
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

CASE STUDY

Folino et al. Journal of Big Data (2024) 11:77
https://doi.org/10.1186/s40537-024-00933-6

Journal of Big Data

Efficiently approaching vertical federated
learning by combining data reduction
and conditional computation techniques
Francesco Folino1†, Gianluigi Folino1†, Francesco Sergio Pisani1†, Luigi Pontieri1† and Pietro Sabatino1*†

Abstract

In this paper, a framework based on a sparse Mixture of Experts (MoE) architecture
is proposed for the federated learning and application of a distributed classification
model in domains (like cybersecurity and healthcare) where different parties of the fed-
eration store different subsets of features for a number of data instances. The frame-
work is designed to limit the risk of information leakage and computation/communica-
tion costs in both model training (through data sampling) and application (leveraging
the conditional-computation abilities of sparse MoEs). Experiments on real data
have shown the proposed approach to ensure a better balance between efficiency
and model accuracy, compared to other VFL-based solutions. Notably, in a real-life
cybersecurity case study focused on malware classification (the KronoDroid dataset),
the proposed method surpasses competitors even though it utilizes only 50% and 75%
of the training set, which is fully utilized by the other approaches in the competition.
This method achieves reductions in the rate of false positives by 16.9% and 18.2%,
respectively, and also delivers satisfactory results on the other evaluation metrics. These
results showcase our framework’s potential to significantly enhance cybersecurity
threat detection and prevention in a collaborative yet secure manner.

Keywords: Vertical federated learning, Mixture of experts, Deep learning, Green AI,
Cybersecurity

Introduction
Traditional centralized machine learning (ML) models and methods encounter data
privacy and security challenges when applied to sensitive/private data, which abound
in many real-life application domains like cybersecurity and healthcare. Legislation
like the European Union’s General Data Protection Regulation (GDPR), introduced in
2016, poses strong limits to collecting and publishing citizens’ data. Moreover, several
recent episodes of data leakage over the Internet have made people and organizations
increasing concerned about the privacy of their data. On the other hand, there’s a grow-
ing need for sophisticated data analysis services driven by AI models, which require
large amounts of data and expensive computations. Data has now emerged as a precious
resource that citizens/organizations are reluctant to share, while the computational

†Francesco Folino, Gianluigi
Folino, Francesco Sergio Pisani,
Luigi Pontieri and Pietro Sabatino
have contributed equally to this
work.

*Correspondence:
pietro.sabatino@icar.cnr.it

1 ICAR-CNR, Via P. Bucci, 8/9c,
Rende 87036, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00933-6&domain=pdf

Page 2 of 37Folino et al. Journal of Big Data (2024) 11:77

resources required by Deep Learning (DL) systems result in both increased operational
costs and a significant energy consumption and pollution footprints. Federated Learning
(FL) has emerged as a promising solution paradigm for addressing both these contrast-
ing needs by allowing multiple parties to train a global model collaboratively without
requiring them to share their raw data. In principle, this paradigm has the potential of
enabling the discovery of accurate models from distributed data while avoiding the dis-
closure of sensitive/private information.

However, FL solutions can be particularly demanding in terms of network bandwidth,
memory, computation power and energy, especially when dealing with large amounts of
data or large-scale computer networks, due to the need to perform many data processing
and communication operations (involving raw data, intermediate results and gradients).
In fact, the swift advancement of AI is driven by progressively more extensive and com-
putationally intensive machine learning models and datasets. Consequently, the com-
putational resources used in training cutting-edge models are escalating exponentially,
doubling every ten months from 2015 to 2022, resulting in a substantial carbon footprint
[1]. Thus, if FL (combined with secure aggregation and differential privacy methods
[2]) can support complex ML tasks in a collaborative, decentralized and privacy-aware
manner, its associated communication and computation overheads may well lead to sig-
nificantly higher carbon emissions than centralized solutions. Indeed, recent research
showed that training a model through FL may result in up to 80 kgs of carbon dioxide
equivalent (CO2e), surpassing the emissions from training a larger transformer model in
a centralized setting using AI accelerators [3]. This inefficiency stems from factors such
as training overhead across diverse client hardware, added communication costs, and
slower convergence. The global carbon footprint of FL is expected to rise with increased
industry adoption and the shift of ML tasks from centralized settings. This concern is
amplified by the limited availability of renewable electricity in various locations, posing
a challenge to achieving environmentally friendly FL [4]. Seizing opportunities for effi-
ciency optimization in FL is crucial to promoting greener ML applications.

Considering the widely reckoned urgency of curbing the energy impact and carbon
footprint of ML applications [5], it comes with no surprise the recent proposal of green
approaches to FL [1, 6, 7] aimed at suitably trading off energy efficiency and perfor-
mance. Reducing AI’s environmental impact, emphasizing energy-efficient algorithms,
hardware development, and data center carbon footprint reduction are some of the main
goals of Green AI [5]. While renewable energy can power centralized AI, providing FL
with renewable energy is challenging due to end-user devices tied to local energy mixes.
Unfortunately, most of the approaches proposed to far, at the border between Green AI
and FL, mainly focus on energy-aware node selection and job assignment strategies, and
they do not fit the challenging emerging setting of Vertical Federated Learning (VFL),
in which multiple parties store data concerning different feature spaces but overlapping
real-world entities, while possibly having the true labels reside on a third-party server .1

1 Consider, as an instance, a collaboration scenario involving a credit bureau, an e-commerce entity, and a bank aiming
to create a model for predicting user credit scores. The credit bureau possesses exclusive access to users’ credit data and
requires rigorous privacy safeguards for data-owner client nodes. These nodes are responsible for managing and pro-
cessing their private data locally and must interact with the coordinator node at each optimization step during training,
deviating from conventional Horizontal Federated Learning (HFL) methods. In such cases, Vertical Federated Learning
(VFL) emerges as a more appropriate option. However, it is worth noting that the potential scope of VFL frameworks
goes beyond such cross-silo application scenarios, and can embrace cross-device FL applications in the fields of IoT and
Edge computing.

Page 3 of 37Folino et al. Journal of Big Data (2024) 11:77

Recently, Mixture of Experts (MoE) architectures gained considerable attention as an
effective means for balancing model capacity, computational cost and energy efficiency.
In general, classical MoE models [8] look like an ensemble of homogeneous prediction
sub-nets, named experts, where a final prediction is obtained for any data instance by
linearly combining those returned by the experts with weights that are dynamically com-
puted by a further sub-net, named gate, based on the data instance. In order to enable
efficient conditional computations, in Sparsely-Gated Mixture-of-Expert (SMoE) [9–
12], the gate sub-net is made to only select a fixed small number k of experts (the ones
that look the k most competent ones for the current input data instance). In principle,
sparse MoE models enjoy two nice properties that make them a promising solution for
green FL applications: (i) by physically deploying and training all the expert models in
the nodes where the privacy-sensitive data are kept, one can reduce the risk of expos-
ing these local data and models to information leakage during the distributed training
procedure (which only requires each node to share information on the predictions that
its expert is making on its local data rather than the model’s parameters, the raw data or
some embedded representation of the latter); (ii) the conditional computation paradigm
supported by a sparse MoE architecture allows for reducing the cost of data transfers
when a batch of data instances is to be classified, since this service can be provided effi-
ciently by exploiting the gate sub-model to select a very small number (e.g., just one or
two, as explored in the experimental study of Sect. 5) of expert sub-models for each of
these instances, group the instances based on the the experts that have been chosen for
them, route these data groups to the nodes hosting the chosen experts, and eventually
gather the resulting expert predictions for each group.

Research gap Recent research has addressed the problem of analyzing [3, 4, 13] and/
or reducing [14–24] the energy demand and carbon footprint of FL applications [1].
However, most of this research has focused on HFL settings, paying no attention to the
challenging case of VFL applications, where the parties are obliged to cooperate tightly
across all training iterations by exchanging derived information concerning the param-
eters/gradients of their local models. To prevent information leakage, secure communi-
cation protocols have been proposed that involve many peer-to-peer communications
and encryption-based data transformation [25].

Despite these above-mentioned potentialities of sparse MoEs for FL applications, only
a few MoE-based FL methods have been proposed so far, which mostly address the sole
HFL scenario [26–29], typically with the aim of dealing with heterogeneous data distri-
butions and/or model personalization. In fact, to the best of our knowledge, the idea of
exploiting a MoE-based model in a VFL setting has only been proposed in [30]. How-
ever, the technical solution defined in [30] suffers from a number of drawbacks in terms
of information leakage risks and communication/computation demand since it relies on
using embedded versions of the raw local data of the participating nodes obtained with
the help of an auto-encoder model, to train the gate sub-model in the coordinator node
that is driving the learning process. Indeed, transmitting these (potentially) large data
embeddings may lead to significant communication overheads, while the embedded
local datasets themselves are exposed to “inversion attacks”, compromising data privacy.
To mitigate this risk, each local node could implement more sophisticated encryp-
tion methods based, e.g., on differential privacy [31] or homomorphic encryption [32].

Page 4 of 37Folino et al. Journal of Big Data (2024) 11:77

However, while enhancing privacy, these methods also increase computational and com-
munication costs, highlighting the critical trade-off between privacy and efficiency in FL
systems.

Contribution To address the above-described gap of research in the search for a VFL
method able to find a satisfactory balance between the needs of training an accurate pre-
diction model and of curbing the computation/energy costs and related carbon footprint
while preserving data privacy, this paper introduces a novel and efficient MoE-based
approach to VFL (named VFL_MoE), which supports scalable and efficient computa-
tions without compromising data confidentiality.

Differently from [30], in the proposed approach, the gate is trained by leveraging only
a smaller fraction of (possibly sanitized) data features that are ensured not to be privacy-
sensitive (e.g., raw features encoding generic patients’ information that does not disclose
their medical conditions or diseases, or sanitized features) and safely shared across the
nodes. Avoiding the transmission of embedded data allows for curbing communication
overheads, in addition to reducing privacy pitfalls.

To further lower the computational burden, the proposed approach also allows for
controlling the fraction of data employed per training epoch through a data-reduction
factor r , according to the Repeated Random Sampling (RRS) strategy proposed in [33].
More specifically, the approach employs a subset of the data batches in each training
epoch as an efficient alternative to conventional data pruning/distillation methods that
would entail additional computational efforts in a pre-processing stage.

In summary, the main contributions of this proposal are the following:

• A MoE-like model architecture for Vertical Federated Learning, which minimize the
exposure to leakage risks of private local data in the client nodes by requiring the lat-
ter to only provide the coordinator with the (scalar) per-instance output returned by
their respective expert models, without the need of sharing their raw data instance or
learnt/embedded representations of them.

• A distributed algorithm for training a model following this architecture in accord-
ance with privacy-preservation and cost-reduction requirements that arise in typical
VFL scenarios. The algorithm allows for keeping under control both communication
and computation costs through a data-reduction hyper-parameter r , according to an
RRS-based strategy.

• A theoretical analysis of the computation and communication costs of the approach,
and an experimental study of how the accuracy of the model discovered depends on
both factor r and the number k of experts selected by the gate. This analysis, offering
in-depth insights into the model’s performance under different operational settings,
showcases the effectiveness of the proposed framework in terms of model accuracy
when using small values of r and k, so achieving a satisfactory trade-off between
model performance and energy saving.

The novelty of this research work is discussed in more detail in Sect. 6, which compares
the proposed framework to previous research work in the field.

Organization The paper’s structure is organized as follows: Sect. 1 initiates the discus-
sion by addressing data privacy challenges in the machine learning domain, focusing on

Page 5 of 37Folino et al. Journal of Big Data (2024) 11:77

Federated Learning (FL) and its inherent limitations. This section also delves into the
concept of Green AI, highlighting its growing significance in the contemporary machine
learning field, especially concerning energy efficiency and environmental implications.
Section 2 explores Vertical Federated Learning (VFL), covering critical aspects of data
sovereignty, privacy concerns, and the nuances of the Mixture of Experts (MoE) model.
The paper then progresses to Sect. 3, where a formal framework for the VFL challenge is
articulated. In Sect. 4, a novel methodological approach is unveiled, detailing the unique
model architecture and the training algorithm. Section 5 is dedicated to empirically val-
idating the proposed approach through comprehensive experiments, benchmarking it
against existing methods. A thorough review of the current state of pertinent literature
is provided in Sect. 6. Finally, Sect. 7 concludes the paper with a summary of the pro-
posed approach and insights into potential avenues for future research.

Background
Vertical federated learning and privacy

In recent years, the advent of data-driven technologies has prompted a paradigm shift
in how data is processed, analyzed, and utilized across various domains. However, this
progress has been accompanied by growing concerns over data privacy, security, and the
sovereignty of personal information [34].

Indeed, data sovereignty [35], in the context of digital data, focuses on the owner’s
authority over these data. It goes to the extent of specifying which aspects of the data
the owners are willing to share and with whom. At the European level, particularly in the
digital realm, Data Sovereignty encompasses two primary domains: Cloud Sovereignty,
involving the adoption of federated cloud services and infrastructures that comply with
existing regulations, and the secure online exchange of data among multiple participants
in a consortium or group of companies [36].

In addition, formal contracts that govern the usage and access to data, outlining how
data can be shared with other entities or organizations, must be introduced and handled
[37], also including business, legal, and cloud-based regulations. To illustrate, consider a
scenario where a health operator, acting as both a producer and consumer of data, pro-
vides certain data and utilizes the outcomes of analytics/machine learning operations. In
this complex scenario, various operations need to be carried out, and depending on the
operator’s role (patient, paramedical staff, or medical doctor), not all data features may
be accessible. Furthermore, certain data elements may need anonymization, and restric-
tions may apply to transferring data outside the country of origin or the European Com-
munity. To handle such a scenario adequately, the federated learning paradigm [38] has
emerged as a compelling solution to reconcile the benefits of data-driven insights with
the imperative to safeguard data sovereignty.

Federated Learning (FL) is a decentralized ML approach that allows models to be
trained across multiple decentralized devices or servers holding local data without
exchanging the raw data itself. By allowing model training to occur locally on devices or
servers that house the data, federated learning minimizes the need for raw data transfer.
In addition, FL supplies decentralized training, enabling model training to occur locally
on distributed devices, preserving data privacy while collectively improving the model’s
performance and guaranteeing secure aggregation by updating the models from multiple

Page 6 of 37Folino et al. Journal of Big Data (2024) 11:77

sources without exposing individual contributions, ensuring confidentiality and privacy.
Another mechanism that can be included is differential privacy, which adds noise to
individual updates to protect against identifying specific data points, contributing to a
robust privacy framework.

While FL holds great promise, challenges like communication overhead, non-IID
(non-identically distributed) data, and security concerns persist. Ongoing research
focuses on addressing these challenges to enhance further the applicability and robust-
ness of federated learning in diverse environments, including the recent adoption of ver-
tical federated learning frameworks [39].

In the context of Vertical Federated Learning, data undergo partitioning based on fea-
tures across distinct parties. The primary objective is to enable these parties to construct
a prediction model collaboratively while protecting sensitive data from being divulged to
other participants. In contrast to Horizontal Federated Learning, the VFL setting neces-
sitates a more intricate mechanism for decomposing the loss function at each party.

Two different strategies [40] are usually followed: a) the model is owned by each party
participating in the training; b) the model is split among the different parties. Typically,
in the latter case, as illustrated in Fig. 1, each node transforms its input data into an
intermediate data representation (as the output of a hidden layer of a classic neural net-
work). This intermediate data is transmitted to the next segment until the training or the
inference process is completed. During the backpropagation procedure, the gradient is
also propagated across the different nodes. That can also be useful to reduce the com-
putational burden of each node, which in many real-world scenarios may have limited
computational resources.

Mixture of experts (MoE) classifiers

Recent advancements in Machine Learning have underscored the significance of
model scaling to enhance and deploy real-world machine learning applications [41].
The substantial success of deep learning across various fields, including natural

Fig. 1 A vertical federated learning scenario where both the model to be trained and the training data are
split among different organisations

Page 7 of 37Folino et al. Journal of Big Data (2024) 11:77

language processing, computer vision, and audio analysis, can be attributed mainly
to scaling both the model size and the training data [42–44]. However, the associ-
ated computational cost grows quadratically with model size, outstripping the pace of
hardware advancements and posing sustainability challenges.

Therefore, as machine learning models become progressively larger to capture the
complexity of real-world data, the quest for computational efficiency has led to inno-
vative architectures that balance model capacity and computational cost. A promis-
ing solution to this issue is the Mixture of Experts (MoE) framework, which enables
model scaling without entailing increases in computation [8]. MoE achieves this
through a modular neural network architecture where subsets of the network, known
as experts, are activated conditionally depending on the input [45].

The MoE framework (c.f. Fig. 2) and its sparser variant, the Sparsely-Gated Mix-
ture-of-Expert (SMoE), embody this balance through conditional computation, an
approach that dynamically adapts the active model components to the input [9].

Conditional computation provided by MoE models facilitates a dynamic and input-
dependent model sparsity, which contrasts starkly with the static sparsity patterns
induced by traditional weight pruning techniques [46]. Where static approaches
permanently remove weights to reduce parameters and computation, MoE models
retain all parameters while selectively activating subsets of them, leading to a versatile
model that adapts to varying data regimes [10–12].

The gating mechanism in a MoE model is the critical component that embodies this
principle of conditional computation. It directs the flow of inputs to the appropriate
experts, separate neural network modules specialized in different regions of the input
space, which can be mathematically expressed as:

Fig. 2 Illustration of the standard Mixture of Experts (MoE) architecture comprising n experts. Each subnet
Ei , denoting an expert, computes a unique classification function based on the input x. The gating function G
assigns per-expert competency scores denoted by G(x)1, . . . ,G(x)m , which sum up to 1. The final output y is
a weighted sum of the experts’ outputs, weighted according to the competency scores determined by G

Page 8 of 37Folino et al. Journal of Big Data (2024) 11:77

where x is the input representation and Z is an MLP network returning the logits of
the experts’ competency weights in the form of a vector of non-normalized real-valued
competency scores. The Softmax function ensures a probabilistic interpretation of these
gating scores, trying to promote a sparse activation pattern at the same time.

In the specific case of SMoE models, the sparse gate network G processes input
tokens x and computes a distribution over the expert networks, formulated as:

where function Top(v, k) returns a vector of the same size of vector v containing a value
of 1 in the positions of it that correspond to the k greatest values in Z(x), and 0 in all
the remaining positions. This allows the gate to implement a sparse strategy [10–12] for
selecting which experts must classify x.

As for the experts, each expert Ei , parameterized independently, contributes to
the final output based on its gating score G(x)i . The output of the MoE/SMoE is a
weighted sum of the experts’ outputs, with the weights determined by the gating net-
work G:

where m is the total number of experts, and superscript t stands for the matrix/vector
transpose operator.

It is worth noting that training a MoE model is a non-trivial endeavour due to the
complexities involved in learning the gating function alongside the expert networks. The
challenges are several, from the need for efficient back-propagation algorithms that can
handle the sparse activations [47] to the potential unbalanced load distribution across
experts, which can result in a small subset of experts dominating the learning process
[10]. To mitigate these issues, recent approaches have introduced novel training strate-
gies, such as auxiliary load-balancing losses, which encourage a more uniform utiliza-
tion of experts [10, 11]. Furthermore, the initialization and joint training of gates and
experts is crucial to avoid the pitfalls of random initial routing and the long convergence
times associated with reinforce-based updates [12, 48]. Other approaches include using
gradient approximation methods [49], which can reduce the computation overhead.

SMoE models, in particular, have demonstrated the potential for efficiently scaling
model capacity with a constant computational budget by exploiting the sparsity in
expert activations. This efficiency is achieved without compromising the representa-
tional power of the network, making SMoE models particularly appealing for applica-
tions where computational resources are a limiting factor.

In conclusion, MoE models, particularly with sparsity, represent a paradigm shift
towards more scalable and computationally efficient neural network architectures.
They provide a tractable means of managing model complexity and capacity, paving
the way for continued growth in the performance of ML systems without dispropor-
tionately increasing the computational overhead.

(1)G(x) = Softmax (Z(x))

(2)G(x) = Softmax(Top (Z(x), k) · Z(x))

y = G(x)t [E1 . . .Em]t =
m
∑

i=1

G(x)i · Ei(x)

Page 9 of 37Folino et al. Journal of Big Data (2024) 11:77

Formal framework and problem statement
Let us consider the scenario sketched in Fig. 3, as a variant of typical Vertical Federated
Learning (VFL) settings.

In this scenario, an arbitrary number, say m, of parties, named Data Owners (DOs for
short), are willing to collaboratively train a classification model under the supervision of
a Coordinator party (C for short) —in VFL literature, the data owners and coordinator
have also been referred to as passive parties (or clients) and active party (or aggrega-
tor), respectively. Assuming that each party in this VFL scenario corresponds to a dis-
tinguished node of a computer network, for the sake of generality, let us use the terms
node and party as synonyms hereinafter when referring to either a data owner (DO) or
the coordinator (C).

In more detail, the data owners, denoted hereinafter as DO1, . . . ,DOm , store differ-
ent shards of a dataset D ⊆ D , which keep information about different subsets, say
A1, . . . ,Am of features for the same collection of data instances, where D denotes the
whole data instance space/universe/population D belongs to.

Let us assume that the feature set As of data owner DOs , for s ∈ [1..m] , consists of the
union As = F0 ∪ Fs of two feature subsets: a fixed subset F0 of globally shared (public or
privacy-safe) data features and a DO-specific subset Fs of local features that convey sen-
sitive information and hence need to be kept private.

Besides storing a copy of the values taken by the shared features F0 on all the data
instances, coordinator C also stores the ground-truth class labels of the data instances,
regarded as the collection of values that a distinguished target (class) feature Y takes over
the data instances.2

Fig. 3 Architecture of our MoE-based SVFL framework, in the case where there are m = 4 data owners

2 The above assumption on F0 naturally fits many real-life contexts —for example, both healthcare service providers and
insurance companies likely store general information on their customers (concerning, e.g., their gender, age, county/
province) that could be safely shared without any risk of disclosing the patient’s identity or private information of her.
Notably, this assumption does not affect the generality of our problem setting and the applicability of the proposed solu-
tion approach: should there be no predefined subset X0 of public features, the parties might well agree on sharing —prior
to starting engaging their VFL cooperation— data concerning a (possibly perturbed/embedded or even encrypted) small
subset of features that do not pose privacy leakage risks.

Page 10 of 37Folino et al. Journal of Big Data (2024) 11:77

For the sake of presentation and of simplicity, let us also assume that all the parties
have consistently mapped each of their data instances to the same instance identifier,
represented hereinafter as an index (i.e. a natural number) in [1..N], where N = |D| is the
number of data instances in the dataset.3

Let us regard each data feature a in ∪s∈[0..m]Fs as a function of the form f : D → R
mapping any data instance d ∈ D to a real value —for the sake of presentation and
w.l.o.g., we are here assuming that all the data instances have been preliminary put into a
vectorial form by using any of the many numericalization methods available for training/
applying Neural-Network models.

Let us also assume that a specific labelling function ξ : D → R
|C | exists that returns a

one-hot-encoding representation ξ(di) of the ground-truth class of any data instance in
D , where C denotes the set of the instance classes.

For any data instance di of the given dataset D, with s ∈ [1..N] , let id(di) ≡ i
be the identifier of di , yi = ξ(di) be the class label of di (known only to node C),
xi = [(xi0)t(xi1)t . . . (xim)t]t ∈ X0 be the input-feature vector of di , where superscript
t stands for the matrix transpose operator, while Xs and xis are the feature sub-space
induced by feature set Fs and the feature vector representing di in sub-space Xs (i.e.,
xis = ⊕a∈Fs [a(di)] , with ⊕ standing for vector concatenation) for any s ∈ [0..m] —please
remember that a copy of xi0 is kept by all the VFL parties, including C, whereas (xis) is
only stored locally to the node of DOs for all s ∈ [1..m].

Based on the concepts and notation introduced so far, we are in a position to formally
state, in a general form, the collaborative classification task that our research work was
aimed at supporting.

Definition 1 (VFL Problem) Given: a VFL network, keeping information on a dataset
D and featuring a coordinator node C and m DO nodes DO1, . . . ,DOm , such that: (i)
each DO node DOs stores a projection of D over both a proprietary feature space Xs and
a shared feature space X0 (corresponding to some feature sets Fs and F0 , respectively); (ii)
C stores the class labels yi and the feature vectors xi0 for all the data instances in D (con-
stituting a partial class-annotated view of D over the shared feature space X0). Find (in
a collaborative distributed way): a Federated Classification Model (FCM) M : D → �m
(with �m denoting the probability simplex over {1, . . . , |C |}) that can map any instance
of the instance space D to a discrete probability distribution over the classes. �

In general, an FCM M could be exploited to support the classification of (novel) data
instances in both node C and any data-owner node. However, in a setting where the
ground-truth class labels of the training data are regarded as sensitive information of C,
one can prevent all the other parties from using M , and make the latter available to C
only.

As usual in FL contexts, when discovering M , different nodes of the VFL network are
expected to store and process information on model parameters in a distributed manner.

3 In fact, to solve the problem of matching data instances across different data shards, one can resort to a wide range
of consolidated solutions developed in the area of Data Integration (as already done in previous VFL applications).
Abstracting from this problem allows us to concentrate on the core research goal of devising an effective and efficient
methodology for training a classification model in a VFL scenario like the one described above.

Page 11 of 37Folino et al. Journal of Big Data (2024) 11:77

However, this distributed computation process must adhere to the following fundamen-
tal privacy constraint: the raw data and local model parameters of all the data owners
DO1 . . . ,DOm cannot be disclosed or exposed to non-negligible risks of information
leakage.

As discussed before (see Sects. 1, 2 and 6), previous proposals addressing the VFL
problem presented above have mainly focused on security and privacy-preservation
issues while paying no or minor attention to computation/communication costs and
energy/resource demands. Thus, most of the extant solutions in this field incur high
compute burdens, owing to one of the following reasons or to a combination of them:
(1) In general, training and test procedures in VFL settings need more communica-
tion and data processing operations (involving, e.g., the computation and exchange of
intermediate results or of gradients) than HFL ones. This tends to make VFL particu-
larly demanding (in terms of network bandwidth, memory, computation power and
energy), especially in the presence of large datasets, wide-scale computer networks or
resource-constrained nodes. (2) The approaches relying on exchanging local raw data
and/or model parameters resort to robust information encryption methods to impede
leakage of private local information. This leads to neatly increased communication and
computation costs compared to a (naive) encryption-free distributed elaboration of the
same data. (3) The heterogeneity (in terms of distribution, types and quality) of the data
involved in the training process may lead to instability and convergence issues, so requir-
ing additional training epochs to meet satisfactory/acceptable accuracy performances.

Similarly to previous VFL approaches, we regard the FCM as a composition of differ-
ent smaller sub-models, one for each node in the FL network. In particular, each DO
node maintains a sub-model focusing on the raw data shard of the DO, whereas a dis-
tinguished combiner/aggregator sub-model is responsible for deriving an overall clas-
sification output out of the intermediate outputs returned by the other sub-models. For
the sake of simplicity, we assume that the combiner sub-model is deployed in the coor-
dinator node C (which owns the class labels of the training data and can hence directly
evaluate the model quality along the whole training procedure). Anyway, for the sake
of improved security, this VFL architecture can be extended by introducing a separate
node playing as a secure, trusted interface between the (active) party that wants an FCM
model and the (passive) parties that own different vertically-partitioned shards of the
dataset.

Essentially, in our approach, the coordinator node is responsible for leading the train-
ing of the FCM, as well as for implementing a classification service based on the FCM .4

When processing (the vectorial representation of) any data instance xi (at either train-
ing or test times), in each forward step, the intermediate outputs produced by the local
models (residing in the DO nodes) are taken as input by the combiner (residing in the
coordinator node) to produce a final class-prediction output for xi . Moreover, in each
optimization step of the training procedure, for each parameter w of a local model kept
by a data-owner node DOs , the loss gradient of w is propagated from (the combiner

4 A typical use case of such a model occurs when an application running on the coordinator node (typically on behalf of
a suitably authorized client running on another node of the intranet) needs to classify a novel data instance x′ that was
not already used in the training step.

Page 12 of 37Folino et al. Journal of Big Data (2024) 11:77

model residing in) the coordinator node back to the node DOs , to allow the latter to
update parameter w optimally.

The proposed VDL methodology: model architecture and training algorithm
In what follows, a novel methodology is presented for solving the VFL problem intro-
duced in the previous section (see Def. 1). Compared to existing VFL approaches, the
methodology aims to better trade-off between the diverging objectives of maximizing
model accuracy and minimizing computational costs while ensuring a satisfactory level
of privacy for the local raw data of the data owners.

The methodology consists of two major components, namely a MoE-like architecture
for the FCM classification model to be discovered and a distributed training algorithm,
which are presented next in two separate subsections.

Model architecture

Our approach to training an FCM (i.e. a classification model addressing the reference
VFL problem of Def. 1) is based on using a MoE-like model architecture, named herein-
after VFL_MoE , along with a distributed training algorithm.

The proposed VFL_MoE model (formally specified later on in Def.2) specializes the
classical abstract MoE model (sketched in Fig. 2 and described in Sect. 2.2 to our prob-
lem setting, suitably addressing the privacy and scalability issues characterizing real-life
VFL applications.

Conceptually, the architecture of a VFL_MoE is pretty similar to that of a classical
neural-net MoE classifier (like that in Fig. 2), in that it is composed of the following
functional components (all implemented as different parts of a comprehensive neural-
net model): (i) Multiple “expert” classifiers E1, . . . ,Em , each of which can return a (class)
prediction for any novel data instance x; (ii) a combiner module consisting of a trainable
gate sub-net G and a fixed product-sum sub-net implementing a linear convex combina-
tion scheme similar to the one sketched in Fig. 2, where the prediction of each expert
is weighed through a normalized competency score assigned by G —ensuring that the
more competent an expert, the more it leads the overall prediction. In particular, as in
sparse MoEs, all the weights returned by the gate are zeroed but the highest k ones so
that the product-sum combination reduces to just returning the prediction made for x
by the (apparently) best k ; this is obtained by applying the sparse-gating computation
shown in Eq. 2.

However, the combination scheme proposed in this work differs from that of tradi-
tional MoEs and sparse MoEs in two key respects:

• For the sake of both privacy and computation efficiency, when classifying any the
vectorial representation x ∈ X0 × X1 × · · · × Xm of any data instance, the gate is
made to estimate the competency weight of the experts by only using the partial rep-
resentation x0 of x related to the common data features shared among all the parties
of the VFL network.

• To curb computation and communication costs, in the training process, the gate net-
work is encouraged to be as selective as possible by using an ad hoc training loss
function (see Eq. 3, explained later on).

Page 13 of 37Folino et al. Journal of Big Data (2024) 11:77

For the preservation of information privacy and computational efficiency, at a physical
level, the VFL_MoE model is partitioned into several sub-networks allocated to distinct
nodes of the VFL network, as illustrated in Fig. 3 and delineated below:

• Every expert is fully allocated to a single data owner (DO) node (at least in the train-
ing process), and it is made to focus only on the subset of data features available in
that node. This solution allows the expert to be trained on raw data directly –without
resorting to any data embedding/encryption mechanism that would increase both
the computation costs and the risk of losing relevant information.

• The gate sub-net G (more precisely, the whole combiner sub-model, also includ-
ing the non-trainable product-sum module) is maintained in the coordinator node
C, where the ground-truth class labels of the data instances needed in the training
process are stored. For (the vectorial representation of) every input data instance
xi ∈ D , the gate just takes the sub-vector xi0 , representing the projection of xi onto
the shared feature sub-space X0 . Since, for any data instance of D, a copy of this sub-
vector is available in node C (and in all the other nodes of the federation), there is no
need to provide the gate (and hence the coordinator party) with information con-
cerning the private data of the DO/client nodes.

In the following, we focus the analysis on a binary classification setting (i.e., a set-
ting where there are only two classes in C to be discriminated), while pinpointing that
extending our research to the general case of multi-class classification is trivial.

Under this working assumption, the functional and physical architecture of the pro-
posed federated classification model can be formally defined as follows:

Definition 2 [VFL_MoE]
Let Fed denote the computer network of a VFL federation, consisting of m+ 1 nodes,

including a coordinator node C and multiple data-owner (DO) nodes DO1, . . . ,DOm .
Let D be the instance universe that data available in Fed refer to, X0, . . . ,Xm be the
space corresponding to the disjoint sub-sets F0, . . . , Fm of data features, such that F0
are the Fed-wide shared features and Fs are the private ones of DOs , for s ∈ {1, . . . ,m} .
Then, for any chosen k ∈ {1, . . . ,m} , a k-sparse VFL_MoE model for Fed is a neural net
N = �Ng ,N1, . . . ,Nm� assembling two kinds of neural nets:

• experts E1, . . . ,Em , physically-deployed in the data-owner nodes DO1, . . . ,DOm ,
respectively, which encode the local classification functions σ(f1), . . . , σ(fm) such
that each fs is a real-valued function of the form fs : X0 × Xs → R and σ(·) is the
standard Sigmoid function.5

• a gate Ng , physically-deployed in the coordinator node C, which encodes a routing
function g ∈ �

X0
m (where �m is the m-dimensional probability simplex) mapping the

5 This allows each expert to map (the local representation of) any data instance in D to an estimate of the probability
that it belongs to the second class.

Page 14 of 37Folino et al. Journal of Big Data (2024) 11:77

shared partial representation x0 of any data instance d ∈ D to a discrete probability
distribution over the (indexes of the) experts.

Model N as a whole encodes a classification function f : X → [0, 1] defined as follows:
f (x) � g̃(x0)

t [f1(x1), . . . , fm(xm)]t , where X = X0 × X1 × . . .× Xs , x = [x0, . . . , xm]t ∈ X
and g̃(x0) = Softmax

(

Top(g(x0), k)
)

 is the top-k-adaptation of g(x0) (see Eq. 2 and
related comments for more details), while x0, x1, . . . , xm are the feature-vector represen-
tation of d in the DOs’ sub-spaces X0,X1, . . . ,Xm , respectively. �

In principle, the experts Es and the gate G of a VFL_MoE could be instantiated using
different neural network architectures. For the sake of memory, communication band
and computation saving, the following design choices are taken in our approach:

• Each expert Es , for s ∈ {1, . . . ,m} , is simply implemented as a |Xs|-to-1 dimensional
one-layer feed-forward net with linear activation functions (followed by a sigmoid
transformation) —i.e., this net takes a numerical representation of a data instance in
the feature space associated with the s-th data owner DOs.

• The gate G is implemented as a one-layer |X0|-to-m feed-forward network with linear
activation functions (followed by a non-trainable aggregation module implementing
the top-k-selection operator and the final Softmax transformation).

Based on the memory, time and energy/carbon footprint budget that has been settled in
the VFL network, one can adopt more powerful neural architectures for both the gate
and the experts. A viable way of pursuing this goal consists of providing each DO node
with a sparse-MoE-based model, so obtaining a sort of hierarchical MoE classifier in the
end. This allows for enhancing the representation and classification power of the feder-
ated classification model without incurring too high computing and energy costs by vir-
tue of such a two-level scheme of conditional computation.

The proposed training method: algorithm VFL_MoE

Our approach to discovering a VFL_MoE classifier (of the form defined in Def. 2) con-
sists of applying a novel federated training algorithm, referred to hereinafter as VFL_MoE
algorithm.

Three hyper-parameters allow the user to flexibly control the computation and com-
munication costs related to running the algorithm and applying the resulting VFL_MoE
classifier on new data instances: the maximal number e of training epochs (i.e., of dis-
tributed VFL rounds); a batch-reduction factor r ∈ (0, 1] indicating the proportion of
total instance batches utilized in the training process, in line with the Repeated Random
Sampling approach as proposed in [33]; and the expert-selection factor model hyper-
parameter k determining how many experts’ predictions the model will consider in clas-
sifying a data instance.

As further hyper-parameters, the algorithm includes the size b of the mini-batches, the
learning rates ηg and ηe employed in optimising the gates’ and each expert’s parameters,
respectively.

Page 15 of 37Folino et al. Journal of Big Data (2024) 11:77

Algorithm 1 Pseudo-code of the distributed algorithm VFL_MoE.

Core computation steps Conceptually, the proposed distributed training algorithm
consists of three main phases (also reported in the flow diagram of Fig. 4):

1. First, in Step 1, a randomly-initialized VFL_MoE model is constructed and main-
tained by the different nodes of the VFL network, which include a coordinator C and
several data-owner DO1 . . . ,DOm , according to the model architecture specified in
Def. 2. Moreover, prior to starting the very training process, the nodes set a common
criterion for iterating across the data instances in a coordinated way by agreeing on
which random seed they will employ to sample the same fraction r of data instances
at each training epoch (Steps 2–3).

Page 16 of 37Folino et al. Journal of Big Data (2024) 11:77

2. The second phase consists of training the VFL_MoE model by executing a complete
run of the main loop spanning over Steps 4 to 17. Conceptually, this loop encodes a
standard mini-batch-based SGD-like procedure for optimizing the VFL_MoE model
as a whole in an end-to-end way. More specifically, for each batch Bi consisting of b
data instances: (i) first, in Steps 8–10, the gate and expert sub-models perform a for-
ward pass on all the data instances associated with Bi (specifically, every data owner
node computes the respective logits and the predictions, while the coordinator com-
putes the weights); (ii) then, in Steps 12–13, per-instance losses are computed (as
functions of the model parameters �), after assembling the sub-models’ intermediate
outputs wj

g , y
j
1, . . . , y

j
m into an overall prediction yj for all j in Bi ; (iii) finally, in Steps

15–17, the per-instance gradients of each model parameter in � are computed via
back-propagation,6 averaged, and eventually used to update the parameters. A more
detailed explanation of this phase is provided in the final part of this subsection, after
the definition of the loss function (Def. 3).

3. The last core computation, summarized in Step 19, consists in fine-tuning the
parameters �g of the gate sub-net, while keeping the experts’ parameters frozen. This
is accomplished by making the sole coordinator node C re-execute the training loop
spanning over Steps 3–17, while skipping those steps entail novel calculations by the
DO nodes, for the sake of efficiency.

Communication steps In addition to the core computation steps described above, the
algorithm includes a number of communications between the coordinator node C and
the DO nodes. For the sake of presentation, these communications are denoted in the
algorithm as occurrences of generic data-exchange action send. For the sake of simplic-
ity and concreteness, we hereinafter assume all these communications are performed in
a point-to-point fashion while noting that, in fact, some of them could be implemented

Fig. 4 Flow diagram of our MoE-based VFL_MoE framework

6 For the sake of efficient computation, in the case of the experts’ parameters in ∪s�s , the back-propagation calculation
was started by the coordinator node C in Step 13 (with the computation of the partial derivatives {δjs | j ∈ Bi}); the proce-
dure is then finalized in a per-expert local way in Step 17.

Page 17 of 37Folino et al. Journal of Big Data (2024) 11:77

through more efficient collective communication patterns (e.g., using broadcast, scat-
ter, gather, etc., operations when transferring data among the coordinator and the DO
nodes). We pinpoint that most of the data-exchange operations are performed once for
each optimization step (i.e., for each mini-batch of training instances) —let us abstract,
for now, from the first communication operation performed in Step 3, during the ini-
tialization phase. Thus, the amount of data exchanged in each of these batch-wise com-
munications is really small: just 2 and 1 scalars per batch instance from each DOs to C
(Step 11) and in the opposite direction (Step 14), respectively.

The fine-tuning procedure of Step 19 does not involve communications in itself, for it
is carried out by the sole coordinator C without any intervention from DO nodes. How-
ever, to enable this, C must know, for all the instances in dataset D, the output (and logit)
returned by the final version of the experts, obtained at the end of the training phase. To
this purpose, in Step 18, C collects from the other nodes the predictions of each associ-
ated expert for all the data instances that were not considered in the last training epoch.

Loss function and details on the optimization steps For the sake of technical complete-
ness, let us illustrate the specific loss function that is employed in the training procedure
to guide the optimization of the model parameters, namely �g for the gate sub-net and
�s for all local expert Es.

Definition 3 Let x = [x0, . . . , xm]t be the vectorial representation of any train-
ing data instance, where sub-vector x0 and x1, . . . , xm store the values that x takes
on the shared features and the local private features of nodes DO1, . . . ,DOm . Let ŷ
be the ground-truth label of (the data instance represented by) x. The loss made by a
VFL_MoE N = �NG ,E1, . . . ,Em� , with NG ,E1, . . . ,Em parametrized by parameters
� = [�g�1 . . . ,�m]t is defined as follows:

where g(·;�g)s is the weight that the gate Ng is attributing, for the input
data instance x, to the s-th expert prior to the top-k transformation;
Q(x, ŷ,�s) = exp(fs(xs;�s) · (1− 2ŷ)) is a per-expert loss-like term that is meant to cap-
ture the prediction error of Es,7 and fs(xs;�s) is the logit that the expert Es produces
for x (by only looking at its locally-known features) prior to the final application of a
Sigmoid transformation —see Def. 2 for more details on the meaning of these terms. �

In a nutshell, to find a combination of parameters of the VFL_MoE model that (locally)
minimizes this loss function, the optimization procedure performs the following major
operations for each training instance (x, ŷ) (of each mini-batch considered in each epoch):

• In the forward pass, the predictions of all the experts are computed for x in the DO
nodes by applying each expert to the local representation of x it has been provided
with.

(3)L (x, ŷ,�) = − 1

m ·
√
2π

log

(

1+
m
∑

s=1

Q(x, ŷ,�s) · g(x0;�g)s

)

7 Notably, the loss in Eq. 3, as discussed in both [50] and [51], has been proven to favour expert specialization.

Page 18 of 37Folino et al. Journal of Big Data (2024) 11:77

• In the coordinator node C, all the expert predictions are combined with the output
g(x0;�g) of the gate to obtain an overall class prediction and to compute, according
to Eq. 3, the loss value L (x, ŷ;�) . The coordinator is also in charge of computing
both the gradient ∇g(x0;�g)L (x, ŷ,�) of the output layer of the gate, and the partial

derivatives ∂L (x,ŷ,�)

∂Q(x,ŷ,�s)
 for the logit nodes of all experts Es.

• By back-propagating gradient ∇g(x0;�g)L (x, ŷ;�) , C can obtain the batch-wise
aggregated gradient Gg = avg(x,ŷ)

(

∇�gL (x, ŷ;�)
)

 that it will exploit to greedily
optimize the gate parameters.

• On the other hand, once provided with ∂L (x,ŷ,�)

∂Q(x,ŷ,�s)
 , each DOs can derive (via back-

propagation) the batch-wise average gradient Gg = avg(x,ŷ)

(

∇�gL (x, ŷ,�)
)

 eventu-
ally employed to optimize the parameters of expert Es.

Analytical study of the algorithm’s costs

Computation costs Any instance of the proposed federated classification model
VFL_MoE consists of quite shallow and small sub-nets: a two-layer feed-forward gate
Ng and m expert models E1, . . . ,Em.

The gate sub-net, having an m-dimensional output, contains
m · (d′0 + 1)+ d′0 · (d0 + 1) parameters, where d0 = |X0| and d′0 is the number of neu-
rons in its second layer. Each expert sub-net, having a one-dimensional output, contains
instead ds + 1 parameters where ds = |Xs| , for a total of m ·

∑

s(ds + 1) = m · d parame-
ters in all the experts, where d = |X | is the total number of (post-numericalization) input
features plus |X0| · (m− 1).

So assuming that less than maxms=0 ds < d ≪ 104 and that m ≪ 100 , as in the case
study discussed in Sect. 5, each of these sub-nets consists of less than 4 · 104 floating-
point numbers, so requiring quite a small amount of main/GPU memory to be stored
and processed.

Let us now roughly estimate the total compute burden required by a complete execu-
tion of the proposed federated training method VFL_MoE , illustrated in Algorithm 1,
and described in Section 4.2.

For the sake of simplicity and generality, let us here focus on the total number of float-
ing-point operations (FLOPs) performed in this process as a proxy for its total energy
cost. This metric, reflecting the number of elementary arithmetic (e.g., multiplication,
addition, division, subtraction and transcendental) operations performed in the compu-
tation, will let us characterize the efficiency of the proposed algorithm independently of
the hardware and software infrastructure over which it is run, so allowing for broader
comparability with existing and future solutions.

Considering the simple feed-forward architecture of the gate and experts’ sub-
net, it is easily seen that a forward pass through each layer of them with dIN neu-
rons and dOUT neurons requires dOUT · (dIN + 2) FLOPs —the latter value is
here to account for bias addition and non-linearity computations. This means
that m · (d′0 + di + 4)+ d′0 · (d0 + 2) FLOPs per forward step are performed
when training the model as a whole, while the fine-tuning of the gate requires

Page 19 of 37Folino et al. Journal of Big Data (2024) 11:77

m · (d′0 + 2)+ d′0 · (d0 + 2) , for a total of Cfor = m · (2d′0 + di + 6)+ 4d′0 · (d0 + 2) .
Approximating the cost of each back-propagation plus gradient-related computation
steps with 2 · Cfor , and considering that the total number of training steps performed is
equal to e · r · N (with N denoting the number of instances in the training dataset D), we
come at the following overall estimate for the cost of training algorithm (Algorithm 1):
3 · e · r · N ·m · (2d′0 + di + 6)+ 4d′0 · (d0 + 2) = �(e · r · N · P) , where P is the total
number of parameters in the model.

Note that, at test time, a VFL_MoE discovered with the algorithm can make a class
prediction in a speedy and compute-efficient way by simply performing a forward pass
throughout the gate and the k experts that have been chosen for the prediction: this
computation just requires (d′0 + di + 4)+ d′0 · (d0 + 2) FLOPs per test instance.

Communication costs The total number of communications performed in the main
loop of Algorithm 1 (assuming that all messages are exchanged through pairwise point-
to-point communications) is equal to e ·m · ⌊ r·N

b
⌋ . The maximum amount of data

exchanged in each of these communications just corresponds to 2 · b floating-point num-
bers. In addition, m communications are performed in both Step 2 and Step 18, involv-
ing the transmission of 1 and 2 · (N − ⌈r · N⌉) floating-point numbers, respectively.

Thus, in a complete run of the algorithm, the total number of communications
performed is 2 ·m+ e ·m · ⌊ r·N

b
⌋ , and the total number of floating-point numbers

exchanged is �(e ·m · r · N) , assuming that e · r ≥ 1.
Please notice that, larger amounts of data are exchanged instead in traditional FL

approaches requiring the sharing of higher dimensional gradients/parameters at each
(per mini-batch) optimization step, as well as in the approach proposed in [30], which
also require transferring embedded versions of all the local raw data from the data own-
ers to the coordinator.

Final remarks In conclusion, under the mild assumption e · r ≥ 1 , the computation and
communication costs of the proposed training algorithm VFL_MoE (reported in Algo-
rithm 1) are linear in the total number ⌈r · N⌉ of instances processed across all the train-
ing epochs. This allows for easily controlling these costs by acting on hyper-parameter r.

Experimental results
This section aims to evaluate the capability of the proposed algorithm VFL_MoE in accu-
rately detecting malicious behaviors using the KronoDroid dataset [52], a recently-com-
piled benchmark dataset featuring an extensive collection of malware samples affecting
Android OS-based systems from 2008 to 2020. To study the performance of VFL_MoE
in a different application scenario, we also extended our experimental assessment to the
publicly-available Adult dataset [53].

Testbed

Datasets

The KronoDroid dataset is a comprehensive collection of Android application samples,
both benign and malicious, spanning from 2008 to 2020. This dataset is characterized
by its timestamped data samples, covering a wide time range. Each sample is described
using a set of 489 features, 289 of which are dynamic and the others static.

Page 20 of 37Folino et al. Journal of Big Data (2024) 11:77

This dataset is widely adopted as a benchmark in cybersecurity domains, particu-
larly for studying the evolution of Android malware and the development of detection
mechanisms.

KronoDroid includes 41,382 malware samples across 240 malware families and 36,755
benign applications. It is the most extensive dataset with hybrid features focused on
Android platforms. The dataset is divided into two distinct sub-datasets based on emu-
lators and real devices. This division facilitates analysis across different execution envi-
ronments. This categorization enabled the effective vertical partitioning of the dataset
into four segments, namely System Calls, Permissions, Intents, and Others,
which proved instrumental in testing our vertical federated learning framework. These
groups encompass 289, 173, 7, and 8 attributes, respectively. The dataset was normal-
ized, and all the features exhibiting a strong correlation with the label Malware (i.e.,
Detection_Ratio) or deemed non-contributory (such as sha256, EarliestMod-
Date, HighestModDate, and MalFamily) were removed.

The Adult dataset encompasses information extracted from census forms about
various households. It comprises 14 distinct attributes, each capturing different socio-
economic factors. The objective of this dataset is to predict whether a given house-
hold possesses an income surpassing the $50,000 threshold. The original Adult dataset
includes 14 features, delineated into six continuous and eight categorical attributes.
Notably, the continuous features are discretized into quantiles, with each quantile subse-
quently represented by a binary feature. Similarly, categorical features, characterized by
m distinct categories, are transformed into m binary features.

Experimental setup

Dataset preparation The datasets in our analysis were divided into three subsets: train-
ing, validation, and test. We allocated 80% of the dataset, randomly chosen, for training.
The remaining 20% was set aside for testing. Additionally, 20% of the training subset was
used as a validation set.

In the framework of our experiments, we defined a subset of dataset features as pub-
lic. Specifically, for the KronoDroid dataset, this subset includes all features from the
Intents group and a carefully selected set of 5 features from the Permissions
group, namely WRITE_EXTERNAL_STORAGE, RECEIVE_BOOT_COMPLETED,
RECEIVE_SMS, READ_SMS, and GET_TASKS. These public features are shared across
all local nodes as well as the coordinating node, as illustrated in Fig. 3. The rest of the
features are retained as private, with each local node securely holding its respective sub-
set. This configuration ensures that while certain non-critical features are made available
for collective learning, sensitive or node-specific data remains confined locally, adhering
to the principles of vertical federated learning.

Regarding the Adult dataset, we randomly distributed the features into four distinct
parts. The first part consists of common attributes the gate uses to determine the alloca-
tion of instances to various experts. The other three parts are distributed equally among
three distinct organizations, ensuring a balanced data division for collaborative yet pri-
vate learning.

Page 21 of 37Folino et al. Journal of Big Data (2024) 11:77

Model variants To more thoroughly assess the strengths and weaknesses of
VFL_MoE in terms of accuracy, privacy preservation, and communication costs, we
examined a centralized variant of it, namely Centr_MoE . This model deviates from
VFL_MoE in its commitment to privacy and computational and communication
requirements. It represents a distinct approach within the crucial spectrum of accu-
racy, privacy, and communication costs in a VFL setting.

Specifically, Centr_MoE is conceptualized as a theoretical upper bound in our
analysis. It embodies a fully centralized model where the MoE is localized in the
Coordinator node. This configuration, not adhering to the typical privacy standards
of any VFL setting, makes Centr_MoE an ideal yet not realizable variant. It utilizes
unmasked and unencrypted raw data, including both common and local node-spe-
cific features —both MoE’s gate and experts in the coordinator utilize the entire set
of 477 features. Although transferring such raw data to the central node may entail
non-negligible communication costs, this occurs only once at the onset of the train-
ing phase. This contrasts VFL_MoE , which requires data transfer after every training
batch. While Centr_MoE entirely overlooks privacy considerations, potentially lead-
ing to privacy risks, its unrestricted access to complete information positions it as an
idealized benchmark for effectiveness performances.

Parameters In the experimental evaluation of our approach VFL_MoE , we employed
a two-tiered strategy for parameter configuration. This involved setting some hyper-
parameters based on empirical findings while varying two critical parameters, k and
r , to analyze and assess the behaviour of our approach.

In particular, k is a crucial hyper-parameter representing the number of experts the
MoE model utilizes, combining them to predict the class label. Its value was varied
from 1 to 3. This variation aims to understand how the number of experts influences
the model’s performance and robustness.

Hyper-parameter r serves the purpose of controlling the number of batches (and
related optimization steps) performed per training epochs, according to the Repeated
Random Sampling method proposed in [33]. In other words, r represents a data/
compute reduction factor that is meant to be applied in the model training process.
We made r vary from 0.075 to 1, with incremental steps of 0.125. This range corre-
sponds to using 7.5% up to 100% of all available batches, respectively. This variation
is intended to evaluate the impact of the total number of (batch-wise) optimization
steps on the method performances.

Fixed hyper-parameters were established as follows: the maximum number of train-
ing epochs was set at e = 40 . Learning rates were set as follows: ηe = 10−4 for the
experts and ηg = 10−3 for the gate. Additionally, we limited the number of experts per
organization (where applicable) to a maximum of one and standardized the batch size
across experiments at b = 64 . Each expert consists of a single linear layer, while the
coordinator model comprises two linear layers internally configured with 512 neu-
rons each. The coordinator model also includes dual-head linear layers for computing
the two outputs for the classification task, with the first primarily used for debugging
and the second containing the weights assigned to the experts. All the experiments in
the following subsections have been averaged over 30 runs.

Page 22 of 37Folino et al. Journal of Big Data (2024) 11:77

Effectiveness metrics In this study, we address the problem at hand as a binary clas-
sification task, distinguishing between two primary classes: the ‘normality’ class, rep-
resenting non-malicious entities, and the ‘attack’ class, indicative of malware presence
—this binary framework is crucial for a targeted analysis in distinguishing malicious
from benign instances. The metrics are computed explicitly in relation to the predic-
tion of the malware class, which is of interest in our context.

Specifically, different metrics are adopted in cybersecurity to evaluate various aspects
of a malware detection model’s performance. Each metric, with its own strengths, collec-
tively provides a comprehensive picture of the model’s effectiveness. Accurately detect-
ing malware while minimizing false alarms is crucial for maintaining system integrity
and user trust. In this context, we discuss four key metrics: Accuracy Score, Area Under
the Receiver Operating Characteristics, F1-score, and False Positive Rate.

• Accuracy Score (ACC) is calculated as:

 It measures the proportion of total correct predictions (both malware and non-mal-
ware) made by the model out of all predictions. A high accuracy score indicates a
generally reliable model across various scenarios in malware detection. However, it is
essential to note that in cases of imbalanced datasets-where one class (e.g., malware)
is much rarer than the other-accuracy alone might be misleading.

• Area Under the ROC (AUC) is derived by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at different thresholds and calculating the area
under this curve. This metric is critical, especially in scenarios with imbalanced
classes, as it measures the model’s ability to discriminate between classes (malware
and benign) at various thresholds. A model with a high auroc is apt at distinguish-
ing malware from non-malware, making it valuable for ensuring that genuine threats
are not missed.

• F1 Score (F1) is defined as:

 This metric is particularly relevant when there is a need to balance between Preci-
sion and Recall. In malware detection, this means correctly identifying actual mal-
ware (Recall) while minimizing the misclassification of benign software as malware
(Precision). It is beneficial when false positives and false negatives have serious
implications.

• False Positive Rate (FPR) is given by:

 It is a critical metric in environments where the cost of false alarms is high. In cyber-
security, a high FPR could mean unnecessary resource allocation for investigating

ACC = TP+ TN

TP+ TN+ FP+ FN

F1 = 2 · Precision · Recall
Precision+ Recall

FPR = FP

FP+ TN

Page 23 of 37Folino et al. Journal of Big Data (2024) 11:77

benign instances flagged as malicious, potentially leading to distrust in the detection
system.

Each of these metrics provides specific insights into a model’s performance. However,
they should not be considered in isolation. A comprehensive evaluation of a malware
detection model necessitates considering the trade-offs and specific contexts in which
the model operates. Balancing these metrics effectively ensures the development of a
robust, reliable, and efficient malware detection system.

Competitor and Baseline approaches In this study, we sought a comprehensive
understanding of how our VFL approach, denoted as VFL_MoE , compares within the
landscape of accuracy maximization, privacy preservation, and communication and
computational demands minimization. To this end, we considered two key benchmarks:
SVFL and Baseline.
SVFL [30] is the only known competitor in the literature that integrates an MoE into a

VFL setting for classification purposes (a detailed description of the differences between
VFL_MoE and SVFL is provided in Sect. 6). Unlike VFL_MoE , which allows the combi-
nation of different experts’ predictions (parameter k) for the task of classification, SVFL
is limited to using only the single best-performing expert (k = 1) during inference. This
distinction could represent an essential aspect in evaluating their relative accuracy per-
formances. In addition, while SVFL may benefit from using a more extensive data set in
each training cycle (r = 1.0) than VFL_MoE where r ≤ 1.0 , this comes at the expense
of increased communication and computational requirements. Regarding privacy, both
approaches adhere to VFL’s foundational requirements, such as data segregation/silo-
ing. However, VFL_MoE exhibits a more robust privacy profile by avoiding transferring
embedded data to the coordinator node, a requirement in SVFL for the MoE’s gate to
select appropriate experts. This aspect not only enhances privacy by preventing poten-
tial data exposure but also sensibly reduces communication costs in VFL_MoE.

When directly compared under the same setting with k = 1 , VFL_MoE both reduces
the risk of private information leakage for the data owners, and it is less demanding than
SVFL in terms of communication and computation costs. The comparison regarding
potential accuracy achievements is more nuanced. Indeed, when setting hyperparam-
eter r ≤ 1.0 , VFL_MoE is allowed to exploit a smaller number of training instances than
SVFL , with an increased risk of missing some proper supervision signal. However, in
application scenarios where high accuracy levels are required, one can allow VFL_MoE
to compensate for this by combining the predictions of more experts at inference time.
Baseline , on the other hand, serves a distinct role in our evaluation. It represents an

extreme use case where each local model, restricted to data from a single participating
organization, operates independently without any MoE mechanism. As such, the param-
eter k is inapplicable in this context. Specifically, Baseline aims to simulate a sort of
“extreme scenario” with maximal privacy (by keeping data localized) and minimal com-
munication costs (no data transfer to the Coordinator) but without any inter-node coop-
eration. This approach processes both public and non-public features as VFL_MoE does,
but uniquely within the confines of each participating organization, resulting in three
distinct models. These models are autonomous, and their accuracy metrics are averaged
to form a consolidated output.

Page 24 of 37Folino et al. Journal of Big Data (2024) 11:77

Based on its characteristics, Baseline offers a unique perspective, serving as a
benchmark for our VFL-based approach VFL_MoE by demonstrating the effectiveness
(or lack thereof) of using isolated local models for classification. Indeed, if Baseline
would perform adequately, it would suggest that local models alone could suffice for
classification tasks, negating the need for more complex federated structures. In addi-
tion, the absence of communication costs in Baseline negates the relevance of the
parameter r for reducing data batches during training, setting it at r = 1.0 by default.
Notably, Baseline does not align with the VFL requirements due to its lack of model
combination or cooperation, and thus, in this sense, it is not a direct competitor but
rather a lower-end reference point.

In summary, comparing VFL_MoE with SVFL and Baseline across the spectra of
accuracy, privacy, and resource efficiency provides valuable insights into the strengths
and limitations of these approaches in a VFL context. While VFL_MoE shows promise in
balancing these aspects, the unique characteristics of SVFL and Baseline offer essen-
tial benchmarks for evaluating the relevance of our proposed method.

Test results

Analysis of performance on the KronoDroid dataset

In Table 1, we delve into a detailed comparison of our VFL approach, VFL_MoE , with
its ideal upper bound counterpart, Centr_MoE , across varying values of parameters
k ∈ {1, 2, 3} and r ∈ {0.075, . . . , 1.0}.

A first observation descending from outcomes in Table 1 is the substantial robustness
of Centr_MoE against variations in both k and r . This robustness can be presumably
attributed to the comprehensive availability of (both public and non-public) features
for the MoE’s gate in Centr_MoE . This extensive data access possibly allows the gate
to select the most suitable experts more precisely, thereby reducing the need to aggre-
gate multiple predictions to compensate for potential inaccuracies in the expert selec-
tion. Further supporting this, we can also observe in Fig. 5 that Centr_MoE tends to
flatten its performance curve quite early, already around r = 0.375 . This early flattening
suggests that with access to all unmasked data, the MoE’s gate in Centr_MoE can more
effectively identify patterns in the input data, thereby enhancing its expert selection with
lesser training data. However, it is again crucial to acknowledge that Centr_MoE , by
its very design, remains an unattainable ideal model in practical VFL scenarios. Thus,
it serves primarily as a theoretical upper bound for comparison with our federated
approach VFL_MoE.

Examining the behaviour of VFL_MoE in Table 1 (and also in Table 2), it is interest-
ing to note that its performance is not dramatically inferior to that of the ideal model
Centr_MoE in terms of most accuracy metrics for all values of k and r —only for FPR
this difference is more pronounced. The gap between VFL_MoE and Centr_MoE con-
tinues to narrow with the increase of these parameters. For instance, with k = 1 and
r = 0.25 , VFL_MoE shows a performance gap from Centr_MoE in terms of AUC, ACC,
FPR, and F1 of −2.1% , −3.2% , −83.7% , and −3.2% , respectively. When we increase r to
0.75, this gap reduces to −1.8% , −2.7% , −68.1% , and −2.4% for the same metrics. As
expected, this trend of shrinking gaps continues with higher k values. For k = 2 , the
performance difference further decreases, with −1.1% , −2.1% , −41.5% , and −2.1% when

Page 25 of 37Folino et al. Journal of Big Data (2024) 11:77

Table 1 Detailed performance evaluation of the VFL-based approach VFL_MoE and its upper
bound variant Centr_MoE on the KronoDroid dataset

k Approach r AUC (↑) ACC (↑) FPR (↓) F1 (↑)

1 VFL_MoE 0.075 0.927 ± 0.003 0.857 ± 0.009 0.088 ± 0.013 0.857 ± 0.012

0.125 0.943 ± 0.002 0.882 ± 0.003 0.082 ± 0.011 0.884 ± 0.003

0.250 0.956 ± 0.001 0.904 ± 0.001 0.079 ± 0.005 0.907 ± 0.001

0.375 0.959 ± 0.001 0.908 ± 0.002 0.082 ± 0.003 0.912 ± 0.002

0.500 0.961 ± 0.001 0.914 ± 0.001 0.080 ± 0.002 0.917 ± 0.001

0.625 0.963 ± 0.003 0.916 ± 0.003 0.078 ± 0.004 0.920 ± 0.003

0.750 0.963 ± 0.002 0.915 ± 0.003 0.079 ± 0.005 0.919 ± 0.003

0.875 0.964 ± 0.001 0.916 ± 0.002 0.079 ± 0.003 0.920 ± 0.002

1.000 0.964 ± 0.002 0.916 ± 0.003 0.081 ± 0.003 0.920 ± 0.003

Centr_MoE 0.075 0.962 ± 0.002 0.896 ± 0.003 0.041 ± 0.002 0.895 ± 0.004

0.125 0.972 ± 0.001 0.924 ± 0.002 0.040 ± 0.003 0.925 ± 0.002

0.250 0.977 ± 0.001 0.934 ± 0.001 0.043 ± 0.003 0.937 ± 0.001

0.375 0.980 ± 0.001 0.937 ± 0.001 0.045 ± 0.002 0.939 ± 0.002

0.500 0.980 ± 0.001 0.938 ± 0.001 0.047 ± 0.001 0.941 ± 0.002

0.625 0.981 ± 0.001 0.941 ± 0.002 0.045 ± 0.002 0.943 ± 0.002

0.750 0.981 ± 0.001 0.940 ± 0.002 0.047 ± 0.002 0.942 ± 0.002

0.875 0.981 ± 0.001 0.940 ± 0.002 0.048 ± 0.002 0.942 ± 0.002

1.000 0.981 ± 0.001 0.941 ± 0.002 0.046 ± 0.003 0.943 ± 0.002

2 VFL_MoE 0.075 0.953 ± 0.002 0.880 ± 0.003 0.061 ± 0.004 0.879 ± 0.002

0.125 0.958 ± 0.004 0.901 ± 0.003 0.059 ± 0.005 0.903 ± 0.003

0.250 0.967 ± 0.002 0.915 ± 0.003 0.058 ± 0.004 0.917 ± 0.003

0.375 0.970 ± 0.001 0.919 ± 0.004 0.062 ± 0.004 0.922 ± 0.004

0.500 0.972 ± 0.001 0.922 ± 0.002 0.064 ± 0.002 0.925 ± 0.002

0.625 0.973 ± 0.002 0.925 ± 0.003 0.062 ± 0.003 0.928 ± 0.003

0.750 0.973 ± 0.002 0.925 ± 0.002 0.063 ± 0.004 0.928 ± 0.002

0.875 0.974 ± 0.001 0.926 ± 0.002 0.063 ± 0.004 0.929 ± 0.002

1.000 0.975 ± 0.001 0.926 ± 0.002 0.064 ± 0.003 0.929 ± 0.002

Centr_MoE 0.075 0.966 ± 0.002 0.900 ± 0.003 0.037 ± 0.002 0.899 ± 0.003

0.125 0.973 ± 0.001 0.924 ± 0.002 0.038 ± 0.002 0.926 ± 0.002

0.250 0.978 ± 0.001 0.935 ± 0.001 0.041 ± 0.002 0.937 ± 0.001

0.375 0.980 ± 0.001 0.937 ± 0.002 0.044 ± 0.002 0.939 ± 0.002

0.500 0.980 ± 0.001 0.938 ± 0.001 0.046 ± 0.002 0.941 ± 0.001

0.625 0.981 ± 0.001 0.941 ± 0.002 0.044 ± 0.002 0.943 ± 0.002

0.750 0.981 ± 0.001 0.940 ± 0.002 0.047 ± 0.002 0.942 ± 0.002

0.875 0.981 ± 0.001 0.940 ± 0.002 0.048 ± 0.002 0.942 ± 0.002

1.000 0.981 ± 0.001 0.941 ± 0.002 0.046 ± 0.003 0.943 ± 0.002

Page 26 of 37Folino et al. Journal of Big Data (2024) 11:77

This table presents a comprehensive analysis of the performance metrics at varying configurations of the number of expert
predictions combined at inference time (parameter k ∈ {1, 2, 3}) and the batch-reduction factor for the number of training
batch iterations r ∈ {0.075, . . . , 1.0}

Table 1 (continued)

k Approach r AUC (↑) ACC (↑) FPR (↓) F1 (↑)

3 VFL_MoE 0.075 0.950 ± 0.002 0.879 ± 0.002 0.065 ± 0.003 0.878 ± 0.002

0.125 0.958 ± 0.002 0.895 ± 0.002 0.061 ± 0.003 0.896 ± 0.002

0.250 0.965 ± 0.001 0.910 ± 0.002 0.062 ± 0.004 0.912 ± 0.002

0.375 0.967 ± 0.001 0.913 ± 0.003 0.066 ± 0.003 0.916 ± 0.003

0.500 0.969 ± 0.001 0.915 ± 0.002 0.067 ± 0.001 0.918 ± 0.002

0.625 0.970 ± 0.001 0.919 ± 0.003 0.067 ± 0.003 0.922 ± 0.003

0.750 0.970 ± 0.001 0.921 ± 0.003 0.066 ± 0.003 0.924 ± 0.003

0.875 0.971 ± 0.001 0.922 ± 0.002 0.066 ± 0.004 0.925 ± 0.002

1.000 0.972 ± 0.001 0.922 ± 0.002 0.068 ± 0.003 0.925 ± 0.002

Centr_MoE 0.075 0.967 ± 0.001 0.902 ± 0.002 0.036 ± 0.003 0.901 ± 0.003

0.125 0.974 ± 0.001 0.925 ± 0.002 0.038 ± 0.002 0.926 ± 0.002

0.250 0.978 ± 0.001 0.935 ± 0.001 0.041 ± 0.001 0.937 ± 0.001

0.375 0.980 ± 0.001 0.937 ± 0.002 0.045 ± 0.002 0.939 ± 0.002

0.500 0.980 ± 0.001 0.938 ± 0.001 0.046 ± 0.002 0.941 ± 0.001

0.625 0.981 ± 0.001 0.941 ± 0.002 0.044 ± 0.002 0.943 ± 0.002

0.750 0.981 ± 0.001 0.940 ± 0.002 0.047 ± 0.002 0.942 ± 0.002

0.875 0.981 ± 0.001 0.940 ± 0.002 0.048 ± 0.002 0.942 ± 0.002

1.000 0.981 ± 0.001 0.941 ± 0.002 0.046 ± 0.003 0.943 ± 0.002

Fig. 5 Comparative analysis on the KronoDroid dataset of different configurations of VFL_MoE and its ideal
upper-bound variant, Centr_MoE , across a range of values for the parameter k ∈ {1, 2, 3} . The comparison
takes into account various levels of the batch-reduction factor r ∈ {0.075, . . . , 1} during the training phase

Page 27 of 37Folino et al. Journal of Big Data (2024) 11:77

r = 0.25 , and −0.8% , −1.6% , −34.0% , and −1.5% when r = 0.75 for AUC, ACC, FPR, and
F1, respectively.

However, augmenting k and r to narrow performance gaps is not indefinitely benefi-
cial. Indeed, a point of diminishing returns is reached, beyond which further increases
in these parameters do not translate into commensurate performance enhancements.
In our specific case, this appears to happen when moving from k = 2 to k = 3 . In this
scenario, increasing the value of r and thereby trading off a substantial worsening in effi-
ciency costs does not justify the marginal improvements in performance metrics. This
behaviour, visually represented in Fig. 5, suggests that a configuration with k = 2 and
r = 0.25 probably offers the most beneficial balance between performance improve-
ments and efficiency costs in our context.

Table 2 allows for comparing the proposed VFL_MoE method with SVFL [30], the
only existing approach to VFL that uses a MoE-based architecture, as well as with the
Baseline method introduced in Sect. 5.1. It is important to note that even when
compared in the same setting with k = 1 , VFL_MoE begins to perform nearly on par
with SVFL already when approximately more than half (i.e., r ≥ 0.5) of the training
batches used for SVFL are employed for VFL_MoE as well. Only in the more stringent
case, where only 25% of the training batches used for SVFL are utilized for VFL_MoE ,
our model performs slightly worse, with marginal worsening in AUC, ACC, FPR,
and F1 by −0.6% , −1.2% , −2.6% , and −1.3% , respectively, while benefiting from just
a quarter of the computation cost for training. This further proves the robustness of
VFL_MoE to (even drastic) reductions in training data availability. This shows that,
even when selecting only one expert to classify each test instance (k = 1), as done
by SVFL, VFL_MoE can outperform SVFL, provided that the fraction of data sam-
pled per epoch is not so small. The incapability of SVFL to fully exploit the advantage
of using the training dataset as a whole can be explained by the fact that its gate is

Table 2 Comparative analysis on the KronoDroid dataset of different models: the proposed method
VFL_MoE , its ideal upper-bound variant Centr_MoE , Baseline , and competitor SVFL

All these methods were tested with expert-selection factor, k ∈ {1, 2} , except for Baseline (which lacks this hyper-
parameter). Performance metrics are also reported for Centr_MoE and VFL_MoE across intermediate values of the
batch-reduction factor hyper-parameter r ∈ {0.25, 0.50, 0.75} . Note that SVFL and Baseline do not employ any method
to reduce the number of training batches hence r = 1.0 for both

k Approach r AUC (↑) ACC (↑) FPR (↓) F1 (↑)

1 Centr_MoE 0.25 0.977 0.934 0.043 0.937

VFL_MoE 0.956 0.904 0.079 0.907

Centr_MoE 0.50 0.980 0.938 0.047 0.941

VFL_MoE 0.961 0.914 0.080 0.917

Centr_MoE 0.75 0.981 0.940 0.047 0.942

VFL_MoE 0.963 0.915 0.079 0.919

2 Centr_MoE 0.25 0.978 0.935 0.041 0.937

VFL_MoE 0.967 0.915 0.058 0.917

Centr_MoE 0.50 0.980 0.938 0.046 0.941

VFL_MoE 0.972 0.922 0.064 0.925

Centr_MoE 0.75 0.981 0.940 0.047 0.942

VFL_MoE 0.973 0.925 0.063 0.928

1 SVFL [30] 1.0 0.962 0.915 0.077 0.919

- Baseline 1.0 0.940 0.867 0.110 0.870

Page 28 of 37Folino et al. Journal of Big Data (2024) 11:77

provided with a complete but embedded (for the sake of privacy preservation) view of
the data instances, which may not suffice for discovering an effective expert selection
function.

Following this trend, when using k = 2 , already for the case r = 0.25 , the perfor-
mances of VFL_MoE are comparable or even better (at least in terms of AUC and FPR)
than those of SVFL and become significantly better when r ≥ 0.5 . These trends also
show slight improvements for the case of k = 3 , although this is not explicitly detailed in
Table 2 but can still be observed from the detailed outcomes in Table 1.

Regarding the comparison with Baseline , VFL_MoE demonstrates an unequivo-
cal advantage, regardless of the configuration of parameters k and r . As the figures in
Table 2 suggest, VFL_MoE consistently outperforms Baseline in all scenarios. This
supports an essential aspect of our study: using isolated local models for classification,
as Baseline does, is inadequate for achieving suitable performance in our context.
This underscores the need for more sophisticated federated approaches like VFL_MoE ,
ensuring cooperation/combination of different views on the data provided by models
computed in distributed local nodes.

Analysis of performance on the adult dataset

The evaluation of VFL_MoE ’s performance on the Adult dataset employs the same meth-
odology used for the KronoDroid dataset (see Table 2). Results are detailed in Table 3,
offering a comprehensive comparison with other models and showcasing VFL_MoE ’s
performance across different datasets.

The analysis of VFL_MoE on the Adult dataset, as shown in Table 3, reveals trends
similar to those observed in the KronoDroid dataset. Specifically, VFL_MoE closely
approaches the performance of the ideal model Centr_MoE in most accuracy metrics

Table 3 Comparative analysis on the Adult dataset of different models: the proposed approach
VFL_MoE , its ideal upper-bound variant Centr_MoE , Baseline , and competitor SVFL

All the methods but Baseline were tested with expert-selection factor, k ∈ {1, 2} . For the sake of readability,
performance results are reported for Centr_MoE and VFL_MoE across intermediate values of the batch-reduction factor
r ∈ {0.25, 0.50, 0.75} . Note that SVFL and Baseline do not employ any method to reduce the number of training batches,
hence r = 1.0 for both

k Approach r AUC (↑) ACC (↑) FPR (↓) F1 (↑)

1 Centr_MoE 0.25 0.896 0.816 0.175 0.666

VFL_MoE 0.874 0.810 0.159 0.639

Centr_MoE 0.50 0.899 0.840 0.114 0.674

VFL_MoE 0.890 0.840 0.094 0.640

Centr_MoE 0.75 0.900 0.847 0.086 0.675

VFL_MoE 0.893 0.842 0.077 0.654

2 Centr_MoE 0.25 0.897 0.815 0.179 0.666

VFL_MoE 0.887 0.820 0.151 0.639

Centr_MoE 0.50 0.899 0.840 0.114 0.674

VFL_MoE 0.894 0.842 0.090 0.657

Centr_MoE 0.75 0.900 0.847 0.086 0.675

VFL_MoE 0.894 0.844 0.071 0.657

1 SVFL [30] 1.0 0.877 0.830 0.081 0.604

– Baseline 1.0 0.854 0.815 0.095 0.582

Page 29 of 37Folino et al. Journal of Big Data (2024) 11:77

across different combinations of k and r. As expected, the most significant performance
gap between VFL_MoE and Centr_MoE occurs in the case k = 1 and r = 0.25 . This gap
narrows as k and r increase, with the slightest difference when VFL_MoE operates with
k = 2 and r = 0.75.

In a direct comparison with the competing model SVFL as shown in Table 3, VFL_MoE
demonstrates superior performance when utilizing at least half the training batches that
SVFL uses (i.e., r ≥ 0.5), regardless of the chosen k values. Notably, in terms of the F1
metric, VFL_MoE achieves better results than SVFL even with the least amount of train-
ing data (r = 0.25). Specifically, the F1 score improvement for VFL_MoE is 8.3% at k = 1
and 8.8% at k = 2 when using r = 0.50 . However, more data (r = 0.75) is necessary for
VFL_MoE to surpass SVFL in the FPR metric. These findings highlight the effectiveness
and flexibility of VFL_MoE in scenarios with restricted training data.

Furthermore, when compared to the Baseline model, VFL_MoE consistently out-
performs it across nearly all settings of k and r on the Adult dataset, similar to the Kro-
noDroid dataset findings. The only exception is under the most restrictive conditions
(k = 1 and r = 0.25), where Baseline slightly surpasses VFL_MoE in ACC by a mar-
ginal 0.6% and significantly in FPR by approximately 40%. Despite this, even in such con-
strained circumstances, VFL_MoE achieves a higher AUC and F1 score than Baseline ,
with an increase of 2.3% and 9.8%, respectively.

Ablation study

An ablation study was performed to evaluate the individual impacts of various con-
figurations within our methodology. For this study, the variant of VFL_MoE config-
ured to use two experts for each prediction (k=2) is regarded as a reference method
that effectively balances performance and efficiency. This method was compared to
three simplified variants:

Table 4 Ablation study for the KronoDroid dataset

Approach AUC (↑) ACC (↑) FPR (↓) F1 (↑)

VFL_MoE (k=2) 0.975 0.926 0.064 0.929

VFL_MoE (k=1) 0.964 0.916 0.081 0.920

Random Ensemble (k=2) 0.961 0.902 0.086 0.905

Random Ensemble (k=1) 0.942 0.868 0.110 0.872

Table 5 Ablation study for Adult dataset

Approach AUC (↑) ACC (↑) FPR (↓) F1 (↑)

VFL_MoE (k=2) 0.896 0.845 0.066 0.659

VFL_MoE (k=1) 0.895 0.844 0.072 0.657

Random Ensemble (k=2) 0.873 0.827 0.080 0.600

Random Ensemble (k=1) 0.854 0.815 0.095 0.582

Page 30 of 37Folino et al. Journal of Big Data (2024) 11:77

1. Random Ensemble (k=1), where the data-driven gating strategy of the MoE is
replaced with a random ensemble mechanism, i.e., for each data instance, one ran-
dom expert is chosen to classify the tuple. Please note that this simplified variant
of the proposed approach actually coincides with the reference Baseline method
considered so far in our experimental study.

2. Random Ensemble (k=2), where two experts are chosen at random for each data
instance, and the average of the probabilities provided by the two experts is used to
classify the instance.

3. VFL_MoE (k=1), where the gate function of the MoE is used to select just one expert
for each data instance.

The outcomes of the ablation study are detailed in Tables 4 and 5, for the KronoDroid
and Adult datasets, respectively. No batch reduction factor was applied; all variants
processed the full extent of all training batches (r = 1) across all experiments.

As expected, for the KronoDroid dataset, integrating the MoE mechanism yields
better performance than a pure random strategy used in Random Ensemble.
Moreover, transitioning from one to two experts further improves results across all
variants and performance metrics. Remarkably, FPR registers an improvement of
more than 25% when using two experts with the MoE strategy compared to a ran-
dom selection.

A similar improvement pattern was observed for all metrics for the Adult data-
set, though the differences were less pronounced. Specifically, in this case, the FPR
improves of about 18% under the same conditions.

Related work
The intensification of climate changes, primarily attributed to human-driven factors
such as fossil fuel consumption, deforestation, and intensive agriculture, is producing
serious repercussions on human societies, biodiversity, and ecosystems [1]. This situ-
ation has catalyzed the attention to the so-called Green AI, an initiative that applies
artificial intelligence (AI) techniques to minimize environmental impact and enhance
sustainability [54, 55]. Key strategies in Green AI include creating energy-efficient algo-
rithms, designing less power-intensive hardware, and diminishing the carbon footprint
of data centres. The rapid advancement of AI, notably the doubling of computational
demands for cutting-edge models between 2015 and 2022 [56], underscores the critical
need to evaluate AI’s environmental implications, challenges, and potential for sustain-
able development.

As mentioned in Sect. 1, Federated Learning (FL), a distinctive computational-distrib-
uted paradigm, faces unique challenges within Green AI. Unlike centralized AI systems,
which can be more feasibly powered by renewable energy sources (a direction taken by
major players like Google, Meta, and Amazon), FL involves end-user devices that draw
power from varied local energy sources, each with its own environmental footprint.
Consequently, understanding and mitigating the environmental impact of FL, especially
in terms of computation and energy expenditure, becomes a crucial endeavour.

The remainder of this section is devoted to provide an overview of previous research
work on Green FL and on MoE-based approaches to FL, in two separate subsections.

Page 31 of 37Folino et al. Journal of Big Data (2024) 11:77

Green FL

Recent research started to explore the energy efficiency and carbon footprint of FL solu-
tions. In this context, the term Green FL [1, 24] was recently coined to indicate a body
of research aimed at reducing the carbon emissions of FL applications while ensuring
satisfactory model accuracy performance. Previous work in this domain studied FL’s
carbon impact either via simulation or in an analytic manner (based on rough simpli-
fying assumptions) [4]. Specifically, the work [3] assessed FL’s carbon emissions, but
their approach just represents a preliminary study on this topic. The problem of mini-
mizing the energy footprint of client devices in FL networks was investigated in [21–
23], yet not in a large-scale perspective. In [1] a data-driven methodology was utilized
to evaluate the carbon emissions associated with FL. This was achieved through direct
measurements of real-world tasks conducted on a large scale. This enabled extensive
examinations of Green FL and an in-depth analysis of emission profiles from all critical
elements involved in FL, such as client devices, servers, and the communication infra-
structures connecting them.

From a methodological viewpoint, key research topics include optimally balancing
energy consumption with training time [14] and developing methods to control total
energy usage by adjusting accuracy targets during local training [15]. Moreover, methods
for optimizing bandwidth and workload allocation among heterogeneous devices have
been proposed [20], along with resource management schemes that leverage device-
specific loss functions to enhance accuracy under communication/computational con-
straints [19].

Complementary to the above-cited research, there are have been proposals focusing
on improving communication efficiency and on model compression [57, 58]. For exam-
ple, the benefit of using model compression and quantization techniques in reducing
the carbon emissions of FL training pipelines was explored in [24]. Other approaches to
curbing overall carbon emissions exploited gradient quantization (see, e.g., [16] address-
ing the case of over-the-air FL systems), precision and bandwidth optimization [18], and
methods for balancing energy consumption with model loss function optimization [17].

Most of the existing efficiency-aware studies in the field of FL have focused on the
Horizontal FL (HFL) setting, where all the parties involved are assumed to own data
over an identical feature space. This assumption does not fit many real scenarios, which
better suit the less explored paradigm of Vertical FL (VFL), where full information on
each data instance can only be obtained by combining all the parties’ data features, and
the class labels are only known to a single party. Differently than in the HFL case, in the
latter setup, the parties need to strictly cooperate across all training iterations, leading
to a higher communication cost [25], especially if adopting the common strategy of hav-
ing one (coordinator/aggregator) party maintain a global version of the model being dis-
covered and of repeatedly updating this mode by using derived data (concerning model
parameters or gradients of them) coming from the other parties. To prevent informa-
tion leakage in this local data exchange, expensive approaches have been proposed that
rely on secure protocols involving many peer-to-peer communications and encryption-
related data transformation (e.g., based on additive Homomorphic Encryption methods,
like in [32]).

Page 32 of 37Folino et al. Journal of Big Data (2024) 11:77

If the approach proposed in [25] reduces the number of communications, per training
iteration, linear in the number of parties, it entails considerable amounts of exchanged
data and encryption-based data processing operations in the end. On the other hand,
the simple usage of perturbed local embedding proposed in [59] for data privacy and
communication efficiency may strongly undermine prediction accuracy performances.
Indeed, in their vertical asynchronous federated learning (VAFL), only the server holds
the global model while the local clients train the feature extractors based on their local
data. The Federated Block Coordinate Descent (FedBCD) [60] method utilizes a par-
allel BCD-like approach, enabling each client to perform numerous local updates and
exchange information with the other clients to compute their local gradients. However,
FedBCD only works with simple machine-learning models like logistic/linear regression.

The generalized problem of conducting the FL process over data with arbitrary splits
over both the feature space and the sample space was recently addressed in [61], under
the name of Hybrid FL (HBFL). In this paper, an FL algorithm named FedHD is pro-
posed. Since the clients cannot perform local optimization independently under the
hybrid data, a tracking variable is introduced to enable them to track the global gradient
information and update the model based on their local data. FedHD allows the clients to
perform multiple steps of local stochastic gradient descent (SGD), improving communi-
cation efficiency.

Mixture of experts in FL

A Mixture of Experts (MoE) is an architectural paradigm for distributing a learning pro-
cess among multiple specialized models. In a Green AI scenario, MoE can offer a differ-
ent solution for enhancing the efficiency of FL approaches due to their inherent ability
to handle data heterogeneity and achieve specialization. This specialization may help
improve the overall model’s accuracy and reduce communication overheads, as only
relevant expert updates must be communicated between nodes and the central server.
Furthermore, the modular nature of MoE allows for a flexible adaptation to the diverse
nature of FL settings (both HFL and VFL), optimizing resource usage and offering cus-
tomized learning capabilities.

The usage of MoE in a FL (precisely, HFL) setting has been explored sporadically. For
instance, the study in [26] introduces Personalized Federated Learning (PFL) to enhance
FL’s accuracy while preserving privacy. Initially, a universal public model is trained. Sub-
sequently, each client develops a tailored model utilizing their private data. The final
step involves amalgamating the outputs of both private and public models via MoE. This
methodology was expanded in [27] by integrating abstract features and modifying the
MoE architecture, enhancing decision-making capabilities. However, these methods do
not address energy efficiency. Another interesting approach is presented in [28], which
introduces FedMix, a FL framework designed to address the challenge of data heteroge-
neity. In FL, data characteristics may differ across users, making a single global model
suboptimal. FedMix overcomes this by training an ensemble of specialized models, ena-
bling user-specific selection of the ensemble members. This approach helps mitigate the
effects of non-IID data, leading to improved performance over traditional global mod-
els. Similarly, [29] also explores handling non-IID data distributions by combining local
and global models through an MoE. This method addresses data heterogeneity across

Page 33 of 37Folino et al. Journal of Big Data (2024) 11:77

clients by learning a personalized model for each, blending specialized local models with
a more generalized global model trained with federated averaging. This approach aims
to achieve high performance on specific client data without sacrificing the generalization
benefits of a global model, offering an effective balance between specialization and gen-
eralization in FL scenarios. Finally, [62] proposes an MoE-based FL strategy where nodes
share part of their public datasets with a central coordinator, similar to our approach.
However, this study does not focus on efficiency or rely on a VFL architecture.

Applying MoE models to VFL settings remains largely unexplored. To the best of our
knowledge, our preliminary work in [30] has been the only existing attempt to bridge
this gap. Compared with the framework presented in [30], our current proposal exhib-
its several points of novely, particularly in terms of privacy preservation, communica-
tion efficiency and computational resource savings. Indeed, the approach proposed [30]
was exposed to information leakage risks and high communication/computational costs,
mainly because it relied on the idea of providing the gate with masked (embedded) ver-
sions of all the data shards.

Indeed, if this approach provides some degree of data privacy, transmitting these
(potentially) large data embeddings from local nodes to the central node can lead to sig-
nificant communication overheads. Additionally, using an autoencoder (AE) to generate
the embeddings could expose the risk of an “inversion attack" (i.e., an attempt to exploit
the AE to reverse the embeddings and recover the original data), which could compro-
mise data privacy. To mitigate this risk, one might think of making each node imple-
ment sophisticated data obfuscation strategies (e.g., based on differential privacy [31]
or homomorphic encryption [32] methods). However, these methods would increase
computational and communication costs considerably, highlighting the critical trade-off
between privacy and efficiency in FL systems.

The framework proposed in our current work exploits instead an ad hoc MoE archi-
tecture to reach a better trade-off among the diverging goals of privacy preservation,
model accuracy and energy saving. Specifically, in this framework, the gate is only pro-
vided with a small subset of less-sensitive data (e.g., in a medical context, data encod-
ing generic patient information that does not disclose her specific medical conditions
or potential diseases), which is assumed to be already available to all the nodes in the
federation.

In addition, in the proposed framework further enhancements are adopted to improve
the computational efficiency of the training process. Here, a Repeated Random Sampling
(RRS) method [33] is exploited, which relies on setting a reduction factor to control the
number of data batches used per training epoch. Specifically, a novel random subset of
batches is selected at each epoch, enabling a broader exploration of unseen examples
compared to a static sampling method. Although more sophisticated data pruning and
distillation techniques exist, the chosen method strikes a better balance between effec-
tiveness and computational efficiency.

Finally, our current study includes a comprehensive analysis of how the data reduction
factor and the number of selected (controlled by hyper-parameter k parameter) affect
accuracy. This analysis offers in-depth insights into the model’s performance under dif-
ferent operational settings, an aspect not explored in [30].

Page 34 of 37Folino et al. Journal of Big Data (2024) 11:77

To conclude, the advancements in our current proposal constitute a significant
improvement over the approach in [30], offering a more effective balance between the
requirements for privacy, efficiency, and classification accuracy. To summarize, to the
best of our knowledge and based on the literature survey conducted so far, our proposal
has been the first approach to discovering a MoE-based neural classification model in a
Vertical Federated Learning setting in a way that ensures a satisfactory balance between
privacy and efficiency requirements.

Discussion and conclusion
In this paper, we introduced a Vertical Federated Learning (VFL) model that utilizes a
neural architecture based on the Mixture of Experts (MoE) paradigm. This model is spe-
cifically crafted to minimize computation and communication costs within a distributed,
privacy-conscious setting involving multiple parties.

We evaluated the proposed framework on real-life datasets, with special attention to
a cybersecurity case study concerning a malware detection task. Even when provided
with reduced portions (50% and 75%) of the training instances, the proposed method is
shown to outperform competitors over different accuracy metrics (in particular, obtain-
ing remarkable FPR reductions of 16.9% and 18.2%, respectively), though the other
approaches use all the training data.

Significance and Implications The experimental findings presented in this work pro-
vide some evidence for the ability of the proposed VFL framework to ensure a satisfac-
tory balance between data/compute efficiency and accuracy performance while trying
to ensure privacy preservation by design —in both the training and application steps,
the private data of each data-owner node are processed through the expert sub-model
deployed in the node, and only the final expert output is shared with the coordinator
node. In our opinion, these nice properties make the proposed framework a valuable
solution for VFL settings where the goal of discovering an accurate prediction model
must be conciliated with energy-saving constraints and strict privacy requirements.
In particular, the results of our experimentation showcase the framework’s potential
to enhance cybersecurity threat detection and prevention in a collaborative yet secure
manner.

Another important scenario in which our framework can be profitably used is repre-
sented by the healthcare domain, where different parties, such as service providers and
institutions, hold sensitive patient information that cannot be shared due to privacy reg-
ulations, and different parties often store different kinds of patient data, such as health-
care records, lab results, or imaging scans.

Finally, we hope that the innovative contribution offered, at both technical and exper-
imental levels, by this work will stimulate novel research on the exploitation of MoE-
based architectures (or other kinds of modular neural architectures supporting efficient
conditional computations) in Federated Learning problems for which the HFL assump-
tion is unsuitable.

Design choices and limitations The sparse routing strategy supported by our VFL_MoE
models allows for cutting computation and communication costs at inference time
by selecting and activating only the top-k experts per instance. By contrast, the learn-
ing process implemented by the proposed algorithm VFL_MoE implements a dense

Page 35 of 37Folino et al. Journal of Big Data (2024) 11:77

computation where the output of all the experts is needed for any training instances in
order to evaluate the training losses and the required gradients. In principle, also the
training of a sparse MoE can be implemented according to a conditional computation
scheme where only the output of the experts selected by the gate is calculated for each
training instance and used in the back-propagation phase. This clearly entails adopting
some effective strategy for approximating the discrete sparse-routing output of the gate
in a differentiable way. Common consolidated approaches to this challenging problem
consist in: (a) resorting to heuristic routing strategies that neglect or roughly approxi-
mate the gradient of the gate function, which may well result in slower convergence
speed or event in poorly trained models; (b) using ST (Straight-Through) estimators
[9, 63], which, however, still requires to activate all the experts in the forward pass of
each training step, thus resulting in limited efficiency gain; (c) exploiting REINFORCE-
like schemes, which trade the nice property of being unbiased with prohibitively high
variance values (impeding fast convergence) and were recently shown empirically not to
work well in MoE learning applications [64]. In the light of the above-mentioned open
issues and potential pitfalls of these solutions for sparsely training a MoE, in this work,
we have proposed to reduce the computation and communication costs of the learning
algorithm by directly shrinking (through a cheap data sampling mechanism) the num-
ber of mini-batches (and associated gradient calculation steps) utilized in each training
epoch.

Other limitations of the current proposal can be easily overcome by introducing some
simple technical modifications. In particular, since conceptually the proposed frame-
work is parametric to the form of the gate and expert sub-models, in order to allow it to
deal with other kinds of data modalities (e.g., images, time series, sequences) it suffices
to adopt different neural architectures for either implementing these sub-models. As a
more efficient alternative, one can think of leveraging off-the-shelf feature extraction
methods or embedding models to preliminary convert non-tabular data into a vectorial
form, and keep using the same kind of feed-forward gate/expert models as in this work
to process the resulting transformed data.

Finally, it is worth noting that the proposed approach can be trivially extended to face
multi-class classification scenarios by simply replacing all the one-dimensional output
layers with multi-dimensional output layers, while replacing sigmoid transformations
with softmax ones. In fact, we pinpoint that our choice of focusing on a binary clas-
sification setting mainly served the purpose of making the presentation of the proposal
simpler.

Future work Moving forward, we plan to investigate introducing advanced privacy-
preserving techniques while keeping low the computation and communication costs.
Integrating these costs into the model training process could enhance the efficiency of
federated learning approaches. In our opinion, adopting a (two-layer) hierarchical MoE
architecture is another line of research that deserves being investigated.

We will also explore the opportunity of further improving the efficiency of the learning
process by conditionally activating the top-k experts selected by the gate. To this pur-
pose, it looks interesting the solution proposed in [49] to accelerate the training by using
ODE-based gradient approximations, as an alternative to current sparse-training meth-
ods, exposed to slow-convergence and/or underfitting issues.

Page 36 of 37Folino et al. Journal of Big Data (2024) 11:77

Acknowledgements
We thank the editors and anonymous reviewers for their helpful comments on earlier drafts of the manuscript. This work
was partly supported by (i) research projects FAIR - Future AI Research (PE00000013) and (ii) SERICS (PE00000014), under
the NRRP MUR program funded by the European Union - NextGenerationEU. Their support is gratefully acknowledged.

Author contributions
All authors equally contributed to this work and reviewed the manuscript.

Data availability
The datasets analysed during the current study are available in the github repository: https:// github. com/ MlkZaq/ arabic-
short- text- clust ering- datas etsand at: https:// archi ve. ics. uci. edu/ datas et/2/ adult.

Declarations

 Competing interests
The authors declare no competing interests.

Received: 31 January 2024 Accepted: 7 May 2024

References
 1. Yousefpour A, et al. Green federated learning. arXiv preprint arXiv: 2303. 14604 2023.
 2. Huba D, other: Papaya: practical, private, and scalable federated learning. arxiv: 2111. 04877 2021.
 3. Wu C-J, et al. Sustainable AI: environmental implications, challenges and opportunities. CoRR abs/2111.00364 2022.
 4. Qiu X. A first look into the carbon footprint of federated learning. Jo Mach Learning Res. 2023;24(129):1–23.
 5. Adadi A. A survey on data-efficient algorithms in big data era. J Big Data. 2021;8:24.
 6. Albelaihi R, Yu L, Craft WD, Sun X, Wang C, Gazda R. Green federated learning via energy-aware client selection. In:

GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022;13–18. IEEE
 7. De Rango F, Guerrieri A, Raimondo P, Spezzano G. Hed-fl: A hierarchical, energy efficient, and dynamic approach for

edge federated learning. Pervasive Mobile Comput. 2023;92: 101804.
 8. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. Adaptive mixtures of local experts. Neural Comput. 1991;3(1):79–87.
 9. Bengio Y, Léonard N, Courville A. Estimating or propagating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv: 1308. 3432 2013.
 10. Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J. Outrageously large neural networks: the

sparsely-gated mixture-of-experts layer. In: ICLR, 2017;1–17.
 11. Lepikhin D, et al. Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv preprint

arXiv: 2006. 16668 2021.
 12. Fedus W, Zoph B, Shazeer N. Switch transformers: Scaling to trillion parameter models with simple and efficient

sparsity. J Mach Learn Res. 2022;23(1):5232–70.
 13. Zhang J, Guo S, Qu Z, Zeng D, Wang H, Liu Q, Zomaya AY. Adaptive vertical federated learning on unbalanced

features. IEEE Trans Parallel Distribut Syst. 2022;33(12):4006–18.
 14. Tran NH. Federated learning over wireless networks: optimization model design and analysis. In: Proc. of IEEE confer-

ence on computer communications (INFOCOM), 2019;1387–1395.
 15. Yang Z. Energy efficient federated learning over wireless communication networks. IEEE Trans Wireless Commun.

2020;20(3):1935–49.
 16. Zhu G, Du Y, Gündüz D, Huang K. One-bit over-the-air aggregation for communication-efficient federated edge

learning: design and convergence analysis. IEEE Trans Wireless Commun. 2020;20(3):2120–35.
 17. Feng C. On the design of federated learning in the mobile edge computing systems. IEEE Trans Commun.

2021;69(9):5902–16.
 18. Liu P. Training time minimization for federated edge learning with optimized gradient quantization and bandwidth

allocation. Front Inf Technol Electron Eng. 2022;23(8):1247–63.
 19. Luo B. Cost-effective federated learning design. In: proc. of IEEE conference on computer communications (INFO-

COM), 2021;1–10.
 20. Zeng Q, Du Y, Huang K, Leung KK. Energy-efficient resource management for federated edge learning with cpu-gpu

heterogeneous computing. IEEE Trans Wireless Commun. 2021;20(12):7947–62.
 21. Kim YG, Wu C-J. Fedgpo: Heterogeneity-aware global parameter optimization for efficient federated learning. In:

Proc of 2022 IEEE Intl. Symp. on workload characterization (IISWC), 2022;117–129.
 22. Kim YG, Wu C-J. Autofl: enabling heterogeneity-aware energy efficient federated learning. In: Proc of 54th Annual

IEEE/ACM Intl. Symp. on Microarchitecture, 2021;183–198.
 23. Abdelmoniem AM, Sahu AN, Canini M, Fahmy SA. Refl: resource-efficient federated learning. In: Proc. of 18th Europ.

Conf. on Computer Systems, 2023;215–232.
 24. Kim M, Saad W, Mozaffari M, Debbah M. Green, quantized federated learning over wireless networks: an energy-

efficient design. IEEE transactions on wireless communications 2023.
 25. Xu R. Fedv: Privacy-preserving federated learning over vertically partitioned data. In: Proc. of 14th ACM Workshop on

artificial intelligence and security (AISec), New York, NY, USA, 2021;181–192.
 26. Peterson DW, Kanani P, Marathe VJ. Private federated learning with domain adaptation. CoRR abs/1912.06733 2019.

arXiv: 1912. 06733

https://github.com/MlkZaq/arabic-short-text-clustering-datasets
https://github.com/MlkZaq/arabic-short-text-clustering-datasets
https://archive.ics.uci.edu/dataset/2/adult
http://arxiv.org/abs/2303.14604
http://arxiv.org/abs/2111.04877
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/1912.06733

Page 37 of 37Folino et al. Journal of Big Data (2024) 11:77

 27. Guo B. Pfl-moe: personalized federated learning based on mixture of experts. In: Web and Big Data, pp. 480–486.
Springer, Cham 2021.

 28. Reisser M, Louizos C, Gavves E, Welling M. Federated mixture of experts. arXiv preprint arXiv: 2107. 06724 2021.
 29. Zec EL, Mogren O, Martinsson J, Sütfeld LR, Gillblad D. Specialized federated learning using a mixture of experts.

arXiv preprint arXiv: 2010. 02056 2020.
 30. Folino F, Folino G, Pisani FS, Pontieri L, Sabatino P. A scalable vertical federated learning framework for analytics in

the cybersecurity domain. In: Proc. of 32nd Euromicro Intl. Conf. on parallel, distributed, and network-based process-
ing (PDP), p. 2024.

 31. Dwork C. Differential privacy: a survey of results. In: Proc. of Intl. Conf. on theory and applications of models of
computation, 2008;1–19.

 32. Gentry C. Fully homomorphic encryption using ideal lattices. In: Proc. of 41st ACM Sympo. on Theory of Computing,
2009;169–178.

 33. Okanovic P, et al. Repeated random sampling for minimizing the time-to-accuracy of learning. arXiv preprint arXiv:
2305. 18424 2023.

 34. Hellmeier M, Pampus J, Qarawlus H, Howar F. Implementing data sovereignty: Requirements & challenges from
practice. Proceedings of the 18th international conference on availability, reliability and security 2023.

 35. Hummel P, Braun M, Tretter M, Dabrock P. Data sovereignty: a review. Big Data Soc. 2021;8(1):2053951720982012.
 36. Esposito C, Castiglione A, Choo K-KR. Encryption-based solution for data sovereignty in federated clouds. IEEE Cloud

Comput. 2016;3(1):12–7.
 37. Sheikhalishahi M, Saracino A, Martinelli F, Marra AL. Privacy preserving data sharing and analysis for edge-based

architectures. Int J Inf Sec. 2022;21(1):79–101.
 38. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ACM Trans Intell Syst Technol.

2019;10(2):1–19.
 39. Yang L, et al. Vertical federated learning: concepts, advances and challenges. arXiv preprint arXiv: 2211. 12814 v4 2023.
 40. Romanini D, et al. PyVertical: a vertical federated learning framework for multi-headed SplitNN 2021.
 41. Kaplan J, et al. Scaling laws for neural language models. arXiv preprint arXiv: 2001. 08361 2020.
 42. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Proc. of 27th Intl. Conf. on

neural information processing systems - 2014;2:3104–3112.
 43. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun

ACM. 2017;60(6):84–90.
 44. Hinton G. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research

groups. IEEE Signal Process Mag. 2012;29(6):82–97.
 45. Jordan MI, Jacobs RA. Hierarchical mixtures of experts and the em algorithm. Neural Comput. 1994;6(2):181–214.
 46. Han S, Mao H, Dally WJ. Deep compression: compressing deep neural networks with pruning, trained quantization

and huffman coding. arXiv preprint arXiv: 1510. 00149 2015.
 47. Eigen D, Ranzato M, Sutskever I. Learning factored representations in a deep mixture of experts. arXiv preprint arXiv:

1312. 4314 2013.
 48. Roller S, Sukhbaatar S, Weston J. Hash layers for large sparse models. In: advances in neural information processing

systems, 2021;34:17555–17566.
 49. Liu L, Gao J, Chen W. Sparse backpropagation for MoE training. In: arXiv: 2310. 00811 [cs] 2023.
 50. Ismail AA, Arik SÖ, Yoon J, Taly A, Feizi S, Pfister T. Interpretable mixture of experts for structured data. arXiv preprint

arXiv: 2206. 02107 2022.
 51. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. Adaptive mixtures of local experts. Neural Comput. 1991;3(1):79–87.
 52. Guerra-Manzanares A, Bahsi H, Nõmm S. Kronodroid: time-based hybrid-featured dataset for effective android

malware detection and characterization. Comput Sec. 2021;110: 102399.
 53. Platt JC. Fast training of support vector machines using sequential minimal optimization 1998.
 54. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63.
 55. Rolnick D. Tackling climate change with machine learning. ACM Comput Surv (CSUR). 2022;55(2):1–96.
 56. Sevilla J, Compute trends across three eras of machine learning. In: Proc. of 2022 Intl. Joint conference on neural

networks (IJCNN), 2022;1–8.
 57. Vogels T, Karimireddy SP, Jaggi, M. Powersgd: Practical low-rank gradient compression for distributed optimization.

Adv Neural Inf Process Syst 2019;32.
 58. Rothchild D. Fetchsgd: Communication-efficient federated learning with sketching. In: Proc. of Intl. Conf. on

Machine Learning (ICML), 2020;8253–8265.
 59. Chen T, Jin X, Sun Y, Yin W. Vafl: a method of vertical asynchronous federated learning. arXiv preprint arXiv: 2007.

06081 2020.
 60. Liu Y. Fedbcd: a communication-efficient collaborative learning framework for distributed features. IEEE Trans Signal

Process. 2022;70:4277–90.
 61. Su L, Lau VKN. Hierarchical federated learning for hybrid data partitioning across multitype sensors. IEEE Int Things J.

2021;8(13):10922–39.
 62. Parsaeefard S, Etesami SE, Leon-Garcia A. Robust federated learning by mixture of experts. CoRR abs/2104.11700

2021. arXiv: 2104. 11700
 63. Liu L, Dong C, Liu X, Yu B, Gao J. Bridging discrete and backpropagation: Straight-through and beyond. In: Proc. of

36th Intl. Conf. on Advances in Neural Information Processing Systems 2024.
 64. Kool W, Maddison CJ, Mnih A. Unbiased gradient estimation with balanced assignments for mixtures of experts.

2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2107.06724
http://arxiv.org/abs/2010.02056
http://arxiv.org/abs/2305.18424
http://arxiv.org/abs/2305.18424
http://arxiv.org/abs/2211.12814v4
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1312.4314
http://arxiv.org/abs/1312.4314
http://arxiv.org/abs/2310.00811
http://arxiv.org/abs/2206.02107
http://arxiv.org/abs/2007.06081
http://arxiv.org/abs/2007.06081
http://arxiv.org/abs/2104.11700

	Efficiently approaching vertical federated learning by combining data reduction and conditional computation techniques
	Abstract
	Introduction
	Background
	Vertical federated learning and privacy
	Mixture of experts (MoE) classifiers

	Formal framework and problem statement
	The proposed VDL methodology: model architecture and training algorithm
	Model architecture
	The proposed training method: algorithm
	Analytical study of the algorithm’s costs

	Experimental results
	Testbed
	Datasets
	Experimental setup

	Test results
	Analysis of performance on the KronoDroid dataset
	Analysis of performance on the adult dataset

	Ablation study

	Related work
	Green FL
	Mixture of experts in FL

	Discussion and conclusion
	Acknowledgements
	References

