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Abstract 

This paper introduces a novel graph-based filter method for automatic feature selec-
tion (abbreviated as GB-AFS) for multi-class classification tasks. The method determines 
the minimum combination of features required to sustain prediction performance 
while maintaining complementary discriminating abilities between different classes. It 
does not require any user-defined parameters such as the number of features to select. 
The minimum number of features is selected using our newly developed Mean 
Simplified Silhouette (abbreviated as MSS) index, designed to evaluate the cluster-
ing results for the feature selection task. To illustrate the effectiveness and generality 
of the method, we applied the GB-AFS method using various combinations of sta-
tistical measures and dimensionality reduction techniques. The experimental results 
demonstrate the superior performance of the proposed GB-AFS over other filter-based 
techniques and automatic feature selection approaches, and demonstrate that the GB-
AFS method is independent of the statistical measure or the dimensionality reduc-
tion technique chosen by the user. Moreover, the proposed method maintained 
the accuracy achieved when utilizing all features while using only 7–30% of the original 
features. This resulted in an average time saving ranging from 15% for the smallest 
dataset to 70% for the largest. Our code is available at https:// github. com/ david levin 
work/ gbfs/.

Keywords: Multi-class feature selection, Silhouette, Graph-based feature selection, 
Nonlinear dimensionality reduction

Introduction
Feature selection is a crucial step in the process of developing effective machine-learning 
models. Selecting the most relevant features from a dataset helps to reduce model 
complexity, prevent overfitting, and improve model interpretability and performance 
[1]. In recent years, with the explosion of big data, feature selection has become an 
increasingly important technique in machine learning, as it can significantly reduce 
the time and resources required for model development and at the same time maintain 
prediction accuracy [2].

The rise of big data presents distinctive challenges and opportunities. In today’s digital 
era, the pace of data generation has accelerated, particularly in fields such as genomics, 
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where both the complexity and volume of data have significantly increased [3]. 
Effectively managing such extensive and complex data requires preprocessing methods. 
Feature selection emerges as a pivotal technique in this context, not only simplifying the 
model by reducing the number of parameters but also enhancing the performance and 
accuracy of data classification [4]. It plays an instrumental role in addressing the curse 
of dimensionality, which is a significant challenge in big data environments, by selecting 
features that are most relevant and non-redundant, thereby preserving the essence of 
the original data while discarding the redundant [5].

The main goal of feature selection is to find the optimal k-sized subset of features 
that accurately represents the input data [6]. This technique aims to reduce the impact 
of irrelevant variables and noise, maintaining prediction accuracy [7]. There are three 
main types of feature selection methods: wrapper, embedded, and filter. Each type 
employs distinct strategies for selecting features and comes with its unique benefits and 
drawbacks [8].

Wrapper methods select feature subsets based on their performance in predictive 
models, often leading to highly accurate and model-specific feature sets [9]. Their major 
drawback is computational intensity, as they evaluate numerous feature combinations 
through repeated model training and validation, making them less feasible for large-
scale applications and datasets, or rapid prototyping [6].

Embedded methods integrate feature selection directly into the model training process, 
typically using regularization techniques to penalize less relevant features [10]. While 
this approach is efficient and can enhance model performance, it results in feature selec-
tions that are closely tied to the specific learning algorithm, potentially limiting their 
generalizability to other models or data scenarios and may result in overfitting [11].

Filter methods rank features by their statistical characteristics or relevance to the target 
variable, offering a model-independent, faster, and more efficient approach, particularly 
for large datasets [12]. However, these methods come with certain limitations. Firstly, the 
selection process in filtering methods, typically based on the highest score of a feature 
according to the method’s index, may overlook the interrelationships between features 
[13]. This can result in selecting features with similar rather than complementary 
abilities. Secondly, most of the filter-based methods rely on user input to determine the 
size of the feature subset, presuming the user has prior knowledge of the data, which 
often leads to a trial-and-error approach. Thirdly, as these methods are independent 
of the learning model, the user needs to evaluate the quality of the selected subset of 
features, so he needs to perform multiple runs of different classifiers with different 
calibrations, in order to choose a quality final solution.

This paper proposes a novel filter-based feature selection method for multi-class 
classification tasks that addresses these shortcomings. Our approach generates a new 
feature space, defined by how well each feature differentiates between class pairs. 
Instead of merely picking features with the highest separation scores, common in 
other filtering-based approaches, our method aims to select a group of features with 
complementary discrimination capabilities. This is achieved using the K-medoids 
algorithm in a low dimensional space, which preserves the inherent nonlinear structure 
of the original feature space, allowing the selection of features from various parts of the 
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space. Additionally, in contrast to conventional filter methods that require predefined 
input regarding the subset size of features, our approach stands out by its inherent 
capability to autonomously discover the minimal combination of features necessary for 
preserving the overall prediction performance when using the entire feature set, using 
a newly developed Mean Simplified Silhouette (MSS) index. The MSS index, which is 
based on the Simplified Silhouette (SS) index [14], evaluates clustering outcomes in the 
context of feature selection for classification problems. It assesses the effectiveness of 
the selected subset of features obtained from clustering results, aiming to select features 
that spans the entire feature space, i.e. with complementary separation capabilities. We 
demonstrate a strong correlation between the MSS index values and accuracy results 
across a variety of datasets that differ in size and characteristics, as well as across 
different classifiers. Leveraging this correlation, we can evaluate the quality of the 
selected subset of features with the MSS index only, without the need to run classifiers, 
thus saving significant run-time. The major contributions of this work include:

• A graph-based feature selection method is proposed to identify the minimum set 
of k features required to preserve the accuracy of predictions when using the entire 
feature set.

• An agnostic methodology that is independent of specific statistical measures or 
dimensionality reduction techniques for assessing the features’ ability to distinguish 
between classes.

• A novel Silhouette-based index is developed to evaluate clustering outcomes in the 
context of feature selection for multi-class classification problems.

• The effectiveness and superior performance of our approach compared to state-of-
the-art filtering methods are demonstrated via an experimental analysis.

The remainder of this paper is organized as follows. The next section gives a brief 
overview of related works. Section  Definitions and background introduces some 
definitions and the required background for a better understanding of the proposed 
method and experiments. Section Proposed method outlines the proposed method in 
detail. The experimental results and discussions are in Section  Experimental results. 
Finally, in Section  Conclusion and future work, the conclusion and future research 
directions are discussed.

Related works
Recent advancements in filter-based feature selection have explored the use of graph-
based techniques. Graph-based techniques have emerged as a promising field due to 
their advantages, such as improved interpretability, capturing complex relationships 
between features [15], and the potential to handle high-dimensional data more effectively 
[16]. These methods involve constructing a graph that captures pairwise relationships 
between features in the data, while also considering their relevance and redundancy. 
These methods rank the features based on specific criteria and select the k features 
with the highest score. Building on these developments, Briola et  al. [17] introduced 
an innovative unsupervised, graph-based filter feature selection technique leveraging 
topologically constrained network representations. This approach incorporates a 
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selection strategy that prioritizes the top k features, refining the process of feature 
selection. A main drawback of these methods, however, is that selecting features with 
the highest score may result in selecting features with identical characteristics that do 
not cover the entire feature space, leading to a loss of information.

Friedman et  al. [18] proposed a potential solution to the aforementioned limitation 
through a filter-based feature selection technique that utilizes diffusion maps [19]. This 
method encompasses the entire feature space by constructing a new feature space based 
on the features’ separation capabilities. It then selects features with complementary 
separation capabilities that cover the entire feature space. Similarly, Amin et al.’s Multi-
label Graph-Based Feature Selection (MGFS) method [20], which also addresses the 
same problem, employs the PageRank algorithm [21] for efficient feature selection in 
multi-label data. MGFS constructs a graph with features as nodes linked according to 
their similarity, which is measured using a correlation distance matrix. The significance 
of each feature is assessed using PageRank, simplifying the identification of key 
features in complex datasets. Likewise, Parlak et al. [22] proposed an Extensive Feature 
Selector (EFS) method utilizes class-based and corpus-based probabilities to select 
distinctive features for text classification. It incorporates clustering by calculating 
both corpus-based and class-based probabilities separately, aiming to choose more 
distinctive features. Collectively, these methods share the goal of selecting features with 
complementary capabilities to provide a comprehensive understanding of the feature 
space.

A major drawback of filter-based feature selection techniques is the necessity to 
determine the number of selected features k as an input parameter. Usually, this value 
is defined under the assumption that a minimal percentage of features encompasses 
all necessary information. This limitation presents a considerable challenge since the 
optimal k value can vary based on the data and the task, resulting in a trial-and-error 
approach that demands significant time and resources. Hence, there is an increasing 
demand for a filter-based feature selection algorithm that can automatically determine 
the minimal combination of features required to sustain prediction performance.

Roffo et  al. [23] introduced Infinite Feature Selection (Inf-FS), which addresses this 
specific challenge. This method represents features as paths in a graph, with nodes 
denoting features and edges signifying their relevance and non-redundancy. It utilizes 
matrix power series and Markov chains for ranking, and a clustering algorithm 
subsequently selects the final feature set based on these rankings. A notable drawback 
of this method, is the requirement to fine-tune the α parameter, which balances feature 
relevance and diversity. Different values of the α parameter affect the scoring of the 
features and the priority given to the selected features, meaning that different α values 
may lead to completely different final results. Addressing the same limitation, Thiago 
et  al. [24] introduced a filter-based algorithm named Supervised Simplified Silhouette 
Filter ( S3F  ) that employs the Simplified Silhouette (SS) [14, 25] index to overcome this 
specific limitation. This method requires the user to define a search range by determining 
both a minimum and maximum value for k. The method then proceeds to identify the 
optimal k within this specified range. This approach exhibits two primary shortcomings. 
Firstly, if the user selects a minimum and maximum k that fail to encompass the optimal 
k value, the latter is not identified. Secondly, although the SS index is effective for 
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assessing clustering quality, it is not designed to evaluate clustering quality for feature 
selection tasks in classification problems. Although the two methods mentioned above 
inherently determine the feature subset size within their frameworks, it’s important 
to note that their performance is substantially influenced by user-defined parameters, 
which have a considerable impact on the outcome.

In summary, the analysis of existing literature reveals a significant need for a filter-
based feature selection method, which not only focuses on choosing features with 
complementary discriminating abilities that cover the entire feature space but also 
determines the minimal size of the final feature subset. This should be achieved 
independently of user-defined parameters to facilitate full adaptability and automation 
of the feature selection process across a broader range of datasets.

Definitions and background
For a better explanation of the proposed method and experiments, in this section, some 
primary definitions and backgrounds are explained.

Notation

Denote the learned dataset by (X, Y), where X is a N ×M dataset, with N representing 
the number of samples and M representing the features’ dimension. The label is stored in 
the N × 1 vector Y, which assumes C classes. The dataset X comprises M feature vectors, 
represented by F = {f1, ..., fM} , where each fi is of size 1× N .

Jeffries–Matusita distance

In the experiments, we will employ the JM distance within the proposed method, as a 
statistical measure of the similarity between two probability distributions [26, 27]. The 
formulation for the JM distance, as adopted from the official documentation in the 
cited literature, is defined as follows. Given a feature fi ∈ F  , we use the JM distance 
to construct a C × C matrix, JMi , which defines how well the feature fi differentiates 
between all pairs of classes. Specifically, the matrix entry JMi(c, c̃) indicates how well the 
feature fi differentiates between the two classes c and c̃ , where 1 ≤ c, c̃ ≤ C . The matrix 
entries are computed by:

where:

is the Bhattacharyya distance. The values µi,c,µi,c̃ and σi,c, σi,c̃ are the mean and variance 
values of two given classes c and c̃ from the feature fi.

t‑distributed Stochastic Neighbor Embedding

In the experiments, we will integrate t-SNE [28] into the proposed method as a 
nonlinear dimensionality reduction algorithm that maps high-dimensional data to a low-
dimensional space while preserving local structure. For this paper to be self-contained, 
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we present the t-SNE method and formulations according to the cited literature. 
The t-SNE algorithm is an improvement over the original SNE (Stochastic Neighbor 
Embedding) [29] algorithm, providing more accurate and interpretable visualizations by 
mitigating the crowding problem and simplifying the optimization process [30].

The t-SNE algorithm works by embedding points from a high-dimensional space 
R
M into a lower-dimensional space RR , while preserving the pairwise similarities 

between the points ( R ≪ M ). Given a dataset of N points {u1,u2, ...,uN } ∈ R
M in the 

high-dimensional space, the t-SNE algorithm aims to find a corresponding set of points 
{v1, v2, ..., vN } ∈ R

R in the low-dimensional space that best reflects the similarities in the 
original space.

The algorithm defines pairwise conditional probabilities pj|i as the likelihood that 
point uj is ui ’s neighbor in the high-dimensional space. These probabilities are defined as:

where σi is the variance of the Gaussian centered at point ui . The value of pj|i is influenced 
by the distance between points ui and uj , with closer points having higher probabilities. 
The algorithm defines a symmetric pairwise similarity pij , which measures the similarity 
between points ui and uj in the high-dimensional space, defined as the average of the 
conditional probabilities pi|j and pj|i:

The use of the symmetric pairwise similarity allows for a more balanced representation 
of similarities between points, mitigating the effects of differences in local densities. In 
the low-dimensional space, pairwise similarities between points vi and vj are defined as 
qij:

The t-SNE algorithm seeks to minimize the divergence between the distributions P and 
Q, which is measured by the Kullback-Leibler (KL) divergence:

Minimizing the KL divergence ensures that the low-dimensional embedding preserves 
the pairwise similarities between points as accurately as possible.

Silhouette

In the proposed method, we develop a Silhouette-based index for evaluating the quality 
of clustering in the context of feature selection. The classical Silhouette index [31] is a 
metric used to evaluate clustering quality by measuring how similar a data point is to 
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its own cluster compared to other clusters. It has a value between −1 and 1, indicating 
the level of separation between the clusters and the level of cohesion within each cluster. 
Specifically, the index calculates, for each point i, the average distance of the point from 
all other points in the same cluster, a(i), and the average distance of the point from all 
other points in the closest neighboring cluster, b(i). Thus, the Silhouette value for point i 
is computed as follows:

where −1 indicates a data point closer to the neighboring cluster, 0 indicates a boundary 
point, and 1 indicates a data point that is much closer to the other points in the same 
cluster than to the points of the closest cluster. The Silhouette value of a full clustering is 
the average value of sil(i) across all data points.

The Silhouette index, being computationally expensive and sensitive to outliers, 
prompted the development of the Simplified Silhouette (SS) index [14, 25], a faster and 
more robust alternative. The SS index for a point i is computed as follows:

where a(i)′ is the distance of point i from the centroid of its own cluster and b(i)′ is the 
distance of point i from the centroid of the nearest neighboring cluster (in this work, 
centroids replaced by medoids). The ss(i) value ranges from −1 to 1. Because at the end of 
K-means or K-medoids clustering, the distance of a data point to its closest neighboring 
cluster’s centroid or medoid b(i)′ is always greater than or equal to the distance to its 
own cluster’s centroid or medoid a(i)′ , the term max{a(i)

′
, b(i)

′
} can be simplified to b(i)′ 

[25]. Therefore, after executing the K-means or K-medoids algorithms, the SS value for a 
single point can also be simplified as follows:

Similarly to the Silhouette index, the SS index is the average of the SS over all data points.

Kneedle algorithm

In the proposed method, we will employ the Kneedle algorithm as a selection tool to 
identify the minimal subset of kmin features that can effectively classify different classes 
without experiencing a decline in performance. The Kneedle algorithm [32] is used 
to identify the points of maximum curvature in a given discrete dataset, commonly 
referred to as “knees”. These knees are generally the set of points on a curve that rep-
resent local maxima if the curve is rotated by an angle of θ degrees clockwise about the 
point (xmin, ymin) through the line that connects (xmin, ymin) and (xmax, ymax) points. The 
identified points are those that differ most from the straight-line segment connecting the 
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first and last data points, representing the points of maximum curvature for a discrete 
set of points.

Algorithm 1 Implementation of the GB-AFS method

Proposed method
We now present our graph-based filter method for automatic feature selection (GB-
AFS). As explained above, the method determines the optimal subset of features that 
best represent the data, achieving an effective balance between model performance 
and computational efficiency. The overall architecture of our method is presented in 
Fig. 1, while Algorithm 1 outlines the specific steps for implementing the method. Sec-
tions Separability-based feature space, Clustering evaluation for feature selection using 
MSS,  and Optimal k determination present the three stages of the proposed GB-AFS 
method.

Separability‑based feature space

Our aim is to preprocess the input data and move them into a reduced feature space that 
retains the original feature space’s ability to distinguish between each pair of classes. For 
this goal, we will initially create a new feature space Z , defined by the separability capa-
bility of each feature with respect to every pair of classes. For each feature fi ∈ F  , we 
compute a Ti matrix of size C × C that captures the separation capabilities of each fea-
ture with respect to all possible pairs of classes. This computation uses a statistical meas-
ure to assess the distance between two probability distributions. Specifically, the matrix 
entry Ti(c, c̃) indicates how well the feature fi differentiates between the two classes c 

Fig. 1 The GB-AFS architecture: A Generate a feature separability matrix and reduce the dimensionality. B 
Perform K-medoids clustering for every k ∈ [2,M] and calculate MSS. C Find the optimal k and return the 
corresponding k features found during clustering
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and c̃ , where 1 ≤ c, c̃ ≤ C . Each Ti matrix is reshaped into a vector fi of size 1× (C2) 
to form the new feature space Z . Subsequently, to visualize and organize the separabil-
ity characteristics of the features, we employ a nonlinear dimensionality reduction tech-
nique to obtain the new feature space Q.

In Fig.  2, you can see an example of the construction of a new feature space from 
the Microsoft Malware Prediction dataset [33], by using Jeffries-Matusita (JM) 
distance as a statistical measure and t-distributed Stochastic Neighbor Embedding 
(t-SNE) as a nonlinear dimensionality reduction technique. You can find more details 
about the JM distance in Section  Jeffries–Matusita distance, and the t-SNE technique 
in Section  t-distributed Stochastic neighbor embedding, respectively. The dataset is 
characterized by a composition of 257 features segmented into 9 classes, hence forming 
a representation through 257 matrices, each of size 9× 9 . A matrix is visualized in Fig. 2 
as a 9× 9 grid, where each entry represents the separation degree between two distinct 
classes. Pronounced separation is depicted in red, gradually transitioning to yellow as 
the separation narrows.

Clustering evaluation for feature selection using MSS

The GB-AFS aims to identify the minimal subset of kmin features that retain the ability 
of the entire M features to separate and distinguish different classes. To identify this 
subset, we follow a two-step procedure for every k ∈ [2,M] to obtain a score reflecting 
the capability of a k-sized feature subset to represent the entire feature space’s ability to 
separate and distinguish between different classes.

In the first step, features are selected using the K-medoids [34] algorithm, which selects 
features from different regions in the low-dimensional space, with complementary 
separation capabilities. The K-medoids algorithm, however, has a significant drawback 

Fig. 2 Application of the Separability-Based Feature Space part of the GB-AFS method to 257 features from 
the Microsoft Malware Sample dataset. The features are embedded in a 2-dimensional space by t-SNE and are 
colored by their Jeffries-Matusita value
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in that it is sensitive to the initialization of centers. To mitigate this issue, we utilize 
the K-means++ [35] initialization algorithm, which initializes the algorithm more 
effectively by selecting the initial centers using a probability distribution based on the 
distances between data points. Since K-medoids is designed to minimize the sum of 
distances between features and the nearest medoids, the objective of the second step 
is to use a measure to evaluate the effectiveness of the k subset of features obtained 
from the K-medoids algorithm in representing the entirety of the feature space by also 
considering the separation between clusters. For this goal, we propose a new metric, 
named Mean Simplified Silhouette (MSS) index, which is a variation of the SS index 
that evaluates the clustering outcome in the context of feature selection in classification 
problems as explained in the next paragraph. By performing multiple runs of K-medoids 
for all values of k in the range [2, M], we can identify the minimal subset of kmin features 
that most effectively represents the original feature set and maintain the classification 
performance when using the entire set of features.

Mean Simplified Silhouette

The goal of feature selection is to identify a subset of features that cover the entire fea-
ture space with complementary capabilities, while avoiding the selection of redundant 
features with the same separation capabilities as the chosen ones. Existing clustering 
evaluation indices, such as Silhouette and Simplified Silhouette as explained in Sec-
tion Silhouette, typically evaluate how closely a point is associated with its own cluster 
or its cluster’s medoid, and how distinct it is from the closest cluster to which it does 
not belong. Furthermore, those indices usually set the value of a point to zero [31, 36] if 
it happens to be the sole point present in a cluster, which causes the indices to tend to 
zero as the number of clusters in the space approaches to the number of features in the 
space. However, when considering clustering outputs in the context of the feature selec-
tion task, our goal is to create an index that effectively measures the separation between 
a given point and all clusters to which it does not belong. This index aims to quantify the 
extent to which the chosen points encompass the entire feature space comprehensively. 
Moreover, it considers the proximity of each point within a cluster to its designated 
representative point, assessing the representative point’s capability to capture the char-
acteristics of the other points it represents. Furthermore, in the case where each point 
constitutes an individual cluster, our metric should reach its highest possible value, indi-
cating complete coverage of the feature space. This approach aims to enhance the feature 
selection process by ensuring both comprehensive coverage and accurate representation 
within the feature space.

Our MSS index effectively addresses the limitations associated with both the 
Silhouette and SS indices. The proposed MSS calculates the distances from each 
point to all other cluster medoids within the feature space, excluding the medoid of 
the cluster to which the feature belongs. This modification enables a more reliable 
assessment of the selected features and ensures that they are sufficiently diverse and 
complementary to provide full coverage of the entire feature space. Additionally, 
unlike the other clustering evaluation indices, we exclude clusters that have only 
one feature in the MSS calculation. This exclusion is based on the rationale that 
isolating a feature which is significantly distant from its cluster’s center to form a new, 
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single-feature cluster should enhance the clustering outcome and increase the MSS 
index. Through these modifications, the MSS index becomes an appropriate index 
for assessing the performance of clustering algorithms within the context of feature 
selection. It guarantees an optimal arrangement of the feature space, facilitating the 
identification of a group of features that exhibit complementary characteristics.

The MSS index is calculated based on the distances between each feature and the 
medoids of each cluster, similar to the SS index. It differs from the Silhouette index, 
which calculates how close each feature in a cluster is to features in its own cluster 
compared to features in other clusters. We believe that our approach is preferable 
because it is more reasonable to calculate distances from the medoids, which are the 
representative features, rather than the excluded features. In addition, MSS reduces 
the computational complexity, i.e., when computing distances from the medoids, 
the computational complexity is estimated as O(kRM) , as opposed to O(RM2) , when 
computing distances from all features within each cluster. This difference is significant 
when k is much smaller than the number of features in the feature space, M.

To compute the MSS index, we begin by defining the values a(i) and b(i) for every 
point i in the dataset. The value of a(i) corresponds to the distance d(·, ·) between 
point i and the center of the cluster to which it belongs, Ch , whereas the value of b(i) 
denotes the average distance of point i from the centers of all other clusters Cl , l  = h ; 
namely:

where the MSS index is the average of the MSS coefficients over all data points.
Figure 3 presents the Silhouette, SS, and MSS values depicted as solid lines and the 

accuracy obtained by three classifiers depicted as dashed lines over different values of 
k. These results were obtained by executing the first two stages of GB-AFS (Fig. 1) on 
the Microsoft Malware Prediction dataset [33]. It can be observed that as the value of 
k increases, both the Silhouette and SS values decrease rapidly toward zero, indicating 
an increase in single-point clusters. Conversely, the adjustments made to the MSS 
index enable the assessment of how effectively the clustering algorithm utilizes the 
feature space, for the feature selection problem. Moreover, a clear correlation was 
observed between the MSS index and the accuracy results of the classifiers, which 
emphasizes the effectiveness of the MSS index in solving feature selection tasks in 
classification problems.

It is important to note that our objective is not solely focused on pinpointing the 
k value that results in the highest accuracy value. Our objective is also to find the 
smallest k value that is sufficient for obtaining acceptable accuracy. Even if a higher k 
value may lead to marginally better accuracy, it may demand excessive resources and 
computational power, which would not be practical or worthwhile. That is why we 

(10)a(i) = d(xi,Ch)

(11)b(i) = average
l�=h

d(xi,Cl)

(12)mss(i) = 1−
a(i)

b(i)
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utilize the Kneedle algorithm developed by Satopaa et al. [32] as explained in the next 
section. It enables us to achieve a balance between accuracy and resource usage.

Optimal k determination

In this third stage, our goal is to determine the minimal subset of kmin features that 
can classify different classes effectively without incurring a drop in performance. As 
presented in Section Clustering evaluation for feature selection using MSS, the MSS 
index exhibits a correlation with the accuracy results over all possible values of k. 
Thus, in this stage of the proposed GB-AFS method, illustrated in Fig. 1, we apply the 
Kneedle algorithm to the MSS graph to find the minimal subset of kmin features.

Applying the Kneedle algorithm to the MSS graph enables the identification of 
the knee point, as illustrated in Fig.  3 by the vertical dashed line. This knee point 
corresponds to a specific k value representing the minimal number of features 
needed for classification. Subsequently, the k medoids associated with this k value are 
retrieved as the minimal subset of features required for classification.

Time Complexity of the GB-AFS method:       Constructing the separation matrix 
has a computational complexity of O(NM) . Dimension reduction on this matrix, in 
our experiments done using t-SNE, has a computational complexity of O(M2) [28]. In 
the clustering evaluation phase, for each potential feature subset size k , we perform 
K-medoids clustering with computational complexity of O(M2k) and evaluate cluster 
quality via the MSS index with a computational complexity of O(Mk) , leading to a 
total time complexity dominated by O(M2k) for a given k ; We are doing clustering 

Fig. 3 Silhouette, SS, MSS and accuracy results obtained by three classifiers over different values of k on the 
Microsoft Malware Sample dataset. A vertical dotted line represents the minimum k value, the “knee” point 
found by the Kneedle algorithm



Page 13 of 22Levin and Singer  Journal of Big Data           (2024) 11:79  

evaluation for each k ∈ [2,M] , which results in O(M3) . Then, the optimal k value is 
found using the Kneedle algorithm with a computational complexity of O(M) , which 
results with GB-AFS method’s overall complexity of O(M3).

Experimental results
Experiment setup

Datasets

Datasets quality and relevance are crucial in the extensive data analysis field. We have 
carefully chosen five datasets originating from different domains to ensure broad 
coverage of diverse scenarios and challenges. Table  1 presents, for each dataset, the 
number of instances, the number of features, and the number of classes. Below is a short 
description of each dataset. To conduct a comprehensive analysis, these datasets were 
chosen specifically for their variability in several dimensions, including the number of 
features, samples, classes, and level of class imbalance.

Isolet is an imbalanced dataset of 617 voice recording features from 150 subjects 
reciting the English alphabet, with the goal of classifying the correct letter among the 26 
classes.

Cardiotocography comprises 23 distinct assessments of fetal heart rate (FHR) and 
uterine contraction (UC) characteristics, as documented on cardiotocograms. They were 
categorized into 10 separate classes by experienced obstetricians.

Mice Protein Expression measures the expression levels of 77 proteins in the cerebral 
cortex of eight classes of mice undergoing context fear conditioning for evaluating 
associative learning.

Music Genre Classification is a dataset that offers 1000 labeled audio snippets, each 
lasting 30 s. With 197 distinct features characterizing each sample, it’s a favored choice 
for machine-learning endeavors aimed at discerning among 10 varied music genres. In 
total, the dataset presents 1000 samples, categorized into 10 classes, detailed by 197 
features.

Microsoft Malware Prediction presents 257 file attributes spread across 9 distinct 
malware identification classes. Its primary design intention is to serve as a foundation 
for constructing machine-learning models aimed at malware prediction. This data 
collection boasts 1642 samples, detailed with 9 classes and 247 features.

Parameter settings

Section  Separability-based feature space outlines the first stage of our proposed 
method. This stage involves preprocessing the input data and transitioning it into a 

Table 1 Overview of the datasets

Dataset #Instances #Classes #Features

Isolet [37] 7797 26 617

Cardiotocography [38] 2126 10 23

Mice Protein Expression [39] 1080 8 77

Music Genre Classification [40] 1000 10 197

Microsoft Malware Sample [33] 1642 9 257
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reduced feature space. This reduced space preserves the original features’ capability to 
distinguish between each pair of classes. The GB-AFS method is designed as an agnostic 
solution that is not tied to any particular statistical measure or dimensionality reduction 
technique; it allows users to make these choices. In our experiments, to evaluate the 
difference between the two probability distributions, we employed the Jeffries-Matusita 
(JM) distance. Further details on this are provided in Section Jeffries–Matusita distance. 
Additionally, we select the t-SNE for the nonlinear dimensionality reduction technique. 
Further details on this are provided in Section  t-distributed Stochastic neighbor 
embedding. Other class separability measures and nonlinear dimension reduction 
techniques may be used in the first stage of the GB-AFS method. In Section  Method 
generalization, a sensitive analysis is conducted to evaluate the generalization of the 
GB-AFS method when employing a variety of dimensionality reduction techniques and 
statistical measures.

For K-medoids clustering, we used the PAM method for cluster assignment with 
K-means++ initialization. This method selects initial medoids farthest from each other, 
simulating the idea of choosing features with complementary separation capabilities, 
which improves the algorithm’s efficiency and accuracy.

Baseline methods

The predictive efficacy of our GB-AFS method is evaluated against a total of six state-of-
the-art methods.

The first method is the MGFS, as introduced by Amin et al. [20]. This method requires 
user input to determine the size of the feature subset. Here, we employ the kmin value 
derived from our GB-AFS method. To execute the method, we utilized the author’s 
official repository1.

The second method is the Inf-FS, proposed by Roffo et al. [23]. The official repository2 
for this method lacks the implementation of the minimal k-selection step, thus we again 
utilize the kmin value from our GB-AFS method in this case.

The third method is the S3F  , proposed by Thiago et al. [24]. Unlike the two previous 
methods, S3F  includes an internal mechanism for selecting the optimal k value during 
its execution, which means the chosen k may differ from our method.

The fourth method is the ReliefF method [41], which ranks the importance of each 
feature by measuring how well it distinguishes between instances of different classes 
while considering the proximity of those instances to each other. This method also 
requires the user input to determine the size of the feature subset, hence we use the kmin 
value obtained from our method.

The fifth method is Minimum Redundancy Maximum Relevance (mRMR) method 
[42], which selects features that are both highly relevant to the target and minimally 
overlapping, optimizing for predictive power and information uniqueness. Determining 
the feature subset size in this method requires user intervention. Similar to some of 
the previously explained methods, we adopted the kmin value obtained by our GB-AFS 
method.

1 Repository link: MGFS.
2 Repository link: Inf- FS.

https://github.com/amin1373/MGFS-A-multi-label-graph-based-feature-selection-algorithm-via-PageRank-centrality
https://github.com/giorgioroffo/Infinite-Feature-Selection
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The sixth method is Correlation-based feature selection (cFS) method [43], which 
identifies and selects features that are highly correlated with the target variable but mini-
mally correlated with each other, aiming to improve performance by reducing redun-
dancy. For this method, the user should also define the feature subset size as input, 
similar to previous methods. Thus, the kmin parameter found by the proposed GB-AFS 
method, was employed.

Experiment method

To avoid features with large numerical ranges from dominating those with small numer-
ical ranges, the data were rescaled to lie between 0 and 1 using the min-max normaliza-
tion procedure. Then, we split the data randomly such that 75% of the instances (training 
dataset) were used for applying GB-AFS to determine the set of kmin features and build 
the classifiers. The remaining 25% (test dataset) was used to evaluate the performance of 
the GB-AFS and resulting classifiers.

To find the kmin , we evaluated the MSS over a validation dataset for each set of k fea-
tures found by applying the GB-AFS on the training set, where k ∈ [2,M] . To reduce the 
bias when selecting the training and validation data, we used a five-fold cross-validation 
approach [44], where 80% of the dataset was used to identify the set of k features and 
the remaining 20% was used for MSS calculation. For each value of k , we calculated the 
MSS five times, each time using a different subset as the validation dataset. We then 
averaged these values to generate an averaged MSS graph. Next, we applied the Kneedle 
algorithm3 to the averaged MSS graph to obtain the value of kmin , which represents the 
number of features in the final dataset.

After determining kmin , we applied GB-AFS to the entire training set to obtain the set 
of kmin features and construct three different classifiers (KNN, Decision Tree and Ran-
dom Forest) based on the chosen features. It should be noted that these classifiers were 
chosen randomly to enable the evaluation of our method in relation to other methods. 
The trained classifiers were then employed to classify instances in the out-of-sample test 
set and evaluate the accuracy and balanced F-score metrics. To evaluate the statistical 
significance of the results in comparison to the benchmarked methods, we repeated the 
entire experiment’s methodology 10 times, using a different random split of the train-
ing–test sets for each iteration.

Experiment results

We evaluated the performance of our proposed GB-AFS method based on two key met-
rics: Accuracy and Balanced F-score. The performance of the classifiers was determined 
by calculating the average values over 10 test sets, as described in Sect. Experiment 
method. The accuracy and balanced F-score of the proposed GB-AFS were compared to 
ReliefF, mRMR, cFS, Inf-FS, and MGFS, using the same k value found by GB-AFS, since 
they take the number of selected features as an input parameter. The results of S3F  are 
obtained for the k value determined as part of the method. These results are reported 
in Table 2. For each dataset and classifier, the results of the best method are shown in 
bold. Since performance results were generated for all feature selection methods in each 

3 Repository link: Kneed.

https://github.com/arvkevi/kneed
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run among the 10 runs, a paired t-test [45] is employed to compare the result of the best 
feature selection method with the second-best method in each combination of dataset 
and classifier. Statistically significant differences at a p-value < 0.05 are indicated by 
underline.

Table 2 Results over the five datasets. A comparison of the accuracy and balanced F-score results of 
our method vs. state-of-the-art methods. The results of the best method are in bold for each dataset 
and experimental setup. Paired t-test significance at p-value < 0.05 indicated by underline

1Decision Tree, 2Random Forest, 3Accuracy, 4Balanced F-score

Cardiotocography

GB‑AFS
(k=7)

S
3
F

(k=5)
Inf‑FS
(k=7)

MGFS
(k=7)

ReliefF
(k=7)

mRMR
(k=7)

cFS
(k=7)

Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4

KNN 0.585 0.551 0.527 0.505 0.588 0.550 0.566 0.542 0.470 0.438 0.523 0.517 0.459 0.437

D.T1 0.675 0.688 0.586 0.614 0.661 0.671 0.634 0.626 0.561 0.561 0.587 0.607 0.544 0.537

R.F2 0.746 0.761 0.664 0.687 0.732 0.733 0.727 0.729 0.633 0.629 0.681 0.690 0.617 0.611

Mice Protein Expression

GB‑AFS
(k=16)

S
3
F

(k=8)
Inf‑FS
(k=16)

MGFS
(k=16)

ReliefF
(k=16)

mRMR
(k=16)

cFS
(k=16)

Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4

KNN 0.553 0.582 0.505 0.555 0.533 0.569 0.536 0.558 0.519 0.527 0.522 0.525 0.508 0.515

D.T1 0.518 0.516 0.489 0.496 0.517 0.525 0.518 0.504 0.500 0.499 0.501 0.501 0.492 0.498

R.F2 0.696 0.690 0.625 0.673 0.679 0.673 0.669 0.671 0.656 0.661 0.666 0.659 0.648 0.651

Microsoft Malware Sample

GB‑AFS
(k=32)

S
3
F

(k=11)
Inf‑FS
(k=32)

MGFS
(k=32)

ReliefF
(k=32)

mRMR
(k=32)

cFS
(k=32)

Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4

KNN 0.786 0.728 0.758 0.701 0.772 0.722 0.788 0.722 0.783 0.719 0.776 0.710 0.757 0.703

D.T1 0.809 0.785 0.774 0.733 0.781 0.745 0.785 0.763 0.771 0.756 0.767 0.749 0.742 0.748

R.F2 0.900 0.795 0.852 0.738 0.878 0.764 0.877 0.766 0.833 0.760 0.841 0.766 0.825 0.740

Music Genre Classification

GB‑AFS
(k=33)

S
3
F

(k=12)
Inf‑FS
(k=33)

MGFS
(k=33)

ReliefF
(k=33)

mRMR
(k=33)

cFS
(k=33)

Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4

KNN 0.476 0.551 0.368 0.494 0.455 0.533 0.457 0.528 0.414 0.413 0.433 0.507 0.429 0.499

D.T1 0.374 0.456 0.314 0.398 0.360 0.456 0.355 0.453 0.272 0.290 0.326 0.422 0.319 0.428

R.F2 0.507 0.525 0.487 0.471 0.483 0.507 0.493 0.476 0.463 0.434 0.474 0.461 0.473 0.452

Isolet

GB‑AFS
(k=44)

S
3
F

(k=15)
Inf‑FS
(k=44)

MGFS
(k=44)

ReliefF
(k=44)

mRMR
(k=44)

cFS
(k=44)

Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4 Acc3 B.F4

KNN 0.837 0.815 0.708 0.712 0.824 0.766 0.818 0.779 0.800 0.782 0.795 0.773 0.786 0.762

D.T1 0.859 0.802 0.711 0.733 0.837 0.758 0.833 0.771 0.803 0.737 0.799 0.746 0.788 0.735

R.F2 0.875 0.807 0.728 0.747 0.849 0.769 0.852 0.789 0.814 0.779 0.811 0.769 0.803 0.771
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Across all combinations of datasets and classifiers, the GB-AFS shows an average 
accuracy improvement of 7.5% and an average balanced F-score improvement of 7.7% 
compared to the other methods. In 12 out of 15 combinations of datasets and classifiers, 
we observed that the GB-AFS method performs better in terms of accuracy compared 
to the other methods, showing improvements ranging from 1.6% to 4.2% , with an aver-
age improvement of 2.8% compared to the second-best method in each combination. 
In 11 of these 12 combinations, GB-AFS outperformed the other filter methods with a 
statistically significant difference (p-value < 0.05 ). In terms of the Balanced F-score, we 
observe that the GB-AFS method achieved better results in 13 of the 15 combinations of 
datasets and classifiers, showing improvements ranging from 0.2% to 4.2% , with an aver-
age improvement of 2.8% compared to the second best-method in each combination. Of 
these 13 combinations, 11 were found to be statistically significant.

Figure 4 displays the average accuracy of the proposed GB-AFS method with a ±95% 
confidence interval, in comparison to S3F  method, which also automatically finds the 

Table 3 The running times and the percentage of time saved when using a set of kmin features 
obtained by GB-AFS in comparison to the running times when using all features

 1Decision Tree, 2Random Forest

Knee point All features Estimated 
time 
saving

Cardiotocography
(k=7)

KNN 0.392 0.518 24.32%

D. Tree1 0.485 0.521 6.91%

R. Forest2 0.523 0.599 12.68%

Mice Protein Expression
(k=16)

KNN 0.491 0.799 38.54%

D. Tree1 0.908 1.022 11.15%

R. Forest2 0.909 1.189 23.54%

Microsoft Malware Sample
(k=32)

KNN 0.734 1.763 58.36%

D. Tree1 2.152 2.989 28.02%

R. Forest2 2.747 3.723 26.21%

Music Genre Classification
(k=33)

KNN 0.624 1.383 54.88%

D. Tree1 2.101 2.624 19.93%

R. Forest2 2.957 3.759 21.33%

Isolet
(k=44)

KNN 0.888 3.654 75.69%

D. Tree1 2.551 8.750 70.84%

R. Forest2 4.415 11.805 62.60%

Fig. 4 Comparison of the Accuracy of various classifiers utilizing k features selected by the GB-AFS with the 
MSS index, k features selected by the S3F method and the complete feature set available in the dataset



Page 18 of 22Levin and Singer  Journal of Big Data           (2024) 11:79 

best k value according to their implementation. The results show that the GB-AFS 
method achieved significantly better accuracy than when incorporating the S3F  method, 
with an average improvement of 12.7% . Moreover, the GB-AFS method selected between 
7% and 30% of the features in each dataset, while in 14 of 15 combinations of datasets 
and classifiers, there was no statistically significant difference (p-value < 0.05 ) in accu-
racy results between the GB-AFS method and when using all features. Although the 
accuracy results are similar, the percentage of time saved on average by using a set of 
kmin features ranges from 15% for the smallest dataset to 70% for the largest (Table 3).

Graphical analysis and interpretation

This section illustrates the ability of the GB-AFS method to select features with com-
plementary discriminating capabilities, effectively covering the entire feature space. 
Figure 5 shows the features of the Microsoft Malware dataset embedded in low-dimen-
sional space accepted by using the JM and t-SNE methods. Each feature i is assigned a 
color based on its separation capabilities, in such a way that the higher the value, the 
darker the color tends to be. The kmin subset of features chosen by the ReliefF method 
and the GB-AFS method, assuming that kmin was found by our proposed method, are 
indicated by a rhombus and a circle, respectively. As can be seen from Fig. 5, the Reli-
efF method tends to select features from the upper right corner of the graph with high 
separation capabilities, wheras the GB-AFS method selects features that span the entire 
graph, indicating a wider range of separation capabilities. A similar behavior observed in 
Fig. 5 regarding the ReliefF method, was also detected in the results obtained from the 
other benchmarked methods across all datasets.

Fig. 5 Microsoft Malware Sample features are color-coded according to their separation capabilities score. 
Our algorithm found 32

257
 features based on their complementary separation abilities, while ReliefF marked 

features with similar values and not necessarily with complementary abilities
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Figure  6 presents the ability of the GB-AFS to select a low number of features 
while preserving the accuracy obtained when using the entire dataset based on the 
Cardiotocography dataset, using Random Forest classifier. In the graph, the contribution 
of each one of the 7 selected features, out of the original 23 features, to the obtained 
accuracy is presented. These selected features are marked with blue dots on the graph. 
It can be observed from the graph that using only 7 selected features by the GB-AFS 
method results in an accuracy of 0.746, which is slightly lower than the 0.764 accuracy 
achieved using all 23 features. This modest decrease in accuracy, while only using about 
30% of the available features, highlights GB-AFS’s capability to preserve high levels of 
performance with a significantly reduced number of features.

Method generalization

The GB-AFS method as illustrated in Fig. 1, doesn’t assume specific statistical measures 
to generate the feature separability matrix and specific dimensional reduction techniques 
to obtain the low-dimensional feature space. Table 4 presents the results of employing 
the GB-AFS method with various pairings of dimensionality reduction techniques and 
statistical measures. For this goal, we utilized t-SNE [28], UMAP [46], and diffusion 
maps [19] as dimensional reduction techniques and JM distance [26, 27], Wasserstein 
distance [47], and Hellinger distance [48] as statistical measures.

The performance of the classifiers over the datasets for the combination of UMAP 
and Wasserstein and the combination of diffusion maps and Hellinger in Table  4 was 
determined by calculating the average values over two runs, while the performance of 
the combination of t-SNE and JM is directly sourced from Table 2. Upon reviewing the 
results of Table 4, it can be observed that the GB-AFS yielded similar performances for 
every combination of dimensional reduction technique and statistical measure, which 
are superior in most cases to the compared methods in Table 2. More specifically, each 

Fig. 6 The results of the GB-AFS run on the Cardiotocography dataset, which led to the selection of a 
feature subset of 7 features, out of 23 original features. The names of these selected features are provided for 
reference
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combination of dimensional reduction technique and statistical measure obtained better 
balanced F-score and accuracy in 4 to 5 out of 6 combinations of datasets and classifiers. 
These results highlight the generality of the GB-AFS method with respect to the dimen-
sional reduction technique and statistical measure used. It emphasizes the strength of 
the GB-AFS method in its uniqueness in selecting features with complementary abilities, 
a strategy that proves effective across diverse datasets.

Conclusion and future work
This paper presents a novel graph-based filter method for automatic feature selection 
(GB-AFS) for multi-class classification problems. An algorithm is developed to apply 
the proposed method to find the minimal subset of features that are required to retain 
the ability to distinguish between each pair of classes. The experimental results on five 
popular datasets and three classifiers show that the proposed algorithm outperformed 
other state-of-the-art filter methods with an average accuracy improvement of 7.5% . 
Moreover, in 14 of 15 cases, the GB-AFS method was able to identify 7% to 30% of 
the features that retained the same level of accuracy as when using all features, while 
reducing the classification time on an average from 15% for the smallest dataset to 
70% for the largest. These findings highlight the method’s efficiency in handling high-
dimensional datasets.

While our study has demonstrated promising results, it is essential to consider cer-
tain limitations and opportunities for further research. Firstly, our approach is specifi-
cally tailored for tabular datasets. Secondly, our methodology does not consider the class 
distribution within the dataset. Future research could explore adapting the proposed 
method to other problems involving diverse datasets, such as audio or EEG signals [49]. 

Table 4 A comparison between the accuracy and balanced F-score outcomes of our proposed 
method, incorporating various combinations of dimensionality reduction techniques and statistical 
measures. Best-performing methods for each dataset and setup are in bold

1Decision Tree, 2Random Forest, 3Balanced F-score

Cardiotocography

t‑SNE + JM
(k=7)

UMAP + Wasserstein
(k=9)

Diffusion Map + 
Hellinger
(k=7)

Accuracy B.F3 Accuracy B.F3 Accuracy B.F3

KNN 0.585 0.551 0.589 0.549 0.569 0.544

D.T1 0.675 0.688 0.671 0.680 0.675 0.681

R.F2 0.746 0.761 0.753 0.772 0.749 0.757

Microsoft Malware Sample

t‑SNE + JM
(k=32)

UMAP + Wasserstein
(k=31)

Diffusion Maps + 
Hellinger
(k=34)

Accuracy B.F3 Accuracy B.F3 Accuracy B.F3

KNN 0.786 0.728 0.781 0.722 0.793 0.728

D.T1 0.809 0.785 0.800 0.780 0.804 0.777

R.F2 0.900 0.795 0.891 0.784 0.899 0.801
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Additionally, it would be interesting to investigate methods for incorporating the class 
distribution within the dataset into the construction of the separation matrix. Another 
potential direction could involve utilizing the proposed method for constraint-based 
classification problems, a common research challenge that has received significant atten-
tion recently [50, 51]. In many real-world situations, each feature incurs an economic 
cost for collection, with limited resources being available to tackle the problem at hand. 
Thus, the adaption of the proposed algorithm, such that the total cost of the selected fea-
tures meets the constraint, is an interesting direction to explore.
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