHD) is 
exploited for crime hotspot detection (to the best of our knowledge, this is the first research 
study in the crime data analysis domain, showing results on multi-density crime hotspots). 
The exploited approach CHD is able to automatically detect multi-density (and multi-
shape) crime hotspots, which differentiates it w.r.t. all the other approaches reviewed here, 
thus showing important benefits in the urban data analysis. MD-CrimePredictor relies on 
the exploitation of both seasonal regressive (SARIMA) and deep-learning (LSTM) models 
for crime forecasting in each discovered hotspot, and, as e second contribution, the paper 
furnishes an extensive comparative evaluation between the results given by the two fore-
casting algorithms. Also, to assess the effectiveness of the CHD-based approach for hotspot 
detection, we show a comparative analysis of the proposed approach with other studies 
proposed in literature, drawing a comparison in terms of hotspots detection and crime 
forecasting accuracy

Problem definition and proposed approach
This section presents the problem formulation and the approach proposed in the paper 
to forecast crime events in multi-density crime hotspots. Specifically, Sect.  "Problem 
definition and goals" depicts the problem under investigation and its goals, whereas 
Sect. "The multi-crime-predictor approach" details the algorithm proposed in the paper.
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Problem definition and goals

We begin by fixing a proper notation to be used throughout the paper. Let 
T =< t1, t2, . . . , tH > be an ordered timestamp list, such that th < th+1, ∀0≤h<H , and 
where all th are at equal time intervals (e.g., every hour, day, week). Let CD be a crime 
dataset collecting crime events, CD =< CD1,CD2, . . . ,CDN > , where each CDi is a data 
instance described by < latitude, longitude, t > , i.e., the coordinates of the place and the 
time (with t ∈ T  ) the event occurs at. Now, let us consider a future temporal horizon, 
S =< ts, ts+1, . . . > , with s > H . The goal of the analysis is to discover a set of crime hot-
spots in the city (which can have multi-density distribution of the events) and predictive 
models for reliably forecasting the number of crimes in each hotspots at a given times-
tamp ts ∈ S . More specifically, the goal of the proposed approach aims at achieving the 
following goals: 

1. Discover a set CH of crime hotspots, CH = {CH1, . . . ,CHK } , where a crime hotspot 
CHk is a spatial area which criminal events occur in with an higher density than other 
areas in the city;

2. Compute a set � of crime hotspot densities, � = {σ1, σ2, . . . , σH } , where each σh is the 
spatial density of events occurred in the hotspot CHh.

3. Extract a set Fcrimes of crime predictors, Fcrimes = {F1
crimes, . . . ,F

K
crimes} , where each 

function Fk
crime : S → R , given a timestamp ts ∈ S states the number of crimes 

N ∈ R that are predicted to happen in the crime hotspot CHk ∈ CH at the times-
tamp ts.

The multi‑crime‑predictor approach

The approach proposed in this paper is sketched in Fig. 1, and its meta-code is reported 
in Algorithm  1. The algorithm is composed of three main steps, as described in the 
following.

Step 1. Multi-density Crime Hotspots detection. The first step consists in the detec-
tion of multi-density crime hotspots from the original dataset, that is, areas where 
crime events occur with greater density than other adjacent areas. The goal of this 
step is to detect spatial areas of interest for crime forecasting, in order to conduct 
the further analysis over areas rather than single points. This step is performed by 

Fig. 1 The multi-crime-predictor algorithm workflow
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the DiscoverCrimeHotspots(D ) method (line 1 of Algorithm  1), which returns 
the set CH = {CH1, . . . ,CHH } of crime hotspots and their corresponding densities 
� = {σ1, σ2, . . . , σH } . This task has been modeled as a geo-spatial clustering instance 
and has been performed, as described in Sect.  "Detection of multi-density crime hot-
spots", using the City Hotspot Detector (CHD) multi-density clustering algorithm [5]. 
The number of detected hotspots is automatically detected by the algorithm, and their 
shapes are traced without any pre-fixed division in areas. The parameter setting for CHD 
is chosen by adopting a parameter-sweeping methodology, that is, by running several 
instances of the CHD algorithm by varying their input parameters, and choosing the 
parameter settings that maximizes a set of internal indexes which comprises Silhouette 
[28], DBCV [29], CDBW [30], Calinsky-Harabaz [31], Davies-Bouldin [32].

Step 2. Crime Time Series Extraction. The second step consists in the spatial data split-
ting of the original crime data, based on the clustering model discovered at the previ-
ous step. In other words, the points of the original crime data events assigned to the 
ith hotspot are transformed in a time series and gathered in the ith output dataset, for 
i = 1, ...,K  . At the end of this step, K different time series data sets are available, each 
one containing the time series of crimes occurred in its associated dense region, aggre-
gated on a weekly basis.

Step 3. Predictive Crime Models extraction. The third step is aimed at extracting a spe-
cific crime prediction model Fi

crime for each ith crime hotspot, analyzing the crime data 
split during the previous step. This task can be done by applying different regression 
techniques. In particular, in our approach this task has been implemented by exploit-
ing both SARIMA and LSTM techniques (which have been resulted the most effective 
approaches to this purpose), as described in Sect. "Extraction of crime predictors".

Algorithm 1 MultiCrimePredictor

Detection of multi‑density crime hotspots

The detection of crime hotspots has been done by exploiting the CHD algorithm [5], a 
multi density-based clustering algorithm that has been purposely designed for process-
ing urban spatial data and discover multi-density hotspots. The algorithm is composed 
of several steps, as reported in Algorithm 2. First, given a fixed k variable, the k-nearest 
neighbors distance for each point is computed and exploited as an estimator of the den-
sity of each data point (line 1). Then, the points are sorted with respect to their estimated 
density, and the density variation between each consecutive couple of points in the 
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ordered list is computed (line 2). The obtained density variation list can show very fre-
quent fluctuations between subsequent values (in particular, in the analysis of real-wold 
urban data), thus a moving average filtering over windows of size s is applied to smooth 
out such fluctuations and highlight main trends (line 3). The data points are then parti-
tioned into several density level sets (each one characterized by homogeneous density 
distributions), on the basis of the smoothed density variations (line 4). Then, a different 
ǫ value is estimated for each density level set (line 5). Finally, each set is analyzed by the 
DBSCAN algorithm (lines 7–12). Specifically, each instance takes as input the specific ǫ 
value computed for the analyzed density level set. The set of clusters detected for each 
partition constitutes the final result of the CHD algorithm. More details about CHD can 
be found in [5]. Moreover, in Cesario et al. [25] CHD has been proven to be effective in 
detecting clusters characterized by different densities in urban spatial datasets.

Algorithm 2 The CityHotspotDetector algorithm

Extraction of crime predictors

Given a specific crime hotspot, the DiscoverLocalCrimePredictor() method (line 
4 in Algorithm 1) extracts a regressive model to forecast the number of crimes that will 
happen in its specific area. In this paper, this has been performed by exploiting SARIMA 
(Seasonal AutoRegressive Integrated Moving Average) and LSTM (Long Short-Term 
Memory) models. Such models and their principles are briefly summarized in the 
following.

SARIMA models

Multiple regression models have been defined with the goal of forecasting a variable of 
interest using a linear combination of predictors [33]. In particular, in an auto-regression 
model, the variable of interest is forecasted using a linear combination of its past values 
(the term auto-regression indicates that it is a regression of the variable against itself ), 
while a moving average model uses past forecast errors in a regression-like model. Some-
times, as a preliminary step to the regressive analysis, time series need a differencing 
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transformation to stabilize the mean of a time series and so eliminating (or reducing) 
trend and seasonality. A combination of differencing, auto-regression and moving aver-
age methods is known as AutoRegressive Integrated Moving Average model (more fre-
quently referred by its acronym ARIMA) [33], formally defined in the following.

Let us consider the time series {yt : t = 1...n} , where yt is the value of the time series at 
the timestamp t. Then, an ARIMA(p, d, q) model is written in the form

where:

• y
(d)
t  is the dth-differenced series of yt , that is: y(d)t = y

(d−1)
t − y

(d−1)
t−1 , ... , y

(d)
t−p = y

(d−1)
t−p − y

(d−1)
t−p−1

y
(d)
t = y

(d−1)
t − y

(d−1)
t−1 , ... , y

(d)
t−p = y

(d−1)
t−p − y

(d−1)
t−p−1;

• φ1, . . . ,φp are the regression coefficients of the auto-regressive part;
• θ1, . . . , θq are the regression coefficient of the moving average part;
• et−1, . . . , et−q are lagged errors;
• et is white noise and takes into account the forecast error;
• c is a correcting factor.

The regression model above described is referred as ARIMA(p, d, q), where the order of 
the model is stated by three parameters: p (order of the auto-regressive part), d (degree 
of first differencing involved) and q (order of the moving average part). A useful notation 
commonly adopted when treating this kind of models is the ’backshift notation’ [34–36], 
that is based on the B operator. The B ( Bd ) operator on yt has the effect of shifting the 
data back one period (d periods). This is very useful when combining differences, as the 
operator can be treated using ordinary algebraic rules. By using the ’backshift’ operator, 
the full model can be written as:

whose details are out of the scope of this work and a formal demonstration can be found 
in [33–35].

In order to deal with seasonality, the classical ARIMA processes have been general-
ized and extended by the SARIMA (i.e., Seasonal ARIMA) models. A SARIMA model 
is formed by including additional seasonal terms (modeling a seasonal component that 
repeats with a given periodicity) in the classic ARIMA models previously introduced. 
The seasonal part of the model consists of terms that are very similar to the non-sea-
sonal components of the model. In the final formula, the additional seasonal terms are 
simply multiplied with the non-seasonal terms. A seasonal ARIMA model is referred as 
SARIMA(p, d, q)(P,D,Q)m , where m is a periodicity factor.

The SARIMA model can be written as [15]:

y
(d)
t = c + φ1y

(d)
t−1 + . . .+ φpy

(d)
t−p + θ1et−1 + . . .+ θqet−q + et

(1− φ1B− . . .− φpB
p)(1− B)dyt = (1− θ1B− . . .− θqB

q)et

φp(B)�P(B
m)

d� D�

m

yt = θq(B)�Q(B
m)et
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where p and q represent non-seasonal ARIMA order, P and Q represent seasonal 
ARIMA order, d is the number of time differences and D is the number of sea-
sonal difference. B is the backshift operator and is defined such that ytBs = yt−s . 
φp(B) = (1− φ1B− . . .− φpB

p) is the AR operator and θq(B) = (1− θ1B− . . .− θqB
q) 

is the MA operator. �P(B
m) = (1−�mB

m − . . .−�PmB
Pm) is the seasonal AR opera-

tor and �Q(B
m) = (1−�mB

m − . . .−�QmB
Qm) is the seasonal MA operator. yt , which 

has both seasonal and non-seasonal components, is differenced d times (length one) 
and D times (length m). 

�d
= (1− B)d is the non-seasonal differencing operator and �D

m = (1− Bm)D is the seasonal differencing operator. et is the random shocks that are 
not autocorrelated.

Once the differencing order has been chosen i.e. d and D values, the estimation of 
the best model order and the regression coefficient values is performed by applying the 
Hyndman-Khandakar’s algorithm. Briefly, the algorithm performs a step-wise search to 
traverse the model space and discover the optimal combination of p, q, P and Q values, 
which is based on the minimization of the AIC (Akaike’s Information Criterion)  [33]. 
Then, the estimation of the regression parameters of both seasonal (i.e., φ1, . . . ,φp and 
θ1, . . . , θq ) and non-seasonal part ( �1, . . . ,�p and �1, . . . ,�q ) is obtained by maximizing 
the MLE (Maximum Likelihood Estimation) [33], i.e., the probability of fitting the data 
that have been observed.

LSTM

The LSTM model is a recurrent neural system designed to overcome the exploding/
vanishing gradient problems that typically arise when learning long-term dependencies, 
even when the minimal time lags are very long [16]. The LSTM architecture consists of 
a set of recurrently connected sub-networks, known as memory blocks. The idea behind 
the memory block is to maintain its state over time and regulate the information flow 
through non-linear gating units [37]. The output of the block is recurrently connected 
back to the block input and to all of the gates. As shown in Fig. 2 LSTM has an internal 
state variable, which is passed from one cell to the subsequent, and modified by the fol-
lowing Operation Gates [37]:

• Forget gate: it is a sigmoid layer that takes the output at t - 1 and the current input at 
time t , concatenates them and applies a linear transformation followed by a sigmoid: 

• Input gate: it takes the previous output and the new input and passes them through 
another sigmoid layer, so this gate returns a value between 0 and 1. 

 This value is multiplied with the output of the candidate layer: 

 The candidate layer applies a hyperbolic tangent returning a candidate vector to be 
added to the internal state, which is updated as follows: 

f (t) = σ(Wf [h
(t−1), xt ] + bf )

i(t) = σ(Wi[h
(t−1), xt ] + bi)

C(t) = tanh(Wc[h
(t−1), xt ] + bc)
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 The previous state is multiplied by the forget gate and then added to the fraction of 
the new candidate allowed by the output gate.

• Output gate: it controls how much of the internal state is passed to the output and it 
works in a similar way to the other gates: 

Once the number of layers, the number of nodes/units and the activation function 
per layer have been chosen, the estimation of the best model weights is performed by 
applying the backpropagation algorithm, i.e. one of the most popular neural network 
algorithms exploited to compute the necessary correction of weights that have been set 
randomly at first. Briefly, the algorithm can be decomposed in the following steps [38]:

• Feed-forward computation: given an input for the network, the output is computed 
by evaluating the network layer by layer, from the input to the output layers.

• Back propagation: the error (loss) of the output layer is computed by comparing it 
with the reference. Once the layer error has been identified, it is exploited to com-
pute the error for the previous layer, thus propagating it backward. This is repeated 
for all the layers back to the input one.

• Weight updates: as the errors in all the network layers have been computed, the 
weights are changed in order to reduce the error, by exploiting the gradient descent 
algorithm.

The algorithm is stopped when the changes in the value of the chosen loss function 
become lower than a given threshold value.

C(t) = f (t)C(t) + i(t)C(t)

o(t) = σ(Wo[h
(t−1), xt ] + bo)

h(t) = o(t)tanh(C(t))

Fig. 2 LSTM architecture
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Experimental evaluation and results
To assess the performance and usefulness of the algorithm described above, we con-
ducted an extensive experimental analysis by running several experiments in a real-
world case study represented by a large area of Chicago. Our analysis aims to identify the 
most significant multi-density crime hotspots and build efficient prediction models that 
can forecast the number of future crimes likely to occur in each hotspot. We also present 
a comparative analysis between SARIMA and LSTM forecasting models. The rest of this 
section is organized as follows. Section  "Data description" describes the area selected 
for the analysis and the gathered data, Sect.  "Crime hotspots: results and discussion" 
reports the results in terms of multi-density crime hotspots, and Sect. "Crime forecast-
ing models: results and discussion" describes the evaluation of the regressive models, i.e., 
SARIMA and LSTM, comparing the achieved accuracy to predict crimes in the detected 
hotspots. Sect. "Comparative analysis with ST-OPTICS on hotspots detection and crime 
forecasting" furnishes a comparative evaluation of CHD and ST-OPTICS, establishing a 
contrast in crime prediction accuracy between hotspots based on CHD and those based 
on ST-OPTICS. Finally, Sect. "Comparison with other crime forecasting approaches on 
the Chicago Crimes dataset" reports a comparison of the performances between MD-
CrimePredictor with other crime forecasting approaches [21–23] proposed in literature.

Data description

The data that we used to train the models and perform the experimental evaluation has 
been gathered from the Chicago Data Portal, a publicly available data search and explo-
ration platform designed and currently managed by the City of Chicago.1 In particular, 
crime data have been gathered from the ’Crimes—2001 to present’ dataset, a real-life col-
lection of instances describing criminal events that occurred in Chicago from 2001 to 
the present. Each crime is described by several attributes (e.g., type of crime, location, 
date, community area).2

In this work, we focus our experiments on a large area of Chicago, whose bounda-
ries and collected geo-localized crime events are shown in Fig. 3a and b, respectively. 
The chosen region encompasses several city neighborhoods, each one experiencing dif-
ferent population and commercial activity growths, with different crime densities over 
their territory (so making it interesting for multi-density crime analysis). Its perimeter 
is about 50 KM and its area is approximately 157 KM2 . Starting from the ’Crimes—2001 
to present’ dataset, we collected all crime events within the bounded area over 19 years, 
from January 2001 to December 2019. The total number of collected crimes is 2,306,670, 
while the average number of crimes per week is 2328. The total size of the whole dataset 
is 167 MB.

Figure 4a and b show a preliminary view of the collected crime data, which provides 
some insights about data trends and distribution. In particular, Fig. 4a plots the num-
ber of collected crimes versus the time of observation. The plot immediately reveals 
some interesting insights. First, it is evident that the number of crimes is decreasing 
over the time period, showing a general clear decreasing trend from 2001 to 2015 in 

1 https:// data. cityo fchic ago. org/.
2 https:// data. cityo fchic ago. org/ Public- Safety/ Crimes- 2001- to- prese nt- Dashb oard/ 5cd6- ry5g.

https://data.cityofchicago.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present-Dashboard/5cd6-ry5g
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the data, and a stable trend from 2015 to 2019. Second, a recurring seasonal pattern 
within each year is easily discernible, whose magnitude appears to get smaller as the 
total number of crimes in the series decreases. By observing the plot, we can see that 
the number of crimes tends to rise in the late Spring, achieves their peak in the Sum-
mer, decreases in the Autumn, and generally declines in the Winter. Figure 4b plots 
the distribution of the average number of crimes by month, thus providing a clearer 
picture of the seasonality pattern hidden in the data. The histogram shows significant 
seasonal variations in the number of crimes during the year. In particular, the number 
of criminal events is highest in July (with 11,380 crimes on average), and lowest in 
February (with 8234 crimes, on average).

Fig. 3 Selected area of Chicago and geolocalized crime events (2001–2019)

Fig. 4 Number of crimes vs time and their distribution by month
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To perform the regression task and its validation, we split the original dataset into 
two partitions: the training set and the test set. The first is used to discover the rela-
tionships inside data, while the second is used for evaluating whether the discovered 
relationships hold generally. In our case, the overall crime data set has been split with 
respect to the number of years: the training set contains the crime data of the first 15 
years (2001–2016), while the test set holds the crime data of the last 3 years (2017–
2019). As described in the following sub-sections, we trained the knowledge model 
(i.e., crime-dense regions and crime predictors) on the training set, and we used the 
trained model to forecast the crime events on the test set, so to assess the quality of 
the predictions in each hotspot.

Crime hotspots: results and discussion

As described in Sect. "The multi-crime-predictor approach", crime hotspots are detected 
by applying the CHD algorithm. However, in order to detect high-quality crime-dense 
regions, it is necessary to tune the key parameters of the algorithm so as to improve 
the results’ performance. Specifically, the CHD algorithm requires setting k, ω , and s. In 
particular, the values of ω and k have a direct influence on the quality of the results, and 
thus it is critical to choose their value to achieve the right balance among separability, 
compactness, and significance of detected hotspots. To show the best results achievable 
by the algorithm, we adopted a parameter-sweeping methodology, that is, we run sev-
eral instances of the algorithms by varying their input parameters. Then, we select the 
best result, in terms of clustering quality achieved by the algorithm, which best suits our 
application scenario and the considered dataset. In particular, in our case, the cluster-
ing quality can be computed by internal validation measures [39], which evaluate the 
goodness of a clustering structure without respect to external labels. To do so, the fol-
lowing set of internal indexes are here adopted: Silhouette [28], DBCV [29], CDBW [30], 
Calinsky-Harabaz [31], Davies-Bouldin [32], which are used in literature to evaluate the 
clustering quality in terms of compactness, separation, number of clusters and density 
when no external information is available [39].

The first set of experimental results is reported in Fig. 5, which shows the perfor-
mance achieved by the CHD algorithm with ω varying from −0.3 to −0.25. In par-
ticular, Figure  5a shows how the aforementioned internal indexes, evaluating the 
clustering quality, vary with respect to ω values. We can observe that the quality of 
detected hotspots is very sensitive to ω , whose best value, in this case, can be clearly 
estimated as equal to ω∗ = −0.27. On the other side, Figure 5b shows how the num-
ber of noise points (blue curve) and the number of detected hotspots (red curve) 
vary with respect to ω values. Noise points are data instances that do not meet the 
criteria for falling into any of the detected clusters (and are considered outliers by 
the algorithm), while the number of detected hotspots depends on the algorithm’s 
ability to find a balanced trade-off between separability and compactness properties. 
We can observe that for ω∗=−0.27, the number of detected noise points is 18,929, 
while the number of detected clusters is 200.

As reported above, we have run several experimental tests to find the parameter set-
tings capable of detecting the highest-quality city hotspots. For such a reason, in the fol-
lowing, we present the results achieved by fixing ω = −0.27 , k = 64 , s = 5000 , which 
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have been assessed to best suit our application scenario and the considered dataset by 
the previous analysis.

Now, let us analyze more in detail the crime hotspots detected in the considered 
scenario. As reported in Sect.  "The multi-crime-predictor approach", the clus-
tering algorithm exploited in this work first partitions the original data in several 
density level sets (each one characterized by homogeneous density distributions on 
the basis of density variations), then analyzes each density level set through a spe-
cific density-based clustering algorithm to detect proper clusters in each partition. 
The final hotspots (i.e. totally 200) discovered by the algorithm are shown in Fig. 6, 
where a different color represents each region. Interestingly, this image shows how 
crime events are clustered on the basis of a density criterion; for example, the algo-
rithm detects several significant crime regions clearly recognizable through different 
colors: a large crime region (in red) in the central part of the area along with seven 
smaller areas (in green, blue and light-blue) on the left and right side, corresponding 
to zones with the highest concentration of crimes. The five most relevant crime hot-
spots ( CH#197 , CH#198 , CH#8 , CH#21 , and CH#15 ) are zoomed-in on the left and 
right sides of Fig.  6. Many other hotspots are detected, representing areas having 
minor crime-densities w.r.t. the highlighted ones, or local high-density crime zones 
surrounded by low-density ones. Table  4 shows several statistics about the whole 
area and the five most numerous crime hotspots. Overall, these regions cover about 
22% of the whole area extension and about 55% of the crime events detected in the 
whole area between 2001 and 2019.

Finally, in order to make a comparative analysis among classic density-based algo-
rithms and multi-density approaches for hotspots detection, we report here a com-
parative table (Table 5) showing the results of four algorithms (two classic approaches: 
DBSCAN and OPTICS-Xi, and two multi-density approaches: CHD and HDBSCAN). 
Table 5 shows, for each algorithm, the selected input parameters and some statistics 
related to the achieved results (i.e., number of detected hotspots, percentage of noise 
points, Silhouette evaluation measure) on the Chicago crime dataset exploited in this 
paper and described in Sect.  "Data description". By observing the results in Table 5, 
we can observe that HDBSCAN and CHD achieve higher clustering qualities than 
DBSCAN and OPTICS-Xi; in fact, HDBSCAN and CHD (multi-density algorithms) 

Fig. 5 CHD clustering quality, num. of hotspots and num. of noise points vs ω , with k = 64 and s = 5000
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assess on silhouette values equal to −0.19 and −0.23, respectively, which are better 
than DBSCAN and OPTICS-xi’s results, whose clustering qualities assess on −0.28 
and −0.46. Such results show that multidensity clustering (i.e., HDBSCAN and CHD) 
is able to distinguish and identify proper hotspots in urban environments better than 

Fig. 6 Detected crime hotspots in the selected area of Chicago, whose the top-5 largest ones are 
zoomed-out on the left and right

Table 4 Descriptive statistics—whole area and crime hotspots

Cluster Extention ( km2) Extention (%) Perimeter Crimes (#) Crimes (%) Crime 
density (n. of 
crimes/km2)

Whole Area 156.77 100.00 49.57 2,306,670 100.00 14,713.72

CH #197 12.57 8.02 5.34 565,790 24.53 45,011.14

CH #198 10.24 6.53 4.27 352,674 15.29 34,440.82

CH #8 5.45 3.48 2.59 170,740 7.40 31,328.44

CH #21 4.83 3.08 2.22 102,763 4.46 21,275.98

CH #15 1.53 0.98 1.53 84,039 3.64 54,927.45

Table 5 Comparative results achieved by DBSCAN, OPTICS-Xi, CHD and HDBSCAN to detect crime 
hotspots, on the Chicago crime dataset [25]

Input parameters # Hotspots # Noise 
points (%)

Silhouette index

DBSCAN ǫ = 500 , minPoints = 60 78 12.6 – 0.28

OPTICS-Xi ξ =0.05, minPoints = 60 279 71.9 – 0.46

CHD ω = −0.27 , k = 64 , s = 5000 181 5.7 – 0.23

HDBSCAN min_cluster_size = 200 , minPoints = 60 61 34.6 – 0.19
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classic density-based techniques. Moreover, focusing on the two multi-density algo-
rithms CHD and HDBSCAN results, we can observe that CHD achieves a slightly 
lower silhouette than HDBSCAN, but it labels a very lower percentage of noise points 
(5.7%) with respect to HDBSCAN (34.6%). For such a reason, CHD resulted the best 
algorithm to be exploited in our crime data analysis case study. A more detailed anal-
ysis about the comparison among such algorithms is reported in [25].

Crime forecasting models: results and discussion

As described in Sect.  "The multi-crime-predictor approach", the next steps of the 
algorithm consist of (i) transforming the original crime data set in several time 
series, and (ii) training local crime predictors for each crime hotspot. In particular, as 
described in Sect. "Extraction of crime predictors", the extraction of crime regressors 
has been performed by applying SARIMA and LSTM models on each hotspot. Spe-
cifically, we present here the details of the regressive models obtained by both algo-
rithms for the whole area and the three largest crime hotspots, i.e., CH#197, CH#198, 
and CH#8. Then, we will show the predictive performance of the models on the test 
set for all hotspots.

The regressive models extracted by SARIMA are reported in Table 6. For each area, 
the table shows the order of the models, the final autoregressive formulas (in back-shift 
notation), and the final coefficient values. It is worth noting that the predictive crime 
models differ among the hotspots, showing that each area presents specific crime trends 
and patterns, thus making the discovery of different predictive models reasonable.

The models extracted by LSTM are reported in Table 7. For each area, neural net-
works are trained with 4 layers, ReLu [40] activation function, a number of epochs 
equal to 50, and a customised batch size and number of units/nodes per layer. In each 
of the models presented, the mean absolute error (mae) loss function is considered. 
One of the most important factors in neural network training is the learning rate, 
a customized hyperparameter with a small positive value between 0.0 and 1.0 [41]. 
The rate at which weights are changed during the training is known as the step size 
or learning rate. A learning rate of 0.01 produced superior results in the NN models 
reported here than other learning rates. Even in the case of LSTM models, each hot-
spot has specific crime trends and patterns.

In order to assess the effectiveness and accuracy of the regressive functions, we per-
formed an evaluation analysis on the test set consisting of the last three years of data 
(i.e., years 2017–2019). In particular, for each crime hotspot and for the whole area, 
their associated SARIMA and LSTM models have been exploited to predict the num-
ber of crimes that are likely to happen in that hotspot, week by week. Figures 7 and 
8 show observed, SARIMA-forecasted and LSTM-forecasted data (plotted in blue, 
orange and green, respectively), for the whole area and the crime hotspot CH#197 
(the largest one), respectively. We consider here four prediction horizons on the test 
set, from one to four-week ahead. We note that forecasts generally adhere very well 
to the observed data over the whole test set period. However, the forecasting accuracy 
clearly decreases (in particular for LSTM) with the increase of the prediction horizon.
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Now, let us give a quantitative evaluation of the performance of the regressive mod-
els and their effectiveness in making predictions on the corresponding test sets. To 
this end, we computed six error measures (MAE, MAPE, MSE, RMSE, MaxError, 
MeanError), which are commonly used in regressive analysis literature to quantify 
forecast performance [12].

Table  8 reports the values of the error measures described above achieved by 
SARIMA and LSTM models for the whole area and the three largest detected crime 
hotspots. Looking at the values reported in the table, we can make the following 
observations.

The smaller hotspot, the lower MAE. Looking at the values in the table, we can 
observe that MAE values decrease when hotspot areas are smaller and smaller. In 

Table 6 Details of the SARIMA models trained for the whole area and the top 3 largest crime 
hotspots in Chicago

Whole area

  Model: SARIMA(3, 1, 3)(1, 1, 2)52 ,    MLE = −5903.48,  AIC = 11826.96

 Backshift notation:
yt =

(1− θ1B − θ2B
2 − θ2B

3)(1−�1B
52 −�2B

104) et

(1− φ1B − φ2B2 − φ3B3)(1−�1B52)(1− B)(1− B52)

 Coefficient values: φ1 = −0.0286 , φ2 = 0.7987 , φ3 = −0.0589 , θ1 = −0.6755 , θ2 = −0.8928,

θ3 = 0.5949 , �1 = 0.9862 , �1 = −1.7097 , �2 = 0.7109

Crime Hotspot 197

 Model: SARIMA(1, 1, 3)(1, 1, 1)52 ,    MLE = −4861.32,  AIC = 9736.64

 Backshift notation:
yt =

(1− θ1B − θ2B
2 − θ2B

3)(1−�1B
52) et

(1− φ1B)(1−�1B52)(1− B)(1− B52)

 Coefficient values: φ1 = 0.7560 , θ1 = −1.5868 , θ2 = 0.6273 , θ3 = −0.0215 , �1 = 0.0657,

�1 = −0.8027,

Crime hotspot 198

 Model: SARIMA(1, 1, 2)(2, 1, 1)52 ,    MLE = −4503.01,  AIC = 9020.01

 Backshift notation:
yt =

(1− θ1B − θ2B
2)(1−�1B

52) et

(1− φ1B)(1−�1B52 −�2B104)(1− B)(1− B52)

 Coefficient values: φ1 = −0.8186 θ1 = 0.0241 , θ2 = −0.7394 , �1 = 0.1181 , �2 = 0.0340,

�1 = −0.9027

Crime hotspot 8

 Model: SARIMA(2, 1, 0)(3, 1, 3)52 ,    MLE = −4216.93,  AIC = 8451.87

 Backshift notation:
yt =

(1−�1B
52 −�2B

104 −�3B
156) et

(1− φ1B − φ2B2)(1−�1B52 −�2B104 −�1B156)(1− B)(1− B52)

 Coefficient values: φ1 = −0.5384 , φ2 = −0.2661 , �1 = −1.5079 , �2 = −0.8666 , �3 = 0.0336,

�1 = 0.5728 , �2 = −0.5925 , �3 = −0.9798

Table 7 Details of the LSTM models trained for the whole area and the top 3 largest crime-dense 
regions in Chicago

Cluster Layers Units Activation Epochs Batch size LR Loss Loss value

Whole area 4 25 relu 50 26 0.01 mae 91.77

CH #197 4 50 relu 50 13 0.01 mae 26.59

CH #198 4 100 relu 50 13 0.01 mae 21.78

CH #8 4 100 relu 50 52 0.01 mae 12.99
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fact, considering one-week-ahead forecasting, the MAE achieved by SARIMA mod-
els monotonously decreases from 77.44 (whole area) to 24.42, 21.09, and 12.59 (three 
largest crime hotspots, ordered by decreasing size), and similarly for all other fore-
casting horizons. LSTM forecasts show decreasing MAE values as well. The trend is 
clearly recognizable in Fig.  9, which plots the MAE achieved by both SARIMA and 

Fig. 7 Observed vs forecasted crimes, on the whole area. Number of crimes observed, SARIMA-forecasted 
and LSTM-forecasted (blue, orange and green lines) on the Chicago test set, for the whole area and several 
prediction horizons

Fig. 8 Observed vs forecasted crimes, on the largest hotspot. Number of crimes observed, 
SARIMA-forecasted and LSTM-forecasted (blue, orange and green lines) on the Chicago test set, for the 
hotspot 197 and several prediction horizons
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LSTM for the whole area and the top five largest crime hotspots. The chart clearly 
shows that the smaller the hotspot, the lower the error. This is a reasonable outcome, 
that is, predictions are more precise when hotspot areas are smaller, thus providing 
city administrators and police officers with more detailed information for strategizing 
how to distribute resources and efforts among the various parts of the city.

Higher forecasting accuracy when the forecasting horizon is shorter. For example, 
the MAE assessed by LSTM-forecasts, by considering the whole area, monotonously 
increases from 91.06 (for one-week-ahead forecasts) to 97.86, 113.70 and 140.41 (for 
two-, three- and four-week ahead forecasts), and similarly all other indices and areas. 
This is a reasonable result, considering that forecasts are based on the previous historical 
trends: the more away is the forecasting timestamp from the most recent historical data, 
the less accurate the forecast. The increasing trend can also be seen in Fig. 10, which 
shows the MAE versus several weekly forecasting horizons. The increasing trend is more 
evident for the whole area and the largest cluster, and it is particularly marked for the 
LSTM-based forecasts.

SARIMA models outperform LSTM model ( for large hotspots). Percentage errors 
(MAPE column) show that the adopted SARIMA models (Table  6) forecast the 
number of crimes with an average error ranging from 5.09% (whole area, one-week 

Fig. 9 MAE for each hotspot. Mean Absolute Error (MAE) for the whole area and the top 5 largest crime 
hotspots, achieved by SARIMA and LSTM
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ahead) to 13.37% (crime hotspot #8, four-week ahead), which appears to be a very 
interesting result. On the other side, LSTM models assess MAPE values rang-
ing from 5.93% to 12.81%, respectively. For a more complete view of these results, 
Fig. 11 shows the MAPE versus several weekly forecasting horizons. From the plot, 
we can observe that percentage errors of both SARIMA and LSTM models increase 
when the prediction horizon is longer and longer, and that generally SARIMA mod-
els outperform LSTM regressors (but for the smaller hotspot). Also, by observing 
the values in the Table 8 and Fig. 11, we can observe that the lower the hotspot area, 
the higher the percentage error. However, the MAPE index, as defined above, does 
not take into account the coverage level of each hotspot. The growth in forecasting 
errors is compensated by a more precise identification of the specific area where 
crime events will occur, thus giving more exhaustive information to city administra-
tor and police officers for planning how to distribute resources and efforts in the dif-
ferent regions of the city.

Finally, to understand whether the forecast errors can be approximated to normally 
distributed with mean zero and variance σ 2 , we show in Fig. 12 the distribution of resid-
uals (with overlaid the normal curve with the same mean and standard deviation as the 

Fig. 10 MAE vs n. of weeks. Mean Absolute Error (MAE) versus the number of weeks in the test set, achieved 
by SARIMA and LSTM, for the whole area and the top 3 largest crime hotspots
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distribution of forecast errors) for the two largest crime hotspots detected by SARIMA 
models. In particular, the figure presents the histograms of the forecast errors over one-
week ahead forecasts, which show that the distributions of forecast errors are slightly 

Fig. 11 MAPE vs n. of weeks. Mean Absolute Percentage Error (MAPE) versus the number of weeks in the test 
set, achieved by SARIMA and LSTM, for the whole area and the top 3 largest crime hotspots

Fig. 12 Distribution of the residuals. Distribution of the residuals (with the overlaid normal curve) on the test 
set, for the top 2 largest crime hotspots, for one-week ahead forecasting
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shifted towards positive or negative values compared to a normal curve (it should be 
centered on 0, in the ideal case). This is also confirmed by observing the Normal QQ 
plot (quantile-quantile plot) shown in Fig. 13, which can be exploited as a graphical tool 
to assess if residuals plausibly follow a normal distribution. Both plots graphically con-
firm that the residuals follow a normal distribution, as expected.

Comparative analysis with ST‑OPTICS on hotspots detection and crime forecasting

To make our evaluation more accurate and complete, we performed a comparative 
analysis of the proposed approach, based on CHD for hotspot detection, with a similar 
approach based on ST-OPTICS [27], which is a density-based clustering algorithm spe-
cifically designed to analyze spatio-temporal data. ST-OPTICS was selected among oth-
ers since it was purposely designed for clustering datasets characterized by time-based 
features, and thus is not directly comparable with the other spatial clustering algorithms 
previously mentioned (see Table  5). In a nutshell, ST-OPTICS is a modified version 
of the OPTICS algorithm, achieved by extending the notion of density-reachability. It 
exploits two radiuses, ǫ1 and ǫ2 , where the ǫ1 defines the reachability with respect to spa-
tial attributes, and ǫ2 defines the reachability w.r.t. non-spatial (temporal) attributes; on 
the basis of such definitions, a point pi is considered in the neighborhood of pj if the 
distance between pi and pj is less than ǫ1 w.r.t. spatial attributes, and less than ǫ2 w.r.t. 
non-spatial attributes. The ST-OPTICS implementation we exploited is publicly avail-
able,3 and it takes as input parameters 〈ǫ2,min_pts, ξ〉 , where ǫ2 is a threshold value on 
the maximum radius w.r.t. the non-spatial attributes, min_pts is the minimum number 
of neighbors required to define a core-point, and ξ determines the minimum steepness 
on the reachability plot that constitutes a cluster boundary. The reachability plot takes 
into account both spatial and non-spatial radiuses. It is also worth noting that min_pts 
and ξ are exploited as in the well-known OPTICS-ξ algorithm.

To perform the comparative analysis between the results achieved by ST-OPTICS and 
CHD, we first evaluated the characteristics of the most five relevant hotspots detected 
by the two algorithms, and then the forecasting performance achieved for crime pre-
diction in each hotspot. The dataset exploited for the comparative analysis is that one 

Fig. 13 QQ-plot. QQ-plot for the top 2 largest crime hotspots

3 ST-OPTICS implementation on Github (https:// github. com/ eren- ck/ st_ optics) [42]

https://github.com/eren-ck/st_optics
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described in Sect. "Data description", and predictions have been compared versus differ-
ent forecasting horizons.

As a first result, ST-OPTICS has been applied to discover spatial hotspots from the 
geo-referenced crime data. In order to detect high-quality crime-dense regions, an 
input parameters tuning has been done to achieve the best results of the algorithm. In 
particular, the clustering quality has been evaluated by computing the internal indexes 
(Silhouette, DBCV, CDBW, Calinsky-Harabasz, Davies-Bouldin) adopted in Sect. "Crime 
hotspots: results and discussion", by varying ξ from 0.05 to 0.1 and ǫ2 from 4 to 24 (with 
step size equal to 4). The results are reported in Figure 14a, which shows the performance 
achieved by varying ξ , fixed ǫ2 = 24 and k = 64 (which corresponded to the optimal per-
formance within the faced scenario). In particular, Figure 14b shows that the best qual-
ity of detected hotspots is achieved for ξ∗ = 0.07. Comparing such results with those 
reported in Sect. "Crime hotspots: results and discussion", we notice that CHD performs 
better than ST-OPTICS considering Silhouette, Calinsky-Harabasz and Davies-Bouldin 
indexes, while ST-OPTICS is better on the DBCV index. On the other side, Figure  5b 
shows how the number of noise points (blue curve) and the number of detected hotspots 
(red curve) vary with respect to ξ values. We can observe that for ξ∗=0.07, the number of 
detected noise points is 23,947, while the number of detected clusters is 49. With respect 
to CHD, ST-OPTICS detects an higher number of noise points (23,947 versus 18,929) 
and a lower number of hotspots (49 versus 200). The results shown below only refer to the 
run with the best combination of parameters (i.e, ξ=0.7, ǫ2 = 24 , k = 64).

The comparative forecasting performance analysis on the hotspots detected by ST-
OPTICS and CHD has been done by focusing on the five most numerous clusters 
returned by the two algorithms. In particular, as SARIMA models have shown higher 
predictive accuracy in Sect. "Experimental evaluation and results", we exploit here these 
regressive models to compare the achieved results. Table  9 reports the values of four 
error measures (MAPE, MAE, MSE, RMSE) achieved by SARIMA models on the five 
largest hotspots detected by ST-OPTICS and CHD (sorted by decreasing size), ver-
sus one-, two-, three- and four-week-ahead forecasting horizons. Looking at the val-
ues reported in the table, we can observe that the first two largest clusters detected by 
ST-OPTICS (clusters #0 and #4) and CHD (clusters #197 and #198) are very different 
in terms of number of points, while the other ones have comparable sizes. Also, by 

Fig. 14 Hotspots detection: ST-OPTICS clustering quality, num. of hotspots and num. of noise points vs ξ , 
with k = 64 and ǫ2 = 24
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comparing MAPE, MAE, MSE and RMSE, we can observe that forecasts achieve gener-
ally lower errors on the hotspots detected by CHD than on those ones detected by ST-
OPTICS. This result, in part due to the lower numerosity of the clusters, shows higher 
forecasting accuracy on the hotspots detected by CHD. As a more complete view of 
the MAPE results, Fig. 15 shows the MAPE versus several weekly forecasting horizons. 
From the plot, we can observe that percentage errors are lower on CHD-detected hot-
spots than on ST-OPTICS-detected hotspots (except for the largest cluster).

Comparison with other crime forecasting approaches on the Chicago Crimes dataset

With the aim of making a comparative analysis for crime forecasting more accurate and 
complete, we report here some comparative results between MD-CrimePredictor and 
some other approaches selected from the crime forecasting literature (i.e., [21–23]). 
Specifically, to ensure a fair and consistent comparison, we selected four algorithms 
that have been specifically applied to the Chicago crime data, i.e., the same dataset we 
exploited to evaluate MD-CrimePredictor as well. The approaches have been com-
pared in terms of MAPE, which is a scale-independent metric (making it suitable for 
comparisons between different datasets or models) largely used in the crime forecasting 

Fig. 15 MAPE achieved by SARIMA model, for the top 5 most numerous clusters detected by ST-OPTICS and 
CHD



Page 37 of 39Cesario et al. Journal of Big Data           (2024) 11:75  

performance evaluation [1]. Table 10 summarizes the results of the comparison, showing 
for each approach (i) the exploited models, (ii) the period of the Chicago crimes dataset 
exploited as training set, (iii) the period of the dataset exploited as test set, (iv) the total 
number of forecasted days, and (v) the related MAPE index for one-day-ahead forecasts, 
as reported in the corresponding references [21–23] (reviewed in Sect. "Related work"). 
By observing the table, it is worth noting that the MD-Crime-Predictor has been tested 
considering the longer time horizon (365 days), while the other approaches have been 
tested on time horizons no longer than 6 months (184 days for the approaches proposed 
in [23]). As a second thought, it can be seen that MD-CrimePredictor over-performs 
the other methodologies w.r.t. the MAPE index (0.12), resulting slightly more effective 
than the second best result reported in the table (0.14). The comparison confirms the 
goodness of the presented approach, even when considering short (one-day-ahead) time 
windows.

Conclusion
This paper presented the design and implementation of MD-CrimePredictor (Multi-
Density Crime Predictor), an approach based on multi-density clustering and regressive 
models to automatically detect high-risk crime areas in urban environments, and to reli-
ably forecast crime trends in each area. First, the algorithm detects multi-density crime 
hotspots by applying a multi-density clustering algorithm, where densities, shapes, and 
the number of the detected regions are automatically computed by the algorithm with-
out any pre-fixed division in areas. Then, a specific regressive model is discovered from 
each detected hotspot, analyzing the partitions discovered during the previous step. The 
final result of the algorithm is a spatio-temporal crime forecasting model, composed of a 
set of crime hotspots, their densities, and a set of associated crime predictors. Forecast-
ing models are extracted by exploiting both SARIMA and LSTM models, and a com-
parative experimental analysis is presented in terms of error measures. The experimental 
evaluation of the proposed approach, performed on a large area of Chicago (involving 

Table 10 Comparative results on crime forecasting with other approaches proposed in literature on 
the Chicago crimes dataset, for one day-ahead forecasts

Id References Model Training period Forecasting period #days MAPE

#1 Reference [21] Long-Short Term Mem-
ory and Spatial-Temporal 
Graph Convolutional 
Network

Jan 2015–Dec 2019 Jan 2020–Mar 2020 69 0.39

#2 Reference [22] Spatial-Temporal Convo-
lution Encoder

Jan 2016–Aug 2017 Sep 2017–Dec 2017 105 0.47

#3 Reference [23] Dense Convolutional 
Network with Unsuper-
vised Domain Adaptation 
(no feature construction)

Jan 2015–Jun 2015 Jul 2015–Dec 2015 184 0.23

#4 Reference [23] Dense Convolutional 
Network with Unsuper-
vised Domain Adaptation

Jan 2015–Jun 2015 Jul 2015–Dec 2015 184 0.14

#5 MD-CrimePredictor CHD and Seasonal 
Auto-Regressive Inte-
grated Moving Average 
(SARIMA)

Jan 2001–Dec 2018 Jan 2019–Dec 2019 365 0.12
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more than two million crime events), has shown higher accuracy of the first method 
with respect to the second one. We also offer a comparative evaluation of CHD in con-
trast to ST-OPTICS, making a comparison regarding crime prediction accuracy between 
hotspots identified through CHD and those identified through ST-OPTICS. Moreover, 
we have also presented a comparative analysis with other crime forecasting methods 
proposed in the literature, and specifically tested on Chicago crime data. Overall, the 
results show the effectiveness of the approach proposed in the paper, by achieving good 
accuracy in spatial and temporal crime forecasting over rolling time horizons.

In future work, other research issues may be investigated. First, we further explore the 
application of other multi-density approaches for the detection of crime hotspots, with 
the aim to perform a comparative evaluation between different clustering algorithms 
(multi-density vs classic density-based approaches) in crime spatial analysis. Second, we 
will study how other urban events can affect crime trends, and how such data can be 
correlated to criminal activities.
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