
An improved deep hashing model for image 
retrieval with binary code similarities
Huawen Liu1*, Zongda Wu1, Minghao Yin2, Donghua Yu1, Xinzhong Zhu3 and Jungang Lou4 

Introduction
The advent of information technology has led to an exponential increase in data accu-
mulation across a multitude of domains [1]. For example, Facebook users upload over 
a billion images each month, and the daily generation of log files approximates 300 TB. 
Furthermore, the duration of videos uploaded by YouTube users in the past month sur-
passes the total video content broadcasted by ABC, NBC, and CBS since 1948. This 
surge in big data presents a formidable challenge to both academia and industry: how to 
effectively and efficiently harness such a vast amount of data to extract and analyze valu-
able information or knowledge for various applications [2]. This challenge has greatly 
catalyzed an increasing interest in information retrieval, i.e., the development of novel 
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techniques to explore and analyze big data effectively and efficiently [1, 3]. These tech-
niques have demonstrated potential advantages in assisting businesses and scholars to 
extract valuable insights from big data across a wide range of real-world applications, 
from healthcare [4], privacy protection [5], financial analysis [6], image retrieval, to nat-
ural language processing [7], among others.

It is important to note that the mere collection and storage of massive amounts of data 
are not the ultimate objectives. The full potential benefits of big data should be exploited 
to address specific real-world problems. However, as the scale of data increases expo-
nentially, the expansion of useful information underlying big data is relatively mild. This 
implies that the density of information or knowledge deeply embedded in big data is 
extremely low, leading to a scenario characterized by data bloom but knowledge scarcity 
[8].

The extraction of interesting or valuable information from large-scale data is a chal-
lenging yet fundamental task in big data analysis and information retrieval [8]. Given a 
query, it can be relatively straightforward to precisely identify its proximate or similar 
objects from a small-scale and low-dimensional data collection using the technique of 
k nearest neighbors (kNN), which is a classic and popular neighbor search technique in 
information retrieval. However, as the scale of data increases, locating desirable informa-
tion precisely using traditional search techniques becomes unfeasible. For instance, the 
efficiency of kNN dramatically deteriorates even on a mid-scale data collection, albeit 
its computational complexity is linear. This greatly limits its practical applications. In 
many scenarios, approximate search methods are preferred over exact search techniques 
as they offer high efficiency and robustness to large-scale data without significantly com-
promising retrieval performance.

Hash learning is a representative and popular approximate search technique for big 
data. It primarily transforms high-dimensional data into binary representations via pro-
jection technology [8]. In the context of binary representations, the storage cost of big 
data can be significantly reduced, making it possible to store big data within the main 
memory. Moreover, the objective of neighbor search can be achieved by computing 
the distance or similarity between binary codes using bit operations such as XOR and 
POPCNT, thereby making the search process extremely fast. Owing to these advantages, 
hash learning has attracted increasing attention in various domains, including image 
retrieval, information retrieval, and natural language processing [9]. Over the past dec-
ades, numerous hashing methods have been developed. Generally, they can be catego-
rized into two types: data-oblivious (also known as data-independent) and data-aware 
(also known as data-dependent) hashing techniques [9].

Data-oblivious hashing techniques project data objects from the Euclidean space 
into binary representations in the Hamming space in a straightforward manner, while 
data-aware hashing techniques derive binary representations based on the inherent 
properties of data objects [9]. Notable examples of this kind of techniques include LSH 
(Locality-Sensitive Hashing) [10] and ITQ (ITerative Quantization) [11], respectively. 
It is noticeable that both of them construct retrieval models based on handcrafted fea-
tures, constraining their retrieval performance greatly.

In contrast, deep hashing leverages semantic features of data to construct retrieval 
models using deep neural networks, such as CNN, AlexNet, ResNet, and BERT [12, 13]. 
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Deep neural networks are known to effectively extract high-level and rich semantic fea-
tures from data in an unsupervised manner [14, 15]. For instance, Fig. 1 visualizes the 
feature map (i.e., the output) of the fifth layer of a convolution neural network. It is evi-
dent that the extracted features effectively capture sketch information of images. This 
suggests that they contain rich semantic information, which cannot be fully captured by 
those handcrafted ones [16]. Owing to this fact, deep hashing usually outperforms con-
ventional hashing models and can derive more compact binary codes [17].

Deep hashing has emerged as a new trend, and a variety of deep hashing techniques 
have been developed [13]. Prominent deep hashing methods include CNNH (Convo-
lutional Neural Network Hashing) [18], DPSH (Deep Pairwise Supervised Hashing) 
[19] and DHN (Deep Hashing Network) [20]. For instance, UDQH-IQ (Unsuper-
vised Deep Quadruplet Hashing with Isometric Quantization) [21] uses the quad-
ruplet-based loss as the input of a deep network to explore the underlying semantic 
similarity of images and employs Hamming-isometric quantization to maximize the 
consistency of semantic similarity. SPL-UDH (Soft-Pseudo-Label-based Unsuper-
vised Deep Hashing) [22] utilizes an auto-encoder to derive soft pseudo-labels and 
local similarities of images simultaneously. Based on these, inter- and intra-cluster 
similarities of images can be further learned by a deep hashing network. Despite the 

Fig. 1 The visualization of feature map output by the fifth layer of convolution neural network
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popularity of deep hashing, there are limitations that require further exploration and 
more endeavors. For example, early deep hashing techniques separate deep feature 
learning and binary code generation. Moreover, unsupervised deep hashing does not 
fully consider semantic information. Although supervised ones take label and seman-
tic similarity information into consideration when generating binary codes, they do 
not consider semantic structures in Hamming space [17].

In this work, we propose a novel end-to-end deep hashing model for image retrieval 
with binary code similarities, dubbed CSDH, to address the problems above. It 
extracts deep features to capture semantic structural information of images using a 
pre-trained deep convolution neural network (CNN). To generate binary codes, a hid-
den and fully connected layer is attached at the end of the deep network. This hid-
den layer is used to construct hash functions and is referred to as a hash layer, where 
the activation status of each unit is served as a hash bit. Unlike deep hashing models 
that directly use a classification layer to generate binary codes, our hashing model 
with the hash layer can better preserve the semantic similarities of images because 
the hash layer can capture high-level semantic information related to labels. Further-
more, to enhance the consistency of similarity preservation, the embedding distances 
of images in Hamming space are incorporated into the loss function. This embedding 
property ensures that the generated binary codes are of higher quality and possess 
greater capability.

To sum up, the main contributions of this work are briefly highlighted as follows:

• The proposed model, CSDH, is an end-to-end deep hashing model for image 
retrieval that uses a pre-trained deep convolution neural network (CNN) to 
extract deep features and capture semantic structural information of images.

• A hidden and fully connected layer, referred to as a hash layer, is attached at the 
end of the deep network to generate binary codes. This approach better preserves 
the semantic similarities of images compared to models that directly use a classifi-
cation layer; that is, the images with more similar codes have a higher probability 
of becoming the same category.

• The model incorporates the embedding distances of images in Hamming space 
into the loss function to enhance the consistency of similarity preservation, result-
ing in higher quality binary codes with greater capability.

The remainder of the paper is organized as follows. Section  briefly discusses related 
studies about hash learning. Section   presents the proposed hashing method for 
image retrieval in detail, followed by the experimental results and discussions in 
Sect. . Finally, the conclusion and future studies are given in Sect. .

Related work
Hash learning, with its many potential advantages including high efficiency and low 
storage cost, has quickly become a leading technique in image retrieval and big data 
analysis. A multitude of hash learning algorithms have been witnessed to date. These 
hash learning techniques can be grouped into different categories, such as supervised 
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and unsupervised hashing, data-oblivious and data-aware (also known as data-inde-
pendent and data-dependent, respectively) hashing, based on their properties or per-
spectives [13, 17].

Depending on which type of features has been adopted, hashing models can also be 
classified into shallow hashing and deep hashing in a board way. Shallow hashing tech-
niques rely solely on handcrafted features for the training of hashing models and the gen-
eration of binary codes. One of the most notable examples of this is Locality-Sensitive 
Hashing (LSH), which encodes data into a binary representation via random projections 
[10]. LSH is extremely efficient, but the retrieved neighbors are random to some extent 
and may not exact neighbors. To this end, Iterative Quantization (ITQ) generates binary 
codes predicated on the principal components of data [11], while Spectral Hashing (SH) 
seeks the eigenvectors of graph Laplacian to achieve data projection [23]. Unfortunately, 
the similarity structure of data may not be preserved in ITQ, and the optimization prob-
lem of SH is NP-hard one. Kernelized Supervised Hashing (KSH) employs kernel func-
tions to handle non-linear data when designing hash function design [24]. Although it 
requires less supervised information, its performance heavily relies on kernel functions, 
incurring some cumbersome model training. Fast Supervised Hashing (FastH) utilizes 
boosting trees, a simple yet effective regression of the class labels, to tackle the high-
dimensional problem [25], and Robust Supervised Discrete Hashing (RSDH) employs 
the Cauchy loss to measure the error of label matrix decomposition, thereby enhancing 
model robustness [26]. However, large quantization errors and suboptimal solutions may 
be inevitably induced when relaxing the discrete constraint on hash codes. Moreover, as 
previously discussed, the shallow hashing algorithms concern the data with handcrafted 
features, which are designed for specific tasks during the process of collecting data, 
without involving strongly semantic information. Thus, the performance of constructed 
hashing models is limited, albeit some of them take label information into account.

In contrast, deep hashing leverages deep features extracted by deep neural networks, 
such as CNN, VGG, AlexNet, ResNet, and BERT, to construct hashing models and gen-
erate binary codes [12, 13]. These deep features encapsulate rich semantic and structural 
information, exhibiting strong discriminative capabilities. As a result, deep hashing has 
been extensively studied and widely used in image retrieval. Representative examples of 
deep hashing include CNNH [18], DPSH [19], DHN [20] and DQN (Deep Quantiza-
tion Network) [27]. Despite that these deep hashing models have competitive perfor-
mance, they still have some limitations required to be addressed. For example, CNNH 
can not handle those images with different scales and positions. DPSH requires a large 
amount of labeled data to train hashing models, while the optimal policy of DQN is 
non-deterministic.

Recently, HashSIM [28] guides the generation of binary codes by using semantically 
structural similarities derived from highly confident images. Besides, the independ-
ent property of hash bits has also been considered. However, it likely requires a great 
number of highly confident images, which are difficult to obtain in reality. Cui et al. [29] 
first extracted binarized representation embeddings of data via metric learning, then 
constructed a hashing model using a group similarity preservation strategy. A limita-
tion of this hashing model is that when the length of binary codes is extremely short, 
the discriminability of deep representations is relatively poor. DUDH (Deep Uncoupled 
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Discrete Hashing) [30] adopts a similarity-transfer matrix to bridge the gap between 
query and image similarities, thereby reducing quantization error and preserving image 
semantic similarities. However, only the process of preserving similarity takes the quan-
tization error into account, resulting in the limited improvement of retrieval perfor-
mance. It should be pointed out that the unsupervised hashing models above, despite 
enhancing retrieval performance to some extent, have not considered label information.

Supervised deep hashing methodologies, which leverage both deep features and 
expert-provided labels as semantic information to help the generation of binary codes, 
have been demonstrated to outperform their unsupervised counterparts in retrieval 
performance, thereby garnering significant interest in the field of image retrieval. Note-
worthy supervised hashing algorithms include DSHTL (Deep Supervised Hashing with 
Triplet Labels) [31] and DSDH (Deep Discrete Supervised Hashing) [32], where DSHTL 
maximizes the likelihood of triplet similarities of labels to learn deep features and binary 
codes simultaneously. However, obtaining the triplet similarities of labels is non-trivial. 
For DSDH, it harnesses pairwise supervised information to directly extract deep features 
and promote the generation of discrete codes.

DDH-LDL (Deep Discrete Hashing for Label Distribution Learning) [33] incorporates 
label distribution learning to model implicit semantic relationships, which were subse-
quently preserved through message aggregation operations on a graph convolutional 
network. As we know, the feature distribution may be inevitably distorted by the aggre-
gation operations, leading to retrieval performance decline. DAHP (Deep Attention-
Guided Hashing With Pairwise Labels) [34] utilized anchors as supervised information 
to extract the contextual information of features, thereby enhancing the representational 
capacity of the hashing model constructed on the ResNet with position and channel 
attention mechanisms. Although the attention-guided hash codes can instruct the train-
ing of hashing network, they may contain repetitive and highly correlated information. 
Hu et al. [35] employed the cosine similarities of images to preserve semantic distribu-
tions and utilized cosine-distance entropy to mitigate quantization errors for imbalanced 
data. However, local features had not been considered when learning the contextual 
information. Much more recently, SPL-UDH (Soft-Pseudo-Label-based Unsupervised 
Deep Hashing) [36] obtains binary representations by performing Bayesian theory on 
local similarities and soft pseudo-labels, which are derived by a deep auto-encoder net-
work. PLDH (Pseudo-Labels Deep Hashing) [37] also exploits pseudo-labels extracted 
by a deep neural network to guide the generation of hash codes. It is worth noting that 
pseudo-labels are not really ones and may contains inconsistent semantic information. 
Moreover, existing supervised algorithms primarily focus on the semantic information 
in Euclidean space, neglecting those in Hamming space.

Methodology
Problem statement

Assume that x = {(xi, yi)}
n
i=1 is an image (or data) collection comprising of n images 

(or data objects), where xi ∈ Rd (i=1..n) is the i-th image, represented as a vector of d 
dimensions. The vector yi ∈ {0, 1}l refers to the label information corresponding to the i-
th image xi , where l is the number of labels. X is called a single-label or normal collection 
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if there is only one label marked to xi (i=1..n); that is, for each label vector yi of xi , we 
have �l

j=1yij = 1 . Otherwise, X is a multi-label collection for supervised learning.
Let h(X ) be a hash function of X . Mathematically, it is defined as follows:

where b is a binary value. From the definition, we know that the hash function h(X ) 
encodes the image X into a binary value, i.e., 0 or 1, which is also called hash bit in the 
literature. If we have m hash functions hi ( i = 1..m ) and perform them on X , we can 
receive m binary values (i.e., hash bits) bi ( i = 1..m ). In this case, the image X can be 
transformed to a vector of binary representations b = [b1, b2, .., bm] ∈ {0, 1}m , as bi is 
assembled together directly.

Hash learning aims to construct a variety of hash functions H = {h1,h2, ..,hm} , so 
that each image X can be represented as a binary vector b = [b1, b2, .., bm] ∈ {0, 1}m . 
Under this context, the image collection X is transformed into the binary representa-
tions b = H(X) , i.e., b = {bi}

n
i=1 ∈ {0, 1}n×m , where bi is the binary representation of xi , 

after the hash functions H are performed on X . Generally, the number of binary values 
is far less than the quantities of image dimensions, i.e., m ≪ d . From this perspective, 
hash learning can effectively benefit big data analysis in the aspects of storage cost and 
computational efficiency. For the sake of discussion, hereafter the binary values are rep-
resented as −1 and 1, rather than 0 and 1; that is, b ∈ {−1, 1}n×m.

Generally, the objective function of hash learning is formally represented as follows.

where b = h(X) and ℓh(X , b) is the quantization error of X after the hash function h 
exerted. This definition implies that the error should be minimized when learning the 
hash functions H ; that is, the information loss should be less as much as possible.

Model architecture

It is still a formidable challenge to learn and construct effective hashing functions. A 
multitude of techniques for constructing hash function have been proposed, including 
Locality-Sensitive Hashing (LSH), which employs projection techniques to randomly 
generate H , and Iterative Quantization (ITQ), which utilizes the principal components 
of X as H . However, these shallow hashing methods do not take into account the inher-
ent properties of the data, resulting in the relatively poor quality of binary codes gener-
ated by them. Furthermore, these methods rely solely on handcrafted features, which 
contain limited semantic information, making their retrieval performance less competi-
tive. In contrast, deep hashing techniques extract deep features from data, encapsulating 
rich semantic and structural information for hash function generation. Consequently, 
deep hashing methods typically outperform their shallow counterparts.

In this work, we introduce a novel end-to-end deep hashing method, termed Code 
Similarity-based Deep Hashing (CSDH), for image retrieval. CSDH employs a tailored 
deep convolutional neural network to represent images and extract deep features for 
binary code generation. The specific framework of CSDH, illustrated in Fig. 2, serves two 

(1)h : X �→ b ∈ {0, 1},

(2)ℓH (X , b) =

n
∑

i=1

m
∑

j=1

ℓhj (xi, bi),
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primary objectives: data representation and similarity preservation. The former extracts 
high-level semantic features from images, while the latter ensures that the semantic 
similarities of images can be preserved when generating corresponding binary codes. In 
other words, the embedded similarities of images should be preserved and consistent 
when transitioning from Euclidean space to Hamming space.

Specifically, we utilize a tailored AlexNet architecture, a renowned eight-layer Convo-
lutional Neural Network (CNN), as the backbone of CSDH to extract high-level seman-
tic features from images. Due to its superior performance, the popularity of AlexNet 
is quickly increasing since it has been introduced. Indeed, the features captured by 
the AlexNet network contain significantly more semantic information than manually-
designed features. Traditionally, the architecture of AlexNet comprises five convo-
lutional layers and two fully connected layers, along with one prediction layer. In this 
work, we use the AlexNet network to represent images and extract their deep features 
for discrimination.

To achieve the purpose of hashing, we further customize AlexNet by supplying a hid-
den hash layer between the second fully connected layer and the prediction layer. This 
hash layer takes the output of the second fully connected layer as input and outputs 
binary values by transforming continuous values into binary ones via a given quantiza-
tion function. The hash layer contains k units, where k refers to the length of the desired 
binary codes. For each unit within the hash layer, it is assumed to be associated with a 
latent attribute, which will be used to determine the ultimate category of images. If a 
unit is activated, its output is 1; otherwise, its status is −1 . Consequently, each image can 
be represented as a binary code with k bits based on the activated status of the k units. 
For two similar images, we expect their binary codes to be similar or proximate after 
the binary representation or activation operations are performed; conversely, if they are 
dissimilar, their corresponding codes should also be dissimilar or far from each other in 
Hamming space. With this kind of similarity preservation, the probability of belonging 
to the same category of two images becomes higher if their binary codes are similar.

It is noticeable that information will be lost inevitably during the quantization pro-
cess. To mitigate quantization errors and preserve similarities, selecting an appropriate 
activation function for the hash layer plays a crucial role. By now, a plethora of activa-
tion functions, such as Tanh, Sigmoid, ReLU, Softmax, Swish, among others, have been 

Fig. 2 The deep hashing model framework of CSDH
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proposed and are ready-made in the literature [38]. Considering gradient vanishing and 
smooth properties, we take the softsign function, whose definition is given as follows 
[38], as the activation function for the hash layer.

where x is a continuous value.

Loss function

The final layer of AlexNet is utilized to predict the category to which an image belongs 
via a loss function. From this perspective, loss functions play a pivotal role in deep learn-
ing as they directly influence the semantic information of deep features and the predic-
tion performance of deep neural networks. To generate high-quality of binary codes, 
here we adopt a cross-entropy loss, in conjunction with a Hamming-embedding loss, for 
the prediction layer of the customized AlexNet network.

The cross-entropy loss quantifies the divergence degree between two probability dis-
tributions. Given two distinct probability distributions of a feature (a.k.a. variable) X, 
denoted as p(x) and q(x), their cross-entropy H(p, q) is formally defined as:

From this definition, it can be inferred that if two distributions are similar or proximate, 
their cross-entropy is small. Based on this rationale, we incorporate this concept into 
our loss function to predict the category labels of images. Specifically, let X be a nor-
mal image collection, where each image is tagged with a single label. For the i-th image 
xi ∈ x , the output of prediction layer is represented as:

where W ∈ Rl×k is the weight matrix of the prediction layer, bi is the output of hash 
layer for xi . v ∈ Rl is the bias of prediction. Thus, the cross-entropy loss of the neural 
network can be summarized as follows.

In a similar vein, if X is a multi-label image collection, where each image can be associ-
ated to multiple labels, we can treat it as l independent binary classifiers. In this case, the 
cross-entropy loss can be represented as

As the cross-entropy loss only concerns the prediction performance of deep features, 
it alone cannot guarantee the quality of binary codes generated by the hashing model. 
As discussed earlier, the property of similarity-preservation is also very crucial for the 

(3)Softsign(x) =
x

1+ |x|
,

(4)H(p, q) = −
∑

x∈X

p(x) log q(x).

(5)oi = Wbi + v,

(6)ℓE(X) = −
1

n

n
∑

i=1

log(
exp(oiyi)

∑l
c=1 exp(oic)

).

(7)ℓE(X) = −
1

nl

n
∑

i=1

l
∑

j=1

yij log
1

1+ exp(−oij)
+ (1− yij) log(1−

1

1+ exp(−oij)
).
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generation of binary codes. To achieve this purpose, we also take Hamming embedding 
into consideration when constructing the hashing model.

Assume bi and bj are two binary codes derived from the hash layer for xi and xj images, 
respectively. The Hamming distance between them is

where k is the length of binary codes. According to the definition, the Hamming dis-
tance is an inverse proportion of cosine value. This property can be exploited to measure 
the similarity of binary codes. In Hamming space, two binary codes, bi and bj , are con-
sidered to be semantically similar, if distH (bi, bj) is small enough; Otherwise, they are 
semantically dissimilar to each other. Let sij be a semantically label between bi and bj , 
where sij = 1 when bi is semantically similar to bj ; Otherwise, sij = 0 . Under this con-
text, this kind of Hamming embedding can also be used to estimate the quality of binary 
codes.

Suppose that S ∈ {0, 1}n×n is the semantically pairwise similarity of binary codes, each 
entry sij ∈ S denotes the semantic label between bi and bj . The Hamming embedding loss 
refers to the total summary of pairwise Hamming distances, i.e.,

where |S| denotes the total number of semantic similarity labels. H(bi, bj) is the Ham-
ming embedded distance shown as follows.

According to Eq. (3), we know that the output of the hash layer is a vector of continuous 
values. Thus, the Hamming embedded distance above can be represented as

where hi is the output vector of hash layer for the i-th image xi.
Based on the Hamming embedded loss, the customized AlexNet network can be itera-

tively updated by the technique of gradient descent. For distH (hi,hj) , its gradient can be 
easily estimated. When sij = 1 , its gradient is

when hi is not semantically similar to hj , i.e., sij = 0 , the gradient of H(hi,hj) is

(8)
(b)distH (bi, bj) =

1

2
(k − bTi bj)

=
k

2
(1− cos(bi, bj)),

(9)ℓH (X) =
1

|S|

∑

sij∈S

H(bi, bj),

(10)H(bi, bj) =

{

distH (bi, bj), sij = 1
max(0, 1− distH (bi, bj)). otherwise

(11)H(hi,hj) =

{

distH (hi,hj), sij = 1
max(0, 1− distH (hi,hj)). otherwise

(12)
∂H

∂hi
= −

1

|S|

∑

sij∈S

1

�hi�

(

hj
∥

∥hj
∥

∥

− cos
(

hi,hj
) hi

�hi�

)

.
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Algorithm details

In summary, the objective function of our deep hashing model is to minimize the follow-
ing loss function

where � denotes hyper-parameters of the deep neural network. γ is a trade-off factor to 
make a balance between the cross-entropy loss and the Hamming embedded loss.

Based on the statement above, the implementation details of deep hashing model with 
binary code similarities is given as follows. 

Algorithm 1 Binary code similariy based deep hashing

Experimental results and discussion
To evaluate the competitiveness of CSDH, we conducted a series of comparative experi-
ments with five classical hashing algorithms and six popular deep hashing algorithms 
on two public image collections. This section elucidates the experimental results and 
discussions.

Experimental settings

Two frequently-used benchmark image datasets, CIFAR-10 and NUS-WIDE, were 
employed to evaluate the performance of CSDH against the baseline algorithms. The 
CIFAR-10 dataset comprises 60,000 colorful images, each of size 32× 32 pixels, dis-
tributed evenly across ten classes. These classes involve various animals (e.g., bird, 
dog, cat, deer, bird, horse and frog) and public transport vehicles (like truck, car, 
airplane and ship). Each class contains 6000 images. As CIFAR-10 is a single-label 
dataset, each image is associated with only a single label. For our experiments, we 
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randomly selected 100 images per class as query images and 500 images per class for 
training. Consequently, the training dataset comprised 5000 colorful images while the 
query dataset contained 1000 images.

NUS-WIDE is a multi-label image dataset where each image is simultaneously asso-
ciated with multiple labels. It consists of 269,648 color images tagged with eighty-
one class labels, such as dog, bird, car, and so on, totally. These images were collected 
from Flickr. Following conventional practices in the literature, we selected 195,834 
images tagged with the top-21 labels from the eighty-one ground-truth labels for our 
experiments. Each class contained at least 5000 images. We adopted the similar strat-
egy to generate query and training data as with CIFAR-10: 100 images were randomly 
selected as queries and 500 images were used as training data for each class label. As 
a result, the query dataset contained 2100 images while the database included 193,734 
images of which 10,500 were designated as training data.

For a fair comparison, we considered two kinds of hashing techniques: shallow 
hashing and deep hashing as baselines in our experiments. The shallow hashing algo-
rithms included ITQ [11], SH [23], KSH [24], FastH [25] and RSDH [26]. As stated 
above, SH and ITQ are unsupervised hashing algorithms while KSH, FastH and 
RSDH are supervised ones. The deep hashing methods included CNNH [18], DPSH 
[19], DHN [20], DQN [27], DSHTL [31], DSDH [32], PLDH [37], DDH-LDL [33] 
and DAHP [34]. It should be pointed out that DPSH, DSDH and DSHTL employed 
VGG-F as their backbone of convolution neural network. VGG-F is structurally simi-
lar to AlexNet comprising five convolution layers and two fully-connected layers. For 
fairness in comparison, the shallow hashing models were constructed on deep fea-
tures where the CIFAR-10 collection was represented by 512 GIST features. For NUS-
WIDE collection, each image was represented as 1134 low-level features including 
color histograms (64), color correlation (144), edge histograms (73), wavelet textures 
(128), color blocks (225) and SIFT features (500). In contrast, the deep models were 
trained directly on the original images.

Following traditional strategies in comparative experiments for hash learning, we con-
sidered image similarities as the ground truth in the following manner: Two single-label 
images were deemed to be similar if they were tagged with the same label; otherwise 
they were considered dissimilar. For multi-label images, they were considered similar if 
they shared at least one class label; otherwise they were dissimilar to each other.

Three frequently-used evaluation protocols were adopted to testify retrieval perfor-
mance of the hashing models in the experiments. They were mean average precision 
(mAP), precision and precision-recall curve. Let Q = {qi}

t
i=1 be a query collection. For 

each query q ∈ Q , its retrieval precision refers to the ratio of the quantity of similar 
images to the total number of retrieval results, i.e.,

where R is the total number of retrieval results, and ℓr denotes the label of the r-th 
retrieval result. δ(·) is an indication function. δ(ℓr=ℓq) =1 if the r-th retrieval result has 
the same label to the query q. On the contrary, δ(ℓr=ℓq)=0, if there is no same label 
between them. In our experiments, we retrieved 5,000 images for each query; that is, 

(15)Preq(R) =

∑R
r=1 δ(ℓr = ℓq)

R
,
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R = 5000 . Based on the above formula, the mean average precision of the query set Q is 
formally represented as

The Precision-Recall curve delineates the interplay between precision and recall, two 
pivotal metrics in information retrieval. Precision quantifies the relevance of retrieved 
results, while recall measures the proportion of truly relevant results that are success-
fully retrieved. An optimal retrieval model is characterized by high precision, ensuring 
the accuracy of results, and high recall, guaranteeing the retrieval of a substantial frac-
tion of positive results. The Precision-Recall curve, therefore, serves as a critical tool for 
evaluating the performance of retrieval models.

We implemented the CSDH model by using PyTorch, an open-source machine learn-
ing framework. For the hyperparameters of the deep neural network, they were metic-
ulously fine-tuned in a back-propagation way. Specifically, we utilized the mini-batch 
stochastic gradient descent as the optimizer for CSDH. Throughout the experimental 
process, we set the size of batch, weight decay, and momentum of the optimizer to 32, 
0.0005, and 0.9, respectively. Meanwhile, the learning rate was initially assigned to 0.001 
and subsequently decayed a time after 40 training epochs.

Results and discussion

As we know, the mean Average Precision (mAP) is one of the most widely-used met-
ric for evaluating retrieval performance of hashing models. In line with this convention, 
here we also adopted the mAP metric to make a comparison of the retrieval perfor-
mance between CSDH and the baselines. Figures 3 and 4 present the comparison scores 
of mAP for 5000 query results returned by the shallow baseline models and the deep 
baseline models with varying quantities of hash bits, respectively.

From the experimental results presented in Figs. 3, 4, we can easily conclude that 
the proposed hashing method exhibits competitive performance compared to the 
baseline models. For example, when compared to FastH, CSDH boosted the retrieval 
performance of mAP on the CIFAR-10 and NUS-WIDE collections by 46.77% and 
17.92%, respectively. In a similar vein, the mAP scores of CSDH were higher than 

(16)mAP(Q) =
1

|Q|

∑

q∈Q

∑R
r=1 Preq(r)δ(ℓr = ℓq)
∑R

r=1 δ(ℓr = ℓq)
.

Fig. 3 The mAP comparison of CSDH to the shallow hashing algorithms with different quantities of hash bits
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those of DSDH, a state-of-the-art deep hashing model, by 3.27% and 2.67% on 
these two image collections, respectively. Another interesting fact is that the mAP 
scores of supervised hashing algorithms, e.g., RSDH, KSH and FastH, were signifi-
cantly higher than those of unsupervised hashing ones, e.g., SH and ITQ. This can 
be attributed to the fact that the class labels embody a kind of semantic information 
that aids hashing models in generating informative hash bits.

Note that the deep hashing models were generally superior to the shallow ones, 
particularly on the single-label data. It sounds reasonable because the deep tech-
niques leveraged high-level semantic features to train hashing models. Among the 
deep models, DSDH, DAHP, DSHTL and DPSH achieved comparable performance 
to CNNH, DHN, PLDH and DQN. This can be attributed to their use of data or 
label similarities to guide binary code generation. Since our hashing model, CSDH, 
exploited the cross-entropy information, as well as semantic similarities, within the 
loss function, it achieved better retrieval performance than other models, especially 
when fewer hash bits (e.g., 12 or 24 bits) were used. Indeed, the cross-entropy loss 
has been shown to effectively capture rich semantic information in the literature.

As stated above, convolution neural network can extract deep features to capture 
semantic information, thereby enhancing model performance. To validate this asser-
tion, we carried out additional experiments using the shallow hashing algorithms 
with deep features on the image collections. Specifically, we extracted deep features 
with 4096 dimensions from images using VGG-F, i.e., the output of the last layer of 
VGG-F. Then the shallow hashing algorithms were performed with these deep fea-
tures to generate hash bits. The experimental results are provided in Fig. 5.

According to the mAP scores in Fig.  5, one can observe that the deep features 
could significantly strength the retrieval performance of the shallow hashing models. 
Broadly speaking, the shallow hashing algorithms with deep features significantly 
outperformed those without deep features. For example, the mAP score of FastH 
increased from 0.305 to 0.553 on CIFAR-10 when the number of hash bits was 12. 
Particularly on multi-label collections like NUS-WIDE, the performance of the shal-
low hashing algorithms was comparable to that of the deep hashing ones (see Fig. 4).

Fig. 4 The mAP comparison of CSDH to the deep hashing algorithms with different quantities of hash bits
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Ablation analysis

The aforementioned discussions show that the image similarity can bring benefits 
to the performance of hashing models, as evidenced by DSDH, DAHP, DSHTL and 
DPSH. Unlike those deep hashing models only with label similarities, our model 
extends beyond by integrating Hamming embedding distances into the loss function. 
To testify the contribution of Hamming embedding distances to retrieval perfor-
mance, we conducted additional experiments on image collections using our pro-
posed model with and without Hamming embedding distances, denoted as CSDH 
and CSDH-, respectively.

Fig. 5 The mAP comparison of CSDH to the shallow hashing methods with deep features by VGG-F

Fig. 6 The performance of our model with (or without) the Hamming embedding loss, denoted as CSDH 
and CSDH-, respectively
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Figure 6 illustrates the mAP and precision of the proposed hashing model with differ-
ent quantities of hash bits, where CSDH- denotes CSDH without the Hamming embed-
ding distances. From the experimental results in Fig. 6, we can observe a fact that the 
Hamming embedding distances can significantly strength retrieval performance from 
the perspectives of both mAP and precision. This is reasonable and consistent with the 
intuitive understanding that the Hamming embedding distances can preserve the con-
sistency of semantic similarity of data to some extent. For the multi-label collection, i.e., 
NUS-WIDE, the performance improvement was particularly pronounced due to the rich 
semantic information contained in multi-label images, which makes the model more 
effective.

Figure  7 presents the precision-recall curves of CSDH and its counterpart without 
the Hamming embedding loss (i.e., CSDH-) on the NUS-WIDE collection when 12 
and 48 hash bits were used, respectively. The precision-recall curves further confirmed 
the effectiveness of the Hamming embedding loss, which could preserve the semantic 
similarities of data during the process of hash projection. This conclusion holds true for 
other quantities of hash bits as well; however, due to space constraints, we have not pro-
vided these results individually.

Conclusions
In this work, we proposed a novel end-to-end deep hashing model, CSDH, for image 
retrieval that leverages binary code similarities. The hashing model first employs 
a pre-trained deep convolutional neural network to extract deep features, captur-
ing the semantic structural information of images. A hidden and fully connected layer 
is attached to the end of the deep network. This hidden layer referred to as the hash 
layer, transforms the continuous values outputted by the last layer into binary ones via 
an activation function. To hold the consistency in similarity preservation, the Ham-
ming embedding distances are also introduced into the loss function. The superiority 
of CSDH was validated through extensive experiments on two public image collections. 
The experimental results verify that CSDH exhibits competitive performance compared 
to popular deep hashing models.

Note that the proposed hashing model, taking AlexNet as its foundational architec-
ture, may inevitably encounter the well-documented issue of gradient vanishing. Besides, 

Fig. 7 The precision-recall curves of our model with (or without) the Hamming embedding loss, denoted as 
CSDH and CSDH-, respectively, on NUS-WIDE
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the depth of AlexNet is relatively shallow, potentially limiting the complexity of the deep 
features it can extract. Thus, our future work will explore the integration of more mod-
ern neural network architectures, such as GoogLeNet, ResNet, and DenseNet, into our 
hashing model. These models offer increased depth and innovative structures, suggest-
ing that they may enhance the feature extraction capabilities of our model, as well as 
mitigating the gradient vanishing problem. By incorporating these advanced architec-
tures, we aim to improve the robustness and performance of our hashing model.
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