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Abstract

The Fennec Fox algorithm (FFA) is a new meta-heuristic algorithm that is primarily
inspired by the Fennec fox’s ability to dig and escape from wild predators. Compared
with other classical algorithms, FFA shows strong competitiveness. The “No free lunch”
theorem shows that an algorithm has different effects in the face of different prob-
lems, such as: when solving high-dimensional or more complex applications, there
are challenges such as easily falling into local optimal and slow convergence speed. To
solve this problem with FFA, in this paper, an improved Fenna fox algorithm DEMFFA
is proposed by adding sin chaotic mapping, formula factor adjustment, Cauchy opera-
tor mutation, and differential evolution mutation strategies. Firstly, a sin chaotic map-
ping strategy is added in the initialization stage to make the population distribution
more uniform, thus speeding up the algorithm convergence speed. Secondly, in order
to expedite the convergence speed of the algorithm, adjustments are made to the fac-
tors of the formula whose position is updated in the first stage, resulting in faster
convergence. Finally, in order to prevent the algorithm from getting into the local
optimal too early and expand the search space of the population, the Cauchy operator
mutation strategy and differential evolution mutation strategy are added after the first
and second stages of the original algorithm update. In order to verify the performance
of the proposed DEMFFA, qualitative analysis is carried out on different test sets,

and the proposed algorithm is tested with the original FFA, other classical algorithms,
improved algorithms, and newly proposed algorithms on three different test sets.

And we also carried out a qualitative analysis of the CEC2020. In addition, DEMFFA

is applied to 10 practical engineering design problems and a complex 24-bar truss
topology optimization problem, and the results show that the DEMFFA algorithm

has the potential to solve complex problems.

Keywords: Fennec Fox algorithm, Sin chaotic mapping, Formula factor cosine
adjustment, Cauchy operator mutation, Differential evolution mutation, Engineering
design, 24-Bar truss topology optimization
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Introduction

The objective of the optimization problem is to identify the minimum or maximum value
of the objective function while adhering to a predefined set of constraints [1]. Optimiza-
tion problems find extensive applications in energy prediction [2], feature selection [3],
deep neural networks [4], and various other domains. In recent years, with advance-
ments in science and society, optimization challenges in different domains have pro-
gressed towards complex, high-dimensional, nonlinear, and optimization problems with
abundant local features [5]. Traditional optimization methods such as gradient descent
can not solve these problems well, and it is difficult to get the global optimal solution
or solve these complex problems [6]. In order to solve these problems, researchers have
found a new alternative method, in which the meta-heuristic algorithm is a kind of opti-
mization method with strong randomness, independent function gradient information,
and the ability to escape local extreme values, etc., which is applied in various fields.

Meta-heuristic algorithms are primarily inspired by mimicking concepts defined in
the life and physical sciences [7]. According to different principles of meta-heuristic
algorithms, meta-heuristic algorithms can be divided into types based on evolutionary
mechanism, subject principle, and swarm intelligence. In addition, some meta-heuristic
algorithms are inspired by humans. Table 1 shows the meta-heuristic algorithms for the
different categories mentioned in the introduction. The first class of algorithms based
on evolutionary mechanisms is a class of algorithms that simulate biological evolution-
ary mechanisms. The genetic algorithm (GA) [8] was first proposed to select or elimi-
nate this trait through the species’ heredity, variation, survival struggle, and adaptability
to the environment. Differential Evolution algorithm (DE) [9] with great advantages in
convergence speed and simplicity; Biogeography-based optimization algorithm (BBO)
to describe the survival laws of species migration, emergence, and extinction [10]. The
Imperial Competition algorithm (ICA) [11], which is subject to imperialist competi-
tion, and the Forest optimization algorithm (FOA) [12] are based on the law of forest
evolution; In addition to this, the category has recently emerged in addition to a large
number of meta-heuristic algorithms such as: Human evolution optimization algorithm
(HEOA) proposed through two stages of human evolution: human development and
human exploration [13]; The Love Evolution Algorithm (LEA) [14] is proposed through
the stimulation stage, value stage and role stage of love, etc.

The second type of algorithm based on discipline principles is a class of algorithms
formed according to the rules or formulas of different disciplines. For example, Fick’s
Law optimizer (FLA) [15] based on the first law of diffusion of gases and liquids in
physics; Kepler optimization algorithm (KOA) [16] is founded on the laws of planetary
motion discovered by Kepler; The Big Bang-Big Crunch optimization algorithm (BB-
BC) [17], takes inspiration from the concept of the Big Bang-Big Crunch theory, which
describes the evolution of the universe. Snow Ablation optimizer (SAO) was proposed to
simulate melting and sublimation processes [18], and Franklin’s Law Inspired optimiza-
tion algorithm (CFA) [19]. Quadratic Interpolation optimization (QIO) [20] is inspired
by generalized quadratic interpolation in mathematics; The Exponential Distribution
optimizer (EDO) [21] is proposed based on the exponential probability distribution
model; Newton—Raphson-based optimizer (NRBO) [22] inspired by Newton—Raphson,
etc.



Hu et al. Journal of Big Data (2024) 11:69 Page 3 of 70

Table 1 Review of different types of meta-heuristic algorithms

Algorithms Year Inspiration
Genetic Algorithm (GA) [8] 1975 Mechanism of biological evolution in nature
Differential Evolution Algorithm (DE) [9] 1995 Cooperation and competition among individuals

within a group
Big Bang-Big Crunch optimization algorithm (BB- 2006 The concept of the Big Bang-Big Crunch theory

BO) [17]

Imperial Competition algorithm (ICA) [11] 2007 Imperialist competition

Biogeography-based optimization algorithm (BBO) 2008 The survival laws of species migration, emergence,
[10] and extinction

Forest optimization algorithm (FOA) [12] 2014 The law of forest evolution

Killer Whale algorithm (KWA) [27] 2017 The life habits of orca

Tree growth algorithm (TGA) [26] 2018 Tree competition for light and nutrients

Student Psychological Based optimization algo- 2020 The psychological characteristics of students’ perfor-
rithm (SPBO) [40] mance in exams

Flamingos Search algorithm (FSA) [23] 2021 Flamingos migration behavior

Starling murmuration optimizer (SMO) [34] 2022 The behavior of starlings in a stunning cacophony

Beluga whale optimization algorithm (BWO)[31] 2022 The living behavior of beluga whales

Children’s Drawing Development optimization 2022 The law of children’s cognitive development
algorithm (CDDO) [37]

Chef-Based optimization algorithm (CBOA) [38] 2022 Simulation of learning cooking skills

Gold Rush optimizer (GRO) [39] 2022 The interaction between humans searching for gold

Sea-horse Optimizer (SHO) [6] 2023 Motor, predation, and reproductive behavior of
seahorses

Fick's Law optimizer (FLA) [15] 2023 The first law of diffusion of gases and liquids in
physics

Kepler optimization algorithm (KOA) [16] 2023 The laws of planetary motion discovered by Kepler

Snow Ablation optimizer (SAO) [18] 2023 Simulate melting and sublimation processes

Franklin's Law Inspired optimization algorithm 2023 Coulomb's law and Franklin's law

(CFA) [19]

Quadratic Interpolation optimization (QIO) [20] 2023 Generalized quadratic interpolation in mathematics

Exponential Distribution optimizer (EDO) [21] 2023 The exponential probability distribution model

Crawfish optimization algorithm (COA) [24] 2023 Crawfish's summer heat, competition, and foraging
behavior

Tyrannosaurus optimization algorithm (TROA) [25] 2023  Tyrannosaurus's hunting behavior

The Mantis Search Algorithm (MSA) [28] 2023  The well-known opposite-eating behavior of
mantises

Bottlenose Dolphin Optimizer (BDO) [29] 2023 Foraging behavior and mud-ring feeding strategies

Gazelle Optimizer algorithm (GOA) [30] 2023 Simulates gazelle foraging on the savannah

Great Wall Construction Algorithm (GWCA) [32] 2023 Competition and elimination mechanism among
workers in the construction of the Great Wall

Genghis Khan Shark (GKSO) [33] 2023  Predation and survival behavior of the Genghis Khan
shark

Human evolution optimization algorithm (HEOA) 2024 Human development and human exploration

[13]

Love Evolution Algorithm (LEA) [14] 2024 The stimulation stage, value stage and role stage of
love

Newton-Raphson-based optimizer (NRBO) [22] 2024 Newton-Raphson

Crested Porcupine Optimizer (CPO) [35] 2024 Four defensive behaviors of crested porcupines

Parrot optimizer (PO) [36] 2024  Key behaviors of parrots after training

Lungs performance-based optimization (LPO) [41] 2024 Regularity and intelligent performance of human
lung
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The third category of population-based meta-heuristic algorithms primarily focuses
on simulating specific behaviors observed in biological groups. For example, the Flamin-
gos Search algorithm (FSA) is based on flamingo’s migration behavior [23]; the Crawfish
optimization algorithm (COA) [24] is based on crawfish’s summer heat, competition,
and foraging behavior; The Tyrannosaurus optimization algorithm (TROA) [25] was
proposed based on Tyrannosaurus’s hunting behavior. The Tree growth algorithm
(TGA) [26] is based on tree competition for light and nutrients; The Killer Whale algo-
rithm (KWA) [27] proposed according to the life habits of orca; The Mantis Search Algo-
rithm (MSA) [28], is inspired by the well-known opposite-eating behavior of mantises.
In addition, there are Seahorse Optimizer (SHO) [6], Bottlenose Dolphin Optimizer
(BDO) [29], Gazelle Optimizer algorithm (GOA) [30], Beluga whale optimization algo-
rithm (BWO) [31], Great Wall Construction Algorithm (GWCA) [32], Genghis Khan
Shark (GKSO) [33], Starling murmuration optimizer (SMO) [34], Crested Porcupine
Optimizer (CPO) [35], Parrot optimizer (PO) [36], etc.

Lastly, human-based algorithms comprise a class of algorithms that draw inspiration
from human behavior. For example: The Children’s Drawing Development optimization
algorithm (CDDO) [37] was proposed based on the law of children’s cognitive develop-
ment; A Chef-Based optimization algorithm (CBOA) [38] was proposed based on the
simulation of learning cooking skills. The Gold Rush optimizer (GRO) [39] was proposed
based on the interaction between humans searching for gold, and the Student Psycho-
logical Based optimization algorithm (SPBO) [40] was proposed based on the psycho-
logical characteristics of students’ performance in exams. Lungs performance-based
optimization (LPO) [41] is based on regularity and intelligent performance of human
lungs, etc.

At present, the existing meta-heuristic algorithms are not limited to the algorithms
mentioned in the article. The meta-heuristic algorithm mainly includes two stages:
exploration and development. Although these meta-heuristic algorithms show strong
competitiveness in solving some problems, they can’t avoid falling into local optimal or
slow convergence when solving complex problems. The “No free Lunch” theorem (NFL),
proposed by Wolpert DH and Macready WG [42], explores the relationship between
optimization algorithms and the problem being solved. In other words, an algorithm
works very well for one problem, but if it is applied to a different problem, the results
will be much worse. To overcome this problem, people improve the performance of
the algorithm by adding new strategies in the exploration and development stage of the
intelligent algorithm, to improve the problem-solving ability of the algorithm.

For example, in 2023 Mohammad H. Nadimi-Shahraki et al. [43] proposed a mutant
MFO-SER for a new moth fire-fighting optimizer, which introduced an effective stall
and replacement strategy, thereby preserving population diversity in a process that was
harmful to the entire population. The effectiveness of the mutant is 91.38% through
experiments on the test machine. The differential evolution algorithm has the advan-
tages of fast convergence and strong robustness, but it also ignores population diver-
sity and other problems. Zhang et al. [44] improved the original DE by adding adaptive
parameter adjustment, hyperbolic tangent function, and a new mutation strategy, to
make its global search and local search ability more balanced. Particle swarm optimi-
zation has the advantages of easy implementation and simple parameters, but it also
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has the disadvantage of falling into local optimal. Hadi Moazen et al. [45] improved the
performance of the original particle swarm optimization by improving the mutation
operator, parameters, and the best position of particle history, and effectively solved the
disadvantage of falling into local optimal.

In addition, Gang Hu et al. [46] proposed a new Super Eagle optimization algo-
rithm (SEOA) in order to better solve and establish a UAV model, and designed two
modes for super eagles to determine prey at different stages to avoid premature con-
vergence. An information sharing strategy has also been introduced to balance devel-
opment and exploration capabilities. For prey, they can choose an orderly emergency
strategy based on emotional function to escape capture. Gang Hu et al. [47] also
introduced mutation strategy, prey recognition strategy and elite-opposition based
learning strategy into the original artificial rabbit optimization algorithm respectively,
and proposed a new meta-swarm intelligence optimization algorithm MNEARO. The
experimental results show that the improved algorithm has strong competitiveness in
solving different problems.

It was inspired by the NFL that EVA TROJOVSA et al. [48] proposed a new algo-
rithm, the Fennec Fox algorithm (FFA), in 2022, which mainly simulated two behav-
iors of Fennec foxes in nature. Firstly, the performance of FFA, Particle Swarm
Optimization, Genetic Algorithm, and some classical optimization algorithms is
tested on the benchmark function and engineering examples. The experimental
results show that FFA has a large competition, and the effectiveness and practicability
of the FFA algorithm are verified. Secondly, the FFA algorithm is compared with other
algorithms, and the results show that the FFA algorithm is more competitive than the
other algorithm in search ability and speed. At the same time, because the algorithm
has few parameters and is easy to implement, it can be applied to solving multi-objec-
tive problems and feature selection problems.

Although FFA has shown good performance in different test sets and engineering
applications, like other algorithms, also has some problems such as local optimiza-
tion, slow convergence, and ignoring population diversity. At present, no scholars
have proposed a new variant of FFA. To improve the ability of FFA to solve complex
problems, this paper proposes an improved Fennec Fox algorithm (DEMFFA). In
FFA, the performance of FFA is enhanced by introducing Cauchy operator variation,
formula factor adjustment, differential mutation strategy, and sin chaotic mapping.
Firstly, the sin chaotic mapping strategy is added in the initialization stage to make
the population distribution more uniform, increase the diversity of the population,
and greatly improve the convergence speed of the algorithm. Secondly, to increase
the convergence speed of the algorithm, the factors of the formula whose position is
updated in the first stage are adjusted to make the convergence speed of the algorithm
faster. Finally, to avoid the algorithm falling into local optimization prematurely, the
Cauchy operator mutation strategy and differential evolution mutation strategy are
added after the first and second stages of the original FFA update.

To assess the effectiveness of the DEMFFA algorithm, this study will conduct
comprehensive tests on CEC2017, CEC2020, and CEC2022. Through the evalu-
ation of various performance indicators, the superiority of the proposed algorithm
will be demonstrated. Moreover, this study will assess the efficacy of the DEMFFA by
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comparing it to other intelligent algorithms. The evaluation will involve 10 practical
engineering design problems and a complex 24-bar truss topology optimization case.
The key contributions of this study are summarized as follows:

1. A new variant of FFA is proposed: DEMFFA. The DEMFFA is introduced by incor-
porating a sin chaotic mapping strategy into the original FFA, and adjusting the
cosine factor used in the position update formula during the first stage. Moreover,
the algorithm incorporates the Cauchy operator mutation during the initial stage of
the FFA algorithm update, as well as a post-differential evolution mutation strategy
during the second stage.

2. The performance of the proposed algorithm is verified on the test function. The
proposed DEMFFA and other intelligent algorithms are tested on the CEC2017,
CEC2020, and CEC2022 test sets. The performance of DEMFFA is verified from dif-
ferent measurement indicators, which verifies the superiority of DEMFFA.

3. The practicability of the proposed DEMFFA is tested in engineering applications.
Through practical experimentation on 10 engineering design problems and a com-
plex 24-bar truss topology optimization case, empirical observations have shown
that the DEMFFA exhibits superior performance compared to other intelligent algo-
rithms. The experimental results demonstrate that DEMFFA exhibits a high level of
competitiveness and possesses exceptional capabilities in solving complex problem

scenarios.

On CEC2017 and CEC2020 test sets, 8 other intelligent optimization algorithms and
the original FFA algorithm are selected to compare with the proposed DEMFFA. The 8
intelligent optimization algorithms selected mainly include classical intelligent optimiza-
tion algorithms and newly proposed optimization algorithms in recent years. To increase
the difficulty of the comparison experiment and verify the performance of DEMFFA, 8
other intelligent optimization algorithms, and the original FFA algorithm were selected
to compare with the proposed DEMFFA on the CEC2020 test set. The selected 8 intel-
ligent optimization algorithms mainly included the improvement of classical intelligent
optimization algorithms and the optimization algorithms newly proposed in recent
years. All algorithms were statistically analyzed by the Friedman test and Wilcoxon rank
sum test. At the same time, we also carried out a qualitative analysis of the CEC2020 test
set, through the individual search history, the search trajectory of the first individual in
the first dimension, the convergence curve, and the average fitness value of four indi-
cators to test, the results show that the proposed algorithm can converge quickly and
show good performance. In addition, the proposed DEMFFA is applied to 10 engineer-
ing design problems and 24 bar truss topology optimization problems. The experimental
results show that the added strategy improves the performance of the original FFA, and
DEMFFA shows great competitiveness.

The remainder of this article is structured as follows: In second segment, introduces
the mathematical model of the original FFA. In the third segment, sin chaotic mapping
strategy, formula factor cosine adjustment, Cauchy operator variation, and differential
evolution variation are introduced. On this basis, the DEMFFA is proposed and its com-
plexity is calculated. In the fourth segment, DEMFFA and other intelligent optimization
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algorithms are tested on CEC2017, CEC2020, and CEC2022, and the results are ana-
lyzed. In the fifth segment, other comparison algorithms and the DEMFFA are applied
to 10 practical engineering design problems, and the results are analyzed. In six seg-
ment, DEMFFA and other comparison algorithms are applied to a 24-bar truss topology
optimization case, and the experimental results are analyzed. In seven segment gives the
conclusion and prospect of this paper.

Fennec Fox algorithm overview

The Fennec Fox algorithm (FFA) is a nature-based meta-heuristic algorithm proposed
by EVA TROJOVSA et al. in 2022, which is based on the Fennec fox’s ability to dig and
escape from wild predators [48]. In general, the Fennec fox’s super-strong digging ability
and the behavior of escaping wild predators are the basic inspiration and main source of
their proposed Fennec Fox algorithm.

Fennec foxes are mammals of the Canidae fox genus in the carnivorous order, also
known as desert foxes or African foxes. They mostly inhabit desert and semi-desert areas
and prefer stable dunes that are easy to burrow. The auricle is triangular, with a clear
brown patch at the front; The body hair is almost white, and the belly and inner limbs
are white; The tail hair is thick and dense, which is russet brown. It usually forages at
night, eats widely, lives in groups, and has a lively personality. There is a black spot near
the base of the tail, and the tail tip is dark brown. Figure 1 shows the picture of the Fen-
nec fox.

A. Initialize
During the initialization phase, the Fennec foxes are randomly placed within the
search space by utilizing the formula (2.1) for random initialization:
Yi yij = ll’)j +r- (ubj — lbj),i =12,---,N,j=12,---,m (2.1)
where Y; denotes the ith Fennec fox, N is the total number of Fennec foxes, m is the
number of decision variables, r is a random number between [0,1], b and ub are lower

and upper bounds respectively.
In (2.2), Yis the population matrix composed of all Fennec foxes:

Fig. 1 Fennec foxes in nature
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Yl yl,l P yl,j . _)/l,m
Y=|Y = | Y1 | Yij - YVim ) (2.2)
YN Nxm YN | yN,] “ - YN,m Nxm
where Y; = (¥i1,%i2, - - »¥i,m) is the ith Fennec fox, and the column vector represents

the candidate value of the jth decision variable.
For solving the objective function values of each Fennec fox, the vector method given in
(2.3) was used for modeling:

F F(Y1)
F=|F = | F(Y)) ) (2.3)
EN [ N1 FYN) | v

where F represents the vector containing the objective function values, F; represents the
objective function value of the ith Fennec fox.

B. Location update

The position renewal stage of Fennec foxes is mainly carried out according to the Fennec
foxes digging prey and escaping predators.

Phase 1: exploitation: catch prey

During the prey hunting stage, the Fennec fox explores a field with a radius of R. This
property enables the algorithm to approach the global optimal solution more closely. In
the development stage, the mathematical model corresponding to the Fennec fox position
update is as follows:

i =i+ @r =1 Ry, (2.4)
t
Rij=a-(1- ?) “Yijs (2.5)
_[yr FPL < F
Y; = { Y orse (2.6)

where Yip 1is the new position of the ith Fennec fox in the first stage and is the jth dimen-
sion, Fip lis the corresponding objective function value, ¢ is the current number of itera-
tions, T is the maximum number of iterations, « is a fixed constant with a value of 0.2.
Phase 2: explore: escape predators
During the predator evasion stage, the Fennec foxes” exceptional ability to escape allows
the algorithm to avoid getting trapped in local optima. In the exploration phase, the corre-
sponding mathematical model for updating the Fennec foxes’ position is as follows:

Page 8 of 70
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ijnd :y;‘and =yk,j’k e{,2,---,N},i=12,--- ,N (27)

yij+r- 1.y, Frmd < F

2 J— t,/
A 2.
i Vi + 1 O = 95", else (2.8)
— Y'PZ, FPz < Fl'
Yi= { Yi ellse (2.9)

where Yim”d is where the Fennec fox escaped, F/' and s its objective function value, YF?is
the updated position of Fennec fox in the second stage, Fip 2 is the value of its objective
function, and I is a random number [1, 2].

When the algorithm is fully initialized, in phase 1, and phase 2, the algorithm com-
pletes an iteration, Algorithm 1 gives the pseudo-code of the FFA, Among them, steps
6—8 are the first stage of the algorithm, and steps 9-12 are the second stage of the
algorithm. Figure 2 shows the flow diagram of the FFA.

Algorithm 1 Fennec Fox algorithm

Begin FFA

Step 1: Initialization. Enter the relevant initialization parameters;

Step 2: Fitness calculation. The fitness value corresponding to each Fennec fox was calculated, and the
current minimum moderate value f'was selected as the optimal value ., and the corresponding Fennec fox was

recorded as the best individual ¥}, ;
Step 3: While ¢ is less than the maximum number of iterations
for i=1: N
R, , = a-(1—iter/ Maxiter)-y,
Yoo = Vi, +2-r=D-R(,2)
if f(¥,,.) <)
| Y =Yoo =S Fr)
end if
end for
Y, na = rand(Pop, Dim)- y
I=1+rand
for i =1 to pop do
Calculate the fitness value of Y,,,q
i 100 <f T

| Yoo =y, +rand -,y =1,
else
Yoo =Yi;+rand (¥, ; = ¥,ana)
end if

if f(7,.,)</(,,)
| Yo =Yross frns = [ T,)
end if
end for
end While

Step 4:Return.The optimal position Y and fitness value f( Y,
End FFA

;) of Fennec fox

Page 9 of 70
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[
\
[
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l Yes

Print the best candidate solution <« /==« Save the best candidate solution

l No

=1
End FFA i

Fig. 2 FFA flow chart

Improved Fennec Fox algorithm

While the FFA offers significant advantages in solving optimization problems, it does
face certain challenges, the possibility of becoming stuck in local optima and limited
performance in certain scenarios. To overcome these limitations and further enhance
the algorithm, a multi-strategy enhanced FFA called DEMFFA is proposed based on
the original FFA. In DEMFFA, several strategies are incorporated to address these chal-
lenges. Initially, the sin chaotic mapping strategy is incorporated into the population ini-
tialization phase to enhance the even distribution of the initial population. This helps to
improve exploration capabilities and avoid premature convergence. To avoid falling into
local optima prematurely, after the initial and second stages of the original FFA update,
the Cauchy operator mutation strategy and differential evolution mutation strategy are
utilized. By introducing these mutation strategies, DEMFFA leads to an enhanced explo-
ration of the search space and a greater diversity of potential solutions. Additionally, to
enhance convergence speed, the factors of the formula in the second stage of the original
FFA are adjusted. By utilizing this strategy, the algorithm can more effectively regulate
its pace and ultimately improve its ability to locate the optimal solution. By combin-
ing these strategies, DEMFFA aims to mitigate the limitations of the original FFA and
improve its performance in terms of convergence speed and solution quality, ultimately
enhancing its capability to solve optimization problems effectively.
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Sin chaotic mapping strategy

The sin chaotic mapping model is observed to possess a higher level of chaotic behav-
ior compared to the Logistic chaotic mapping model [49]. Adding a sin chaotic map in
the FFA initialization stage makes the population distribution more uniform. The math-
ematical formula of sin chaotic mapping in this paper is as follows:

{J’n+1=siny2n, n=01,---,N 3.1)

-1l<y, <1, Yu 0

As depicted in Fig. 3, the sin chaotic mapping exhibits a more uniform distribution.
Consequently, employing the sin chaotic mapping model to initialize the population of
the FFA algorithm can result in a more evenly distributed Fennec fox population. This, in

turn, enhances the algorithm’s performance and leads to improved convergence speed.

Cosine adjustment of formula factor

In the FFA calculation, let (2.5) is W. As the number of iterations ¢ increases, the value of
W progressively decreases. Precisely because of this, in the early stage of the algorithm,
the Fennec fox can excavate a large area and has a good global search ability; In the later
stage, the Fennec fox can excavate a small area of prey and has a good local search abil-
ity. To make the algorithm have better global search ability in the early stage and local
search ability in the later stage, cosine adjustment is carried out on the factor of Eq. (2.5),
mainly inspired by the improvement of the dung Beetle optimization algorithm [1]. The
adjusted formula is shown in (3.2), and the position of the Fennec fox in the first stage is
shown in the new formula in (3.3):

W = 0.5 - (cos(r - (iter/ Maxiter)) + 1), (3.2)

Yol =yij+ (21 —1)- 0.5 (cos(r - (iter/Maxiter)) + 1). (3.3)

As depicted in Fig. 4, the factor in the calculation formula for domain R before the
proposed enhancement displays a linear variation. The factor variation of the improved
domain R is nonlinear. The improved formula can control the change of R well, that is,
the initial stage showcases a steeper decline rate compared to the subsequent stages.
Incorporating this improvement strategy in the DEMFFA presents a more balanced
search ability across both the initial and final stages, leading to overall enhanced search
performance.
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(a) sin chaotic map line diagram. (b) sin chaotic map scatter plot. (c) sin chaotic map histogram.

Fig. 3 Sin chaotic map distribution
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Fig. 4 Adjusted before and after factor comparison chart
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Fig. 5 One-dimensional Cauchy distribution function diagram

Cauchy operator mutation strategy

10

Cauchy distribution decreased slowly on both sides of the peak value, and fennec

foxes would reduce the constraint of local optimal value after mutation. To accelerate

the search process of Fennec foxes in the field, the DEMFFA incorporates the Cauchy

operator mutation strategy. Figure 5 shows the function diagram of the one-dimensional

Cauchy distribution. The one-dimensional Cauchy distribution probability density func-

tion [50] is shown in (3.4):

1 )

S8, 1) = ;m,

—00 <y < 00

when § = 1, u = 0, the specific formula is shown in (3.5):

1

;8; = 5 1
Sf 8,10 711

—00 <y < 0.

The formula for the standard Cauchy distribution is shown in (3.6):

Cauchy(0,1) = tan[(§ — 0.5)7],& € U[O,1].

(3.6)

Page 12 of 70
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By combining the position update of Fennec fox in the first stage of FFA and the vari-
ation of the Cauchy operator, the formula for generating mutant individuals is shown
in (3.7). In DEMFFA, the updated individual in the first stage is mutated by randomly
adding a Cauchy operator to each dimension to make it jump out of the local optimal
solution better.

Y_new(y) = Y; 4+ B - Cauchy(0,1), (3.7)

where, B is the disturbance factor, which is set to 0.1 in this article.

Differential evolutionary variation strategy

DE is a real-coded evolutionary algorithm for optimization problems proposed by
American scholars Storn and Price in 1995. His main operation is to weight two random
vectors and add them to a random vector to generate a new vector [51]. And the prob-

lem is optimized by improving the candidates based on the evolutionary process [52].
His main operations are as follows:

1) Variation operation

In the variation stage, the variation formula for new individuals is as follows: (3.8):
Vi@ +1) =%, (@) + F - (xr,(@) —%5(Q)i F11 F 12 # 13, (3.8)

where, F is the scaling factor, Fig. 6a shows the schematic diagram of the mutation
operation.

Some of the previously improved DE are based on Eq. (3.8), and some are based on
Eq. (3.9):

Vi@ +1) = %11(Q) + F1 - (pest (@) — %r1(Q)) + F2(%r2(8) — %r3(9))- (3.9)

In DEMFFA, the formula used for mutation operation is shown in (3.10):

Vi@ +1) =x1() + F - ((%2() — %3(9)) + (%r4(g) — %5(2)))- (3.10)
x X3 A1 g2 =3 4SS g6ttt j=Dim
TR -V O - (Y|
"'4 n<CR bmgfk r<CR

F(\&\\‘ ;‘ kS ,,i(gﬂ)w %ﬂ QIQ%“Q‘!Q@ QY‘Q
/ .M - L Pn'('R }n’('R }rs'('R }’J"'R

o~

i o P09 g e g

(a) Mutation operation procedure. (b) Cross-operation procedure.

Fig. 6 Differential evolution algorithm operation diagram
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In the formula (3.9), i # r1 # ra # r3 # ra # rs, the scaling factor is calculated as
follows (3.11):

F = Fiyax — (iter /Maxiter) - (Fmax — Fmin), (3.11)

where Fiax is 0.9 and Fiin is 0.4.

2) Cross operation
The g generation population and its variant intermediate individual were cross oper-
ated, The formula for the cross operation is shown in (3.12):

N _ Jvij@+ 1), rand(0,1) < CRorj = jrgna
uij(g+1) = { %(9), otherwise (3.12)

where, CR is the crossover probability, and crossover operation uses the crossover
probability CR to select {x;(g)} or {vi(g + 1)} as the allele of {z1;(g + 1)},juna is a ran-
dom integer[1,2,- - -, D], Fig. 6b shows the cross-operation diagram.

In this paper, the CR calculation formula in the formula is shown as (3.13):

CR = CRyax — (CRiax — CRuin) - (iter /Maxiter), (3.13)

where, CRpax = 1, CRmin = 0, iter is the current iteration number, Maxiter is the
total iteration number.
3) Selection operation

Following the execution of the mutation and crossover operations, the DE employs
a greedy approach to select the next generation of individuals. This selection process
considers both the original individuals and those generated through the crossover
operation. The mathematical formula adopted in the selection operation is shown in
(3.14):

. _ Jui@+ D), fuig+1) < f(xi(2)
%@+ = { xi(g). otherwise (3.14)

After adding the differential evolutionary variation strategy to the second stage of
FFA, the search range of Fennec foxes is increased, so as to avoid premature stagna-
tion of the algorithm and enhance its ability to jump out of the local optimal.

Steps to improve Fennec Fox algorithm

The original FFA was enhanced by incorporating sin chaotic mapping, cosine adjustment
of formula factor, Cauchy operator mutation strategy, and differential evolution muta-
tion strategy. As a result, the improved Fennec Fox algorithm (DEMFFA) was obtained.
Compared to the enhanced Fennec Fox algorithm, DEMFFA exhibits stronger searching
ability and faster convergence speed. The steps of the DEMFFA, which integrates the
aforementioned four strategies are as follows:

Step 1. Set the population size pop, the maximum number of iterations 7, dimen-
sion Dim, and use formula (3.1) to initialize the Fenna fox population. Let the current
iteration number ¢ = 1;

Step 2. Calculate the fitness value f of Fennec fox, and select the best individual Xps,
and the optimal fitness value corresponding to the individual is fpess;

Page 14 of 70
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Step 3. In the first stage, the factors of formula (2.5) were adjusted using formula
(3.2), and the position of Fennec fox in the first stage was updated using formula

(2024) 11:69

(3.3);

Step 4. The individual fitness value of Fennec foxes updated in the first stage was cal-
culated, and the best individual Xj and the optimal fitness value fps correspond-

ing to the individual were updated according to the fitness value;

Step 5. Equation (3.7) is used to mutate the individuals generated in the first stage,
and the fitness value of the individuals after the mutation is calculated. Compared
with the fitness value of Step4, the new most expensive individual Xp. and the best

fitness value fj,; are updated;

Step 6. In the second stage, the individual %, is randomly generated by Eq. (2.7),
the fitness value of the individual is calculated, and the position of the Fennec fox

individual in the second stage is generated by Eq. (2.8);

Step 7. The fitness value of Fennec fox individuals generated by Step 6 is calculated
and compared with the fitness value generated by Step 5. The best individual X

and the best fitness value fj, are updated;

Step 8. Equation (3.10) was used to mutate individuals generated in the first and sec-
ond stages, and scaling factor F was calculated with Eq. (3.11). The individuals gen-
erated by variation are crossed using Eq. (3.12), and the crossover probability CR is

calculated using Eq. (3.13). Use formula (3.14) for selection operations.

Step 9. The fitness value of Fenna fox individuals generated by variation in Step 8 is
calculated and compared with the fitness value generated in Step 7. Finally, the best

individual Xp,,; and the best fitness value Xp,,; are updated;

Phase 1

Start
_ { , DEMFFA
Input information of optimization
problem and initial parameters
X
Initialize the population using Eq. (3.1) . i
| actor pdjus tment

Adjust the factor of Eq. (2.5) using Eq. (3.2)

Using Eq. (3.3) to gent;rate the position of the
first stage Fennec fox

Calculate fitness and update the position of
the Fennec fox based on the fitness value

Using Eq. (3.7) to mutate the
resulting individuals

Calculate the fitness value to obtain
the final Fennec fox in the first stage

Calculate fitness values and update
individual Fennec fox

Yes

stfategy

Cauchy operator

L
* mitatjon strategy

v

=141

=
vNo

« Phase 2

, Using Eq. (2.7) to generate the location

of the escaping target's ear fox

)
Calculate the fitness value of the ear
fox at the escape position

Using (2.8) to gene'rale the position of
the second stage Fennec fox

Calculate the fitness value to obtain the
final Fennec fox in the second stage
Using Equation (3.10) for mutation operation
Using Equation (3.12) for cross operations

Using Equation (3.14) for selection operation

Differential
Evolution mutation

strategy

y i OmputXb..and fb.,

Fig. 7 DEMFFA's flowchart

CEnd )
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Step 10. In case the algorithm reaches the predefined maximum number of itera-
tions, Step 11 is carried out. If the maximum number of iterations is not reached,
repeat steps 3 to 9.

Step 11. Output the best Fennec fox position Xp.s and the corresponding fitness
value fjes of the best Fennec fox.

According to DEMFFA's steps, its pseudo-code is shown in Algorithm 2. In addition,
Fig. 7 shows the flowchart of DEMFFA.

DEMFFA algorithm complexity

The algorithm complexity analysis is an approximate estimate, not an exact calcula-
tion. It provides a theoretical evaluation of the trend of the increase in the time or space
required for the execution of an algorithm, and the algorithm complexity is represented
by “O” The overall algorithm complexity of DEMFFA mainly includes the loop part
and the function call part. The function call section includes calls to two functions: the
feval function (which calculates the fitness value of the individual at each iteration) and
bounds(boundary condition handling). The complexity of the feval function call depends
on the complexity of the selected function, and the complexity of this part is O(¢(f))
.bounds function is a boundary constraint operation on the position of each individual,
and its complexity is related to Dim, which is the dimension of the position vector. Gen-
erally speaking, the complexity of the function can be regarded as a constant level, which
is ignored when calculating the complexity of the algorithm.

Moreover, the computational complexity of the proposed DEMFFA is influenced by
various factors, including the initialization process Ixi, the maximum number of itera-
tions T, population size N, spatial dimension Dim, and the complexity (O(definition))
of parameter configuration. Sin chaotic mapping is added to the original FFA to process
the initial population, and the complexity of the algorithm in this stage is denoted as
O(Ini); In the first stage, the cosine adjustment of the formula factor is added, and the
algorithm complexity of this stage is denoted as O(cos —adjustment); Before the conclu-
sion of the first stage, the Cauchy operator mutation strategy is implemented, and the
algorithm complexity of this stage is denoted as O(Cauchy operator); Finally, differential
evolutionary variation strategy is added after the second stage, the complexity of this
stage in terms of algorithm is denoted as O(DE). Thus, the computational complexity of
DEMFFA can be described as:

O(DEMFFA) = O(definition) + O(Ini) + O(t(f)) + O(cos —adjustment)
+ O(Cauchy opertor) + O(DE)
— O(1 + (ND + ND) + TND + ND + TND + TND)
= O(1 + 3ND + +3TND).
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Algorithm 2 DEMFFA

(2024) 11:69

Begin DEMFFA

Step 1: Initialization. Set the pop, T, Dim, and initialize the population using Eq. (3.1). Set the ¢ to 1;
Step 2: Fitness calculation. Calculate the fitness value f of each Fennec fox, and select the current best

individual ¥,

best
ot

Step 3: While iter is less than Maxiter

for i =1 to pop do
Y/ =y, +@2-r=1-R(@.2)
it f(Y,,)<f(Y)
| Yoo =Yross frn = [ (F,)
end if
u_new=y, + f3-Cauchy(0,l)
it 1Y, 0) <SG
| Yoo =Yoo So = X, )
end if
end for
Y, na = rand (Pop, Dim) -y
I=1+rand
for i =1 to pop do
Calculate the fitness value of Y4
i £, < f o)
| Yoew =i, +rand - (Vg =13, ;)
else
| Yoo = Vi, Frand (Y ; = ¥yna)
end if
if f(v,,)<f(.)
| Yo =Yoo frs = [ (Tr)
end if
end for
for i =1 to pop do
for j =1 to Dim do
Yoo =V + (V2 = Y3) + (Vs = 05))

if rand <CR
| Yoositons =Yoo
else
| Y, iions = Yo
end if
end for
end for

for i =1 to pop do
S iiond < S B

| Vo = Vosstons et = S W i)
end if

end for

end While

Step 4: Return. The optimal position X} and fitness value f'(Y,

End DEMFFA

est

based on the size of the fitness value. The corresponding optimal fitness value for this individual is

R, , = a-((cos(x - (iter / Maxiter)) +1)-0.5)- y, ,

) of Fennec fox

Numerical experiment and analysis of DEMFFA

In this section, various test functions are utilized to assess the performance of the pro-
posed DEMFFA. Firstly, CEC2017 with higher complexity than the standard function
is selected, including 29 functions. Secondly, the newest CEC2022 is selected, which
includes 12 single objective test functions. Finally, CEC2020 composed of CEC2014 and
CEC2017 is selected, including 10 single objective test functions. Set the population size

Page 17 of 70
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of all algorithms pop =30 and the maximum number of iterations 7=1000. In order
to eliminate the influence of randomness on each algorithm, set each algorithm to run

independently on the test function 20 times.

Comparison of DEMFFA and other optimization algorithms on CEC2017 and CEC2022

In this section, 8 other intelligent optimization algorithms and the original FFA are
selected to compare with the proposed DEMFFA. The dimensions of the two test sets
are 10, 20. The 8 intelligent optimization algorithms mainly include the following two
categories: (1) classical intelligent optimization algorithms: GA [8], PSO [53], DE [9]; (2)
Newly proposed optimization algorithms in recent years: GWO [54], GOA [55], BWOA
[56], TGA [25], WOA [57]. To differentiate the two optimization algorithms, the Black
Widow optimization algorithm is referred to as BWOA. Table 2 shows the parameter

settings of some algorithms.

Comparison of DEMFFA and other optimization algorithms on CEC2017

To ensure more reliable and meaningful experimental outcomes, Table 3 presents the
comparison results of DEMFFA and other algorithms on CEC2017 benchmark prob-
lems, the dimension is set to 10. These metrics encompass the mean, standard deviation
(Std), best, worst, and the rank of different algorithms tested on each function (Rank),
which is determined by the mean. Table 4 shows the Friedman test results of DEMFFA
and the comparison algorithm on CEC2017. Table 5 shows the results of WRST per-
formed by DEMFFA and other algorithms on CEC2017. The best values are represented
in bold black. The Wilcoxon rank sum test is denoted as WRST below.

The performance comparison presented in Table 3 indicates that DEMFFA exhib-
its superior performance when compared to other similar algorithms. On the whole,
DEMFFA won first place in 20 of the 29 test functions, showing obvious superiority. In
solving unimodal and simple multi-modal functions, DEMFFA is superior to other algo-
rithms on F1, F4, F6, and F9. Although the performance of DEMFFA on F7 and F10 is
not as good as that of GWO, which ranks second, its standard deviation is the smallest,
which proves that DEMFFA’s performance is stable. There are obvious advantages for

Table 2 Compare algorithm parameter settings

Algorithm Parameter name Parameter value
PSO Inertia factor 06
Acceleration constant 2.2
DE Scaling factor £ 0.5
Crossover probability CR 04
GA Code length 30
Crossing rate 0.7
Selection probability 0.5
Variation rate 0.001
WOA Control parameter a [0.2]
Constant b 1
TGA Discount rate 0.8
Control the probability of the nearest tree 0.5
BWOA Reproduction rate 0.6
Mutation rate 04

The rate of cannibalism 044
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Table 4 Friedman test results of DEMFFA and other algorithms on CEC2017

Fun PSO DE GA GOA TGA GWO WOA BWOA FFA DEMFFA
F1 1.35 525 8.65 9.05 595 34 3.75 8.65 7.3 1.65
F3 1 9.5 94 7 5.85 3.55 4.2 76 49 2

F4 1.3 5.05 895 9.2 535 375 405 8.25 73 1.8
F5 58 55 8.1 59 415 1.35 6.1 77 87 1.7
F6 595 43 845 7.05 38 1.5 6.1 795 84 15
F7 3.15 6.2 9.85 44 7.65 1.45 6.05 7 72 2.05
F8 39 84 89 46 6.85 1.4 52 8.45 53 2

F9 4.25 7.35 945 4.2 4.85 1.85 6.95 7.7 7.1 1.3
F10 6.15 8.45 82 53 45 1.55 5.15 84 58 1.5
F11 2.35 6.25 89 8.15 4.8 295 44 8.05 8.15 1
F12 1.3 82 94 8.15 6.2 3.1 4.75 715 49 1.85
F13 3.15 8.15 9.85 7.1 5.85 5.1 54 4.75 46 1.05
F14 455 7.1 94 7.55 515 6.05 6 29 4.15 2.15
F15 2.5 54 9.1 835 5.1 555 77 425 57 135
F16 6.1 6 89 6.75 2.7 2.15 5.65 79 6.7 2.15
F17 46 7.5 9.8 5.1 39 2.95 5.85 79 6.4 1
F18 2.05 8.75 92 7.3 7.05 465 4.1 3.85 6.2 1.85
F19 27 6.05 89 7.55 52 3.95 7.8 55 5.65 1.7
F20 4.7 555 85 6.25 2.35 3.65 745 74 7.5 1.65
F21 4.85 8.05 9.25 6.4 24 4.1 6.05 7.5 4.75 1.65
F22 4.7 6.05 9 7.95 3.65 29 42 83 6.85 1.4
F23 8.8 4.2 7.6 745 45 1.7 455 6.85 7.8 1.55
F24 7.6 6.8 77 7.2 3.1 4.6 6.25 745 32 1.1
F25 2.7 5.75 94 8.1 59 2.85 3.85 82 715 1.1
F26 4.75 5.65 835 7.95 37 3 6.5 6.85 7 1.25
F27 82 3.55 7.6 8.65 2.85 2.85 5 715 7 2.15
F28 33 6.15 8.75 8.8 25 495 45 6.85 0.6 26
F29 53 7.85 8.1 64 3.65 265 5.95 83 5.55 1.25
F30 335 77 8.65 84 4.7 52 3.8 715 4.95 1.1
Averagerank 3.8621 6.5862 95517 74138 42759 29655 52414 72069 64483 1.2759
Final rank 3 7 10 9 4 2 5 8 6 1

Bold numbers represent the optimal values of the evaluation indicators

mixed and combined functions. This indicates that the inclusion of sin chaotic mapping,
cosine adjustment of formula factors, Cauchy operator mutation strategy, and differen-
tial evolution mutation strategy effectively enhances the algorithm’s search capability.
Furthermore, it substantiates that the proposed DEMFFA possesses strong exploration
ability and is capable of avoiding local optima.

When proposing a new algorithm, we need to know how the proposed algorithm com-
pares to the existing algorithm, and we need to use the method of model performance
evaluation. Among them, the Friedman test is a method, which is characterized by multi-
ple algorithm comparisons. When the performance of the compared algorithms is similar,
their average sequence values will be the same. Table 4 clearly illustrates that the proposed
DEMFFA demonstrates optimal performance on the majority of test functions, especially
on hybrid function and composition functions. On F6 and F16, DEMFFA has the same
performance as GWO, which ranks second overall, and their Friedman test values are
the same. To determine the final Friedman test ranking results, the values obtained from
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Table 5 Results of WRST by DEMFFA and other algorithms on CEC2017

Fun PSO DE GA GOA  TGA GWO WOA  BWOA FFA
F1 19880F- 6.7960E- 67960E- 6.7960F- 6.7960E- 67960E-08- 67960F- 6.7960E- 6.7960E-
01= 08 - 08 - 08 - 08 - 08- 08- 08 -
F3 67960E- 6.7960F- 6.7960E- 67960E- 6.7960FE- 67960E-08- 67960E- 6.7960F- 67960
08- 08 - 08 - 08 - 08 - 08- 08- 08 -
F4 43200E- 67960F- 6.7960E- 67960E- 6.7960F- 10650E-07- 7.8980E- 6.7960F- 67960
03- 08 - 08 - 08 - 08 - 08- 08- 08 -
F5 67960E- 6.7960F- 6.7960E- 19180E- 1.0650E- 10170E-01+ 67960E- 6.7960F- 67960
08- 08 - 08 - 07 - 07 - 08- 08- 08 -
F6 67960E- 6.7960F- 6.7960E- 67960E- 6.7960E- 86040E-01- 67960E- 6.7960F- 67960
08- 08 - 08 - 08 - 08 - 08- 08- 08 -
F7 71130E- 67960E- 6.7960E- 9.1730E- 67960F- 6.8680E-04- O.1730E- 67960E- 6.7960F-
03- 08 - 08 - 08 - 08 - 08- 08- 08 -
F8 41550E- 67960F- 6.7960E- 67960E- 67960F- 5.1150E-03- 18070E- 67960F- 1.9180E-
04- 08 - 08 - 08 - 08 - 05 - 08- 07 -
F9 67960E- 67960F- 6.7960E- 67960E- 67960E- 29770E-01- 67960E- 67960F- 6.7960E-
08- 08 - 08 - 08 - 08 - 08- 08- 08 -
F10 67960E- 67960F- 6.7960E- 67960E- 6.7960E- 23930E-01+ 67960E- 67960F- 16570
08- 08 - 08 - 08 - 08 - 08- 08- 07 -
F11 14310E- 67960E- 67960E- 6.7960F- 6.7960E- 67960E-08- 67960F- 6.7960E- 6.7960E-
07- 08 - 08- 08 - 08 - 08- 08- 08-
F12 20730E- 67960E- 6.7960F- 67960E- 67960E- 5.1660E-06- 6.0150E- 67960E- 6.7960F-
02- 08- 08 - 08 - 08 - 07- 08- 08 -
F13 79480E- 67960E- 6.7960E- 67960E- 67960E- 6.7960E-08- 6.7960E- 67960E- 6.7960F-
07- 08 - 08 - 08- 08 - 08- 08- 08 -
F14 46790E- 45390E- 19180E- 26900F- 66100E- 16100E-04- 39870F- 13330E- 3.9660E-
02- 07 - 07 - 06 - 05 - 06 - 01= 03-
F15 9.2090E- 67960E- 6.7960F- 6.7960E- 12350E- 4.5390E-07- 6.7960E- 18030E- 6.7960F-
04- 08 - 08 - 08 - 07 - 08- 06 - 08 -
F16 9.1270E- 66740E- 16570E- 29600E- 17190F- 39420E-0+ 32930E- 34990E- 5.2270F-
07- 06 - 07 - 07 - 01= 05 - 06 - 07 -
F17 6.7960E- 6.7960F- 6.7960E- 67960E- 6.7960F- 9.1730E-08- 67960E- 6.7960F- 6.7960-
08- 08 - 08 - 08 - 08 - 08- 08- 08 -
F18 28530E- 67960E- 6.7960F- 10650E- 67960F- 26900E-06- 13760FE- 33820E- 6.7960F-
01= 08 - 08 - 07 - 08 - 06 - 04 - 08 -
F19 10750E-  10650E- 67960E- 45390F- 45390E- 23410E-03- 9.1730F- 45390F-  7.8980E-
01= 07 - 08 - 07 - 07 - 08- 07- 08 -
F20 16000E- 9.7480F- 25630E- 3.0690F- 14810E- 14440F-04- 39390F- 69170E- 16570E-
05 - 06 - 07 - 06 - 03- 07- 07- 07-
F21 3.1520E- 67960E- 9.1730E- 34160E- 25960E- 9.7480E-06- 16570E- 22180E- 3.0690E-
02- 08 - 08 - 07 - 05 - 07- 07- 06 -
F22 67960E- 67960F- 67960E- 67960E- 7.5790E- 25610E-03- 67960E- 6.7960F- 6.7960E-
08- 08 - 08 - 08 - 04 - 08- 08- 08 -
F23 67960E- 67960F- 6.7960E- 67960E- 6.7960E- 63590E-01+ 39870E- 6.7960F- 6.7960E-
08- 08 - 08 - 08 - 08 - 06 - 08- 08-
F24 16000E- 67960E- 67960E- 6.7960F- 6.7960E- 67960E-08- 67960F- 6.7960E- 6.7960E-
05 - 08 - 08-- 08 - 08 - 08- 08- 08 -
F25 14150E- 67960E- 67960E- 6.7960F- 6.7960E- 9.1730E-08- 67960F- 6.7960E- 6.7960E-
05 - 08 - 08 - 08 - 08 - 08- 08- 08 -
F26 56290E- 67960E- 6.7960F- 67960E- 67960F- 6.7960E-08- 6.7960E- 67960E- 6.7960F-
04- 08 - 08 - 08 - 08 - 08- 08- 08 -
F27 9.1270E- 12270E- 18030E- 60150E- 12270E- 27990E-03- 24710E- 1.1040E- 7.5700E-
07- 03- 06 - 07 - 03- 04- 05 - 06 -
F28 12210E- 67960E- 12010E- 6.7960F- 4.3880E- 16000E-05- 3.1520E- 1.1590E- 1.6000E-
03- 08 - 06 - 08 - 02- 02- 04 - 05 -
F29 16570E- 6.7960E- 67960E- 6.7960F- 34160E- 16670E-02- 10650F- 6.7960E- 6.7960E-

07 - 08 - 08 - 08 - 07 - 07 - 08 - 08 -
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Table 5 (continued)

Fun PSO DE GA GOA TGA GWO WOA BWOA  FFA

F30 0.7480E- 6.7960E- 6.7960E- 6.7960E- 3.9950E- 7.8980E-08- 6.7960E- 6.7960E- 6.7960E-
06 - 08 - 08 - 08 - 08 - 08 - 08 - 08 -

+/=/— 0/3/26 0/0/29 0/0/29 0/0/29 0/1/28 4/2/23 0/0/29 0/1/28 0/0/29

Bold numbers represent the optimal values of the evaluation indicators

the Friedman test results of 20 independent runs were sorted. DEMFFA emerged in first
place across 21 test functions. In comparison to others, DEMFFA achieved an average
ranking of 1.2759, securing the top position overall. This conclusive evidence confirms
that the proposed algorithm demonstrates superior average performance.

In addition to the above methods to test the performance of algorithms, there are
WRST. Table 5 shows the results of the WRST between DEMFFA and other comparison
algorithms in the CEC2017 test set. The last line “4/=/—" shows the test results. ‘4’
indicates that the performance of the compared algorithm is better than DEMFFA on
this test function; ‘—’ indicates that the performance of the compared algorithm is worse
than that of DEMFFA on this test function; ‘=" indicates that the performance of the
compared algorithm on this test function is similar to that of the proposed DEMFFA.
According to the data in the last row of Table 5, the WRST test result of GWO is 4/2/23,
indicating that DEMFFA performs worse than GWO in four functions, namely F5, F10,
F16, and F23. There is not much difference in performance between the two functions;
The proposed DEMFFA performs better than GWO on most of the 23 functions. The
WRST test results of DE, GA, GOA, WOA, and FFA are all 0/0/29. It can be concluded
that DEMFFA is very competitive in the comparison of these functions in the CEC2017
test set, which also indicates that DEMFFA is superior to FFA in 29 functions. It shows
that the improved algorithm improves the performance of the original algorithm. The
test results of BWOA and TGA are 0/1/28, indicating that DEMFFA and they show the
same performance on one function and better performance on the other functions.

As can be seen from the convergence curve in Fig. 8, DEMFFA’s convergence curve
tends to be stable and basically tends to a fixed value as the number of iterations
increases. It is not difficult to find that most of the convergence curves of the proposed
DEMFFA are kept below the convergence curves of other algorithms, and the conver-
gence speed is faster and the solving ability is better than that of other comparison algo-
rithms. Especially in F13, F18, F19, F21, F22, F24, F30 the effect is more obvious. For
FFA, functions F3, F7, F9, and F14 converge prematurely, and their corresponding con-
vergence curves tend to flatten out when the number of iterations is about 200, indi-
cating that FFA at this time may fall into local optimality. The improved FFA greatly
improves the performance, convergence speed, and convergence accuracy of the algo-
rithm, and effectively prevents the algorithm from falling into the local optimal prema-
turely. The primary advantage of the boxplot is its resilience to outliers, allowing it to
provide a stable representation of the discrete distribution of data. From the comparison
of algorithms in Fig. 9 with the boxplot, the proposed DEMFFA has lower and narrower
boxes and a smaller median for most functions.

In general, DEMFFA has fewer outliers than other algorithms. The performance order
of DEMFFA and other algorithms compared is as follows: DEMFFA>GWO>PSO>T
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Fig. 8 Convergence curve of DEMFFA and other comparison algorithms in CEC2017
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Fig. 8 continued

GA >WOA >FFA >DE >GOA >BWOA > GA. Overall, the proposed DEMFFA demon-
strates superior performance compared to other comparison algorithms when assessed
on CEC2017.

Page 29 of 70



Hu et al. Journal of Big Data

Fitness

Fitness

Fitness

14000

12000

10000

Fitness

6000

4000

2000

~

Fitness

o

x10° F1 «10* F3 F4
- T -
T
ot T 6 ' 2000 '
! '
: 5 ! ' *
T ' - :
I
8 ! 4 ' 1500 T
Q g H 1 +
6 T Z3 z !
'
I 1000
4 L 2 g + B -
2 1 * E T = *
& ¢ A L
+ < 500 L
T 1
b = . [ R == - ® Sad
O & F F .F O F F & & C O F o O FF & & O & F F F O FF LT
& T FF O Q;‘\o & (ﬁ(g &I T T O q,*\o & 6}‘(« & FTF TS §o & &
S S
F5 F6
650 7
+ 680 T T
- ' 1000 '
' T 670 '
' '
. | . 660 I . 950
600 7 T T - -
! ' ' B , 850 . ' a0
Zea0f T ! g
+ _ ' 5 v+ Q £ 850 T +
= - 630 _ -1 ' - -
+ 0 = 1 L é T wl T &+ 1 =] é E] B
T ' T
: &l e ol =R S,
+ 600 = - L =
O & F F .F O F & & & & F F F L FF L& O &
PR N PRI @*‘0 & & & F T F Qﬁo & 6‘({( R
S <
F8 F9 F10
920 T 4000 + 3500 T
: 3500 H H i
'
900 | 3000} 1
a0 3000 T . T T
'
+ - 2 - 2500 . T :
Ay T $ 2500 + H E]
- ' 2 '
swor B £ - T £ * 5 b
A T 2000 H T 2000 oot L
- + s L ﬁ ' N s L L - s
sdof T E] M = + ' - I -
E] - 1500 F _ Q 1o - ﬁ] 1500 E] * E]
- T
Gl & BT Tas . TIT " T
1000 F L L
= - 1000 +
¢ F L O F T & T O & F F .F O F F L& L& o & o
F F &S F & & & ¥ & F S S S
OIS s & & ¢ & VTP N O Qﬁo & K & T S (f O GAO & Q}}(‘«
Fi1 10° F12 < 10° F13
+ + B +
15 35
* 3
* 25
N ém i,
T * = + r.l.‘5 -
' - '
b 5 . 1
T Q + + 05 +
- - M
of— — -——_— — — = 4 =
- = T Eiﬂ - = [i] - of— I E:B - - S -
O & F F F O F F &L O & F F .F O F F & & ¢ F FF L FF L
&SI FFFLS Q’&o & L & I T F S Q’éo & & F T T ©$o & &
© ©
< S
x10° F14 x10° F15 F16
T T 2600 .
35 1
*
3 2400 T
'
25 +
200f T T
2 2 Z ' ' T M -
2 2 ! - H
15 £ 2000 E] i E] +
+ - ! 1
1 | o T H [
. 1800 + R S
. 05 n vyt
+ n
— e D e e = o of+ — g +

8000

(2024) 11:69

o
&

¢ X FF O FF L&
F TS @‘O & 6§<<
B

&

F ooF O F F & &
& ’\OG‘\A\O@‘O & &
&

Fig. 9 Box plot of DEMFFA and other comparison algorithms in CEC2017

¥ o F O F T & T
F T S <béc & &
&£




Hu et al. Journal of Big Data (2024) 11:69 Page 31 of 70

1900 —

& x10° F19
F17 10! F18 s .
2300 - +
! 7
' 35
2200 !
. 6
2100 25 5 +
H H £4
£ 2000 . 22 + £
£ ; & i
I
I
I
I

ingl

! F 9
15 + 3 +
1 T 2
* '
T = T
*

1800 E] 05 E] + 1 .

1700 - of+ — & — — — — 0_._...gé..._4’-.~_._._
O & F F .F L F F & & O & F F .F O FF & L& O F F F . F L FF LT
&P O @“0 & $Q & PO N OO K ég & TSN &K $‘<

& @ & < &
S S S
F20 F21 F22

T T T

T ' 4500

\ -

2400 i 2400 _ E] I
! - - -
- - 1 i i 4000 +

2300 I [ 2350 . g] H B N

9 ' [ 4 T 2 o

3 - . - H . S H + | Fasoo h

£ T £ I z

£ 2500 T - E 2300 ' ! Z .

\ 1 + 3000 - -
H ' n ' +
! v L 2250 + -
2100 - + Lo, =) s E]
T T I . - LI 2500 .
* LT + =] Lo + - &P L [==

2000 H
O & F & F O F & & & O & & F . F O F F & & O & F &F .F O F F & &
S FFFLFTFEL & & TF TS E¢ & I TF LT EL

& & 2 & L3 &
B < <
F23 F24 F25
28501 © 2000} T . T 4200 '
. !
' * 4000 i

2800} 1 -

2800 - *
.t o = . = 3800

" j . ! Lo - 2

g2750 ' i ! ' e ' £ 3600 R

[ T i 2700 [ N [ !

2700 T E] T Lo Y 3400 !

L - ! n 1 M 1
I | 2600} + T i 3200 -
2650 ¢ %i B i A 1 - E] E]
B -
M 3000 + 1 1D .

2600 gi = 2500 + - 2 TE e
0§ F F F O F F & & O & F F .F O F F L& & O & F F .F O F F & &
L F FFI F &F & &

& & & &P IR & & TFF S @@ & @@ S S FTFFSLS & & &
S N
F26 F27 F28

3400

5000 4000

T
'
'

3800
*

T
'
'

L

3350

---
———-

4500 3300

4000 7 3250

3600

: e
DA ] e
1L

Fitness

Fitness

3200
3500

%
[T
Fitness
A i S
O

F{TH+
e
L]
O SR

i i S
FIH o+
R
F--{ T}~
HH
S i SRR

3150 ' +
- '
3000 & * + n
T 3100 + + 3200 M
O = s
2500 o & o O & Y
¥ & o S ¥ & o F o F &
L & FFF O & ‘Ao“ & & &V TFTFHETTEE & FTF I TS EE
© N @ © @ 2
£ S 9 <
S
F29 x10” F30
T +

e

3700

3600

% 3500

Fitness

3400

+
'
3300 E;
L

3200

O i

i
-{T H
RIS
HIF--1
- -
S i SRR
P
1
F[Fr o+
o —
O —
1+
{1+
|

|
H
& Ll +B8ada L
O ¥ &F F . F O F F & & O & &F F .&F O F F & &
Qfa < o 00 &Q 0& “\060 ((Q @@Qq Q% < [ 00 &0 Oé \‘\0 $O (<‘< {(‘<
< <

Fig.9 continued

Comparison of DEMFFA and other optimization algorithms on CEC2022

Apart from the evaluation on CEC2017, the DEMFFA and other comparison algo-
rithms were also examined on CEC2022, the dimension is set to 20. Table 6 shows
the comparison results between DEMFFA and other algorithms in CEC2022. Table 7
displays the Friedman test outcomes for DEMFFA and the comparison algorithm on
the CEC2022. Meanwhile, Table 8 illustrates the results of the WRST conducted by
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Table 7 Friedman test results of DEMFFA and other algorithms on CEC2022

Page 35 of 70

Fun PSO DE GA GOA TGA GWO WOA BWOA FFA DEMFFA

F1 1 9.55 89 5.75 5.95 29 6.5 7.2 5.15 2.1

F2 22 5.1 83 8.95 6 29 39 9.15 7.5 1

F3 325 58 7.8 4.65 6.6 1.15 7.75 82 7.95 1.85

F4 3.05 6.5 7.8 6.1 64 1.25 4.95 8.85 835 1.75

F5 3.8 5.05 7.65 515 525 1 74 8.95 8.15 26

F6 1.5 5.65 83 8.95 5.95 23 3.95 8.95 7.2 2.25

F7 4.7 7.85 8.15 465 3.75 2.35 725 84 6.75 1.15

F8 54 4.85 825 83 36 2.5 6.1 8 6.9 1.1

Fo 495 8.2 10 5.65 8.8 2.1 29 7 44 1

F10 6.55 9.85 8.95 4.7 7.7 29 4 5.75 3.6 1

F11 4.25 4 8.15 84 495 1.8 15 8.35 7.75 5.85

F12 74 6.85 8.15 9.45 45 6.65 3625 5125 225 1

Averagerank 39167 63333 85833 68333 56667 23333 475 85 6.1667 1.8333

Final rank 3 7 10 8 5 2 4 9 6 1

Bold numbers represent the optimal values of the evaluation indicators

Table 8 Results of WRST by DEMFFA and other algorithms on CEC2022

Fun PSO DE GA GOA TGA GWO WOA BWOA FFA

F1 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 3.7500E- 6.7960E- 6.7960E- 6.7960E-
08 - 08 — 08 — 08 — 08 — 04 — 08 — 08 — 08 —

F2 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E-
08 — 08 — 08 — 08 — 08 — 08 — 08 — 08 — 08 —

F3 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 1.1040E- 6.7960E- 6.7960E- 6.7960E-
08 — 08 — 08 — 08 — 08 — 05— 08 — 08 — 08 —

F4 7.8980E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 14780E- 6.7960E- 6.7960E- 6.7960E-
08 — 08— 08 — 08 — 08— 01+ 08 — 08 — 08 —

F5 1.7820E- 6.6740E- 34160E- 1.2510E- 9.7480E- 6.7960E- 3.9390E- 6.7960E- 1.2350E-
03— 06 — 07— 05— 06 — 08 — 07— 08 — 07—

F6 7.5790E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.9490E- 6.7960E- 6.7960E- 6.7960E-
04— 08 — 08 — 08 — 08 — 01= 08 — 08 — 08 —

F7 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 5.8960E- 6.7960E- 6.7960E- 6.7960E-
08 — 08 — 08 — 08 — 08 — 05— 08 — 08 — 08 —

F8 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 2.0410E- 6.7960E- 6.7960E- 6.7960E-
08 — 08 — 08 — 08 — 08 — 05— 08 — 08 — 08 —

Fo 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.0150E- 6.7960E- 6.7960E- 6.7960E-
08 — 08 — 08 — 08 — 08 — 07 — 08 — 08 — 08 —

F10 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E- 6.7960E-
08 — 08 — 08 — 08 — 08 — 08 — 08 — 08 — 08 —

F11 6.7870E- 25610E- 1.0580E- 4.6010E- 7.1130E- 1.0470E- 5.8740E- 3.3360E- 5.3100E-
02+ 03— 02— 04— 03— 06 — 06 — 03— 02=

F12 8.0070E- 8.0070E- 8.0070E- 8.0070E- 8.0070E- 8.0070E- 2.6820E- 8.0070E- 7.9920E-
09— 09— 09 — 09— 09 — 09— 09— 09 — 09—

+/=/—1/0/1 0/0/12 0/0/12 0/0/12 0/0/12 1/1/10 0/0/12 0/0/12 0/1/1

Bold numbers represent the optimal values of the evaluation indicators

DEMFFA and the other algorithms on the same test set. The text presented in black

font holds the same interpretation as previously discussed.

The findings presented in Table 6 demonstrate that DEMFFA outperforms alternative

algorithms in terms of performance. On the whole, DEMFFA has achieved first place

in half of the 12 test functions, showing obvious superiority. Table 6 clearly illustrates
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that the proposed DEMFFA exhibits exceptional performance across all 6 test functions,
especially on mixed functions and combined functions. On the F7-F10, DEMFFA'’s effect
is even more pronounced. In Table 7, the values of Friedman test results of 20 independ-
ent runs are used to rank and obtain the final ranking results. Compared with other
algorithms, DEMFFA’s average ranking is 1.8333, ranking first overall, which proves that
the proposed algorithm has the best average performance.

The value of WRST of DEMFFA and other comparison algorithms on the CEC2022
test set is given in Table 8. The last line “4-/=/-" gives the statistical result of the test,
and the meaning of the specific symbol is the same as that in the previous section.
According to the data in the last row of Table 8, WRST results of DE, GA, GOA, TGA,
WOA, and BWOA are all 0/0/12, indicating that compared with these algorithms,
the proposed DEMFFFA is superior to these algorithms in 12 test functions on the
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Fig. 10 Convergence curve of DEMFFA and other comparison algorithms in CEC2022
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CEC2022 test set. The WRST results of PSO are 1/0/11, indicating that PSO is superior
to DEMFFA in one of the 12 functions. The WRST test result of GWO is 1/1/10, indicat-
ing that, compared with GWO, DEMFFA’s performance in one function is worse than
that of the proposed algorithm, and its performance in one function is similar to that
of the proposed algorithm, they are F4 and F6 respectively. Compared with the original
algorithm FFA, the result of the rank sum test is 0/1/11, and the proposed DEMFFA is
superior to the original algorithm in 11 test functions, which indicates that the improved
algorithm improves the performance of the original algorithm.

As can be seen from the convergence curve in Fig. 10, as the number of iterations
increases, the convergence curve of DEMFFA proposed is mostly kept below the con-
vergence curve of other algorithms, with faster convergence speed and better solving
ability than other comparison algorithms. Especially on F7, F9, and F12, the effect is
more obvious. In addition, on F1, F7, and F9, the original FFA converges prematurely,
resulting in the algorithm failing to find the optimal solution, while the improved FFA
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Fig. 11 Box plot of DEMFFA and other comparison algorithms in CEC2022
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Fig. 12 DEMFFA's qualitative analysis results on the CEC2020 test set

algorithm greatly improves the performance, convergence speed, and convergence accu-
racy of the algorithm, effectively avoiding the algorithm falling into the local optimal
prematurely. From Fig. 11 with the boxplot, the observed characteristics indicate that
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the proposed DEMFFA algorithm generally exhibits lower and narrower boxes, as well
as smaller median values, for the majority of functions. In general, DEMFFA has fewer
outliers than other algorithms. In the CEC2022, the performance order of DEMFFA and
other algorithms compared is as follows: DEMFFA > GWO >PSO > WOA > TGA > FFA >
DE > GOA >BWOA > GA. Overall, the proposed DEMFFA outperforms other compari-
son algorithms on the CEC2022.

Comparison of DEMFFA and other optimization algorithms on the CEC2020

In the previous section, DEMFFA and the selected comparison algorithm were quan-
titatively analyzed on CEC2022 and CEC2017 test sets. In this section, we first con-
ducted a qualitative analysis of DEMFFA on CEC2020 test sets. Four indicators are
selected for qualitative analysis. The results of qualitative analysis are shown in Fig. 12.
Secondly, DEMFFA was quantitatively analyzed with the 12 algorithms selected as
follows: (1) Improved classical intelligent optimization algorithms: improved Particle
swarm optimization algorithm (HCLPSO) [58], improved Golden Jackal optimization
algorithm (IGJO) [59], improved Gray Wolf optimization algorithm (IGWO) [60]; (2)
Newly proposed optimization algorithms in recent years: Archimedes Optimization
algorithm (AOA) [61], Crayfish Optimization Algorithm (COA) [24], Kepler Optimi-
zation Algorithm (KOA) [16], Seahorse Optimization algorithm (SHO) [6], Spider bee
Optimization algorithm (SWO) [62], Genghis Khan Shark Optimization Algorithm
(GKSO) [33], Human Memory Optimization algorithm (HMO) [63], Triangulation
Topology Aggregation Optimizer (TTAO) [64], and the parameters of the comparison
algorithm are shown in Table 9.

In Fig. 12, the first column is the image of the corresponding function on the
CEC2020 test set, and the second column is the position of the Fennec fox individual
during the search iteration process. It can be seen from the second column that Fen-
nec foxes are evenly distributed in the search space, and with the increase of iteration
times, Fennec foxes will converge to the optimal individuals, and this feature is most
obvious on F2, F4, F8, and F10. Different individuals will converge toward the optimal
solution, which indicates that DEMFFA’s optimization ability and convergence have

Table 9 Comparison algorithm parameter Settings

Algorithm Parameter name Parameter value

HCLPSO Inertia factor 06
Acceleration constant 1,1

IGWO Control parameter C [0,2]

IGJO Aggressive and cruising tendencies(pa,pc) [0.5,2],[0.5,1]

AOA Individual renewal coefficient C;, G,, G5, C, 26,11

KOA Constant 15
Initial gravitational value 0.1
Control parameter 3

SHO Logarithmic spiral constant u 0.05
Stem length v 0.05
Constant coefficient / 0.05

SWO Trade-off probability between hunting and mating behavior 0.3
Crossover probability 0.2
Minimum scale 20

Bold numbers represent the optimal values of the evaluation indicators
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shown great advantages. At the same time, the search ability of the algorithm is also
different for different search Spaces.

It can be seen from the third column of the Fennec fox individual search track that
the Fennec fox individual fluctuates greatly in the early stage of search iteration,
indicating that the Fennec fox individual has strong exploration ability. In the later
iteration period, the individual fluctuation amplitude of Fennec foxes was small and
tended to be flat, reflecting good development ability. It can be seen from the con-
vergence curve in the fourth column that DEMFFA, after continuous iteration in the
early stage, the fitness function value keeps decreasing, and finally reaches the con-
vergence state and finds the optimal solution. On the functions F8 and F10, the con-
vergence curves converge faster, showing good performance. In addition, the average
fitness value curve of the fifth column shows a decreasing trend and finally reaches a
convergence state. From the results of qualitative analysis, DEMFFA greatly improves
the performance of the original algorithm.

Tables 10, 11, 12 shows the results of DEMFFA and 12 comparison algorithms inde-
pendently running 20 times on the 20 dimensions of the CEC2020 test set. The mean-
ings represented by the letters in the table are the same as in the previous section,
and the optimal value of DEMFFA is marked in black in bold. As can be seen from
Table 10, among the 10 test functions of CEC2020, the DEMFFA achieved first place
in 7 functions, proving that DEMFFA’s performance is better than other comparison
algorithms, and the first functions are F2-F7 and F10. The performance of DEMFFA
is not as good as GKSO, HMO, TTAO, and COA in solving the function F1, but it is
stronger than other comparison algorithms. DEMFFA ranks first with an average rank
of 1.6, followed by GKSO with a rank of 2.5. In the CEC2020 test set, the performance
ranking of the algorithms is as follows: DEMFFA > GKSO > TTAO =PSO >1GJO > HM
O>SHO>IGWO>AOA>S.

WO >KOA >FFA, it can be seen that the added strategy greatly improves the per-
formance of the original algorithm.

Table 11 shows the Friedman test results of DEMFFA and the comparison algo-
rithm on the CEC2020 test set, and the optimal Friedman test values are marked in
black in bold. As can be seen from Table 10, the proposed DEMFFA has the smallest
Friedman test value on most test functions, showing the optimal performance, espe-
cially on basic functions and mixed functions. On function F4, DEMFFA has the same
Friedman test value as GKSO, FFA, SHO, AOA, COA, and IGJO, showing the same
performance. Table 12 shows the WRST results of DEMFFA and other algorithms,
and the meanings represented by symbols in the table are the same as in the previ-
ous section. It can be seen that the WRST results of HCLPSO, IGWO, KOA, SWO,
and TTAO are 0/0/10, indicating that the proposed algorithm on the 10 functions on
the CEC2020 test set is better than the compared algorithm. The WRST results of
IGJO, COA, and GKSO are 0/2/8, indicating that DEMFFA has shown the same per-
formance as these algorithms in the two functions compared with these algorithms.
In addition, the results of AOA, SHO, FFA, and HMOde WRST are 0/1/9, indicating
that DEMFFA shows the same performance as the comparison algorithm in one func-
tion when comparing these algorithms. No algorithm performs better than the pro-
posed algorithm on the CEC2020 test set.
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Fig. 13 Convergence curve of DEMFFA and other algorithms on CEC2020

Figures 13, 14, 15 shows the convergence diagram, box plot, and radar diagram
of DEMFFA and the comparison algorithm CEC2020 test set. As can be seen from
the convergence curve in Fig. 13, the convergence curve of the proposed DEMFFA
is mostly kept at the lower left of the convergence curve of other algorithms, with
faster convergence speed and better solving ability than other comparison algorithms.
Compared with the original FFA algorithm, the optimization ability of the proposed
DEMEFFA is greatly improved, especially on F2, F5, F8, and F10. Because FFA falls
into local optimal too early, it cannot find the optimal solution, and the promoted
DEMFFA avoids this problem. As can be seen from the box diagram in Fig. 14, the
box corresponding to DEMFFA is shorter and has fewer abnormal points, indicating
that the proposed DEMFFA is relatively stable and its performance has been greatly
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Fig. 14 Box plot of DEMFFA and other algorithms on CEC2020

improved. The radar in Fig. 15 shows the comparison between DEMFFA and each
algorithm. It can be seen that, compared with other algorithms, DEMFFA has the
smallest shadow area corresponding to the radar map, which also shows that several
strategies added have a great effect on improving the performance of FFA.

DEMFFA is applied to engineering optimization problems

In addition to evaluating the algorithm’s performance using various test sets, it is also
valuable to assess its effectiveness by applying it to real-world engineering design
problems. By doing so, we can gauge the algorithm’s ability to tackle complex, practi-
cal optimization challenges. This approach provides a more comprehensive evaluation
and validates the algorithm’s applicability in real-life scenarios. In this section, ten engi-
neering design problems are selected to test the DEMFFA, including mechanical design
problems, process design problems, and synthesis problems. Specific engineering design
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Fig. 15 Radar diagram of DEMFFA and other algorithms on CEC2020

Fig. 16 Schematic diagram planning for welding beam design issue
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problems are tension/compression spring design problems, process synthesis problems,
Hydrodynamic thrust bearing design problems, Himmelblau function problems, etc.
The variable for each question is denoted with the first letter £f of the Fennec fox English
word. The algorithms compared in this section are: DE [9], PSO [53], AOA [61], COA
[24], SHO[6], IGWO [60], BWOA [56], FFA [48].

Welding beam design problems

This problem focuses on minimizing the manufacturing cost while adhering to specific
constraints. The primary objective is to optimize the design parameters of the weld-
ing beam to achieve the most cost-efficient solution. This study recorded the thickness,
height, and length of the welded beam, as well as the thickness of the weld, denoted
as variables Ffi ~ Efy ~ Ff3 » Ffy, respectively. Figure 16 illustrates the structural dia-
gram of this problem. The mathematical model of the problem considering variables
x = [Ff1, Efy, Efs, Ffal is as follows:

min f(Ff) = 1.10471F2Ef, + 0.04811Ef}Ff, (14 + Ff).

Make:

gl(Ff) = H(Ff) — Hpax <0, gZ(Ff) = U(Ff) — Mmax < 0, g&3(Ef) = 8(Ef) — 8max < 0.

gu(Ef) = Efi — Efa <0, gs(Ef) = 0.125 — Ff; <0, ge(Ff) = Q — Qc(Ef) < 0.

g7(Ef) = 1.10471Ff? + 0.04811Ff3Efy (14 + Ef,) — 5 < 0,

In formula, Q=60000, L=14in, D =30x10°psi, S =12 x 10°psi,
Mmax = 30000 psi,

Hiax = 136000 psi, Smax = 0.251in, 0.1 <Ef; <2, 0.1 <Ef; <10, 0.1 < Ff; < 10,

01 <K <2
Other parameters are as follows:
— 2 "%y "™ gl = Q " _ MR ar L)
H(x)_\/(H) +2HH S+ H) H = 8o H = M5 M= QU+ ),

2 2
R=T + (B2, g = o + R VaEiER), M) = 55,
3 4.013/ DSEf2Ff? /36
S = 2L Qo= (1 -/ By —

DEf,Ff}’ - 2L

Table 13 Results of DEMFFA and other comparison algorithms for solving welded beam problems

Algorithm\Index Variable Optimal value
Ff, Ff, Ff, Ff,

DE 0.132343028 8.194201955 9.99542681 0.250425851 2831278528
PSO 0.322952451 6.618122203 8.066621642 0.350330837 3.565738609
AOA 0.34466571 3.033769857 708076423 0.591835896 3.832347684
COA 0.316880591 8.474209452 549989569 0.584727876 4417210479
SHO 0353521154 6.80666466 9499185502 0.347675038 72.5998589
IGWO 0.634294249 1.970679212 479491714 0.842862306 3.981131706
BWOA 0440321852 5.104883708 448475396 0.986922625 5161581174
FFA 0.164590182 9.968516191 8934653168 0.21646019 2528463522
DEMFFA 0.157321017 4387521469 9.053744795 0.205646471 1.767016102

Bold numbers represent the optimal values of the evaluation indicators
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Table 14 Statistical results of DEMFFA and other algorithms in solving the welded beam problem

Algorithm Best Worst Mean Std

DE 2831279 2.821574E+05 5.775006E + 04 1.254798E 405
PSO 3.565739 4.142983E+-05 1.080264E 405 1.760764E 405
AOA 3.832348 2.109624E +05 5.682985E + 04 8.823658E+ 04
COA 4417210 1.217706E4-06 3.610336E405 5.417966E+05
SHO 72.599859 4.099393E+ 06 1.780722E+06 1.743913E406
IGWO 3981132 3.000833E+13 6.001666E+12 1.342013E+13
BWOA 5.161581 3.044377E 406 7.617007E+05 1.289075E+ 06
FFA 2.528464 8.803789E 405 1.760782E + 05 3.937161E405
DEMFFA 1.767016 1.819338E 400 1.795588E+00 2.425702E-02

Bold numbers represent the optimal values of the evaluation indicators

P P

Fig. 17 Schematic diagram of three-bar truss design problem

DEMFFA and several other intelligent optimization algorithms were used for this
problem. The number of iterations to solve the problem was 500, the number of the pop-
ulation was 30, and the results were obtained by independent operation 20 times. The
solution outcomes are presented in Table 13, while the operational statistical findings
are depicted in Table 14. The optimum values are denoted by the bolded entries within
the table. The comparative analysis in Table 13 demonstrates the significant advantages
of DEMFFA in addressing welded beam engineering challenges, with the minimum
cost recorded as 1.767016102. Furthermore, the observations from Table 14 reveal that
DEMFFA exhibits superior stability, as reflected by its minimal standard deviation.

Three-bar truss design problem

Three-bar truss is a common structural form, that is widely used in Bridges, build-
ings, and mechanical equipment. The design optimization of the three-bar truss means
that the structure has the best performance and economy under certain constraints by
adjusting the parameters of the size, shape, and connection mode of the bar. The struc-
tural diagram of the three-bar truss problem is shown in Fig. 17. Considering variables
x = [Ef1, Efa] = [x1,%2], the specific mathematical model is as follows:
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Table 15 Results of DEMFFA and other comparison algorithms for solving three-bar truss design

problems
Algorithm\Index Variable Optimal value
Ff, Ff,
DE 0.811885029 0337022182 263.9454291
PSO 0.762487001 0.496549931 265.3188848
AOA 0.780101577 0428300964 263.5975021
COA 0.798341699 0.365885814 263.9814581
SHO 0.770186333 044235704 264.2782581
IGWO 0493582166 0474567607 8011.863351
BWOA 0.792243842 0.390899631 2634951728
FFA 0.828653367 0296853943 264.6659411
DEMFFA 0.786124808 0.406840989 263.4634310

Bold numbers represent the optimal values of the evaluation indicators

Table 16 Statistical results of DEMFFA and comparison algorithms for solving three-bar truss design

problems
Algorithm Best Worst Mean Std
DE 263.9454291 291.6934608 2744947451 7.681609045
PSO 2653188848 282.8427125 2742642322 5771462135
AOA 263.5975021 2794754411 270.3820131 4.609767683
COA 263.9814581 279.8366507 2732335953 4587358089
SHO 264.2782581 311.8279063 277.0558656 12.7120783
IGWO 8011.863351 40,916.67574 14,692.01586 7480.898993
BWOA 2634951728 2822622383 2705922927 6.062641884
FFA 264.6659411 282.8427125 272.7644347 5520052534
DEMFFA 263.463431 2634636374 263.4634609 4.74E-05
Bold numbers represent the optimal values of the evaluation indicators
min f(Ff) = 2vV2Ff + Ef) x L.
Make:
V2Efi +Ef> >
Ff)y= 2142 0 _H<0,0F)=—~52——Q—-H<0
gi( f) ﬁFﬁ2+2FﬁFJ‘2Q =0, g f) V2EfE2Ff Ff, Q =Y
Ff)=—=2—Q—-H<0.
U = g H =

In the formula, the value range of the variable is:

0<Fi<LO<Fh<L
Other parameters are:

[ = 100cm, Q = 2kN/cm?, H = 2kN/cm?.
The optimization problem was tackled using the DEMFFA along with several other

intelligent optimization algorithms. The respective results obtained are illustrated in

Table 15. Furthermore, Table 16 presents the statistical outcomes derived from 20 inde-

pendent runs conducted using different algorithms. Bold data is the optimal value. It can

be seen from Table 15 that DEMFFA obtains the minimum value in solving the design

problem of the three-bar truss, and the cost is less than that of the compared algo-

rithm, and the cost is the smallest, the minimum cost is 263.463431. Furthermore, an
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Fig. 18 Tension/compression spring design

Table 17 Results of DEMFFA and other algorithms for solving tension/compression spring design

problems
Algorithm\Index Variable Optimal Value
Ff, Ff, Ffy
DE 0.086927736 1272942688 5424199891 0.071412666
PSO 0.090781294 1.084681806 7.773383529 0.087365513
AOA 0.089661299 0.859671765 9.985499403 0.082832133
COA 0.061000601 0.570366937 14.99871246 0.036077680
SHO 0.079146577 1.264029203 4.722458479 0.053229148
IGWO 0.060917835 0.522900541 7.127362109 0.017711416
BWOA 0.059764895 0.567252586 6.006162357 0.016221582
FFA 0.073404877 0.970231950 7.704534165 0.050734116
DEMFFA 0.051623644 0.355189345 1138258489 0.012668647

Bold numbers represent the optimal values of the evaluation indicators

examination of Table 16 demonstrates that DEMFFA exhibits the lowest standard devia-
tion among the algorithms, which implies that it showcases strong stability in resolving

this particular problem.

Tension/compression spring design

This problem primarily involves optimizing three continuous decision variables while
satisfying four constraints. Figure 18 displays the schematic diagram. In this problem,
the mathematical model, taking into account the variables x = [Ef1, Ef2, Ef3] = [d, D, P],
is precisely defined as follows:

min f(Ef) = FiPEf (2 + Ef3).

Make:

_ 1 _EEs ! 4Eff—EAFH
af) =1 71785Ef} <0, () = 5108Ff2 + 12566 (EREf2—Ff) 1=0,
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Table 18 Statistical results of tension/compression spring design problems solved by various

algorithms

Algorithm Best Worst Mean Std

DE 0.071412666 86.55715929 374536188 3851694615
PSO 0.087365513 82.22820257 19.80207017 17.31142016
AOA 0.082832133 86.55715929 354521263 36.60544963
COA 0.03607768 96.50953358 37.19447427 34.61055662
SHO 0.053229148 16.65454674 7.967382535 7635285242
IGWO 0.017711416 86.55715929 36.8743598 33.65686396
BWOA 0.016221582 76.76015237 24.17316084 29.98573187
FFA 0.050734116 100.4603895 37.39264549 39.92761943
DEMFFA 0.012668647 0.012919017 0.012741879 0.00007078

P,

Fig. 19 Schematic diagram of the design structure of hydrodynamic thrust bearing

e =1- "5k <0.a@) = TEE —1<0

In the formula, the value range of the variable is:

0.05 < Ff1 <2,025 < Ff, <1.3,2 < Ff < 15.

To address the optimization problem aiming for minimization, the DEMFFA and
other intelligent optimization algorithms for solution exploration. The outcomes of the
DEMEFFA algorithm and other comparative algorithms in resolving this problem are pre-
sented in Table 17. Table 18 displays the statistical analysis of the DEMFFA and sev-
eral other algorithms after conducting 20 independent runs, with the optimum value
being depicted in bold. The examination of Table 17 reveals that the DEMFFA algorithm
achieves the lowest value in resolving this problem, with the minimum cost recorded
as 0.012668647. Furthermore, from Table 18, it is clear that DEMFFA demonstrates the
lowest standard deviation when compared to the other algorithms. This emphasizes the
algorithm’s noteworthy performance in efficiently addressing this problem.
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Table 19 Results of DEMFFA and comparison algorithms for solving hydrodynamic thrust bearing

problem
Algorithm\Index Variable Optimal value
Ff, Ff, Ffy Ff,
DE 8.107916243 9.018083099 7.38E-06 13.87759674 58,001.02964
PSO 14.52979125 14.77925679 6.05E-06 13.1522088 78,518.56461
AOA 9.686863722 9.949300741 7.50E-06 1234619262 54,685.29102
COA 6411698198 6.905983425 6.24E-06 4426477787 49,117.23121
SHO 7556867664 5.160206596 1.70E-06 1.356679519 46,491.40786
IGWO 8.245876205 82926528 5.01E-06 1.318262049 12,308.13899
BWOA 6.662732985 9.533389208 3.75E-06 6.794866807 90,786.34317
FFA 9523906726 8611810499 5.32E-06 7965839512 64,361.76416
DEMFFA 13.7649605 13.76826753 5.30E-06 1.005867595 7696.981009

Bold numbers represent the optimal values of the evaluation indicators

Table 20 Statistical results of DEMFFA and comparison algorithms for solving hydrodynamic thrust

bearing problems

Algorithm Best Worst Mean Std

DE 58,001.02964 8,248,204.271 876,133.4614 1,986,049.49
PSO 78,518.56461 6,836,674.897 532,471.3409 1,488477.019
AOA 54,685.29102 963,308.3128 340,910.5732 309,355.7842
COA 49,117.23121 907,374.8404 311,860.9651 240,014.7244
SHO 46,491.40786 4,096,705.578 592,576.5254 1,207,203.779
IGWO 12,308.13899 1,453,568.502 224,538.3591 3251353118
BWOA 90,786.34317 2,973,056.18 514,596.8946 799,930.9666
FFA 64,361.76416 5,157,231.033 588,697.471 1,166,899.625
DEMFFA 7696.981009 38,355.36767 20,383.91775 7180.86524

Hydrodynamic thrust bearing design

The goal of the hydrodynamic thrust bearing design problem [65] is to minimize power

loss. In addition, this problem involves several constraints which include considera-

tions such as bearing capacity and other physical limitations. Figure 19 illustrates the

structural diagram of the hydrodynamic thrust bearing design, variable in consideration
x = [Ff1, Ffa, Ffs, Ffa]. The specific mathematical model is as follows:

min f(Ff) = — + E;.

Make:

QPy
0.7

gl(Ff) =W- WS > O,gz(Ff) :Hmax _HO >0,
gS(Ff) = ATmax — AT >0, g4(Ff) =h — hmin =0,
oy >0,

& (Ef) = Efi — Efa 2 0, ge(Ff) = 0.001 — 7 (
g7(Ef) = 5000 —

_ v S
n(FfP-FfpH —

ZJTFflh
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Fig. 20 Structure diagram of cantilever beam

Table 21 Results of DEMFFA and comparison algorithms for solving hydraulic thrust bearing design

vl

X1

<
<

problems
Algorithm\index Variable Optimal Value
Ff, Ff, Ff, Ff, Ffg
DE 6.177437562 5454432313  4.143947616 331438453 2364496636 1.458637054
PSO 6.199738166  7.009130120 6.707856929  3.16842759 2.803593432  1.489016549
AOA 6.957492574 5302949662 4.267789331 3.17317678 2406143509  1.549834248
COA 6207746745 5381486738 7.216544878 3.24703717 2470488911 1.352017155
SHO 6.101954780 5.183481740 6.918671444 350939396 2.847010203 1390983761
IGWO 6.550182481 5679444301 4.992527624 362662155 2.732374596 1464681043
BWOA 6.253873772 5712078983  6.306429571 4.18346087 2.558861245 1.532687478
FFA 6.219348447 5206071805 4.350247909 3.74349913  2.951033366 1.425088985
DEMFFA 6.043342268 5279473789 4499909571 348735268 2.148644647 1.336069686

Bold numbers represent the optimal values of the evaluation indicators

where, W =

wHy EfE—Ff

2 H
lnﬁ;

log,, log,¢(8.122e6Ff;+0.8)—D; M2 21 Efs Ef  Ef
H= P ’h=(60) (4,_4)'

Variable values range from:
1 < Ffi,Ef, Ffa <16,1e — 6 < Ff3 < 16e — 6.

Other parameters in the formula are: « = 0.0307, D = 0.5, n = —3.55, D; = 10.04,

Er

 Ho = 83 n L, Ef = 9336Ff,aDAT, AT = 2(10" — 560),

Ws = 101000, Hmax = 1000, A Trax = 50, iimin = 0.001, g = 386.4, M = 750.

To solve this problem of minimizing loss, the DEMFFA and various other intelligent
algorithms are utilized. Table 19 shows the results of DEMFFA and others to solve this
problem. The statistical results of DEMFFA and different algorithms are presented in
Table 20. It can be seen from Table 19 that the DEMFFA achieves the minimum loss
in solving the design problem of hydraulic thrust bearing, and the minimum loss is
7696.981009. Furthermore, an examination of Table 20 reveals that DEMFFA exhibits
the smallest standard deviation among the algorithms, suggesting that it is highly com-

petitive in the design of hydraulic thrust bearings.
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Table 22 Statistical results of DEMFFA and comparison algorithms for solving cantilever beam
design problems

Algorithm Best Worst Mean Std

DE 1458637054 2848123485 1.842672878 2.025297E-01
PSO 1489016549 2656791347 1.871557562 1.689202E-01
AOA 1.549834248 1.549915815 2765968349 1.370253E-01
COA 1352017155 4.109909097 1760191912 1.777671E-01
SHO 1.390983761 2.068675088 1.830153843 1.843469E-01
IGWO 1464681043 1.848555573 1.876576932 2.027360E-01
BWOA 1.532687478 1.967269103 1.857716214 1.777867E-01
FFA 1425088985 1495724674 1.799655953 1.906673E-01
DEMFFA 1.336069686 1.336621274 1.336230516 1.365587E-03

Bold numbers represent the optimal values of the evaluation indicators

; ; L X
Compressor station 1 ' Compressor station 2

Fig. 21 Structure diagram of gas transmission compressor

Cantilever beam design

The cantilever beam design problem consists of five square hollow elements and is a
nonlinear constrained optimization problem. As depicted in Fig. 20, each element is
characterized by a variable, while its thickness remains constant. The side length of
the first cross-section square is x1, and so on, so the problem involves a total of five
variables, that is, there are five decision variables, and a constraint condition of verti-
cal displacement needs to be satisfied. Considering variables x = [Ffi, Ffy, Ff3, Ffa, Ef5],
the mathematical model for this problem is as follows:

min f(Ef) = 0.6224(Ffy + Efs + Efs + Efa + Efs).

The constraint condition is:

_ 6l 37 19 7 1 _
g(Ff) F_ﬂ3+F.}C23+Ff33+Ff;L3+Ff,’5 _Oy

The value range of the variable is:

0.01 < Efi, Ef2, Ff3, Ffa, Efs < 100,

This problem is addressed by employing the selected comparison algorithms, the
outcomes of these algorithms are compared with those of the enhanced DEMFFA.



Hu et al. Journal of Big Data (2024) 11:69 Page 56 of 70

Table 23 Results of DEMFFA and comparison algorithms to solve the problem of gas transmission

compressor
Algorithm\index Variable Optimal Value
Ff, Ff, Ffy

DE 50.73245905 1.175968772 26.99435786 2,970,613.238
PSO 5458756442 1216320122 24.98475822 2,969,535.308
AOA 46.34484847 1.157700473 2265777721 2,973,510431
COA 44.57653063 1.157652473 22.10858447 2,975,931.035
SHO 51.39787041 1.165189965 22.84364182 2,975,955.254
IGWO 31.22907701 1.137315262 224897918 3,014,544.766
BWOA 51.00953615 1.190875138 2370014348 2,966,042.251
FFA 43.75407311 1.147259973 25.77391508 2,971,798.954
DEMFFA 5346504256 1.190158768 24.71959683 2,964,375.509

Bold numbers represent the optimal values of the evaluation indicators

Table 24 Statistical results of DEMFFA and other algorithms for solving problems of gas
transmission compressors

Algorithm Best Worst Mean Std

DE 2,970,613.238 3,224,656.978 3,043,918.42 64,978.30077
PSO 2,969,535.308 3,175,725.535 3,025,588.499 53,242.75801

AOA 2,973,510431 3,142,923.915 3,021,303.887 52,512.64494
COA 2,975,931.035 3,279,650.07 3,038,818.873 77912.28316
SHO 2975955254 3,168,893.249 3,039,732.272 54,213.55719
IGWO 3,014,544.766 3,283,713.816 3,105,096.407 80,930.58096
BWOA 2,966,042.251 3,220,545.496 3,052919.311 72,964.90409
FFA 2,971,798.954 3,300,785.837 3,058,605.667 96,137.12686
DEMFFA 2,964,375.509 2,964,388.098 2,964,378.492 2.853367741

Bold numbers represent the optimal values of the evaluation indicators

Table 21 displays the comparison results of all algorithms, and Table 22 presents the
statistical outcomes of all algorithms after 20 independent runs. The optimal data
is highlighted in bold. Table 21 showcases the optimal values achieved by different
algorithms for solving this problem, along with the corresponding decision variable
values. DEMFFA has attained the minimum value in this problem, with a minimum
weight of 1.336069686. Upon examining the statistical results presented in Table 22,
it is evident that DEMFFA’s solution to the cantilever beam problem exhibits the
smallest standard deviation, best value, worst value, and average value. This indicates
that DEMFFA’s algorithm demonstrates a stable performance in solving this particu-
lar problem.

Gas transmission compressor design

The purpose of the gas transmission compressor design problem is to minimize the total
cost of transporting natural gas. The constraint condition that each variable is greater
than 0 is required. The structural diagram of the gas transmission compressor is shown
in Fig. 21. Set the variable involved in this question to x = [Ff1, Efy, Efs] = [L, P, R], the
mathematical model for this problem can be expressed as follows:
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Table 25 Results of DEMFFA and other comparison algorithms in solving process synthesis

problems
Algorithm\index Variable Optimal Value
Ff, Ff,
DE 0532935492 0.963222741 2.036694886
PSO 0.519397309 0.991582109 2.030376727
AOA 0.566073719 0.937202407 2.069349845
COA 0.576604773 0.919746697 2072956242
SHO 0.583449285 0.954220862 2121119432
IGWO 0.795975674 0465167898 2493514236
BWOA 0.654557018 0.839165654 2.148279689
FFA 0.570020218 0.917892265 2.109552412
DEMFFA 0.498996984 1 1.998997992

Bold numbers represent the optimal values of the evaluation indicators

Table 26 Statistical results of DEMFFA and other comparison algorithms for solving process
synthesis problems

Algorithm Best Worst Mean Std

DE 2.036694886 2499641024 2242706576 0.122489956
PSO 2.030376727 2.535061608 2.28336836 0.150501805
AOA 2.069349845 2639442087 2.241220406 0.162288764
COA 2072956242 2630835976 2.304986351 0.136969842
SHO 2121119432 2516127389 2292920731 0.100168285
IGWO 2493514236 232.7762673 103.2007275 5932968758
BWOA 2.148279689 2.566160522 2.309546376 0.132177266
FFA 2.109552412 3.056100873 2391166894 0.274744887
DEMFFA 1.998997992 1.998997992 1.998997992 1.66E-13

Bold numbers represent the optimal values of the evaluation indicators

min f(Ff) = 3.69 x 10*Ff; + 7.72 x 108Ff; 'Ef>?1? — 765.43 x 10° x Ff;

2
3

1 _
+8.61 x 10° x Ef2 (Ff2 — 1) 2Ef; °.

The constraint condition is:

Ffi, Ffy, Ffs > 0,

Variable values range from:

10 < Ffi <55,1.1 < Ff, < 2,10 < Ff3 < 40.

The selected comparison algorithms are utilized to address this problem, and the
results obtained from these algorithms are compared with improved DEMFFA. Table 23
displays the comparison results of all algorithms, including the optimal values obtained
to solve this problem, along with the corresponding decision variable values. Table 24
presents the statistical results of all algorithms after 20 independent runs, with the
optimal data highlighted in bold. From the outcomes presented in Table 23, it is clear
that DEMFFA has achieved the lowest value in the gas transmission compressor prob-
lem, with a minimum transportation cost of 2,964,375.509. Furthermore, the statistical
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outcomes presented in Table 24 reveal that DEMFFA’s solution to the design problem of
this problem exhibits the smallest standard deviation, best value, worst value, and aver-
age value. This indicates that DEMFFA demonstrates relatively accurate performance
and good stability in resolving this problem.

Process synthesis problem

The chemical process synthesis problem belongs to the process design and synthesis
problem [66]. This problem mainly includes one constraint condition and two decision
variables x1, xp. Variables are considered in this problem x = [Ff, Ff2] = [x1, 2], and the
specific mathematical model for the process synthesis problem can be presented below:

min f(Ff) = Ffo + 2Ef;.

Make:

Q(Ef) = —Ff —E+1.25 <0, &2(x) = Ef| + Ff, < 16,

Variable values range from:

0<Fi<160<Ff <1

The process synthesis problem was addressed by employing the DEMFFA along
with selected comparison algorithms. Subsequently, a comprehensive comparison was
conducted to evaluate and analyze the results produced by these algorithms. Table 25
displays the comparison results of all algorithms employed to solve the process syn-
thesis problem, along with their corresponding decision variable values. The optimal
value obtained by each algorithm is highlighted in bold. Additionally, Table 26 pre-
sents the statistical results of all algorithms after conducting 20 independent runs.
From the analysis of Table 25, it is evident that the DEMFFA achieved the minimum
value of 1.998997992 for the process synthesis problem. The corresponding results
in Table 26 presenting the statistical outcomes further demonstrate that DEMFFA
exhibits the smallest standard deviation, best value, worst value, and average value
among all algorithms used to solve the comprehensive chemical process problem,
indicating its superior competence in addressing this specific problem.

Table 27 Statistical results of the Himmelblau problem solved by DEMFFA and other comparison

algorithms
Algorithm\index Variable Optimal Value
Ff, Ff, Ffy Ff, Ffs
DE 78 33 27 27 27 150,930.1081
PSO 78 33 27 45 27 150,924.9633
AOA 78 33 27 27 27 150,930.1081
COA 8127453143  39.15312616  27.0515341 30.28021997  28.29085035 151,816.036
SHO 78 33 27 72 27 150,920.5681
IGWO 78 33 27 27 27 150,930.1081
BWOA 78 33 27 72 27 150,920.5681
FFA 78 33 27 72 27 150,920.5681
DEMFFA 78 33 27 27 27 140,996.5484

Bold numbers represent the optimal values of the evaluation indicators



Hu et al. Journal of Big Data (2024) 11:69 Page 59 of 70

Table 28 Statistical results of the Himmelblau problem solved by DEMFFA and other comparison

algorithms

Algorithm Best Worst Mean Std

DE 150,930.1081 150,930.1081 150,930.1081 2.985990E-11
PSO 150,924.9633 150,925.6571 150,924.998 1.551405E-01
AOA 150,930.1081 150,930.1081 150,930.1081 2.985990E-11
COA 151,816.036 1772759215 159,612.7626 6.365021E+03
SHO 150,920.5681 150,920.5681 150,920.5681 2.985990E-11
IGWO 150,930.1081 150,930.1081 150,930.1081 2.985990E-11
BWOA 150,920.5681 150,930.1081 150,927.7231 4.238261E+400
FFA 150,920.5681 153,889.7851 151,236.8643 9.078406E + 02
DEMFFA 140,996.5484 140,996.5486 140,996.5484 0.000000E 4- 00

Bold numbers represent the optimal values of the evaluation indicators

X4

Fig. 22 Structure diagram of the reducer

Himmelblau'’s function problem

Himmelblau is used as a universal benchmark for analyzing nonlinear constraint optimi-
zation algorithms [66]. The problem contains 6 nonlinear constraints and five variables.
Considering the variables x = [Ffi, Ef2, Ff3, Efa, Efs], the specific mathematical model for
the Himmelblau function problem can be represented as follows:

min f(Ef) = 5.3578547EFf2 + 0.8356891Ef; Ffs + 37.293239Ff; — 40792.141.

The constraint condition is:

Q) =—-G1 <0, ) =G1 —92 <0, g3(Ef) =90 — G2 <0,

G(Ef) =Gy =110 <0, g5(Ef) =20 — G3 < 0, gs(Ff) = G3 — 25 <0,

Other parameters in the formula are:

G1 = 85.334407 + 0.0056858Ff, Ffs + 0.0006262Ff; Ffy, — 0.0022053Ff Ffs,

G2 = 80.51249 + 0.0071317Ef, Efs + 0.0029955Ff Ffy + 0.0021813Ff2,

Gs = 9.300961 + 0.0047026Ff3 Efs + 0.00125447Ff, Efs + 0.0019085EFfEf,,

Variable values range from:

78 < Ffi <102,33 < Ffy < 45,27 < Ff3 <45,

27 < Ffy < 45,27 < Ff; < 45.

The Himmelblau’s function problem was addressed using the DEMFFA along with
selected comparison algorithms. The results of these algorithms were then compared.
Table 27 presents the comparison results of all algorithms, showcasing the optimal value
obtained by different algorithms in solving this problem, along with their corresponding
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Table 29 Statistical results of DEMFFA and other comparison algorithms for solving reducer design

problems

Algorithm\Index Variable Optimal Value
Ff, Ff, Ffy Ff, Ffg Ff, Ff,

DE 29 0.7 17 7778 8.203 2913 5336454704 100,002,757.6198

PSO 3.6 0.7 17 8.3 83 39 55 3363.8734

AOA 36 0.8 28 83 83 39 55 11,118,255.9370

COA 3.6 0.8 28 83 8.3 39 55 11,118,255.9370

SHO 36 0.7 17 83 83 39 55 3363.8734

IGWO 26 07 17 73 7.8 29 5 100,002,362.2653

BWOA 6.2 0.7 28 83 8.3 39 55 8689.3206

FFA 6.2 0.8 17 83 83 39 55 5218.0230

DEMFFA 35 0.7 17 7.3 7.8 3.350 5.286684025 2996.3508

Bold numbers represent the optimal values of the evaluation indicators

Table 30 Statistical results of DEMFFA and other comparison algorithms for solving reducer design

problems

Algorithm Best Worst Mean Std

DE 100,002,757.6 100,003,179.7 100,002,928 4 1.200508E4- 02
PSO 3363.87338 11,114,972.94 560,452.4542 24842778+ 06
AOA 11,118,255.94 11,118,255.94 11,118,255.94 1.911034E-09
COA 11,118,255.94 11,118,255.94 11,118,255.94 1.911034E-09
SHO 3363.87338 5218.022983 4207.506458 9.386677E+02
IGWO 100,002,362.3 100,002,362.3 100,002,362.3 3.057654E-08
BWOA 8689.320552 11,118,255.94 5,564,454.869 5.698080E + 06
FFA 5218.022983 10,872.07641 10,121.36529 1.704057E+4-03
DEMFFA 2996.350766 2996.435421 2996.368292 1.763705E-02
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Bold numbers represent the optimal values of the evaluation indicators

variable values. Bold data represents the optimal value. Additionally, Table 28 displays
the statistical results of all algorithms. It can be seen that DEMFFA obtained the mini-
mum value on this problem, and the minimum value was 140,996.5484. In Table 28, the
standard deviation, the best value, worst value and average value of DEMFFA in solving
the comprehensive problem of the chemical process are all the smallest, indicating that
DEMFFA has great advantages.

Reducer design problems

Reducer design is an engineering design problem. To make the weight of the reducer as
small as possible. Figure 22 is the structural diagram of the reducer. Consider the vari-
ables involved in this problem:x = [Ffi, Efa, Ef3, Efa, Efs, Efs, Ef7], the mathematical model
is as follows:

min f(Ff) = 0.7854EFf Ff; (3.3333Ef + 14.9334Ff; — 43.0934) — 1.508Ff; (Ff? + Ff?)
+ 7477 (Ef2 + Ff?) + 0.7856 (EfuFf2 + EfsFfP).
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Fig. 23 Structure diagram of the stepped cantilever beam

Table 31 Statistical results of DEMFFA and other algorithms for solving the design problem of a
stepped cantilever beam

Algorithm\index  Variable Optimal value

Ff, Ff, Ff, Ff, Ff, Ff, Ff, Ff, Ff, Ffy

DE 1 1 1 1 1 30 30 30 30 30 1.0977464322E +05
PSO 1 1 1 1 1 30 30 30 30 30 1.0977464322E+05
AOA 1 1 1 1 1 30 30 30 30 30 1.0977464322E+05
COA 1721 11 2 19 48 31 36 39 4226  1.2676387970E+ 05

SHO 1 1 1 1 1 30 30 30 30 30 1.0977464322E +05
IGWO 1 1 1 1 1 30 30 30 30 30 1.0977464322E +05
BWOA 1 1 1 1 1 30 30 30 30 30 1.0977464322E +05
FFA 1 1 1 1 1 30 30 95 95 95 1.2927453778E4-05

DEMFFA 1 1 1 1 1 30 30 30 30 30 1.0977464322E +05

Bold numbers represent the optimal values of the evaluation indicators

The constraint condition is:

=2 _ — 3975 R
Q) = 5 o 150 ) =& o —1=0 BFf) = F]’2Ff641;‘3 <0,

_ L9sEf} _ [(745(Ffu/ EREf3))*+16.9x10°1°%
g4-(Ff) - Fszf74;f3 1 S 0; gS(Ff) - 110Ff63 1 E O)
go(Ef) = 745/ %F?5)§;i-157.5x106]0.5 <0, 00 = % 1<

7
5F] Fj 1.5Ffs+1.9

g (Ef) =52 —1 <0, g0(Ef) = 155 — 1 <0, qio(Ff) = 2EH2 —1 <0,
en(Ef) = HEH2 1 <,

Variable values range from:

2.6 < Ff; <36,0.7 <Ff, <0.8,17 < Ff3 < 28,7.3 < Ffy, Ff5 < 8.3,

2.9 < Ffs <3.9,5.0 < Ff; <5.5.

The reducer design problem was approached using the DEMFFA in conjunction with a
chosen comparison algorithm. A comparison of the results obtained by these algorithms
is presented in Table 29. This table showcases the outcome of different algorithms in
solving the reducer design problem, highlighting the optimal value achieved. The cor-
responding statistical results of all algorithms, after conducting 20 independent runs,
are displayed in Table 30. In both tables, the optimal value is indicated in bold. Table 29
displays the optimal value achieved by different algorithms in solving this problem,
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along with the corresponding variable value. It is noteworthy that the DEMFFA obtained
the lowest value, which is 2996.3508. As for the statistical results indicated in Table 30,
while the standard deviation of DEMFFA is not the smallest, it boasts the best, worst,
and average values among all algorithms in solving this problem. This suggests that the
DEMFFA remains highly competitive and efficient in addressing this particular problem.

Stepped cantilever beam design

A stepped cantilever is similar to a cantilever design problem in that the aim is to
keep its total weight as small as possible while meeting the maximum load. This prob-
lem needs to meet eleven constraints, involving ten variables, and optimize the cor-
responding parameters to get the minimum weight of the stepped cantilever beam,
which is more complicated than the cantilever beam design. Figure 23 shows the
structural diagram of the stepped cantilever beam. Consider the variables in this prob-
lem:x = [Ef1, Ef2, Efs, Efa, Efs, Efs, Ef7, Efs, Efo, Ffi0], the specific mathematical model of
this problem is as follows:

min f(Ff) = I(EAEfy + EfsFfa + EfsEfs + Ef7Efs + EfoEfio)-

The constraint condition is:
g1 (Ff) = S — Omax < 0, gZ(Ff) 6P — Omax < 0, gS(Ff) 6Pl — Omax < 0,

EfFf2 FfpEf2 Ef5 Ff?
g4(Ff) = FJZI;][”Z — Omax < 0, gS(Ff) = I_;I;lez — Omax <0,
244 148
g6(Ff) ngFfz (Flef Ff3Ff3 + Ff5Ff3 + Ff7Ff Ff9Ff3 ) max = 01

@ (F) = i? 20 <0, gg(Ef) = P — 20 < 0, go(Ff) = ¢ —20 <0,

g0(E) = 2 =20 <0, gn(Ff) = fl° -20<0,

Variable values range from:

1 <Ff <5,30 < Ef, <65,30 < Ff3, Ffs < 65,45 < Ffy, Ffs < 60,
1 < Efs, Ffy < 5,30 < Ffg, Ffio < 65.

Table 32 Statistical results of DEMFFA and other comparison algorithms for solving the design
problem of a stepped cantilever beam

Algorithm Best Worst Mean Std

DE 109,774.6432 109,774.6432 109,774.6432 2.98599E-11
PSO 109,774.6432 109,774.6432 109,774.6432 2.98599E-11
AOA 109,774.6432 109,774.6432 109,774.6432 2.98599E-11
COA 126,763.8797 146,723.7696 138,953.5673 5.84741E4-03
SHO 109,774.6432 109,774.6432 109,774.6432 2.98599E-11
IGWO 109,774.6432 109,774.6432 109,774.6432 2.81302E-11
BWOA 109,774.6432 131,274.5655 122,026.1595 547622E4-03
FFA 129,274.5378 149,2553713 140,195.0673 547217403
DEMFFA 109,774.6432 109,774.6432 109,774.6432 2.98599E-11

Bold numbers represent the optimal values of the evaluation indicators
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Fig. 24 Schematic diagram of 24-bar truss structure

This problem was tackled using the DEMFFA, along with selected comparison algo-
rithms, to compare their respective results. Table 31 presents the comparison results of
all algorithms, showcasing the optimal value achieved by different algorithms for solv-
ing this problem, alongside their corresponding variable values. Bold data in this table
indicates the optimal value obtained specifically by the DEMFFA. Additionally, Table 32
displays the statistical results of all algorithms after conducting 20 independent runs. By
examining the results presented in Table 32, it is evident that the DEMFFA has achieved
the lowest value, reaching a minimum value of 1.0977464322E+ 05, in solving the
problem of a stepped cantilever beam. Furthermore, the statistical analysis reveals that
DEMFFA’s solution to this problem is comparable to those obtained by other algorithms,
namely DE, PSO, AOA, SHO, IGWO, and BWOA. This indicates that the DEMFFA
possesses a similar ability to these algorithms in solving this problem, and is capable of
attaining the minimum value.

DEMFFA solves the topology optimization problem of trusses

Topology optimization is a process that can automatically generate an optimal lay-
out within a predetermined design domain while ensuring that it meets the specified
requirements [67]. Because the truss structure has the characteristics of lightweight,
rigidity, and cost-effectiveness, it is widely used in bridge, aerospace, and other engi-
neering fields. The topology optimization of the truss can minimize the weight of the
structure in time under certain constraints. It can be presented in many ways, the most
famous of which is the ground structure technique [68]. Truss optimization mainly
includes topology optimization, size optimization, and shape optimization [69]. When
solving this kind of problem, it will be affected by motion stability, element stress, node
displacement, and other factors.

In this paper, DEMFFA and some other comparison algorithms are applied to the
topology optimization of the 24-bar truss. The structure diagram of the 24-bar truss
is shown in Fig. 24. The comparison algorithms are as follows: WOA [57], MFO [70],
DE [9], SCA [71], KOA [16], SWO [62], AOA [61], TSA [72], HHO [73], and FFA [48].
For the specific mathematical model of topology optimization of a 24-bar truss, see
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Fig. 25 Schematic diagram of the results of solving the topology optimization problem of a 24-bar truss

Reference [74]. In solving this problem using the algorithms described in this paper, the
population size is 50, the maximum number of iterations is 500, and all the results are
obtained from 20 independent runs. The operational outcomes are displayed in Table 33.
In the table, “-” is used to denote books with a value less than 0, and the optimal values

are indicated by the bolded numbers. A;(i = 1,2, - - - , 24)is the design variable.
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Fig. 26 Convergence curve of 24-bar truss solved by DEMFFA and contrast algorithm

Table 33 showcases the results of various algorithms used to solve this optimization
problem. The proposed DEMFFA has achieved the minimum weight value of the truss,
which is recorded as 160.1101. Moreover, the ranking of the differential evolution algo-
rithm and sine—cosine algorithm closely follows that of the DEMFFA in solving this
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problem. and the ranking of different algorithms in solving this problem is as follows:
DEMFFA >DE > SCA >HHO > MFO > TSA > KOA > SWO > FFA > AOA > WOA.

The results of each algorithm to solve the topology optimization problem of the 24-bar
truss are shown in Fig. 25. Upon inspecting the convergence curve plot depicted in
Fig. 26, it is apparent that while the DEMFFA may not exhibit the fastest convergence
speed during the initial stages of solving the 24-bar truss topology optimization prob-
lem, its convergence curve ultimately falls below that of all the other algorithms. This
indicates that the DEMFFA algorithm demonstrates the highest level of accuracy. Over-
all, the proposed DEMFFA proves to be the most competitive method when it comes to
solving the topology optimization problem of the 24-bar truss.

Summarize

This paper presents an improved FFA algorithm called the DEMFFA. By adding sin
chaotic mapping strategy, cosine adjustment of formula factor, Cauchy operator muta-
tion, and differential evolution mutation strategy, combining these four strategies with
the original FFA, significant improvements have been achieved in terms of convergence
speed and searchability. The aforementioned enhancements significantly enhance the
overall efficiency and effectiveness of the algorithm in addressing optimization prob-
lems. The performance and competitiveness of the proposed DEMFFA algorithm are
verified in three different test sets and a complex 24-bar truss topology optimization
case. However, DEMFFA also has some shortcomings, such as adding two mutation
strategies, which increases the complexity of the algorithm and makes the algorithm
not convergent the fastest when solving some functions. In the future, to tackle diverse
problem types, different strategies will be added to improve the problem-solving ability
of the algorithm. Finally, the proposed DEMFFA algorithm can also be applied to such
practical problems as lithology identification [75], UAV path planning [76, 77], building
energy consumption prediction [78], store scheduling [79], surface shape optimization
[80, 81], feature selection [82], etc.
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