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Abstract

The article introduces an innovative approach to global optimization and feature
selection (FS) using the RIME algorithm, inspired by RIME-ice formation. The RIME
algorithm employs a soft-RIME search strategy and a hard-RIME puncture mechanism,
along with an improved positive greedy selection mechanism, to resist getting trapped
in local optima and enhance its overall search capabilities. The article also introduces
Binary modified RIME (mRIME), a binary adaptation of the RIME algorithm to address the
unique challenges posed by FS problems, which typically involve binary search spaces.
Four different types of transfer functions (TFs) were selected for FS issues, and their
efficacy was investigated for global optimization using CEC2011 and CEC2017 and FS
tasks related to disease diagnosis. The results of the proposed mRIME were tested on
ten reliable optimization algorithms. The advanced RIME architecture demonstrated
superior performance in global optimization and FS tasks, providing an effective
solution to complex optimization problems in various domains.
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Introduction
The pursuit of optimal solutions within the expansive and intricate realms of global opti-
mization problems is a critical and central endeavor across a multitude of scientific and
engineering domains [1,2]. These domains, ranging from computer science and opera-
tions research to various branches of engineering and applied sciences, are continually
faced with challenges that are high-dimensional and multifaceted. The inherent com-
plexity and diversity of problems within these domains necessitate the development and
implementation of innovative, sophisticated, and efficient algorithms. These algorithms
must be capable of navigating through the vast landscapes of high-dimensional spaces,
exploring a myriad of potential solutions, and ultimately converging to solutions that are
optimal or near-optimal.
Global optimization problems are characterized by their extensive search spaces and the

presence of numerous local optima,making the task of finding the global optimumahighly
non-trivial endeavor. The challenges posed by these problems are further compounded by
the increasing dimensionality and complexity of the search spaces, requiring algorithms
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with enhanced exploration and exploitation capabilities. The exploration and exploitation
dichotomy is crucial in global optimization, where algorithms must balance between
exploring new, unvisited regions of the search space and exploiting known promising
regions to refine solutions.
The exploration of nature-inspired algorithms has emerged as a promising and fruit-

ful avenue in addressing the challenges posed by global optimization problems. Nature-
inspired algorithms draw insights, principles, and strategies fromvarious natural phenom-
ena, biological processes, and ecological interactions observed in the natural world [3]. By
mimicking the adaptive, evolutionary, and cooperative behaviors exhibited by biological
entities and ecosystems, these algorithms design sophisticated computational models and
search strategies capable of solving complex optimization problems.
Nature-inspired algorithms encompass a diverse array of approaches, each inspired by

different aspects of the natural world. Evolutionary algorithms, for example, are inspired
by the principles of natural selection and evolution, simulating the processes of selection,
crossover,mutation, and reproduction to evolve populations of solutions over generations
[4]. Swarm intelligence algorithms, on the other hand, draw inspiration from the collec-
tive behaviors of social insects and animal groups, utilizing mechanisms of cooperation,
communication, and self-organization to explore and optimize search spaces [5,6].
The appeal of nature-inspired algorithms lies in their inherent adaptability, flexibil-

ity, and robustness. These algorithms are capable of adapting to dynamic and uncer-
tain environments, adjusting their search strategies in response to changing landscapes
and problem constraints. The flexibility of nature-inspired algorithms allows them to be
applied to awide range of optimization problems, with the potential for customization and
hybridization to suit the specific characteristics and requirements of individual problems.
Furthermore, the robustness of these algorithms enables them to handle noise, uncertain-
ties, and imperfections in problem formulations and data, providing reliable and stable
performance across different problem instances. The development of nature-inspired
algorithms is driven by a continuous quest for innovation and improvement. Researchers
and practitioners in the field are engaged in the design and analysis of new algorithms, the
enhancement of existing algorithms, and the exploration of hybrid and multi-objective
approaches. The advancements in nature-inspired algorithms are fueled by interdisci-
plinary collaborations, bringing together expertise from computer science, mathematics,
biology, physics, and other disciplines to develop more effective and efficient algorithms.
The integration of theoretical foundations, empirical studies, and computational experi-
ments is essential in understanding the underlying mechanisms of nature-inspired algo-
rithms and in validating their performance and applicability.
The application of nature-inspired algorithms extends beyond the realm of global opti-

mization to various areas such as machine learning, medical image processing [7], human
activity recognition [8], software defect prediction [9], network intrusion detection [10],
power scheduling [11], and logistics. In machine learning and data mining, for example,
nature-inspired algorithms are employed for FS [12], clustering [13], classification [14],
and regression, contributing to the discovery of knowledge and insights from data. In
image processing and computer vision, these algorithms are utilized for segmentation,
edge detection, object recognition, and enhancement, aiding in the analysis and interpre-
tation of visual information. The versatility and efficacy of nature-inspired algorithms in
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addressing diverse problems underscore their significance and potential in advancing the
frontiers of science and technology.
The RIME (RIME-Ice) Algorithm, the focal point of this article, is a new contribution

to the realm of nature-inspired algorithms, deriving its conceptual framework from the
intricate processes of RIME-ice formation [15]. RIME-ice, a meteorological phenomenon,
occurs when super-cooled water droplets freeze upon contact with surfaces, forming
crystalline structures. The algorithm simulates the distinct behaviors of soft and hard
RIME formations, leveraging their unique characteristics to optimize search strategies
and enhance convergence and solution accuracy in diverse conditions.
In this study,we present RIME:Aphysics-based optimization approach as a newmethod

for solving continuous optimization and FS problems. Our research aims to evaluate the
effectiveness, robustness, and applicability of the RIME algorithm in improving solution
quality and computational efficiency in these domains by examining it across continu-
ous and discrete optimization search spaces. The main contributions of this article are
summarized as follows:

• The article introduces modified RIME (mRIME), which enhances the RIME algo-
rithm’s by adopting chaotic maps for initialization of solutions, crossover for improv-
ing exploration phase of the search space and greedy search for enhancing the selec-
tion of the best solution and decreasing the bias of the optimizer.

• To facilitate the transformation of a continuous search space into a binary one, four
distinct types of TFs from the S-shaped, V-shaped, U-shaped, and X-shaped families
were chosen for FS problems.

• The effectiveness of RIME is examined for global optimization through the use of
CEC2011, CEC2017, and FS tasks in relation to applications for disease diagnosis.

• The suggested mRIME’s algorithm has been tested compared to ten of the most
reliable optimization algorithms. The rival algorithms to the one being described fall
into three categories: the most well studied EAs, SFS [16], DE [17], BBO [18], and GA
[19]. Some SI that are well-known and reliable are PSO [20], ACO [21], and AMO
[22]. The three HBOs that are the most current and successful are TLBO [23], GSK
[24], and WSO [25].

• The convergence curve, running time, number of selected features, fitness value,
specificity, sensitivity, and accuracy are the six standard metrics that were used to
assess the mRIME.

• A range of statistical numbers were given, including the worst, average, median, stan-
dard deviation, and best values. To assess the outcomes and demonstrate the robust-
ness of the proposed mRIME, test methods proposed by Friedman and Holm were
applied. Throughmeticulous development and extensive evaluations, it demonstrates
the superior performance and versatility of the algorithm, offering valuable insights
and methodologies for researchers and practitioners in the fields of optimization and
FS.

Literature review
The discussed articles provide a comprehensive overview of the advancements in opti-
mization algorithms, focusing on nature-inspired algorithms, enhancements to existing
algorithms, and their diverse applications in medical, biological, engineering, and energy
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domains. The development and enhancement of these algorithms are pivotal for navigat-
ing through high-dimensional spaces and converging to optimal or near-optimal solutions
in various scientific and engineering domains. The applications of these algorithms in real-
world problems demonstrate their potential in providing innovative solutions in diverse
fields.
Numerous articles examine the creation of algorithms that are modeled after the traits

and behaviors of animals and other natural occurrences. For instance, Mohapatra [26]
discussed the Golden Jackal Optimization (GJO) algorithm, inspired by the collabora-
tive hunting behaviors of golden jackals, and proposes an enhanced variant incorporat-
ing opposition-based learning (OBL) to overcome its disadvantages . Similarly, Houssein
introduces the Liver Cancer Algorithm (LCA), a bio-inspired optimization algorithm
mimicking liver tumor growth and takeover processes [27]. Abdel-Basset presents the
Mantis Search Algorithm (MSA), inspired by the unique hunting behavior and sexual
cannibalism of praying mantises [28]. A Chimp-inspired Optimization Algorithm (COA).
Remora Optimization Algorithm (ROA) [29], [30]. Arithmetic Optimization Algorithm
(AOA) [31], [32]. An efficient EquilibriumOptimizer (SLEO) [33]. These articles highlight
the versatility of nature-inspired algorithms in navigating high-dimensional spaces and
converging to optimal solutions.
Using a novel PRISMA technique, this research assesses the evolution of the World

Wide Open Access (WOA) during the last 5 years and critically analyzes it [34]. Strict
inclusion criteria and screening procedures are used to improve the evaluation stage.
Effectivemethods for hybridizingWOAvariants are outlined, and 59 enhancedWOAand
57 hybrid WOA variants were chosen. Along with highlighting the dearth of thorough
comparisons with earlierWOA variants, the report also provides a graphic representation
of the distribution of qualifying WOA variants. There are recommendations for future
paths.
To get around some restrictions and boost efficiency, a number of papers suggest

improving and changing current algorithms. Hassan introduces a multi-objective vari-
ant of the marine predator’s algorithm (MPA), incorporating concepts from Quantum
theory to enhance theMPA’s ability to balance between exploration and exploitation [35].
Mehmood combines Archimedes’ optimization algorithm (AOA) with chaotic maps to
optimize complex engineering problems [36]. Zhou introduces LASMA, a local dimen-
sional mutation strategy, and an all-dimensional neighborhood search strategy for the
slime mould algorithm (SMA) to improve the algorithm’s exploration and exploitation
abilities [37]. These enhancements aim to address the limitations of the original algo-
rithms, such as poor exploitation ability and susceptibility to local optima.
The use of optimization algorithms in the biological and medical fields is the subject of

several articles. Painul [38], this examines the latest developments in deep learning and
machine learning methods for the detection and diagnosis of six different types of cancer:
pancreatic, skin, lung, liver, breast, and brain. It analyzes important performancemeasures
on benchmark datasets, including precision, accuracy, area under the curve, sensitivity,
and dice score; it ends with research challenges for the future. Yu presents a hybridmodel,
bERIME_FKNN, for early recognition and timely treatment of Pulmonary Hypertension
(PH) [39]. Emamproposes an optimized residual learning architecture for classifyingmul-
tiple brain tumors, utilizing an improved variant of the Hunger Games Search algorithm
(I-HGS) [40]. Chen designs a new wrapper gene selection algorithm, ABHGS, integrating



Abu Khurma et al. Journal of Big Data          (2024) 11:89 Page 5 of 74

hunger Games search (HGS) with an artificial bee strategy for high-dimensional genetic
data [41]. These applications demonstrate the potential of optimization algorithms in
addressing real-world problems in medicine and biology, such as disease diagnosis and
gene selection.
Optimization algorithms are applied in engineering design and energy areas, as dis-

cussed in several articles. Deng develops the snow ablation optimizer (SAO) for numeri-
cal optimization and engineering design, focusing on real-world constrained optimization
issues in process synthesis and mechanical engineering [42]. Dong introduces the boost-
ing kernel search optimizer (BKSO) to solve the combined economic emission dispatch
(CEED) problem in power systems [43]. Zhou presents a boosted atomic search optimiza-
tion (ASO) with a new anti-sine-cosine mechanism (ASCASO) for parameter estimation
of photovoltaic (PV) models [37]. These studies illustrate the versatility of optimization
algorithms in optimizing engineering designs and enhancing energy conversion efficiency.
For FS application, there were many metaheuristic algorithms that have been used

to tackle this optimization challenge. Fatahi [44], an algorithm for FSS in medical data
preparation called the Improved Binary Quantum-based Avian Navigation Optimizer
Algorithm (IBQANA) is proposed in this study. To handle less-than-ideal results from
binary metaheuristic algorithms, it makes use of the Hybrid Binary Operator (HBO) and
the Distance-based Binary Search Strategy (DBSS). HBO transforms continuous values
into binary solutions, and DBSS speeds up convergence and improves search agent per-
formance. Twelve medical datasets are used to examine the efficacy of HBO with thresh-
olding and five different TF families. Additionally, IBQANA outperforms all compared
algorithms in the detection of COVID-19. The suggested approach offers a possible rem-
edy for the FSS issue in the preparation of medical data.
Based on the starling murmuration optimizer (SMO), a novel binary optimizer tech-

nique named BSMO is presented by Nadimi [45]. BSMO is capable of finding the best
characteristics and resolving intricate engineering difficulties. To find useful characteris-
tics in medical datasets, it employs two methods: first, it maps each dimension to either
0 or 1, utilizing a configurable threshold; second, it creates binary versions by utilizing
multiple S-shaped and V-shaped TFs. Four medical datasets were used to assess the per-
formance of BSMO, and it was contrasted with popular binary metaheuristic algorithms.
The BSMO performed better in choosing useful features than rivals such as ACO, BBA,
bGWO, and BWOA.
Based on the No-Free-Lunch theorem which demonstrates that optimization problems

can be solved using different optimization algorithms with different outcomes each time.
Moreover, the same optimization algorithm can be enhanced using various operators and
strategies and tested on the same optimization problem and produce new results each
time. The stochastic nature of optimization algorithms motivated us to conduct experi-
ments using the recently developed RIME optimizer to test its accuracy, robustness and
validity when it is utilized to solve both continuous and discrete optimization problems.
The first one was accomplished by testing RIME on global engineering problems and the
second one was accomplished by testing RIME on feature selection optimization prob-
lems and specifically for disease diagnosis in medical applications. The conversion of the
original RIME optimizer was done using different TFs that belong to four families: S-
shaped, V-shaped, U-shaped, and X-shaped families. Different enhancement strategies
were embedded in original RIME to improve its performance such as crossover opera-
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Fig. 1 The processes by which hard RIME and soft RIME form in various situations

tors to enhance exploration phase, positive greedy selection process to choose the best
solution, and chaotic functions to initialize solutions.

Methodology
Original RIME algorithm background

The building up of evaporated water in the environment that hasn’t yet solidified leads to
RIME-Ice. At temperatures below zero, it succumbs to freezing and adheres to things like
branches from trees. Some areas form a winter RIME-Ice landscape because of their dis-
tinct topography and weather-related traits. The formation of RIME ice is influenced by a
number of factors, including temperature,moisture levels, wind velocity, and atmospheric
pressure. While RIME-Ice can grow and expand, its growth is not limitless. External fac-
tors and the inherent nature of its formation ultimately halt its expansion, leading to a state
of relative stability. To better understand the dynamics of RIME ice formation, consider
the hypothetical scenario depicted in Fig. 1. The plane “ABC” represents the RIME for-
mation area, and points (D1, D2, D3, and D4) represent the birthplaces sites where RIME
ice begins to form. The formation of RIME ice typically falls into two distinct categories:
soft RIME and hard RIME. Soft RIME, often associated with gentle breezes, is character-
ized by its fine, granular structure. The formation of soft RIME is a gradual process, as
the wind slowly deposits ice crystals onto the nucleation sites. This delicate RIME ice is
often ephemeral, susceptible to the whims of wind and temperature changes. In contrast,
hard RIME, a product of strong winds, exhibits a denser, more compact structure. The
formation of hard RIME is a rapid process, as the wind forcefully impinges ice crystals
onto the nucleation sites. This robust RIME ice can withstand harsher conditions, per-
sisting long after the winds have subsided. Figure 1a depicts a breeze as having low wind
speeds, variable direction changes and constant presence at every angle at an identical
level. As such, its delicate RIME develops slowly and unpredictably whereas gale winds
can be identified by their fast speeds with an almost uniform direction, producing hard
RIME growth more rapidly in one or several directions simultaneously. Gale winds can
also produce large rainfall amounts in any given location at one or more height levels,
producing rapid rainfall amounts with hard RIME formation as in Fig. 1b.
The RIME algorithm is motivated by the Ice-RIME development mechanism and pro-

vides a Soft-RIME search approach by simulating the motion of Soft-RIME particles. A
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Hard-RIMEpuncturemechanism is also suggested tomake use of the algorithmby imitat-
ing the behavior of hard-RIME agents in crossover situations. Finally, the metaheuristic
algorithm’s selection mechanism is enhanced, and a positive greedy selection mecha-
nism is suggested. By fusing the aforementioned three methods, the RIME algorithm is
developed, which has improved performance. Modeling the RIME mathematically: The
process of forming each RIME strip in the RIME algorithm involves a detailed examina-
tion of various factors such as wind speed, freezing coefficient, the cross-sectional area of
the connected material, and the duration of growth. These factors collectively influence
the development of each RIME strip.
In contrast, the process of forming a RIME agent from RIME particles is simulated by

modeling the progressive activity of each particle. This progression leads to the formation
of the final RIME agent, which is akin to a piece of crystal. This simulation approach is
inspired by the diffusion-limited aggregation method, commonly used for simulating the
aggregation ofmetal particles. The RIME algorithm is structured into four distinct stages:

1. InitializationofRIMEClusters: This initial stage sets up the framework for the forma-
tion of RIME structures. It involves preparing the initial conditions and parameters
that govern the growth and development of the RIME clusters.

2. Suggested Soft-RIME Search Method: In this stage, a method is proposed for the
searching and growth of soft-RIME. This might involve algorithms or mechanisms
that simulate the accumulation and adhesion processes characteristic of soft RIME.

3. Suggested Hard-RIME Puncture Mechanism: This stage deals with the transition of
RIME from a soft to a hard state. It proposes a mechanism for the puncture process,
which is a critical phase in the formation of hard RIME, known for its denser and
more compact structure.

4. Suggested Greedy Selection Mechanism Enhancement: The final stage focuses on
enhancing the selectionmechanism, potentially using a greedy approach. This could
involve selecting the most optimal or favorable conditions or parameters that facili-
tate the efficient growth and formation of RIME.

1. Initialization of the RIME group:
The RIME algorithm, which draws its inspiration from reality, views the population

of the algorithm as the complete RIME-population and treats each agent’s RIME as the
algorithm’s sought agent. At the start, R’s full RIME population is initialized. According
to Eq. (1), the population of RIME is composed of n RIME agents (Si), each of which
is composed of d RIME particles (xij). As a result, the RIME-particles xij can accurately
reflect the RIME-population R, as demonstrated in Eq. (2).

R =

⎛
⎜⎜⎜⎜⎝

s1
s2
...
sn

⎞
⎟⎟⎟⎟⎠
; Si = [xi1xi2 · · · xij] (1)

R =

⎛
⎜⎜⎜⎜⎝

x11 x12 x13
x21 x22 x23
...
xi1 xi2 xi3

⎞
⎟⎟⎟⎟⎠

(2)
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where (i) and (j) represent the ordinal numbers for a RIME agent and particle respec-
tively, and F (Si) represents each agent’s growth state or fitness value in the metaheuristic
algorithm.
2. Soft-RIME searching approach:

1. Each particle, xij , follows its own set of laws before condensing into soft RIME agents;
their ability to wander is subject to external influences and can vary accordingly.

2. if free-state RIME particles migrate near Soft-RIME agents, they may condense with
its particles and alter its stability.

3. Given that each particle experiences variable condensation levels, the distance
between centers of two particles that adhere is not constant.

4. Inter-particle condensation does not occur if particles move straight outside their
escape radius.

5. As the randomcondensation process unfolds, the area towhich each particle adheres
expands, raising the probability of free particle condensation during soft RIME for-
mation. Nevertheless, environmental factors ultimately lead the agent to reach a
stable state, halting its growth.

Within the RIME algorithm, the estimation of RIME particle positions is calculated as
outlined in Eq. (3), aligning with the five distinct motion traits of RIME particles.

Rnew
ij = Rbest,j + r1 × cos θ × β × h × Ubij − Lbij + Lbij , r2 < E (3)

The RIME algorithm employs a particle movement strategy that incorporates both
Soft-RIME and Hard-RIME dynamics. The position of each particle, denoted by Rnew

ij , is
updated based on its current position i and j, the best RIME-Agent particle R(best,j), and
a random parameter h. The direction of particle movement is influenced by the cosine
function, which is modulated based on the number of iterations. The environmental
component, represented by the term after the number of iterations in Eq. (5), ensures
algorithm convergence and mimics the influence of external factors. The degree of adhe-
sion, denoted by h, is a random value between 0 and 1 that controls the spacing between
RIME particles.

θ = π × t
10 × T

(4)

This iterative process continues until the algorithm’s current iteration count, denoted by
t, reaches the maximum allowed iteration count, represented by T .

β = 1 − [w × t
T

]
/w (5)

The default value of w is set to 5, which controls the number of segments in the step
function. [.] denotes rounding in this context, where the step function is themathematical
model of the process. Referring back to Eq. (3), the upper and lower bounds of the escape
space, represented by the letters Ubij and Lbij , respectively, define the boundaries of the
particlemotion’s practical range.E represents the attachment coefficient,which influences
an agent’s likelihood of condensing and increases with the number of iterations. It is
represented in Eq. (6).

E = √
t/T (6)
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Algorithm 1 The Soft-RIME search technique’s pseudo-code
while t ≤ T do
Coefficient of adherence E = √

t/T
for i = 1 : n do
for j = 1 : d do
if r2 < E then
Adjustment of placement based on RIME particle properties using Eq (3)

end if
end for

end for
Change the existing optimum solution and optimum fitness. t = t + 1

end while

3. Technique for Hard-RIME pierces:
Hard-RIME growth is easier and more dependable in strong gale conditions than soft-
RIME growth. The features of a hard RIME are as follows when the RIME particle con-
denses:

• Because the gale is so powerful, other influences are insignificant, which causes several
Hard-RIME agents to snowball in the same direction.

• Because each RIME agent can readily cross across because the growth direction is the
same, this is known as RIME puncture.

• Hard-RIME agents, like Soft-RIME agents, become larger as they mature, increasing
the likelihood of puncturing between agents under favorable conditions for growth.

Consequently, the puncturing phenomenon and the associated Hard-RIME puncture
mechanismenable the algorithm to exchangeparticles between solutions, thereby improv-
ing convergence and enhancing the ability to escape local optima. The particle replace-
ment formula is depicted in Eq. (7).

Rnew
ij = Rbest,j , r3 < Fnormr(Si) (7)

where Rnew
ij represents the updated position of the particle and Rbest,j represents the jth

particle of the best RIME-Agent in the RIME population R. The normalized value of the
current agent’s fitness value, denoted by Fnormr(Si), represents the probability of selecting
the ith RIME-Agent. r3 is a random number between (− 1) and (1). Algorithm 2 presents
the pseudo-code for the Hard-RIME puncture mechanism.
4. An efficient technique of greedy selection:
In conventional metaheuristic optimization algorithms, the greedy selection mecha-

nism regularly updates and records the best fitness value and the corresponding solution.
Following each update, the solution’s updated fitness value is typically compared to the
global optimum. If the updated value surpasses the existing global optimum, the optimal
fitness value is replaced, and the solution is designated as the new optimum. While this
approach is simple and efficient, it does not directly contribute to exploring or exploiting
the population as it primarily serves as a record-keeping mechanism.
An aggressive greedy selection strategy is often employed in optimization algorithms to

increase global exploration’s effectiveness, using fitness values of agents before and after
updates as an indication of effectiveness or proximity of optimal solutions. At each update
step, the algorithm compares updated fitness values against their previous fitness values;
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Algorithm 2 The Soft-RIME search technique’s pseudo-code
Set up the RIME-population R
Obtain the most effective agent and fitness at the moment.
while t ≤ T do
for i = 1 : n do
for j = 1 : d do
if r3 < Normalize fitness of Si then
changing the location depending on the RIME-particles’ properties by Eq (7)

end if
end for

end for
Change the existing optimum solution and optimum fitness
t = t + 1

end while

fitness can serve as a barometer for measuring how effectively agents solve their assigned
problem, with those surpassing previous values being replaced or updated both regarding
solution and properties to reflect this newfound success.
The implications of this strategy are two folds:

• By actively replacing agents with improved versions, the overall quality of the popu-
lation is raised. Good agents, those with higher fitness values, are consistently main-
tained in the population, driving the collective towards better solutions.

• While this method ensures the population is always stocked with high-performing
agents, the dramatic shift in the positions of the population’s agents with each iter-
ation carries a risk. Some agents, as a result of these shifts, may end up performing
worse than they did before the update. This degradation can negatively impact the
population in the following iteration, as not all changes lead to improvements.

Algorithm 3 displays the pseudo-code of the positive greedy selection mechanism for
addressing the minimum value problem.

Algorithm 3 The Soft-RIME search technique’s pseudo-code
Set up the RIME-Size R
Obtain the most effective agent and fitness at the moment.
while t ≤ T do
for i = 1 : n do
for j = 1 : d do
if F (Rnew

i ) < F (Ri) then
F (Ri) = F (Rnew

i ) Ri = Rnew
i

if F (Rnew
i ) < F (Rbest ) then

F (Rbest ) = F (Rnew
i ) Rbest = Rnew

i
end if

end if
end for

end for
Change the existing optimum solution and optimal fitness t = t + 1

end while
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The recommended RIME algorithm:
The overall organization of the algorithm in pseudo-code is illustrated in Algorithm 4

The algorithm presented here integrates several groundbreaking techniques inspired by
the natural phenomena of RIME formation. These techniques contribute to the optimiza-
tion process in unique ways:

1. Soft-RIME Search Strategy: This primary optimization strategy draws inspiration
from the movement and accumulation of Soft-RIME particles. Characterized by
its delicate, crystalline structure, soft RIME embodies a gentle and exploratory
approach, particularly in the early stages of the optimization process. This method
prioritizes exploration over exploitation, enabling the algorithm to comprehensively
traverse the solution space.

2. Inspired by the crossover behavior of Hard-RIME particles: this mechanism facil-
itates dimensional crossover exchange between ordinary and ideal agents. Hard-
RIME, with its denser and more compact structure, represents a more focused and
intensive search strategy. This crossover interchange plays a crucial role in improving
the algorithm’s solution accuracy, leading to amore refined and precise optimization
process.

3. Improved Positive Greedy Selection Mechanism: Building upon the traditional
greedy selection mechanism, this improved version is designed to expand the popu-
lation diversity. By actively selecting optimal solutions and constantly refreshing the
population, the mechanism aims to avoid premature convergence to local optima.
This approach ensures that the algorithm does not settle for suboptimal solutions
too early and continues to search for better options, thus maximizing the potential
for finding the global optimum.

Each strategy contributes significantly to the algorithm’s overall performance. The soft-
RIME search strategy facilitates extensive exploration of the solution landscape. Subse-
quently, the hard-RIME puncturemechanism implements amore concentrated approach
to refine the solutions. Finally, the enhanced positive greedy selection mechanism pre-
serves diversity and hinders stagnation, guaranteeing consistent progress toward the opti-
mal solution. Collectively, these strategies establish a balanced and dynamic optimization
process, effectively traversing intricate solution spaces.

Computational complexity of mRIME

The positive greedy selection procedure, the hard-rime puncture system, the soft-rime
search approach, and the fitness value computation are the key components of the com-
plexity of the RIME algorithm. First, the soft-rime search method has a complexity issue
of O(n2). Next, in the two extreme situations, O(n) and O(n2) represent the complexity
issue of the hard-rime puncture mechanism. The mechanism of positive greedy selection
has a complexity issue ofO(n). Ultimately,O(m ∗ logn) represents the complexity issue of
the fitness value computation. Hence,O(RIME) = O((n+ logn)∗n) represents the overall
complexity issue of the RIME method.
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Algorithm 4 The soft-RIME search technique’s pseudo-code
Set up the RIME-population R
Obtain the most effective solution and fitness at the moment.
while t ≤ T do
Coefficient of adherence E = (t/T )0.5
if r2 < E then
Change RIME solution position by the soft-RIME search strategy

end if
if r3 < Normalize fitness of Si then
Using the hard-RIME piercing method, solutions can cross-update information.

end if
if F (Rnew

i ) < F (Ri) then
Use the positive greedy selectionmechanism to choose the ideal answer and swap out the
undesirable one.

end if
t=t+1

end while

Algorithm 5 A synopsis of the key pseudo-code steps of the mRIME.
1: t ← Iteration counter.
2: T ← maximum number of iterations.
3: Initialize the position of RIME search agents using a chaotic vector (comprises two different

chaotic maps) and determine the cost function
4: Obtain the best current search agent and fitness
5: while (t ≤ T ) do
6: Define the coefficient of adherence E = (t/T )0.5

7: if r2 < E then
8: Amend RIME agent position with the use of the soft-RIME search technique
9: Modify chaotic vector for various chaotic maps

10: end if
11: if r3 < Normalize fitness of Si then
12: Cross-amending between search agents with the use of the hard-RIME puncture tech-

nique
13: Modify chaotic vector for various chaotic maps
14: end if
15: if F (Rnew

i ) < F (Ri) then
16: Use the positive greedy selection process to choose the best solution and swap out the

sub-optimal one.
17: end if
18: t = t + 1
19: end while%STATE return T

Binary RIME for FS
The primary step in adapting the RIME method for a search approach in FS problems
involves converting it into a binary format. This conversion is necessary because the orig-
inal RIME is suited only for continuous optimization challenges. However, FS problems
inherently require a binary search space, represented by values of “1” or “0”. This adap-
tation is crucial for enabling an algorithm initially designed for continuous optimization
to tackle binary optimization issues effectively. To achieve this, certain operators within
RIMEmust bemodified to create its binary version. This new binarymRIME then outputs
results in binary form. The process of transforming RIME into mRIME is detailed in sub-
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section “RIME using different TFs”, and the corresponding objective function is described
in subsection “Objective function of the proposed mRIME”.

RIME using different TFs

Tomaintain the underlying structure of the RIMEmethodwhile creating a binary version,
a TF is introduced. This function determines the probability that an element yi in RIME’s
solution subset will be restricted to binary choices: either selected (“1”) or not selected
(“0”). In essence, a value of “1” indicates that the corresponding feature has been included,
while a value of “0” implies that the feature has been excluded.
Logistic transformation functions, characterized by their S-shaped curve, are partic-

ularly useful for mapping operations due to their ability to produce results within the
desired range of [0, 1]. This range is crucial for representing the probability of switch-
ing an element in a binary solution between “1” and “0”. Kennedy et al. underscored the
significance of this feature in their work [46]. Mirjalili et al. [47] further introduced the
V-shaped family of transformation functions, which exhibit comparable performance to
the S-shaped family in various tasks. The slope of the transformation function plays a piv-
otal role in determining the effectiveness of both exploitation and exploration. A flatter or
less steep curve may lead to insufficient exploitation and a tendency to get stuck in local
optima, while an excessively steep curve can hinder exploration [48].
Subsequently, Mirjalili et al. proposed a U-shaped TF, distinguished by two control

parameters, η and χ , which govern the slope and the width of the function’s basin, respec-
tively [49]. Recognizing the shortcomings of prevalent TFs in the literature, the study also
implemented anX-shapedTF, initially introducedbyGhoshet al. ghosh2020binary to gen-
erate binary counterparts of continuous optimization algorithms. This diverse range of
TFs facilitates the efficient conversion of continuous solutions into binary representations,
effectively tackling various challenges and characteristics of the optimization problems.
This study investigates four distinct TFs from different categories: S-shaped, V-shaped,

U-shaped, and X-shaped, to address the absence of a universally acknowledged best TF
for FS problems Add a reference to support your claim. These TFs were adapted and
evaluated to determine the most effective one when combined with the proposedmRIME
and the basic RIME algorithms. Each TF plays a critical role in influencing the probability
of updating elements in the binary solution, specifically toggling between “1” and “0”. The
study includes visual representations of these TFs, providing a clearer understanding of
their operation and impact on the binary solution. This in-depth analysis aims to improve
the effectiveness and efficiency of the mRIME and RIME algorithms in the context of FS
problems.
The efficacy of the TFs will be assessed in the study’s experimental results section. Four

distinct types of TFs from the S-shaped, V-shaped, U-shaped, and X-shaped families were
chosen to facilitate the conversion of a continuous search space into a binary one for
addressing FS problems. These are briefly described as follows:

• S-shaped TFs: This function is represented by the sigmoid function, as defined in
Eq. (8) and originally discussed in the work of Kennedy et al. [46]. It is depicted
in Fig. 2a and is part of the S-shaped family. The primary role of this function is
to convert the search space from a continuous format to a binary one, effectively
adapting it for FS tasks. The sigmoid function is known for its characteristic ’S’ shape,
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Fig. 2 Different types of TFs

which provides a smooth and gradual transition between the binary states, making it
a suitable choice for this transformation process.

Ts
(
vi,jt+1

)
= 1

1 + e−vi,jt
(8)

In this context, Ts is the transmutation vector, and Ts
(
vi,jt+1

)
represents the prob-

ability value generated by the S-shaped TFs. The variables vi,jt and vi,jt+1 signify the
current and subsequent velocities, respectively, of the ith search agent in dimension
j at iterations t and t + 1.
The S-shaped TF, defined in Eq. (8), is a robust function that effectively transforms
an unbounded input into a bounded output, mapping any input range to the interval
[0, 1]. As depicted in Fig. 2a, the likelihood of modifying the position value within the
search space increases as the slope of the S-shaped TF decreases. This characteristic
can efficiently update the positions of search agents, thereby facilitating the discovery
of optimal solutions. The effectiveness of the S-shaped TF is further enhanced due to
its increasing computational speed for determining position values.
In this framework, the S-shaped TF in Eq. (8) serves to transform the search agent’s
velocity into a probability value. This probability value, in turn, guides the calculation
of the next position, yi,jt+1, of the solution’s elements. During the subsequent iteration,
these elements will either transition to “1” or maintain their current state of “0”. This
transition is governed by a widely used stochastic threshold, ensuring that the output
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of the Sigmoid function preserves its binary nature, as explained in Eq. (9). This
approach enables a refined and probabilistic adjustment of the solution’s elements,
aligning with the requirements of binary optimization in feature selection (FS) tasks.

yi,jt+1 =
⎧⎨
⎩
1 if r1 < Ts

(
vi,jt+1

)

0 if r1 ≥ Ts
(
vi,jt+1

) (9)

In the context provided, r1 is a uniformly distributed randomnumberwithin the range
[0, 1]. The term yi,jt + 1 represents the position of the ith search agent in dimension j
at iteration t+1, which adopts a new binary value corresponding to the jth dimension
of the ith solution at iteration t + 1. The function Ts

(
vi,jt

)
generates a probability

value based on the TF described in Eq. (8).
According to Eq. (9), the velocity of the search agents is utilized to calculate the
probability of changing their positions. Specifically, if the output from the TF in
Eq. (9) is greater than the random value r1, then the position yi,jt + 1 is set to “1”.
This indicates that the corresponding feature is considered significant and is selected.
Conversely, if the output is less than or equal to r1, the position yi,jt+1 is set to “0”,
suggesting that the feature is not essential and is hence excluded from consideration.
The stochastic nature of the value r1 plays a crucial role in this process. It introduces
randomness into the decision-making process, determining whether the value of the
solution yi,jt+1 will change. This randomness, in combinationwith the probability value
Ts

(
vi,jt+1

)
derived from Eq. (8), drives the update mechanism for the search agents’

positions, ensuring a balanced approach between exploration and exploitation in the
FS process. In the scenario where the value of Ts

(
vi,jt+1

)
is low, the likelihood of

changing the subsequent iteration value yi,jt+1 is also low. However, a critical obser-
vation regarding the sigmoid TF, as outlined in Eq. (9), is that its current form may
not provide an optimal balance between exploration and exploitation. Ideally, the
exploration rate should be higher than the exploitation rate at the early stages of the
optimization process.Without this balance, some promising areas of the search space
might not be adequately explored, leading to the possibility that the proposed Binary
mRIME could become trapped in local optima.
This issue is also evident during the exploitation phase. One inherent limitation of
the S-shaped family of TFs in some meta-heuristic algorithms is that the update of
search agents is dependent on their velocity value. In situations where the velocity
value is zero, the search agents should ideally not move. However, in practice, a zero
velocity is converted to “1” or “0” with a probability of 0.5, as noted by Ghosh et al.
[50]. Attempts have been made by various researchers to rectify this flaw, but they
have not been entirely successful in preventing the entrapment in local optima.

• V-shapedTFs: Next, we consider theV-shapedTFs, as specified in Eq. (10) and shown
in Fig. 2 (b), which was developed by Rashedi et al. [51]. This function is utilized to
calculate the probability of altering the position of search agents from a continuous
to a binary search space in both the fundamental and proposed FS algorithms. The V-
shaped TFs, as its name suggests, have a distinctive V-shaped profile that influences
how the probability of changing position values is computed, potentially offering
different characteristics in the exploration and exploitation phases compared to the
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S-shaped TFs.

Tv
(
vi,jt+1

)
=

∣∣∣∣
2
π
arctan

(π

2
vi,jt

)∣∣∣∣ (10)

whereTv is the V-shaped TF, andTv
(
vi,jt+1

)
identifies the probability of the V-shaped

TF of the velocity, vi,jt+1y, for the ith search agent at dimension j and iteration t + 1.
As illustrated in Fig. 2b, the V-shaped TF, as delineated in Eq. (10), distinguishes itself
from the S-shaped TF outlined in Eq. (8) through its unique structure and rules. The
V-shaped TF, characterized by its distinct ’V’ shape, offers a different approach to
transforming the continuous solution into a binary one. The process of this transfor-
mation utilizes Eq. (11), which effectively converts the continuous solutions derived
from Eq. (10) into binary values. This conversion is based on the probability out-
comes obtained from the V-shaped TF. The design of this function is such that it
addresses certain aspects of optimization that the S-shaped function may not fully
capture, especially in terms of the balance between exploration and exploitation in the
search space. This approach underscores the importance of selecting appropriate TFs
in FS algorithms, as different functions can significantly influence the performance
and effectiveness of the algorithm in navigating the search space and avoiding local
optima. TheV-shapedTF, with its unique characteristics, is thus a critical component
in the study’s exploration of efficient FS methodologies.

yi,jt+1 =
⎧⎨
⎩

¬yi,jt if r1 < Tv
(
vi,jt+1

)

yi,jt if r1 ≥ Tv
(
vi,jt+1

) (11)

In the given context, yi,jt represents the position of the ith search agent in dimension
j at iteration t. The term ¬yi,jt is the complement of the solution at this position,
meaning it inverts the binary value of yi,jt. The variable r1 is a uniformly distributed
random number between 0 and 1. The function Tv

(
vi,jt + 1

)
denotes the probability

value generated by the V-shaped TF.
An important characteristic of the V-shaped TFs, as shown in Fig. 2b, is its symmet-
rical nature. This symmetry plays a role in how the positions of the search agents are
updated. According to Eq. (11), the updating process for the search agents involves
flipping their positions, rather than simply assigning them the values of “1” or “0”
based on a threshold or probability. This method of position updating differs signif-
icantly from other TFs like the S-shaped one, potentially offering a more dynamic
approach in the exploration and exploitation phases of the optimization process.
This flipping mechanism within the V-shaped TF allows for a more nuanced and
flexible response to the search space, as it does not strictly bind the agents to binary
extremes but rather provides a probabilistic approach to toggling their positions. This
aspect is particularly relevant in complex FS problems, where the ability to adaptively
explore and exploit the search space can lead to more effective solutions.
The operation of the V-shaped TF is such that if the velocity value of a search agent
is high, the agent’s position is switched to its opposite value. Studies, including those
by Mirjalili et al. [47], have shown that V-shaped TFs can sometimes outperform
S-shaped TFs in terms of efficiency. A key feature of the V-shaped TFs is that they
encourage search agents to maintain their current positions when the velocity value
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is low during an iteration, as noted by Ghosh et al. [50]. Conversely, when the velocity
is high, the search agents are induced to switch to their complementary positions.
This characteristic has a significant impact on the updating of the positions of search
agents and consequently on the identification of the best solution. While the V-
shaped TF effectively addresses the issue of meta-heuristics encountering a zero-
position value, it still faces challenges about falling into local optima. In essence,
problems similar to those observed with the S-shaped TF may persist, leading to a
potential imbalance between exploration and exploitation phases in meta-heuristic
algorithms. In recognitionof these challenges, thiswork explores theuseof other types
of TFs to achieve a more favorable balance between exploration and exploitation.
Alongside the S-shaped and V-shaped TF, additional U-shaped and X-shaped TFs
are employed to transform continuous algorithms into binary formats. The inclusion
of these varied TFs aims to enhance the algorithm’s ability to navigate the search
space more effectively, reducing the likelihood of getting trapped in local optima and
increasing the chances of finding optimal solutions in FS tasks.

• U-shaped TFs: The U-shaped TF, as specified in Eq. (12) and developed by Mirjalili
et al. [49], is another approach explored in this study. This function is visually repre-
sented in Fig. 2c. The U-shaped TF is employed to calculate the probability of altering
the positions of search agents from a continuous to a binary search space in both
fundamental and proposed algorithms within the study.
The U-shaped TF is characterized by its U-shaped curve. This shape influences how
the function processes and transforms velocity values into probabilities, which in turn
determines the positional updates of the search agents. The distinctive aspect of the
U-shaped TF is its ability to provide a different mechanism for balancing exploration
and exploitation compared to the S-shaped and V-shaped functions.
By implementing the U-shaped TF, the study aims to explore whether this function
offers better performance in terms of avoiding local optima and effectively navigating
the search space, particularly in complex FS problems. The incorporation of the U-
shapedTF into the optimization algorithms reflects an effort to diversify the strategies
employed in transforming continuous solutions into binary ones, thereby potentially
enhancing the overall effectiveness of the FS process.

Tu
(
vi,jt+1

)
= η

∣∣∣
(
vi,jt

)χ ∣∣∣ η = 1,χ = 1.5, 2.0, 3.0, 4.0 (12)

In the U-shaped TF, as outlined in Eq. (12), two crucial control parameters play a
significant role: η and χ . The parameter η is responsible for defining the slope of the
function, while χ determines the width of the curve’s basin. The function Tu

(
vi,jt+1

)

represents the probability of velocity for the solution concerning the search agent i
at dimension j and iteration t.
The U-shaped TF, with its distinct shape and control parameters, offers a unique
mechanism in the transformation process. The parameter η adjusts the saturation
point of the function, and χ sets the width of the trough. The speed at which the U-
shaped function reaches its saturation point affects the likelihood of flipping a bit in
the solution. This characteristic promotes exploration by allowing for rapid variation
in variables. A broader U-shaped curve translates to reduced exploratory behavior,
while a steeper curve, proportional to the value of η, enhances exploration, as can be
more distinctly seen in Fig. 2c.
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The values of the continuous solution elements, as given in Eq. (12), can be converted
into binary format usingEq. (13). This conversionmechanism leverages theproperties
of theU-shaped TF to navigate the search space effectively, balancing exploration and
exploitation by adjusting the parameters η and χ . The U-shaped TF thus contributes
to the overall strategy of optimizing FS algorithms by providing a distinct approach
to managing the transformation of continuous solutions into binary ones.

yi,jt+1 =
⎧⎨
⎩

¬yi,jt if r1 < Tu
(
vi,jt+1

)

yi,jt if r1 ≥ Tu
(
vi,jt+1

) (13)

In the context of the U-shaped TFs, as mentioned, r1 signifies a uniformly distributed
random number ranging between 0 and 1, and Tu

(
vi,jt+1

)
denotes the probability

value generated by the U-shaped TF.
As per Eq. (13), the future position of a search agent, yi,jt+1, is determined based on the
probability value Tu

(
vi,jt+1

)
, as derived from Eq. (12). The role of the random values

generated by r1 is pivotal in deciding whether the current solution’s value yi,jt at a
given iteration is inverted. Consequently, if the probability value Tu

(
vi,jt+1

)
is small,

the likelihood of inverting the value in the next iteration is also minimized.
In the context of optimization, the initial phases of iteration prioritize exploration
to ensure a comprehensive search of the available space. This stage is crucial for
identifying various potential solutions. As the process transitions from exploration to
exploitation, the latter becomes vital in the final iterations for pinpointing the most
effective solutions.
Comparing the U-shaped TF in Fig. 2c with the V-shaped TF in Fig. 2b, its observable
that while both have similarities, the U-shaped TF might offer a higher rate of explo-
ration compared to the V-shaped TF. This enhanced exploratory capability could
potentially make the U-shaped TF more effective in certain scenarios, particularly
where a broader search of the solution space is required. Thus, in the quest for opti-
mal FS, the U-shaped TF could be a superior choice over other TFs, especially in cases
where avoiding premature convergence to local optima is crucial.

• X-shaped TFs: The study also incorporates an X-shaped TF to address the limitations
of the more traditionally used TFs found in the literature. As depicted in Fig. 2d, the
X-shaped TF is distinctive in its approach, utilizing two components to generate
different outcomes. The process involves comparing these outcomes to the previous
solution to determine the best result.
If the newly generated solution surpasses the previous solution in terms of effective-
ness, it is adopted as the next position. However, if it is not superior, a crossover oper-
ation is implemented between the new and former solutions. The crossover operation
is designed to combine elements of both solutions, to retain advantageous properties
from the previous iteration. The outcome that emerges as the most effective from
this crossover process is then selected as the new position.
This methodology introduces a new element to the optimization process, providing a
mechanism for thenewsolution to inherit beneficial attributes fromthe solutionof the
previous iteration. Such an approach enhances both the exploration and exploitation
capabilities of the proposed mRIME.
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To facilitate these operations, Eqs. (14) and (16) are employed. Notably, Eq. (16) acts
as a mirror image of the first, as stated by Ghosh et al. [50]. This mirrored structure
of the X-shaped TF allows for a more dynamic and adaptive optimization process,
potentially leading to more effective exploration of the search space and a better
balance between exploration and exploitation in the quest for optimal solutions.

Ty1
(
vi,jt+1

)
= 1

1 + e−vi,jt
(14)

yi,j1t+1
=

⎧⎨
⎩
1 if r1 < Ty1

(
vi,jt+1

)

0 if r1 ≥ Ty1
(
vi,jt+1

) (15)

Ty2
(
vi,jt+1

)
= 1

1 + ev
i,j
t

(16)

yi,j2t+1
=

⎧⎨
⎩
1 if r2 > Ty2

(
vi,jt+1

)

0 if r2 ≤ Ty2
(
vi,jt+1

) (17)

where yi,j1t+1
and yi,j2t+1

are the binary versions of the solutions produced by Eqs. (14)
and (16), respectively, and r1 and r2 are random numbers created within the range
[0, 1].
As per Eqs. (15) and (17), the new solutions can be formed as follows:

ýi,jt+1 =
⎧⎨
⎩
yi,j1t+1

if fit(yi,j1t+1
) < fit(yi,j2t+1

)

yi,j2t+1
if fit(yi,j1t+1

) ≥ fit(yi,j2t+1
)

(18)

where fit represents the fitness function of the FS problems.
In the optimization process involving the X-shaped TF, a critical step is the evaluation

and comparison of fitness values of the current andnewly generated solutions. Specifically,
if the fitness of the new solution, denoted as ýi,jt + 1, is better than that of the current
solution yi,jt (i.e., fit(ýi,jt + 1) < fit(yi,jt)), then the new solution ýi,jt+1 is adopted for the
next iteration.
However, if this condition is not met, a crossover operation is performed between

ýi,jt + 1 and yi,jt. This crossover process generates two offspring, fromwhich the one with
the best fitness is selected as the subsequent solution. This approach allows the ’child’
solution to potentially retain beneficial attributes of the ’parent’ solution yi,jt , thereby
preserving advantageous characteristics while exploring new possibilities.
The specific type of crossover used in this study is the uniform crossover, as described

by Syswerda in 1993 [52]. In uniform crossover, each bit of the offspring is independently
chosen from one of the corresponding bits of the parents, offering a more diverse and
random mixing of parental features. This method is summarized in Algorithm 6.
The inclusion of the uniform crossover in the optimization process adds a layer of

diversity and adaptability to the algorithm. This can be particularly beneficial in avoiding
local optima and ensuring a more thorough exploration of the search space, thereby
enhancing the overall efficacy of the FS process.
To summarize the process of transforming the continuous RIME into a binary version,

the velocity of each search agent is mapped to a probability value within the range [0,
1]. This mapping is accomplished through the use of various equations that represent
different TFs. Specifically, Eqs. (8), (10), (12), (14), and (16) correspond to the functions
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Algorithm 6 Crossover operator
1: if fit(ýi,jt+1) < fit(yi,jt ) then
2: yi,jt+1 = ýi,jt+1
3: else
4: [child1, child2] = crossover(ýi,jt+1, y

i,j
t )

5: if fit(child1) < fit(child2) then
6: yi,jt+1 = child1
7: else
8: yi,jt+1 = child2
9: end if

10: end if

Ts,Tv ,Tu,Ty1, andTy2, respectively. Each of these equations defines a differentmethod for
transforming the agents’ velocities into probabilities, reflecting the distinct characteristics
of the S-shaped, V-shaped, U-shaped, and X-shaped TFs.
Following thismapping, thenewly obtainedprobability values are thenutilized toupdate

the positions of the search agents. This is achieved using the corresponding update equa-
tions for each TF: (9), (11), (13), (15), and (17). These equations determine the new
positions for each agent, effectively converting the continuous search space of the RIME
algorithm into a binary format suitable for FS tasks.
In the results section of the study, a comprehensive comparison is made between the

different TFs as applied to the basic RIME and the proposed Binary mRIME. The goal
of this comparison is to identify the best FS algorithm, considering the effectiveness of
each TF in the conversion process. This step is crucial as the performance of the classifier
used for FS problems significantly depends on how well the continuous search space is
transformed into a binary one. The appropriate selection of a TF, therefore, has a direct
impact on the accuracy and efficiency of the FS algorithm.

Objective function of the proposedmRIME

In FS methods, particularly those utilizing a wrapper-based approach, it’s essential to
incorporate a learning algorithm to evaluate the efficacy of the selected feature subset. In
this study, the
k-Nearest Neighbor (k-NN) classifier, as referenced in the work by Keller et al. [53],

is employed for this purpose. The k-NN classifier provides a measure of classification
accuracy for the solutions generated by the FS process.
When designing an FS method, two critical aspects must be considered:

1. How to formulate the solution for the FS problem.
2. How to assess the quality of this solution.

In this study, the feature subset is represented as a binary vector, with its length equal to
the number of attributes in the dataset. This representation allows for a straightforward
interpretation of which features are selected (denoted by 1) and which are not (denoted
by 0).
FS is inherently a multi-objective optimization problem, striving to achieve two main

goals: (i) reducing the number of selected attributes, and (ii) improving the classification
accuracy as determined by the k-NN classifier. There is a natural trade-off between these
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goals: generally, decreasing the number of attributes enhances the model’s simplicity and
potentially its generalizability, while maintaining or improving classification accuracy
ensures the utility and effectiveness of the selected features.
The best solution in this context is one that balances these two objectives effectively—it

should have the fewest number of attributes while achieving the highest possible classifi-
cation accuracy. To address this multi-objective nature, the FS methods need to integrate
these contradictory goals into a single objective function. In this study, this integration is
accomplished by formulating a fitness criterion for each solution. This fitness criterion is
calculated using the k-NN classifier, as shown in Eq. (19). It quantifies how well a given
solution balances the trade-off between attribute reduction and classification accuracy,
guiding the iterative process of the mRIME toward finding the most effective feature
subset.

fitness = αζk + β
|R|
|N | (19)

In the context of the objective function described in Eq. (19) for FS, several key compo-
nents and parameters are involved:

• ζk : This represents the classification rate achieved by the k-NN classifier. It is a
measure of how accurately the classifier can predict the class labels of the dataset
using the selected features. A higher classification rate indicates better predictive
performance.

• |R| and |N |: These symbols denote the number of selected attributes in the solution
vector (|R|) and the total number of native attributes in the dataset (|N |), respectively.
The objective is to reduce |R| while maintaining or improving the classification rate
ζk .

• α and β : These are balancing parameters, both ranging from 0 to 1. They are used to
assign relative weights to the two aspects of the objective function: the classification
rate (α) and the selection ratio of the selected attributes (β). The parameter α specifi-
cally weights the importance of the classification rate in the objective function, while
β , being the complement of α (i.e., β = 1−α), weights the importance of minimizing
the number of selected attributes.

The objective function thus formulated effectively balances the dual goals ofmaximizing
the classification rate (a measure of the effectiveness of the selected features in predicting
outcomes) andminimizing thenumber of features used (ameasure ofmodel simplicity and
efficiency). The values of α and β can be adjusted depending on the specific requirements
of the FS task, allowing for flexibility in prioritizing either classification accuracy or model
simplicity. This balance is crucial in creating an FS model that is not only accurate but
also efficient and interpretable.
In the realm of classification tasks, a variety of classifiers are available, each with its

strengths and applications. While the k-NN classifier is chosen in this study for its sim-
plicity and effectiveness, especially in pattern recognition and FS contexts, other signifi-
cant classifiers are also widely used in different scenarios. These include: Artificial Neural
Networks (ANN) as discussed by Bishop [54], are powerful tools for pattern recogni-
tion and have the ability to learn complex nonlinear input–output relationships. Bayesian
Classifier, as explained by Russell and Norvig [55], is effective in probabilistic classifica-
tion and is known for handling uncertainty and incomplete data well. Support Vector



Abu Khurma et al. Journal of Big Data          (2024) 11:89 Page 22 of 74

Machines (SVM) as explored by Ding et al. [56], are renowned for their effectiveness in
high-dimensional spaces and are widely used in applications such as image classification
and bioinformatics. Decision trees, as described by Rokach and Maimon [57], are simple
to understand and interpret, making them popular for tasks where the explanation of the
model’s decision is important.
Despite their strengths, classifiers can struggle in situations where patterns from differ-

ent classes are closely clustered or overlap under complex conditions. The k-NN classifier,
as studied by Denoeux [58] and others, is selected in this study due to its non-parametric
nature and straightforwardness, making it one of the easiest machine learning classifica-
tion methods, as highlighted by Qin et al. [59]. Its effectiveness in pattern recognition and
data mining has been recognized in various fields, as noted by Shakhnarovich et al. [60],
and it often outperforms more advanced classifiers in practice [61].
In the specific context of FS, the k-NN classifier’s ability to provide a clear and direct

evaluation of the quality of a feature subset makes it a popular choice. This is evidenced in
the works of Braik et al. [62] and Khurma et al. [63], among others. The selection of a base
classifier for FS tasks largely depends on the specific requirements and characteristics of
the application at hand.
The objective function detailed in Eq. (19) plays a crucial role in evaluating the selected

feature subsets in FS tasks. This objective function is designed to create a balance between
the number of features selected in the solution vector. It operates under the principle that
an effective feature subset should not only be compact (i.e., contain a smaller number of
features) but also maintain or enhance the classification accuracy of the model. However,
it’s important to note that there’s an inherent dichotomy like this problem. On one hand,
the objective function is part of a minimization problem where the goal is to reduce the
number of features in the solution vector. Fewer features can lead to a more streamlined
and potentially more interpretable model, which is less likely to overfit the training data.
This reduction is particularly important in contexts where computational efficiency or
model simplicity is valued. On the other hand, the aspect of classification accuracy, which
is crucial for the effectiveness of the model, represents a maximization problem. Higher
classification accuracy implies that the model is better at making correct predictions,
which is the primary goal of most classification tasks. The challenge, therefore, is to
maximize classification accuracy while simultaneouslyminimizing the number of features
used.
The objective function in Eq. (19) seeks to address this challenge by integrating

both aspects—the minimization of feature count and the maximization of classification
accuracy— into a single evaluative criterion. This integrated approach ensures that the
selected feature subset is not only compact but also effective in terms of classification
performance, striking a balance that is vital for the development of robust and efficient
predictive models.

ExpeRIMEntal results
The RIME optimization algorithm’s study claims are generally focused on how well it
works, how efficient it is, and how many different optimization problems it can solve.
The RIME optimization algorithm makes the following frequent claims, which may be
supported by experimental evaluations. We can offer proof of the efficiency and suit-
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ability of optimization algorithms for resolving practical issues by carrying out thorough
experimental assessments that refute these assertions.

• Claim: mRIME achieves higher solution quality than current approaches. ExpeRI-
MEntal evaluation: Conduct comparative experiments where the mRIME is com-
pared against state-of-the-art methods using benchmark instances. Metrics such as
solution quality, convergence rate, and computational time can be used to assess
performance.

• Claim: mRIME is more resilient to changes in the types of problems that arise. Exper-
imental evaluation: Test the algorithm on a variety of problem instances with dif-
ferent characteristics (e.g., size, structure, complexity). Measure the stability of the
algorithm’s performance across these instances and compare it with other methods.

• Claim: mRIME can tackle complex optimization issues and is scalable. Experimen-
tal evaluation: Measure the algorithm’s scalability in terms of computational time,
and solution quality as problem size rises. Assess the algorithm’s performance on
progressively larger problem instances.

• Claim: “Our algorithm is efficient and converges to near-optimal solutions quickly.
Experimental evaluation: Analyze the algorithm’s convergence behavior by monitor-
ing the evolution of the solution quality or objective function values over time. On
benchmark examples, compare the convergence speed with alternative techniques.

• Claim: mRIME can be used to solve optimization issues in the real world. Experimen-
tal evaluation: Test the algorithm using real-world datasets or examples of issues that
are pertinent to particular fields such as engineering, and FS problems. Examine its
functionality and usefulness in these real-world situations.

• Claim: Better trade-offs between processing resources and solution quality are
made by mRIME. Experimental evaluation: Test the trade-offs between computing
resources, such as runtime, and solution quality for the suggestedmRIME in compar-
ison to other methods. This can entail examining the answers obtained by running
the algorithm with different computational budgets.

• Claim: mRIME is flexible and may be tailored to many variants of problem domains.
Experimental evaluation: Test the algorithm with a range of problem samples from
different domains, with varying constraints or problem formats. Examine how con-
sistently and adaptably it performs in these different environments.

Evaluation metrics

In the proposed algorithm’s evaluation, six standard metrics were employed: accuracy,
specificity, sensitivity, fitness value, running time, number of selected features, and con-
vergence curves.With these measurements, we were able to gauge its efficiency and effec-
tiveness for continuous grid optimization (global optimization) and binary optimization
(FS) in the context of disease diagnosis applications.

• TP: Correct classification as a disease.
• TN: Correct classification as a non-disease.
• FP: misclassification as a disease.
• FN:misclassification as a non-disease.
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Accuracy metric alone may not suffice when evaluating a classification algorithm’s per-
formance when dealing with imbalanced datasets; in such cases, additional metrics like
Specificity, Sensitivity, and F-measure, and Convergence Curves may provide a more
comprehensive evaluation of its efficacy.

• Accuracy in machine learning is often used as the standard metric to assess clas-
sification algorithms’ success, serving as an indication of the overall correctness of
prediction made by these programs, such as representing the percentage of instances
correctly classified by an algorithm. To calculate accuracy simply needs to divide the
number of correctly classified instances by the total count in their dataset. Accuracy
can be represented mathematically as in Eq. (20):

Accuracy = TP + TN
TP + TN + FP + FN

(20)

• Sensitivity, referred to as True Positive Rate or Recall. It calculates the number of
correctly classified attack files out of an entire dataset as in Eq. (21):

Sensitivity = TP
TP + FN

(21)

• Specificity, referred to as True Negative Rate. It measures the percentage of actual
negatives identified correctly by the classifier as in Eq. (22):

Specificity = TN
TN + FP

(22)

• F-Measure is an often-utilized metric for gauging the overall performance of classi-
fication algorithms when the cost of false positives and false negatives differ signifi-
cantly. A higher F-measure indicates better performance with 1 being representative
of perfect precision and sensitivity. It measures precision and recall by taking their
harmonic mean values of precision and sensitivity, representing it mathematically
using Eq. (23):

F − measure = 2 ∗ precision ∗ recall
precision + recall

(23)

• Fitness Values are used to evaluate the quality of solutions produced by optimization
algorithms, particularly feature selection techniques. They serve as a gauge to indi-
cate which solutions produce quality solutions; in terms of classification accuracy vs
number of selected features this value represents a trade-off between classification
accuracy and feature selection frequency, higher values indicate better solutions.

• Running time is an invaluable metric of an algorithm’s computational efficiency,
measured in seconds to represent its total execution period which includes FS and
classification tasks.

• Number of selected features serves as an important evaluation metric for FS algo-
rithms, reflecting their ability to reducedimensionality therebyhaving adirect bearing
on model complexity, interpretability, and generalization performance.

• Convergence curves provide insight into an algorithm’s optimization process and
convergence behavior, representing its optimization iterations or generation number
on one axis while fitness value on another (y-axis) remains constant over time (the
x-axis represents several iterations or generation), helping analyze speed, stability,
and ability to escape local optima on another (x-axis represents iterations or genera-
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Table1 Setting up the parameters for mRIME and other search algorithms

Algorithm Parameters elaboration Population size

mRIME r1 ∈ (−1, 1) , β and E are adaptive parameters, w = 5,

h ∈ (0, 1)

100

WSO fmin = 0.07, fmax = 0.75 100

τ = 4.125, a0 = 6.25, a1 = 100, a2 = 0.0005

TLBO No unique parameters 50 (2 phases in search process)

SFS The upper limit for diffusion is set to 1 50 (2 phases in search process)

DE F = 0.5, CR = 0.9 100

GA Roulette wheel picking tactics, Probability of mutation =

0.01, one-point crossover with a probability of one.

100

GSK P = 0.1, kf = 0.5, kr = 0.9, K = 10 100

AMO Each set of animals has exactly 5 animals 50 (2 phases in search process)

PSO ω = 0.6 , c1 = 2 and c2 = 2 100

BBO Habitat modification probability = 1, immigration

probability bounds for each gene = [0, 1], mutation

probability = 0, maximummigration and immigration

rates for each island = 1, and the step size for

numerical integration of probabilities = 1.

100

ACO Pheromone update constant = 20, the pheromone’s

starting value = 1E−06, exploration constant = 1, rates

of regional and global pheromone degradation = 0.5

and 0.9, respectively, and levels of visibility and

pheromone sensitivity = 5 and 1, respectively.

100

tion count on another axis and fitness value on third). The convergence curve helps
evaluate speed stability and ability to escape local optima).

Controlling parameter setup

The suggested mRIME’s findings have been evaluated with 10 of the most reputable
optimization algorithms in the appropriate field of research when examined on the afore-
mentioned test suites to support its overall performance and thorough evaluation. The
competing algorithms to the one that is being provided can be classified into three groups:
(i) GA [19], DE [17], BBO [18] and SFS [16] as the most studied EAs, (ii) PSO [20], ACO
[21] and AMO [22] as hot and reliable SI algorithms, WSO [25] and (iii) TLBO [23] and
GSK [24] as efficacious and recent human-based optimizers. The control parameters and
settings of RIME and other competing algorithms are shown in Table 1.
The parameter values for the competing algorithms listed in Table 1 are those listed

in [24],” which were obtained straight from those sources’ native references. mRIME’s
initialization procedure is comparable to that of other rival algorithms. This will allow
mRIME and other rival algorithms to be fairly compared. The accuracy and stability of
the algorithms were evaluated using the average (Ave) and standard deviation (Std) score
metrics. These statistical evaluation metrics were calculated in this work for each method
and each function as the top two options. The algorithms’ correctness was assessed using
themeanmeasure, and their stability was intended to be ensured by analyzing the findings
of the standard deviation study.
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ExpeRIMEnts series1: global optimization using CEC 2017 test suit functions

The CEC2017 [64] consists of several functions that each stand in for a different set of
optimization issues. Variability, complexity, and dynamism are the hallmarks of these
functions. For the evaluation of suggested optimization algorithms, they are frequently
employed. They are used to the suggested mRIME in this study to assess it. They can also
explain how the optimization algorithm explores and exploits data.
The Thirty functions are listed in Table 31, and they are divided into four sets as follows:

The Unimodal set spans from F1 to F3. The Multimodal set ranges from F4 through F10.
The Hybrid set spans from F11 to F20, and the Composition set spans from F21 to F30.
F2 is not applied during evaluation. Thus, the suggested mBWO and other algorithms are
evaluated using 29 functions. Additionally, Table 31 demonstrates that the dimension is
equivalent to 30 and the search scope for all test functions is from −100 to 100.

Experiments series1: Applying mRIME for global optimization using CEC2017 test suit

functions

Table 2 presents the results of a comparative study between two algorithms calledmRIME
and RIME. The study aimed to evaluate the statistical performance of these algorithms on
51 different runs using the CEC2017 functions. Each run used 10 variables and performed
100,000 function evaluations.
Analyzing the results presented in the table, we can observe the following patterns and

insights:

• Best value: ThemRIME algorithm outperforms the original RIME algorithm in terms
of the best objective function values for most of the functions. In general, mRIME
achieves lower best values, indicating superior performance in finding optimal solu-
tions.

• Median value: For some functions, mRIME obtains lowermedian values compared to
RIME, indicating better performance in terms of the middle-range objective function
values. However, for a few functions like CEC17(F4), CEC17(F15), and CEC17(F18),
RIME achieves lower median values, suggesting better performance in those cases.

• Average value: The average objective function values achieved by mRIME are gener-
ally lower than those obtained by RIME. This indicates that mRIME performs better
on average across the tested functions, as it provides solutions closer to the optimal
values.

• Worst value: In terms of the worst objective function values, mRIME consistently
outperforms RIME for all the functions. The worst values achieved by mRIME are
lower, indicating that it avoids poor solutions more effectively.

• Std: The standard deviation values provide insights into the spread or variability of
the objective function values obtained by each algorithm. In most cases, mRIME has
lower standard deviation values, indicating that its solutions are more consistent and
less variable compared to RIME.

Basedon the analysis of thesemetrics, it canbe concluded thatmRIMEgenerally exhibits
superior performance compared to the original RIME algorithm. It achieves lower best
and average objective function values, avoids poor solutions (lower worst values), and
provides more consistent results (lower standard deviation). However, there are a few
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functions where RIME performs better in terms of median values, indicating that the two
algorithms have different strengths depending on the specific problem (Tables 3, 4).
Analyzing the results presented in Table 5, we can derive the following observations and

insights:

• Best value: The mRIME algorithm performs better than the original RIME algorithm
in terms of the best objective function values for most of the functions. mRIME
achieves lower best values, indicating its superior capability to find optimal solutions.

• Median value: For some functions, mRIME obtains lowermedian values compared to
RIME, indicating better performance in terms of the middle-range objective function
values. However, for a few functions like CEC17(F3), CEC17(F10), CEC17(F11), and
CEC17(F14), RIME achieves lower median values, suggesting better performance in
those cases.

• Average value: The average objective function values obtained by mRIME are gener-
ally lower than those achieved by RIME. This indicates that mRIME performs better
on average across the tested functions, as it provides solutions closer to the optimal
values.

• Worst value: In terms of the worst objective function values, mRIME consistently
outperforms RIME for most of the functions. The worst values achieved by mRIME
are lower, indicating that it avoids poor solutions more effectively.

• Std: The standard deviation values provide insights into the spread or variability of
the objective function values obtained by each algorithm. In most cases, mRIME has
lower standard deviation values, indicating that its solutions are more consistent and
less variable compared to RIME.

Basedon the analysis of thesemetrics, it canbe concluded thatmRIMEgenerally exhibits
superior performance compared to the original RIME algorithm. It achieves lower best
and average objective function values, avoids poor solutions (lower worst values), and
provides more consistent results (lower standard deviation). However, there are a few
functions where RIME performs better in terms of median values, indicating that the two
algorithms have different strengths depending on the specific problem.
Analyzing the results presented in Table 6, the following observations and insights can

be derived:

• Best value: The mRIME algorithm generally performs better than the original RIME
algorithm in terms of the best objective function values for most of the functions.
mRIME achieves lower best values, indicating its superior capability to find optimal
solutions even with a higher number of variables.

• Median value: For some functions, mRIME obtains lowermedian values compared to
RIME, indicating better performance in terms of the middle-range objective function
values. However, there are also functions (e.g., CEC17(F1), CEC17(F3), CEC17(F15))
where RIME achieves lower median values, suggesting better performance in those
cases.

• Average value: The average objective function values obtained by mRIME are gener-
ally lower than those achieved by RIME. This indicates that mRIME performs better
on average across the tested functions, providing solutions closer to the optimal values
even with a higher number of variables.
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• Worst value: In terms of the worst objective function values, mRIME consistently
outperforms RIME for most of the functions. The worst values achieved by mRIME
are lower, indicating that it avoids poor solutions more effectively.

• Std: The standard deviation values provide insights into the spread or variability of
the objective function values obtained by each algorithm. In most cases, mRIME has
lower standard deviation values, indicating that its solutions are more consistent and
less variable compared to RIME.

Basedon the analysis of thesemetrics, it canbe concluded thatmRIMEgenerally exhibits
superior performance compared to the original RIMEalgorithm, evenwhen the number of
variables is increased to 100. It achieves lower best and average objective function values,
avoids poor solutions (lower worst values), and provides more consistent results (lower
standard deviation). However, there are a few functions where RIME performs better
in terms of median values, indicating that the two algorithms have different strengths
depending on the specific problem.
The table presents the results of 51 independent runs on the CEC2017 test functions of

100 variables with 1,000,000 function evaluations. The table compares the performance of
different optimization techniques, including mRIME, RIME, WSO, TLBO, SFS, DE, GA,
GSK, AMO, PSO, BBO, and ACO (Table 7).
To analyze the results, we can focus on a few key observations:

• Performance comparison: By comparing the average values in the “Ave” column, we
can assess the overall performance of each technique. Lower values generally indicate
better performance in optimization problems. For example, in functions F1, F3, F6,
F10, F12, F14, F16, F19, F21, F22, F26, F27, and F29, the technique “mRIME” achieves
the lowest average values, suggesting its effectiveness in solving these functions.

• Variability: The “Std” column represents the standard deviation, which indicates the
variability of the results. Lower standard deviation values generally indicate more
stable and consistent performance. For example, in functions F1, F3, F4, F5, F7, F8,
F9, F12, F13, F14, F15, F16, F17, F19, F21, F23, F24, F25, F26, F27, F28, F29, and F30,
the technique “mRIME” has lower standard deviation compared to other techniques,
indicating more consistent performance.

• Best performance: The best-performing technique for each function is indicated in
bold in the table. These are the techniques that achieved the lowest average values
among all the techniques for a particular function. For example, in function F1, the
technique “mRIME” achieves the lowest average value of 2.51 × 103.

Based on the results presented in the table, it appears that the “mRIME” technique per-
forms well across multiple functions and demonstrates competitive performance com-
pared to other optimization techniques. However, it is important to consider the specific
requirements and characteristics of the optimization problem at hand when selecting the
most suitable technique. Further analysis and comparisons may be needed to make more
definitive conclusions about the superiority of any specific technique (Tables 8, 9, 10).
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ExpeRIMEnts series2: applying mRIME for global optimization using CEC2011 test suit

functions

Table 11 presents the results of an optimization study using the CEC2011 test functions.
The study compares the performance of mRIME (a method under evaluation) with the
original RIMEmethod and several othermethods across 25 independent runs. The results
are reported in terms of Ave and Std of the performance metric for each method.
Based on the results presented in the table, we can make the following observations:

• For some test functions (e.g., F1, F3, F4), mRIME performs better than the original
RIME method. It achieves lower average values, indicating improved optimization
performance.

• In a few cases (e.g., F2, F5, F6), other methods outperform both mRIME and the
original RIME method. The best-performing method varies depending on the test
function.

• The standard deviations (Std) provide insights into the consistency of the method’s
performance across different runs. Smaller Std values suggestmore stable and reliable
optimization results.

• In some instances (e.g., F3, F4), the standard deviation for mRIME is exceptionally
low (0.00E+00), indicating consistent and reproducible results.

Statistical test analysis

Two statistical tests were performed in this section to rank the optimization techniques
and determine whether the quality differences among all techniques are statistically sig-
nificant. Friedman’s test is the first one run in this paper [65]. In order to get a reliable
comparison using this test, it is necessary to compare more than ten functions, and to
compare more than five distinct approaches [66]. This study examined over five distinct
approaches in this regard, testing each one on 51 functions. Two test bunches consisting
of many test functions of varied complexity are listed as follows: (1) CEC-2017, which has
29 test problems and a total of four different dimensions for each examined problem, 10,
30, 50, and 100, and (2) CEC-2011, which has 22 test functions. In order to use Friedman’s
test to rank the algorithms, the average ranking value must be determined. The crucial
values acquired for the statistically significant level (p-value), which was established as
α = 0.05, are then compared. This implies that if Friedman’s test reveals a significance
level of no more than or equal to 0.05, the null assumption is disregarded, which indicates
that there is no difference in the accuracy of all the techniques that were tested. Accord-
ing to the alternate hypothesis, there are variations in each of the compared approaches’
performances. When Friedman’s test is used, the algorithm that scores the lowest is the
best; on the other side, the algorithm that scores the highest is the worst.
The optimal algorithm serves as a control strategy for further investigation. The mean

error values of all techniques in all of the dimensions and the ranking of every technique in
each dimension were considered in order to judge the statistical efficacy of the proposed
mRIMEalgorithmand all othermethods on theCEC-2017 test suite. Table 12 summarizes
the average ranks of mRIME combined with other techniques using Friedman’s method
on CEC-2017 with a dimension of 10 for all problems in this set of problems.
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Table 12 Average ranking of mRIME in relation to other algorithms using Friedman’s test based
upon their results on the CEC-2017 functions, which have 10 dimensions each

Algorithm Rank

mRIME 5.98275862

RIME 6.53448275

WSO 4.46551724

TLBO 6.18965517

SFS 4.48275862

DE 3.96551724

GA 10.55172412

GSK 4.56896551

AMO 3.60344827

PSO 7.67241379

BBO 8.79310344

ACO 11.1896551

The p-value obtained by using Friedman’s procedure on CEC-2017 with dimensionality
10 is 8.75425287E−11 in Table 12. This insinuates that the competing algorithms’ perfor-
mances differ statistically significantly from one another. The control algorithm is AMO,
on the basis of the results in Table 12. Although mRIME is rated sixth in this table, after
AMO, DE, WSO, SFS, and GSK, there are not numerous distinctions between mRIME
and those competing algorithms. Regarding the remaining algorithms, TLBO,RIME, PSO,
BBO, GA, and ACO are presented after mRIME in that order.
Further computations by the second statistical test, Holm’s method, are required to

determine which algorithms perform substantially differently and which ones perform
similarly to the proposed mRIME. To determine if the efficiency of mRIME statistically
differs from that of various other algorithms, these computations are crucial. In order to
do this, Holm’s test [67], a post-hoc statistical technique, was taken into consideration.
This technique is crucial for determining which approaches perform more or less well
than mRIME. Holm’s statistical test uses α/k − i, wherein k is the freedom amount and
i is the technique number, to compare all algorithms sorted as per their p-values. This
approach dismisses the null hypothesis sequentially, beginning with the most significant
p-value and continuing until pi < α/k − i. The process ends when the hypothesis is
rejected, at which point any further theories are considered plausible. Table 13 displays
the outcomes of using Holm’s test on the CEC-2017 test sample with a dimension of 10
as a post-hoc technique following Friedman’s test.
Based on Holm’s test, hypotheses with a p-value ≤ 0.01 are disregarded in Table 13.

This table divulges that mRIME performs statistically significantly better than some of
the other competing strategies discussed above, with little deviation from those superior
algorithms.
The ranking results of Friedman’s test utilized for the mean error findings of the CEC-

2017 test with dimensions 30 for each function are summarized in Table 14. Based on
their performance on the CEC-2017 test functions, each with 30 dimensions, the average
ranking of several techniques (mRIME, RIME, WSO, TLBO, SFS, DE, GA, GSK, AMO,
PSO, BBO, and ACO) is shown in Table 14. Friedman’s test, a non-parametric statistical
test designed to identify consideration differences over several test attempts, serves as the
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Table13 Holm’s test results for the CEC-2017 test group, where each function’s dimensions is
10

i mRIME vs. z-value p-value α/i (0.05) Hypothesis

11 ACO 8.01192744 1.12924480E−15 0.00454545 0

10 GA 7.33819718 2.16490060E−13 0.005 0

9 BBO 5.48088673 4.23199367E−08 0.00555555 0

8 PSO 4.29730654 1.72886034E−05 0.00625 0

7 RIME 3.09551742 0.0019646 0.00714285 0

6 TLBO 2.73133890 0.00630775 0.00833333 0

5 mRIME 2.51283179 0.1197664 0.01 1

4 GSK 1.01969985 0.30787082 0.0125 1

3 SFS 0.92865522 0.35306779 0.01666666 1

2 WSO 0.91044630 0.36258718 0.025 1

1 DE 0.38238744 0.70217400 0.05 1

“0” means rejected and “1” means Not rejected

Table 14 Average ranking of mRIME in relation to other algorithms using Friedman’s test based
upon their results on the CEC-2017 functions, which have 30 dimensions each

Algorithm Rank

mRIME 5.34482758

RIME 6.91379310

WSO 4.34482758

TLBO 6.87931034

SFS 3.93103448

DE 4.91379310

GA 10.72413793

GSK 3.94827586

AMO 3.74137931

PSO 7.67241379

BBO 7.58620689

ACO 12.00000000

foundation for the ranking. The algorithms for every function are ranked in the test, and
the ranks are then averaged.
Based on the CEC-2017 functions with a dimension of 30, the p-value obtained using

Friedman’s test is 9.06069663E−11. Given that the p-value suggests a statistically signifi-
cant difference between the methods, the null hypothesis is disproved. The data in Table
14 clearly demonstrate that, in comparison to all other rivals, mRIME scored rather well
with a rank of 5.34482758, outperforming the parent RIME algorithm, which has a rank of
6.91379310. The following algorithms are ranked in order in Table 14: AMO, SFS, GSK,
WSO, DE, mRIME, TLBO, RIME, BBO, PSO, GA, and ACO is ranked last. Once again,
Table 14 shows that there is a substantial disparity amongst mRIME and RIME, TLBO,
BBO, PSO, GA, and ACO, but a very modest difference betweenmRIME and AMO, GSK,
and SFS. This highlights how well the evolved mRIME performs while optimizing CEC-
2017 with large-dimensionality functions. Table 15 shows the results of using Holm’s test
on the 30-dimension CEC-2017 test functions.
The findings of Holm’s test, a statistical technique for managing the family-wise error

rate during multiple comparisons, are shown in Table 15. mRIME, DE, GSK, SFS, WSO,
ACO, GA, PSO, BBO, RIME, and TLBO are the competitive algorithms whose perfor-
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Table15 Holm’s test results for the CEC-2017 test group, where each function’s dimensions is
30

i mRIME vs. z-value p-value α/i (0.05) Hypothesis

11 ACO 8.72207556 2.73147934E−18 0.00454545 0

10 GA 7.37461503 1.64820606E−13 0.005 0

9 PSO 4.15163513 3.30108255E−05 0.00555555 0

8 BBO 4.06059050 4.89487584E−05 0.00625 0

7 RIME 3.35044238 8.06825911E−04 0.00714285 0

6 TLBO 3.31402453 9.19634372E−04 0.00833333 0

5 mRIME 1.69343011 0.09037362 0.01 1

4 DE 1.23820696 0.21563932 0.0125 1

3 WSO 0.63731241 0.52392136 0.01666666 1

2 GSK 0.21850711 0.82703401 0.025 1

1 SFS 0.20029818 0.84124738 0.05 1

“0” means rejected and “1” means Not rejected

mance is being compared amongst others on the CEC-2017 test functions, each of which
has 30 dimensions. The Holm’s test procedure rejected all of the hypotheses with p-value
≤ 0.01 in Table 15. The findings in this table, which are in line with earlier ones, attest to
mRIME’s strong position among its main competitors. Once again, Table 15 presents the
results of the contrasts betweenmRIME and numerous otherwell-known and competitive
algorithms, includingACO,GA, PSO, BBO, RIME, andTLBO.The results show that there
are notable differences in the efficacy of mRIME and these opposing algorithms, rejecting
the null hypothesis. In contrast, the contrasts betweenmRIME and other algorithms, such
as DE, WSO, GSK, and SFS, did not reject the null hypothesis, suggesting that there are
no appreciable variations inmRIME’s performance from these highly efficient algorithms.
According to this average rating, mRIME’s performance score lags below that of DE and
SFS but outperforms several of its rivals, including PSO, GA, as well as the native RIME
algorithm.
The statistical outcomes of performing Friedman’s test to the performance of mRIME

and other contending techniques on the CEC-2017 benchmark test collection in 50d test
problems are displayed in Table 16. Stated otherwise, the performance of mRIME on the
CEC-2017 test functions-all of which have 50 dimensions-is compared to that of several
other algorithms, such as RIME, WSO, TLBO, SFS, DE, GA, GSK, AMO, PSO, BBO, and
ACO, in this table, on average. This rating, as stated several times before, is predicated on
Friedman’s test, to identify examination variations between test tries. The algorithms for
every function are ranked in the test, and the ranks are then averaged.
Based on the outcomes shown in Table 16, it is determined that 1.07684638E−10 is the

p-value that Friedman’s test yields for the mean error estimates of the CEC-2017 prob-
lems with dimensions of 50. These results signify that there are scientifically significant
differences between the competing algorithms, rejecting the null hypothesis. Table 16
shows that AMO performed non-significantly better than the proposed mRIME method.
This table also shows that the mean score of mRIME is 4.56896551, which is not much
behind the average rankings of WSO, GSK, and SFS, but better than the average rankings
of several other algorithms, including DE, TLBO, RIME, PSO, BBO, GA, and ACO. Once
more, Table 16 presents average ranking results that are consistent with the previously
discussed findings for various dimensions. The findings of Holm’s test, a statistical tech-
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Table 16 Average ranking of mRIME in relation to other algorithms using Friedman’s test based
upon their results on the CEC-2017 functions, which have 50 dimensions each

Algorithm Rank

mRIME 4.56896551

RIME 6.93103448

WSO 4.46551724

TLBO 6.77586206

SFS 4.55172413

DE 5.39655172

GA 10.34482758

GSK 4.50000000

AMO 4.17241379

PSO 7.10344827

BBO 7.18965517

ACO 12.00000000

Table17 Holm’s test results for the CEC-2017 test group, where each function’s dimensions is
50

i mRIME vs. z-value p-value α/i (0.05) Hypothesis

11 ACO 8.26685241 1.37542058E−16 0.00454545 Rejected

10 GA 6.51879551 7.08741942E−11 0.005 0

9 BBO 3.18656205 0.00143974 0.00555555 0

8 PSO 3.09551742 0.00196469 0.00625 0

7 RIME 2.91342816 0.00357484 0.00714285 0

6 TLBO 2.74954782 0.00596775 0.00833333 0

5 DE 1.29283374 0.19606856 0.01 1

4 mRIME 0.41880529 0.67535843 0.0125 1

3 SFS 0.40059637 0.68871731 0.01666666 1

2 GSK 0.34596959 0.72936556 0.025 1

1 WSO 0.30955174 0.75690185 0.05 1

“0” means rejected and “1” means Not rejected

nique used to regulate the family wise error rate while conducting multiple comparison
tests, are shown in Table 17. In this instance, the test is being used to assess how well the
considered mRIME algorithm operates in comparison to other appropriate algorithms,
such as WSO, ACO, GA, BBO, PSO, RIME, TLBO, DE, SFS, and GSK, on the CEC-2017
test functions, each of which has 50 dimensions.
Holm’s test procedure was used to reject the claims with p-value ≤ 0.01 in Table 17.

According to the outcomes in this table, mRIME is a statistically effective algorithm
that performs on par with the best algorithms, such as AMO, WSO, GSK, and SFS.
Stated differently, Table 17 shows that, when mRIME is compared to the methods ACO,
GA, BBO, PSO, RIME, and TLBO, the null hypothesis was rejected, implying that the
efficacy of the proposed mRIME algorithm differs significantly from these competitor
algorithms. For the evaluations between mRIME and other top-performing algorithms,
such as DE, SFS, GSK, and WSO, the assumption of a null was not, however, refuted.
This indicates that the effectiveness of mRIME and various efficient algorithms that have
the highest performance levels documented in the literature do not differ significantly
from one another. The average ranking of the developed mRIME method against other
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Table 18 Average ranking of mRIME in relation to other algorithms using Friedman’s test based
upon their results on the CEC-2017 functions, which have 100 dimensions each

Algorithm Rank

mRIME 4.79310344

RIME 7.13793103

WSO 4.94827586

TLBO 7.27586206

SFS 5.08620689

DE 6.41379310

GA 10.20689655

GSK 3.48275862

AMO 4.03448275

PSO 6.27586206

BBO 6.36206896

ACO 11.98275862

competing algorithms is shown in Table 18, which is based on how well each algorithm
behaved on the CEC-2017 test functions, which have 100 dimensions.
The findings shown in Table 18 indicate a significant difference, as determined by

Friedman’s test at α = 0.05. Specifically, 7.49404982E−11 is the p-value that Friedman’s
test yielded for the CEC-2017 findings in 100d. Table 18 makes it evident that, in these
test situations with the taken into consideration dimension, GSK performs better than
the other competing algorithms. To be more precise, Table 18 shows that the proposed
mRIME algorithm is among the best optimization algorithms, outperformingWSO, SFS,
PSO, BBO, DE, RIME, TLBO, GA, and ACO with an efficient degree of performance and
a very respectable rank of 4.79310344.
It is important to note that there is a noticeable difference between the parent RIME

algorithm and the derivedmRIME, denoting that themelioration conducted on the native
RIME algorithm is efficient. Though AMO is among the preferable and solid optimization
algorithms mentioned in the literature, mRIME’s rank is slightly lesser than AMO’s rank,
and the gap between mRIME, AMO, and GSK is not substantial. The algorithms are, in
brief, ranked from best to worst as follows: GSK, AMO, mRIME, WSO, SFS, BBO, PSO,
DE, RIME, TLBO, GA, and lastly, ACO. Following Friedman’s test, Holm’s test method
was implemented using 100d as a follow-up testing method on the CEC-2017 test suite.
The statistical findings ofHolm’s test on theCEC-2017 test functionswith 100 dimensions
are shown in Table 19.
Holm’s test technique rejected each hypothesis with a p-value ≤ 0.0125 in Table 19.

WhenmRIME is put up against themost potential algorithms that have achieved the great-
est performance in the literature, such AMO and GSK, the findings in this table demon-
strate that mRIME is a prospective optimizationmethod for addressing high-dimensional
problems. As Table 19 illustrates, there is not a substantial distinction between mRIME
and GSK, AMO,WSO, and SFS, and Holm’s test procedure did not reject the hypotheses.
However, there is a major distinction between mRIME in comparison to other competi-
tors, including PSO, BBO, DE, RIME, TLBO, GA, and ACO, where Holm’s test procedure
rejected the hypotheses.



Abu Khurma et al. Journal of Big Data          (2024) 11:89 Page 60 of 74

Table 19 Holm’s test results for the CEC-2017 test group,
where each function’s dimensions is 100

i mRIME vs. z-value p-value α/i (0.05) Hypothesis

11 ACO 8.97700052 2.78248558E−19 0.00454545 0

10 GA 7.101481147 1.23426850E−12 0.005 0

9 TLBO 4.00596372 6.17651286E−5 0.00555555 0

8 RIME 3.86029231 1.13251462E−4 0.00625 0

7 DE 3.09551742 0.00196469 0.00714285 0

6 BBO 3.04089064 0.00235879 0.00833333 0

5 PSO 2.94984601 0.00317932 0.01 0

4 SFS 1.69343011 0.09037362 0.0125 1

3 WSO 1.54775871 0.12168040 0.01666666 1

2 mRIME 1.383878 0.16639569 0.025 1

1 AMO 0.58268563 0.56010494 0.05 1

“0” means rejected and “1” means Not rejected

Table 20 Average ranking of mRIME in relation to other algorithms using Friedman’s test based
upon their results on the CEC-2011 test group

Algorithm Rank

mRIME 3.24999999

RIME 7.22727272

WSO 4.13636363

TLBO 5.47727272

SFS 4.86363636

DE 6.47727272

GA 8.97727272

GSK 4.95454545

AMO 4.63636363

PSO 10.36363636

BBO 6.454545454

ACO 11.18181818

Lastly, Table 20 applies Friedman’s test with α = 0.05 to the mean error results shown
in Table 11 which belong to the results of the comparative algorithms on CEC-2011, sum-
marizing the ranking outcomes ofmRIME in comparison to other competing approaches.
Table 20 yields a p-value of 6.94070356E−11, as determined by Friedman’s test. This

supports the notion that the performances of the assessed algorithms varied statistically
significantly. As per the results in Table 20, the control technique is the proposedmRIME
algorithm that yielded the best rank, withWSO, AMO, SFS, GSK, TLBO, BBO, DE, RIME,
GA, PSO, and ACO following in order of preference. AMO and SFS came in third and
fourth position, respectively, while WSO got the second rank out of all algorithms, as
Table 20 makes evident. According on its stated performance degree, which considerably
surpassed that of several other algorithms including PSO, BBO, and GA, mRIME appears
to be able to outperform promising optimization methods.
Holm’s test was then used after Friedman’s test to make sure that the variances between

mRIME and the others in Table 20 are statistically significant; the statistical findings
are shown in Table 21. In this instance, the test is being utilized to evaluate mRIME’s
performance level on the CEC-2011 test functions against that of alternative algorithms,
including WSO, ACO, PSO, GA, RIME, DE, BBO, TLBO, GSK, SFS, and AMO.
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Table 21 Holm’s test results for the CEC-2011 test group

i mRIME vs. z-value p-value α/i (0.05) Hypothesis

11 ACO 7.29621153 2.95983429E−13 0.00454545 0

10 PSO 6.54359372 6.00578145E−11 0.005 0

9 GA 5.26832466 1.37674455E−7 0.00555555 0

8 RIME 3.65855879 2.53637558E−4 0.00625 0

7 DE 2.96865913 0.00299102 0.00714285 0

6 BBO 2.94775308 0.00320092 0.00833333 0

5 TLBO 2.04879292 0.04048236 0.01 0

4 GSK 1.56795376 0.11689192 0.0125 1

3 SFS 1.48432956 0.13772150 0.01666666 1

2 AMO 1.27526906 0.20221402 0.025 1

1 WSO 0.81533595 0.41488003 0.05 1

“0” means rejected and “1” means Not rejected

Using Holm’s technique, the hypotheses with p-value ≤ 0.01 in Table 21 are rejected.
The results of this test show thatmRIMEcandeliver competitive performance comparable
to other promising algorithms stated in the literature. It is evident fromTable 21 thatwhen
mRIME is compared to other algorithms like TLBO, BBO, DE, RIME, GA, PSO, andACO,
the null hypothesis is rejected. This points out that the performance of these algorithms
and mRIME differs significantly. In contrast, the assessments between mRIME and the
remaining algorithms-WSO, GSK, SFS, and AMO-did not result in the null hypothesis
being rejected. This indicates that the performance level of the mRIME algorithm and
that of various competing methods do not differ much.
One important conclusion drawn from the statistically significant results discussed

above is that, on average, mRIME outperformed several of the robust state-of-the-art
techniques mentioned in the literature, including BBO, GA, and ACO. This highlights the
effective performance of mRIME and confirms that the search space may be effectively
explored by this developed optimizationmethod, regardless of the number of optima-one,
two, or many-or the dimensionality of the optimization problems. Furthermore, the aver-
age ranking shows that, although the effectiveness of mRIME, AMO, and GSK is far from
that of all other rivals, including GA, BBO, RIME, and ACO, the performance score of
mRIME is not lag behind that of AMO, GSK, and SFS. It may be inferred that the remark-
able performance of the mRIME algorithm on CEC-2011 and CEC-2017 is mostly due
to its well-designed and functional mathematical model. Overall, this statistical analysis’s
findings show that mRIME is a dependable and efficient optimization approach with well
calibrated exploration and exploitation characteristics that preserve a balance between the
variety of local and global optimization features. These conclusions provide motivation
to use this technique to tackle more challenging real-world optimization problems.

Evaluation FS results

Table 23 compares the average classification accuracy between the basic RIME and pro-
posedmRIME utilizing the four TFsmentioned earlier. Using the X-shaped andU-shaped
TFs, the proposed mRIME outperforms the standard RIME in 8 datasets (CARCINOM,
CLL_SUB_111, Colon, GLI_85, GLIOMA, LUNG_DISCRETE, LYMPHOMA, and nci9)
as shown in Table 22. In 5 datasets, the mRIME outperforms the RIME with the V-
shaped TF, while in 2 datasets, the performance is equal. In contrast, with the S-shaped
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Table 22 A brief description of the datasets utilized in this
study

Dataset No. features No. instances No. classes

ALLAML 7129 72 2

Carcinom 9182 174 11

CLL_SUB_111 11340 111 3

Colon 2000 62 2

GLI_85 22283 85 2

GLIOMA 4434 50 4

Lung_discrete 325 73 7

Lung 3312 203 5

Lymphoma 4026 96 9

nci9 9712 60 9

TF, mRIME performs equally well in 6 datasets and better in the ALLAML, Colon, and
LYMPHOMA datasets. According to the results, the RIMEmodifications have a superior
influence on accuracy measures since the mRIME surpasses the basic RIME in 6 datasets
and is equal in three datasets. The searchability of the covered positions is strengthened
by employing varying search strategies, especially with the high-dimension datasets. This
proves that data reduction using thesemodifications has directly improved the algorithm’s
performance.
The comparison between the average fitness values obtained by mRIME and the basic

RIMEutilizing various TFs is shown inTable 24. In 90% of the datasets using theX-shaped
TF, it can be observed that the mRIME outperforms the RIME and yields the fittest values
when compared with RIME in 8 datasets. The mRIME_S and mRIME_V placed second
and third, respectively, with 60% and 50% of the most fitting values across the examined
datasets. ThemRIME_Ucame in secondwith 80%of themost fitting values. Asmentioned
earlier, the mRIME used techniques to enhance the soft and hard RIMEs behavior, with
the aid of the strength of the X-shaped TF, by discovering both directions of the search
space and with the rollback operator proves the obtained results using this TF.
Sensitivity or recall measure is a crucial measurement for biomedical datasets. A high

sensitivity indicates that the model accurately identifies the most positive findings. In
contrast, low sensitivity means that the model is missing a significant portion of the
positive results. Table 25 illustrating the sensitivity results of the mRIME and the basic
RIME algorithms, the mRIME shows a superior performance by achieving the highest
sensitivity results over all the tested datasets using the S-shaped Tf and 70%, 60% using
theU andV-shapedTFs. These findings prove the effect of themodifications in enhancing
the ML model’s efficacy for biomedical datasets.
Table 26 compares the proposedmRIMEwith basic RIME for the different TFs in terms

of specificity for several datasets. The mRIME outperforms the basic RIME in 6 datasets,
whereas the mRIME-S achieves better in terms of AV in 4 datasets, LUNG_DISCRETE,
LUNG, LYMPHOMA, and nci9. The mRIME, utilizing various TFs, outperforms the dif-
ferent versions of the basic RIME in CARCINOM, GLIOMA, LUNG_DISCRETE, LUNG,
LYMPHOMA, and nci9 datasets. In addition to the AV measure, mRIME gets the lowest
SD values in 7 datasets (70%), proving the proposed algorithm’s stability. Based on the
results presented above, themRIME indicates a considerable improvement in themajority
of studied scenarios.
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Table 23 Comparison results between the proposed mRIME and the basic RIME for different TFs
methods in terms of average classification accuracy

Dataset Measure mRIME_S mRIME_U mRIME_V mRIME_X RIME_S RIME_U RIME_V RIME_X

ALLAML AV 0.95516 0.94838 0.94631 0.94661 0.95428 0.95605 0.94867 0.95605

SD 0.00323 0.004696 0.00398 0.001616 0.003354 0.001616 0.005401 0.00283

CARCINOM AV 0.87879 0.90794 0.91106 0.92155 0.87879 0.87879 0.90287 0.87879

SD 0 0.019449 0.031599 0.03534 0 0 0.017475 0

CLL_SUB_111 AV 0.73485 0.87424 0.87273 0.85303 0.73485 0.73939 0.83333 0.74394

SD 0.01723 0.040802 0.048341 0.048757 0.01723 0.020444 0.043588 0.022279

Colon AV 0.93889 1.0000 0.99167 0.99167 0.93056 0.93611 1.0000 0.93333

SD 0.037481 0 0.025427 0.025427 0.031587 0.035849 0 0.033903

GLI_85 AV 0.94706 1.0000 1.0000 1.0000 0.95098 0.95098 1.0000 0.95882

SD 0.017949 0 0 0 0.022297 0.022297 0 0.027417

GLIOMA AV 0.9 0.99667 0.98667 0.97667 0.9 0.9 0.97667 0.9

SD 0 0.018257 0.034575 0.043018 0 0 0.043018 0

LUNG_DISCRETE AV 0.92857 0.94782 0.93924 0.95916 0.92857 0.92857 0.95288 0.92857

SD 0 0.035028 0.041386 0.045002 0 0 0.036823 0

LUNG AV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LYMPHOMA AV 0.85088 0.92797 0.9579 0.95614 0.84912 0.85789 0.92983 0.85439

SD 0.01995 0.035142 0.037599 0.048046 0.018197 0.024531 0.034784 0.022641

nci9 AV 0.73273 0.96471 0.99364 0.96302 0.74242 0.74545 0.96006 0.74061

SD 0.020895 0.047788 0.024247 0.060094 0.030975 0.033763 0.054696 0.030549

Ranking (W|T|L) 0|1|9 2|3|5 2|2|6 1|2|7 0|1|9 1|1|8 0|3|7 1|1|8

Another important measure is the number of selected features, which indicates the
reduction rate of the original datasets. The mRIME shows incredible findings compared
with the basicRIME in all testedTFs.ThemRIMEselects a less relevant number of features
in all datasets with an exciting variance. Table 27 demonstrates the average number of
features chosen utilizing various TFs for both mRIME and basic RIME algorithms. The
mRIME_Vachieves the lowest reduction rate in 9of 10datasets. For example, in theLUNG
dataset, the mRIME_V chooses 68.046 features with a 98% reduction rate, while the basic
RIME in all versions chooses more than 1500 features since the total number of features
is 3312. Similarly, the Carcinom dataset has a 97% reduction rate using mRIME_V. These
findings prove the proposed modifications’ efficiency in enhancing the original algorithm
and the improved exploration and exploitation phases in the mRIME.
The modifications in the proposed mRIME force the algorithm to discover more posi-

tions in the search space, which increases the computation time of the mRIME. The TF
also plays an essential role in the searching process. As clearly shown in Table 28, the
basic RIME consumes less time for optimization. On the other hand, the mRIME findings
prove the overall performance of the used modification instead of the CPU time. The
mRIME_U takes less average time in computation in the LUNG_DISCRETE and LYM-
PHOMA datasets, and the mRIME_V achieves better CPU time in the Colon dataset, but
both did not get the lowest standard deviations.

Convergence curves

The convergence curves for the proposed mRIME and the basic RIME over all the tested
datasets are drawn in Fig. 3. This figure, combined with the conducted findings in the
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Table 24 Comparison results between the proposed mRIME and the basic RIME for different TFs
methods in terms of average fitness values

Dataset Measure mRIME_S mRIME_U mRIME_V mRIME_X RIME_S RIME_U RIME_V RIME_X

ALLAML AV 0.048981 0.051913 0.054355 0.053794 0.049631 0.047685 0.051674 0.047599

SD 0.003053 0.004495 0.00401 0.001718 0.003047 0.001789 0.00513 0.002617

CARCINOM AV 0.12601 0.091267 0.088139 0.077764 0.12604 0.12592 0.096319 0.12612

SD 0.000368 0.01926 0.031291 0.035005 0.000485 0.000352 0.017311 0.000225

CLL_SUB_111 AV 0.2685 0.12451 0.12600 0.14551 0.26863 0.26381 0.16501 0.25967

SD 0.016974 0.040391 0.047857 0.048269 0.016949 0.020098 0.043148 0.02187

Colon AV 0.06577 1E−05 0.008261 0.008264 0.074059 0.068537 1.3E−05 0.071323

SD 0.036688 2E−06 0.025171 0.025171 0.030923 0.035017 6E−06 0.033175

GLI_85 AV 0.058196 1E−06 1E−06 2E−06 0.054499 0.054178 1E−06 0.046693

SD 0.017585 0 0 1E−06 0.021956 0.021793 1E−06 0.026872

GLIOMA AV 0.10385 0.003308 0.013208 0.023112 0.10385 0.10386 0.023111 0.10386

SD 3.9E−05 0.018074 0.034228 0.042586 4.4E−05 4.8E−05 0.042585 4.3E−05

LUNG_DISCRETE AV 0.076188 0.051914 0.060489 0.040696 0.076433 0.076171 0.046911 0.076354

SD 0.00041 0.034649 0.041022 0.04457 0.000271 0.000297 0.036507 0.000196

LUNG AV 0.004854 7.6E−05 7.1E−05 4.5E−05 0.004848 0.004827 0.000102 0.004844

SD 4.3E−05 3.9E−05 7.5E−05 2E−05 4.9E−05 4.1E−05 8.3E−05 5E−05

LYMPHOMA AV 0.15307 0.071375 0.04172 0.043466 0.15491 0.14628 0.069535 0.1497

SD 0.019413 0.034781 0.037219 0.047573 0.017753 0.02394 0.034428 0.022028

nci9 AV 0.27059 0.035004 0.006318 0.036626 0.26102 0.25796 0.039561 0.26279

SD 0.020561 0.047357 0.024016 0.059502 0.030533 0.033182 0.054166 0.030141

Ranking (W|T|L) 1|0|9 4|0|6 3|0|7 3|0|7 1|0|9 0|0|10 0|0|10 0|0|10

Table 25 Comparison results between the proposed mRIME and the basic RIME for different TFs
methods in terms of average sensitivity results

Dataset Measure mRIME_S mRIME_U mRIME_V mRIME_X RIME_S RIME_U RIME_V RIME_X

ALLAML AV 0.90683 0.89288 0.90281 0.89531 0.90298 0.90012 0.89366 0.89441

SD 0.046374 0.049585 0.052191 0.043554 0.037556 0.048914 0.05503 0.050005

CARCINOM AV 1 1 1 1 0.99444 1 1 1

SD 0 0 0 0 0.030429 0 0 0

CLL_SUB_111 AV 0.64899 0.7295 0.71574 0.69833 0.62894 0.64056 0.68505 0.54602

SD 0.37029 0.31123 0.392 0.31895 0.38164 0.3677 0.40547 0.33583

Colon AV 0.60667 0.57849 0.62373 0.54675 0.57913 0.55702 0.56349 0.54405

SD 0.21773 0.2433 0.2405 0.20446 0.29318 0.33933 0.29194 0.27052

GLI_85 AV 0.73992 0.75687 0.56544 0.71995 0.42098 0.59242 0.50982 0.78849

SD 0.20196 0.20282 0.26045 0.16578 0.26891 0.25138 0.24271 0.17492

GLIOMA AV 0.76722 0.74111 0.63063 0.62833 0.60389 0.74833 0.71429 0.71095

SD 0.32898 0.25441 0.33682 0.30236 0.33235 0.3346 0.28137 0.27893

LUNG_DISCRETE AV 0.90556 0.85833 0.86729 0.83889 0.71111 0.63889 0.71944 0.91111

SD 0.23441 0.22118 0.21847 0.35147 0.41276 0.44814 0.43134 0.2263

LUNG AV 0.97911 0.96865 0.96436 0.98314 0.94814 0.95838 0.96213 0.98477

SD 0.028902 0.032605 0.025568 0.024262 0.046342 0.033537 0.033789 0.020166

LYMPHOMA AV 0.99163 0.98632 0.93652 0.99373 0.91995 0.95368 0.97654 0.99667

SD 0.025612 0.035992 0.080725 0.024272 0.090252 0.080676 0.0438 0.018257

nci9 AV 0.61530 0.62222 0.60833 0.61778 0.48889 0.46667 0.67500 0.70278

SD 0.37120 0.36602 0.42725 0.37557 0.45208 0.4557 0.41312 0.31233

Ranking (W|T|L) 2|1|7 1|1|8 1|1|8 0|1|9 0|0|10 0|1|9 1|1|8 4|1|5
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Table 26 Comparison results between the proposed mRIME and the basic RIME for different TFs
methods in terms of specificity results

Dataset Measure mRIME_S mRIME_U mRIME_V mRIME_X RIME_S RIME_U RIME_V RIME_X

ALLAML AV 0.95366 0.96516 0.96253 0.96666 0.96574 0.96233 0.96809 0.95814

SD 0.023086 0.024873 0.022472 0.020807 0.019925 0.022937 0.022485 0.025931

CARCINOM AV 0.81914 0.84400 0.80954 0.80573 0.73157 0.74669 0.72036 0.71383

SD 0.067203 0.066742 0.059442 0.075893 0.099354 0.091248 0.080811 0.081679

CLL_SUB_111 AV 0.51202 0.56819 0.51946 0.51812 0.62755 0.60003 0.64101 0.6182

SD 0.12802 0.1248 0.087506 0.1131 0.13169 0.11087 0.13566 0.12976

Colon AV 0.85743 0.82562 0.86316 0.83386 0.78802 0.86829 0.78845 0.79382

SD 0.11704 0.12602 0.12235 0.15759 0.23494 0.18809 0.17382 0.15644

GLI_85 AV 0.87164 0.86207 0.86141 0.85239 0.89733 0.88269 0.8815 0.88212

SD 0.12702 0.097707 0.11217 0.10329 0.092631 0.10674 0.098013 0.093336

GLIOMA AV 0.82204 0.80273 0.81911 0.82693 0.5772 0.58632 0.56517 0.59452

SD 0.14996 0.15907 0.14342 0.15037 0.2307 0.25763 0.17503 0.22201

LUNG_DISCRETE AV 0.85903 0.83571 0.84975 0.84102 0.67473 0.68855 0.67547 0.66366

SD 0.089455 0.10451 0.10765 0.10671 0.14847 0.15924 0.14835 0.14896

LUNG AV 0.8722 0.84784 0.86273 0.85774 0.77855 0.75725 0.74487 0.76277

SD 0.093717 0.11274 0.11542 0.11095 0.11929 0.10705 0.13626 0.10523

LYMPHOMA AV 0.78963 0.74909 0.78441 0.77758 0.61271 0.58618 0.55215 0.54429

SD 0.16047 0.13749 0.15923 0.10549 0.19374 0.16094 0.19692 0.21866

nci9 AV 0.44324 0.38444 0.37028 0.3528 0.20816 0.30185 0.2897 0.20247

SD 0.16943 0.1362 0.165 0.14823 0.18206 0.19168 0.17502 0.14636

Ranking (W|T|L) 4|0|6 1|0|9 0|0|10 1|0|9 1|0|9 1|0|9 2|0|8 0|0|10

Table 27 Comparison results between the proposed mRIME and the basic RIME for different TFs
methods in terms of average number of selected features

Dataset Measure mRIME_S mRIME_U mRIME_V mRIME_X RIME_S RIME_U RIME_V RIME_X

ALLAML AV 3.414 2.9874 3.0292 2.7094 13.533 12.933 14.233 12.667

SD 3.846 2.6986 1.5326 0.893 1.7953 1.596 1.8323 1.4933

CARCINOM AV 470.14 393.53 281.52 243.25 5545.7 5437.5 5518.4 5618.5

SD 342.89 292.7 330.61 175.48 445.15 323.14 337.61 206.88

CLL_SUB_111 AV 296.65 323.08 84.246 388.78 6955.1 6583.9 6802 6993.8

SD 190.75 511.48 222.16 257.19 384.69 481.44 455.29 399.36

Colon AV 59.259 60.043 15.784 43.308 1061.9 1057.3 1054 1064.6

SD 50.855 69.382 60.318 32.979 107.27 105.66 104.78 119.34

GLI_85 AV 494.32 658.38 363.14 443.64 13302 12587 12888 13211

SD 374.87 845 735.79 331.81 996.4 1059.1 1009 1193.9

GLIOMA AV 113.46 148.41 61.635 102 2150.4 2156.2 2149.1 2152.6

SD 90.112 159.62 151.55 67.593 19.42 21.471 17.231 19.22

LUNG_DISCRETE AV 19.043 17.565 10.622 13.528 185.87 177.33 177.9 183.3

SD 28.921 12.829 10.768 9.6108 8.8033 9.6681 13.337 6.3688

LUNG AV 144.8 99.596 68.046 108.39 1605.8 1598.8 1607.5 1604.4

SD 91.35 69.151 87.295 82.247 16.357 13.595 14.183 16.473

LYMPHOMA AV 194.28 126.75 80.147 126.85 2229.3 2254.3 2190.8 2229.9

SD 113.91 119.29 94.568 94.66 227.26 196.88 208.97 247.34

nci9 AV 390.8 320.25 280.07 358.89 5846.5 5792.4 5813 5817

SD 197.72 335.21 389.24 262.72 409.94 353.57 288.93 398.18

Ranking (W|T|L) 0|0|10 0|0|10 8|0|2 2|0|8 0|0|10 0|0|10 0|0|10 0|0|10
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Table 28 Comparison results between the proposed mRIME and the basic RIME for different TFs
methods in terms of average CPU times

Dataset Measure mRIME_S mRIME_U mRIME_V mRIME_X RIME_S RIME_U RIME_V RIME_X

ALLAML AV 18.25 10.897 10.13 50.58 16.588 9.296 9.9329 53.722

SD 5.5629 3.3024 3.1303 4.5975 1.2454 1.9342 2.7134 4.2663

CARCINOM AV 218.55 35.404 41.41 724.4 229.01 27.561 21.688 525.4

SD 14.391 3.303 1.8417 17.258 101.15 4.1603 1.3627 38.852

CLL_SUB_111 AV 154.98 30.496 30.619 448.52 101.76 24.056 24.513 307.19

SD 3.4536 4.7964 5.2988 9.0529 2.5691 1.1506 2.0252 14.574

Colon AV 22.947 12.436 11.339 99.01 36.77 22.558 26.087 107.6

SD 0.3569 3.289 2.5868 13.153 1.1156 2.7071 4.7389 3.6912

GLI_85 AV 198.53 42.015 39.182 495.39 145.62 33.698 33.538 464.44

SD 4.0219 2.5465 4.1051 80.951 2.855 1.7316 1.4875 82.825

GLIOMA AV 43.626 27.645 28.044 88.371 22.994 14.158 15.148 65.05

SD 1.1147 2.9157 3.5264 32.598 1.9958 1.5476 1.1396 4.7871

LUNG_DISCRETE AV 13.723 11.695 14.741 46.243 15.88 14.372 13.224 45.254

SD 0.97115 1.9522 1.9145 4.0051 1.5998 1.721 1.3365 3.8309

LUNG AV 66.512 23.409 15.625 263.57 66.415 16.348 15.146 301.38

SD 4.8894 4.461 1.0184 56.844 4.6848 1.0991 1.02 23.172

LYMPHOMA AV 52.064 23.16 26.235 152.52 54.103 28.041 27.509 155.6

SD 3.0348 3.3912 1.8364 8.8118 3.1799 1.9251 1.9774 8.7665

nci9 AV 60.534 25.557 27.77 175.75 2354.2 22.649 22.37 124.71

SD 3.4965 1.8841 2.4645 9.3992 5951 2.6 3.917 4.8825

Ranking (W|T|L) 0|0|10 2|0|8 1|0|9 0|0|10 0|0|10 4|0|6 3|0|7 0|0|10

best fitness results in Table 24 shows the convergence behavior of the tested FS opti-
mizers. The optimization algorithm that exhibits rapid convergence is recommended in
specific convergence patterns. In other words, we favor the optimizer that settles on a
shallow fitness value in the fewest possible iterations. Various TFs for the basic and the
proposed methods and the nature of the tested datasets make a variety of the conver-
gence behavior of the algorithms since it directly affects the exploration and exploita-
tion capabilities. In 8 datasets, including CARCINOM, CLL_SUB_111, Colon, GLIOMA,
LUNG_DISCRETE, LUNG, LYMPHOMA, and nci9, the proposed mRIME surpasses the
basic RIME by obtaining the lowest fitness values. This demonstrates themRIME’s search
capability by using the proposed modifications and avoiding being trapped in local min-
ima. Additionally, the mRIME_U converged faster for the ALLAML dataset by reaching
superior fitness values in the early iterations, which received the lowest values between 20
and 50 iterations. In the colon dataset, the mRIME_X and mRIME_U demonstrate faster
convergence by obtaining the lowest fitness after 10 iterations. Similarly, before entering
the 10th iteration on the GLI_85 dataset, the mRIME_S, mRIME_X, and mRIME_V were
rapidly converged. By noticing spots of light in the LUNG dataset, the mRIME_X and the
RIME_V compete to obtain the lowest fitness value in the initial iterations.
In conclusion, it is evident from the results presented in Table 24 and illustrated in Fig. 3

that the modifications to the RIME algorithm strengthen the algorithm’s searchability,
balance the exploration and exploitation phases, and avoid local optima while exploring
the search space.
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Fig. 3 Convergence curves of the proposed and basic algorithms for different TFs for all examined datasets
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Statistical test

The above subsections employ several performance measures to evaluate the proposed
modification with the basic RIME with various TFs. The average and standard deviation
of the outcomes (i.e., classification accuracy and fitness values) found thus far in 30 inde-
pendent runs serve as the statistical measures used in these comparisons. These metrics
give a broad understanding of howwell the suggested algorithms handle FS problems. The
first measure depicts the average behavior of the proposed algorithms, while the second
measure highlights how stable the proposed algorithms are across all 30 independent runs.
Although these statistical metrics could show the suggested approaches’ overall depend-
ability and robustness, they cannot compare each of the 30 independent runs separately.
In other words, they have demonstrated that the proposed FS approaches benefit from
high levels of exploitation and exploration but have not been able to demonstrate how
effective they are. The testing methods used by Friedman and Holm in this subsection
show the importance of the findings and demonstrate that they were not the result of
chance. In order to determine whether there is a fundamental difference in the outputs of
the various algorithms, Friedman’s test is predicated on the null hypothesis that there is
no difference in the accuracy of any of the comparison algorithms.
For these types of tests, it is essential to find the p-value that Friedman’s testwill return; if

the p-value is less than or equal to the degree of significance (0.05), then Disprove the null
hypothesis.Whichmeans therewere statistically significant differences in the effectiveness
of the evaluated algorithms. Following this statistical test, a post-hoc test technique is
carried out, and Holm’s approach is then used to investigate pairwise comparison of the
rival algorithm. Usually used as a control approach for post-hoc analysis, the algorithm
with the lowest rank is obtained by Friedman’s test.
The findings have been evaluated using Friedman’s and Holm’s test techniques in order

to prove the robustness of the suggestedmRIME algorithm utilizing different TFs to solve
FS problems. A summary of the statistical test results of Friedman’s test, based on the
results shown in Tables 23, 24, 25, 26, 27, 28, with various measures, is presented in
Table 29, which shows the ranking of each version; hence, the lowest value for rankmeans
best performed one and vice versa.
According to the accuracy results, the obtained p-value using Friedman’s test is equal to

2.5619E−4; thus, The null hypothesis of equivalent performance degree was rejected with
evidence of a statistically significant difference between the accuracy of the contending
algorithms. The proposed mRIME with a U-shaped TF ranked as the best-performed
algorithm compared with others with a 2.85 rank value. The mRIME_V and mRIME_X,
with rankings of 3.05 and 3.1, respectively, came in second and third place. Similarly, the
mRIME_U surpasses competitors with a 2.63 rank in the fitness values findings with a
4.8642E−6 p-value, followed by the mRIME_V and mRIME_X with 2.7 and 3.0 ranks.
On the other hand, mRIME_S ranked as the first competitor with a 2.9 rank using the

sensitivity results; the p-value for Friedman’s test over the sensitivity results is equal to
0.0201, which is less than the significant level of 5%, thus rejecting the null hypothesis
also. In contrast, the null hypothesis was not rejected on the specificity results since the
p-value is equal to 0.0762, greater than the significant level of 5% since the nature of the
datasets plays an essential role in this measure. Instead, themRIME_S outperforms others
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Table29 Average rankings of all competitor algorithms using Friedman’s test

Algorithm Accuracy Fitness Sensitivity Specificity Features Run-time

mRIME_S 6.25 6.35 2.90 3.20 3.50 5.20

mRIME_U 2.85 2.60 3.70 3.90 2.90 2.90

mRIME_V 3.05 2.70 4.30 3.50 1.30 3.30

mRIME_X 3.10 3.00 4.30 3.90 2.30 7.50

RIME_S 6.40 6.85 6.60 5.10 7.10 5.50

RIME_U 5.40 5.25 5.60 4.70 5.80 2.30

RIME_V 3.40 3.30 5.00 5.50 6.10 2.00

RIME_X 5.55 5.95 3.60 6.20 7.00 7.30

p-value 2.5619E−4 4.8642E−6 0.0201 0.0762 1.9589E−10 1.1436E−9

with a 3.2 rank, followed bymRIME_Vwith a 3.5 rank, and the mRIME_U andmRIME_X
are placed in the third order with the same rank of 3.9.
In the same manner, and for the number of selected features and CPU times, there is

a statistically significant difference with p equal to 1.9589E−10 and 1.1436E−9 values,
respectively. The mRIME_V was placed in the first order with a 1.3 rank in the results of
the number of selected features. Meanwhile, RIME_V gained the lowest rank, 2.0, and the
mRIME_U placed in the third rank, 2.9, ordered after the RIME_U with a 2.3 rank.
Then, Holm’s test is used as a post-test technique to see whether there are statistically

notable differences between the other comparison algorithms and the control binary
method with the lowest rank. Based on the FS results for different measures and the
statistical results of Holm’s test method, Table 30 illustrates Holm’s test results. R − 0
denotes Friedman’s rank assigned to the control method, Friedman’s rank allocated to
algorithm i is denoted by Ri, and the ES denotes the effect size of the control binary
technique on the algorithm. Together, these variables represent the statistical difference
between the two algorithms. The difference between the two competing algorithms is
noticeable at the significance level.
According to the classification accuracy and the best fitness values results in Table 23,

mRIME_U was compared to other competing FS algorithms using Holm’s test technique,
disqualifying hypotheses with p-values less than 0.0055. As can be seen from the results in
the first two sub tables of Table 30, mRIME_U outperforms other efficient and effective
FS approaches in producing encouraging outcomes for the FS problems being studied.
The p-values increase the mRIME_U’s performance score on FS tasks and highlight the
significance of this method. By realizing high classification accuracy rates and best fitness
values compared to those reported by other existing FS methods, the results show that
the proposed mRIME with U, V, and X-shaped TFs successfully avoided optimum local
solutions while exploring and exploiting the search space and are statistically significant
FS methods.
In contrast, for the sensitivity and specificity results, mRIME_S shows noticeable results

for such optimization problems. It is clearly demonstrated that the proposed mRIME
with various TFs successfully avoids local optimal solutions and is statistically significant.
While the mRIME_V is the control algorithm for the number of selected features and the
CPU running time results, the control algorithm outperforms others for both findings,
with mRIME_U and mRIME_X being statistically significant methods in the number of
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Table30 Holm’s test results between the control algorithm and all other comparative
methods

i Algorithm zi = (R0−Ri)
SEi p-value α ÷ i Hypothesis

Classification accuracy (mRIME_U is the control algorithm)
7 RIME_S 3.24069 0.00119 0.0071 0
6 mRIME_S 3.10376 0.00191 0.008330
5 RIME_X 2.46475 0.01371 0.01 0
4 RIME_U 2.32782 0.01992 0.0125 0
3 RIME_V 0.50207 0.61561 0.016661
2 mRIME_X 0.22821 0.81947 0.025 1
1 mRIME_V 0.18257 0.85513 0.05 1
Fitness (mRIME_U is the control algorithm)
7 RIME_S 3.87970 1.04584E−4 0.0071 0
6 mRIME_S 3.42326 6.18735E−4 0.008330
5 RIME_X 3.05811 0.00222 0.01 0
4 RIME_U 2.41910 0.01555 0.0125 0
3 RIME_V 0.63900 0.52281 0.016661
2 mRIME_X 0.36514 0.71500 0.025 1
1 mRIME_V 0.09128 0.92726 0.05 1
Sensitivity (mRIME_S is the control algorithm)
7 RIME_S 3.37762 7.31153E−4 0.0071 0
6 RIME_U 2.46475 0.01371 0.008330
5 RIME_V 1.91702 0.05523 0.01 1
4 mRIME_X 1.27801 0.20124 0.0125 1
3 mRIME_V 1.27801 0.20124 0.016661
2 mRIME_U 0.73029 0.46520 0.025 1
1 RIME_X 0.63900 0.52281 0.05 1
Specificity (mRIME_S is the control algorithm)
7 RIME_X 2.73861 0.00616 0.0071 0
6 RIME_V 2.09960 0.03576 0.008330
5 RIME_S 1.73445 0.08283 0.01 1
4 RIME_U 1.36930 0.17090 0.0125 1
3 mRIME_U 0.63900 0.52281 0.016661
2 mRIME_X 0.63900 0.52281 0.025 1
1 mRIME_V 0.27386 0.78419 0.05 1
Features (mRIME_V is the control algorithm)
7 RIME_S 5.29465 1.19243E−070.0071 0
6 RIME_X 5.20336 1.95712E−070.008330
5 RIME_V 4.38178 1.17713E−050.01 0
4 RIME_U 4.10791 3.99239E−050.0125 0
3 mRIME_S 2.00831 0.04460 0.016660
2 mRIME_U 1.46059 0.14412 0.025 1
1 mRIME_X 0.91287 0.36131 0.05 1
Run-time (RIME_V is the control algorithm)
7 mRIME_X 5.02079 5.14593E−070.0071 0
6 RIME_X 4.83821 1.31009E−060.008330
5 RIME_S 3.19504 0.00139 0.01 0
4 mRIME_S 2.92118 0.00348 0.0125 0
3 mRIME_V 1.18673 0.23533 0.016661
2 mRIME_U 0.82158 0.41131 0.025 1
1 RIME_U 0.27386 0.78419 0.05 1

selected feature results. Meanwhile, mRIME_V and mRIME-U are statistically significant
for the CPU time results.
To put it briefly, the statistical results of Friedman andHolm’s testmethods presented in

Tables 29 and 30 highlight that the performance of the suggested algorithms is statistically
significant and support their satisfactory performance and dependability. These results
support the assertion that the proposed binarymRIMEand its binary improved extensions
can handle several well-known FS datasets rather effectively.
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Table 31 Benchmarking functions

Function Name Opt

Unimodal category

CEC17(f1) Shifted and Rotated Bent Cigar Function 100

CEC17(f2) Shifted and Rotated Sum of Different Power Function 200

CEC17(f3) Shifted and Rotated Zakharov Function 300

Multimodal category

CEC17(f4) Shifted and Rotated Rosenbrock’s Function 400

CEC17(f5) Shifted and Rotated Rastrigin’s Function 500

CEC17(f6) Shifted and Rotated Expanded Scaffer’s F6 Function 600

CEC17(f7) Shifted and Rotated Lunacek Bi-Rastrigin Function 700

CEC17(f8) Shifted and Rotated Non-Continuous Rastrigin’s Function 800

CEC17(f9) Shifted and Rotated Lévy Function 900

CEC17(f10) Shifted and Rotated Schwefel’s Function 1000

Hybrid category

CEC17(f11) Hybrid F1 (N=3) 1100

CEC17(f12) Hybrid F2 (N=3) 1200

CEC17(f13) Hybrid F3 (N=3) 1300

CEC17(f14) Hybrid F4 (N=4) 1400

CEC17(f15) Hybrid F5 (N=4) 1500

CEC17(f16) Hybrid F6 (N=4) 1600

CEC17(f17) Hybrid F6 (N=5) 1700

CEC17(f18) Hybrid F6 (N=5) 1800

CEC17(f19) Hybrid F6 (N=5) 1900

CEC17(f20) Hybrid F6 (N=6) 2000

Composition category

CEC17(f21) Composite F1 ( N = 3) 2100

CEC17(f22) Composite F2 (N=3) 2200

CEC17(f23) Composite F3 (N=4) 2300

CEC17(f24) Composite F4 (N=4) 2400

CEC17(f25) Composite F5 (N=5) 2500

CEC17(f26) Composite F6 (N=5) 2600

CEC17(f27) Composite F7 (N=6) 2700

CEC17(f28) Composite F8 (N=6) 2800

CEC17(f29) Composite F9 (N=3) 2900

CEC17(f30) Composite F10 (N=3) 3000

Search scope:[-100, 100] Dimension: = 30

Final remarks and upcoming projects
Inspired by the natural phenomenon of RIME-ice production, this paper proposes a new
method for global optimization and FS through the development of the sophisticated
RIME algorithm. By introducing Binary mRIME, the article expands the use of the RIME
algorithm to FS even further. To facilitate the transformation of a continuous search space
into a binary one, four distinct types of TFs from the S-shaped, V-shaped, U-shaped, and
X-shaped families were chosen for FS problems. With regard to these various TFs, the
effectiveness of RIME is examined for global optimization through the use of CEC2011,
CEC2017, and FS tasks in relation to applications for disease diagnosis. Ten of the most
dependable optimization algorithms in the pertinent field of research have been used to
test the proposed mRIME’s outcomes on the CEC 2017 and CEC 2011 test suites and
ten medical datasets. Several standard measurements and various statistical values have
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been used for the evaluation of the algorithms. In order to illustrate the durability of the
suggestedmRIME, the outcomes have been evaluated utilizing the test techniques put out
by Friedman and Holm. Evaluations show that the sophisticated RIME architecture per-
forms better in FS and global optimization tasks, offering a fresh approach to challenging
optimization issues across a range of industries. The paper provides scholars and practi-
tioners in the optimization and financial science domains with a thorough introduction to
comprehending and applying the sophisticated RIME algorithm and its binary counter-
part. In the future, we intend to propose mRIME to solve different optimization problems
in various applications such as intrusion detection, bioinformatics, and the Internet of
Things. Furthermore, mRIME may be compared with other new binary transformation
methods such as cosine similarity (Table 31).
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