
Fitcam: detecting and counting repetitive
exercises with deep learning
Ferdinandz Japhne1, Kevin Janada1, Agustinus Theodorus1 and Andry Chowanda1* 

Introduction
Physical fitness is one of the most important traits a person could have for health lon-
gevity. There are a variety of physical exercises that can help us sustain ourselves; for
example, aerobics have been proven to reduce stress and improve vascular health [1].
Physical exercise has also been associated with an increase in happiness with the posi-
tive side-effect of improving physical health [2], but unfortunately, there is also a risk
of injury associated with any type of exercise; Gray and Finch identified that one of the
categories that cause injuries in fitness centres is mainly divided into three categories:
overexertion, strenuous, and unnatural movement [3]. Therefore, to avoid injury, it is
necessary to know how to exercise properly. Hiring personal trainers is one of the solu-
tions to ensure that injuries do not occur while exercising. Nevertheless, there are cave-
ats to hiring a personal trainer. To start, there are several good criteria such as four years
of experience in the field, credible certification from a respected organization, under-
standing of nutritional science, having the ability to work with different clients, having
strategies that suit client behavior, having a positive and supportive leadership style, and
last but not least good communication skills [4].

Abstract 

Physical fitness is one of the most important traits a person could have for health
longevity. Conducting regular exercise is fundamental to maintaining physical fit-
ness, but with the caveat of occurring injury if not done properly. Several algorithms
exists to automatically monitor and evaluate exercise using the user’s pose. However,
it is not an easy task to accurately monitor and evaluate exercise poses automatically.
Moreover, there are limited number of datasets exists in this area. In our work, we
attempt to construct a neural network model that could be used to evaluate exercise
poses based on key points extracted from exercise video frames. First, we collected
several images consists of different exercise poses. We utilize the the OpenPose library
to extract key points from exercise video datasets and LSTM neural network to learn
exercise patterns. The result of our experiment has shown that the methods used are
quite effective for exercise types of push-up, sit-up, squat, and plank. The neural-net-
work model achieved more than 90% accuracy for the four exercise types.

Keywords:  Human activity recognition, Pose estimation, Long short term memory

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Japhne et al. Journal of Big Data (2024) 11:101
https://doi.org/10.1186/s40537-024-00915-8

Journal of Big Data

*Correspondence:
achowanda@binus.edu

1 Computer Science Department,
School of Computer Science,
Bina Nusantara University,
11480 Jakarta, Indonesia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00915-8&domain=pdf

Page 2 of 27Japhne et al. Journal of Big Data (2024) 11:101

While personal trainers can help prevent injuries in fitness centers by planning exer-
cises that have low to moderate risks for their clients [5], the number of personal train-
ing sessions has reduced during the pandemic, and personal trainers are reporting a
loss of clients [6]. A report by Glofox showed that because of the Covid-19 lockdowns,
fitness centers are increasing the frequency of online gym classes. The surge in online
gym classes is an organic response from the fitness industry to survive the lockdowns
[7, 8], but online classes have unique limitations. For example, physical educators have
a hard time overcoming the monotony and limited environmental conditions experi-
enced by the students. Furthermore, the lack of experience teaching physical education
from online platforms also impacts the classes making them less effective [9]. Ultimately,
online physical education classes limit the number of interactions a client has with their
trainer.

Lockdowns have increased the difficulty of day-to-day exercise because of the lack of
motivation and the limited opportunities to find alternatives to gyms [8]. According to a
study by Bravata et al. [6], almost 40% of Norwegian personal trainers who participated
in the study have found difficulty in the continuance of conducting physical activities
and exercising during lockdowns. Thus, even though restrictions have subsided, there
still needs to be a way to conduct online classes. A study about gamification and self-
monitoring concluded that it might be used as a source of motivation for physical activi-
ties [9]. Self-monitoring accurately enables self-reflection and increases the reactivity
necessary to respond and cue behavior change [10]. However, to self-monitor effectively,
there needs to be a monitoring device that can track movements [11, 12].

Pose estimation techniques use various data capturing mechanisms such as wearable
inertial sensors and visual sensors. There are several benefits and disadvantages each
type of sensor has compared to the other. For example, visual sensors can collect from
every part of the body at once but have the disadvantage of being limited by occlusion
[13]. In contrast, wearable inertial sensors are ubiquitous but cannot collect data if the
sensor is not located on the active part of the body [14]. High-end 3D marker-based
motion capture systems such as 3DMoCap can overcome this limitation but have lim-
ited accessibility making them impractical for everyday use. A study comparing deep-
learning-based pose estimation systems and marker-based motion capturing systems
found that deep-learning-based systems, in some segments, have comparable perfor-
mance to marker-based systems, but marker-based systems still have the edge and are
the better choice out of the two.

Therefore, we present a vision-based neural network model to self-monitor exercises
accurately and automate exercise tracking. For our specific use-case, we would need a
pose estimation technique to gather Spatio-temporal data, and we settled for Open Pose,
a 2D skeleton-based pose estimation model provided by Dua et al. [15]. Open Pose has
been used in a multitude of pose classification studies as part of the feature extraction
method.

To develop our neural network, we have recorded data of ourselves doing four different
exercises, including sit-ups, push-ups, planks, and squats. In total, we gathered 18,778
videos and 55,008 images. Each video will be processed using Open Pose to retrieve the
series of key points needed to evaluate each exercise repetition, while each image will be
processed to retrieve key points to detect and classify exercise based on the user’s pose.

Page 3 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

The process of our model is as follows:

1	 Detect the user that raises their right hand (accuracy 90%).
2	 Detect exercise type based on the user pose (accuracy 90%).
3	 Track the repetitions done by the user (accuracy 90%).
4	 Display the tracking results.

This paper contributes to:

1	 Collecting many datasets in push-ups, sit-ups, squats, and planks (video, images, fea-
tures extracted using Open Pose).

2	 More accurate human activity recognition model by using the combination of spa-
tiotemporal features extraction using Open Pose, LSTM for sequence classification,
and MLP for human activity recognition.

Related work
Human Action Recognition (HAR) is a field of study concerned with recognizing an
action performed by a person based on sensor data. HAR detects human activities such
as sitting down, running, raising the right hand, and other activities based on the features
retrieved from our postures. Pose estimation has become a focal point in approaches for
HAR. Modern pose estimation approaches are adequate for real-world applications with
use-cases ranging from usage for sports and education to biomechanics and medication
[16].

Collecting pose estimation data can be done using a variety of inputs such as wearable
inertial sensors and visual sensors, with each type of sensor having its own set of chal-
lenges. For example, wearable sensors would be effective for specific types of exercise,
but sensors attached to less ideal positions will affect the tracking results [14]. There is
also a possibility that magnetic disturbances or measurement noise can affect the input
from low-end inertial sensors [18]. High-end marker-based motion capturing systems
can overcome these shortcomings, but these sensors’ lack of availability makes them
impractical for everyday use. Limitations in using wearable inertial sensors would also
be the lack of publicly available data sets to compare performance between solutions,
mainly because each solution has differing algorithms for the analysis of raw IMU data
[17].

Alternatively, visual sensors have different limitations compared to wearable sensors.
State-of-the-art solutions have overcome the difficulties of computer vision tasks such as
object detection because of deep neural networks [13]. However, processing input from
visual sensors is still difficult for embedded solutions because it requires a large number
of computational resources required to do so [18]. Furthermore, visual sensors do not
offer the same amount of ubiquity compared to wearable sensors because visual sen-
sors are limited by occlusion. Visual sensors need to be pointed directly at the target
object, making it difficult to classify exercises such as running. However, visual sensors
have an advantage in utilizing modern deep-learning-based pose estimation techniques,
making it possible to recognize human activity by analyzing multiple body parts at once.
In some segments, modern deep-learning-based pose estimation is comparable to 3D

Page 4 of 27Japhne et al. Journal of Big Data (2024) 11:101

motion capturing systems, making visual sensors a viable option for stationary exercise
monitoring solutions. Some studies have also attempted to combine the two, yielding
better results [19].

Our current use case requires us to involve a sequential classifier of monocular images.
Thus we would need to consider various types of human body models when considering
pose estimation techniques, mainly between skeleton-based models [15] and 3D shaped
models [20]. The skeleton-based model is a tree-like structure that connects adjacent
joints to create key points, while the 3D models create a 3D model representing the
target object [16]. For example, skeleton-based approaches have been used to analyze
athletes and create quantitative assessments of their performance, while 3D models
approaches are used to create a 3D reconstruction of an ongoing soccer game by analyz-
ing the depth map of the players using convolutional neural networks (CNN).

In the study by Dua et al. [15], a multi-stage CNN is used to estimate the pose of the
human body in real-time and succeeded in estimating the poses of many people in a
crowded environment using a multi-stage CNN. The approach is made using the bot-
tom-up method, where estimation is done by detecting body parts first and then com-
bining them to form a single body. The results show that the number of people in the
video does not impact the performance or frame rate resulting in [15] being one of the
best state-of-the-art pose estimation techniques. Open Pose, a 2D skeletal pose esti-
mation model [21], is based on [15]. Another pose estimation study was carried out by
Angelini et al. [22] that improved upon the shortcomings of the previous attempt by
[15] using Long Short Term Memory (LSTM). This study combines the use of recurrent
neural networks (RNN), CNN, and LSTM. The results of utilizing LSTMs significantly
increased the performance and efficiency of the model. In addition, LSTMs could uti-
lize temporal information better, thus beating previous state-of-the-art pose estimation
models.

Modern pose estimation algorithms that can perform real-time enabled the increase
in human activity recognition research. For example, a study by another researcher cre-
ated a highly generalized model to classify similar human gestures and actions in real-
time using Open Pose, and the model can adapt to proximity and viewpoint changes
with a high accuracy rate of 99.04%.

Additionally, another study done by another researcher trained a residual bidirectional
LSTM model to classify human gestures (including raising left hand, trunk back), action
(including running, jumping, sitting), and behavior (including drinking, sleeping, and
typing) using data from the Public Domain UCI Dataset and the Opportunity dataset
collected using wearable inertial sensors. The model managed to achieve high accuracy
of 93.6%, but the authors state that the model performs better with different parameters
for different datasets. Nevertheless, the two studies have similarities in creating a highly
generalized model capable of adapting to data.

Another study conducted by another researcher used OpenPose to classify skeletal
structures. The research is to compare ballet poses using various methods. The feature
extraction methods used include Histogram of Gradients (HOG), SIFT, SURF, and Open
Pose. The classification methods applied are K-Nearest Neighbors, Naive Bayes, Deci-
sion Trees, Random Forest, Gradient Boosting Tree, Support Vector Machine, Artificial
Neural Network, and Recurrent Neural Networks. The final result achieves an accuracy

Page 5 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

of 99.375%. The accuracy is achieved by a combination of Open Pose and Random
Forest.

Similar research was also conducted by another researcher. This study aims to classify
four poses, namely standing, sitting, lying down, and dangerous sitting poses. The clas-
sification method used is multilayer perceptron and managed to achieve the best results
with an F-Score of 92.5% for one of the cases. Subsequently, a study by Rushil et al. [14]
aims to create a model that can classify sports movements capable of calculating the rep-
etitions performed with people.

Dataset
The datasets used in this research are videos consisting of four exercises (push up, plank,
sit up, and squat) from different angles and three different subjects, and videos of three
different subjects raising their right hand from different angles. Figure 1 illustrates the
example of the images collected and Table 1 demonstrates the detail of the dataset
collected.

Right hand up neural network dataset

Right-hand-up video datasets are pre-processed into images per frame and grouped into
true and false labels. The true label means that the subject is currently raising their right
hand, while false means otherwise. Each frame has been labelled, processed into key-
points data using the OpenPose library, and fed through the neural network.

Multi‑class pose network dataset

Exercise video datasets are pre-processed into images per frame and grouped into multi-
class labels of each exercise. Each frame has been labeled, processed into keypoints data
using the OpenPose library, and fed through the neural network.

Fig. 1  Sample images dataset

Table 1  Multiclass pose datasets

Exercise class Image counts Video counts

Plank 552 6245

Push Up 542 5587

Sit Up 588 4157

Squat 522 2789

Page 6 of 27Japhne et al. Journal of Big Data (2024) 11:101

Starting pose network dataset

Exercise video datasets are pre-processed into images per frame and grouped into multi-
class labels of each exercise. Each frame has been labeled, processed into keypoints data
using the OpenPose library, and fed through the neural network.

Exercise pose evaluation dataset

Exercise video datasets are split into single repetitions and labeled based on each exer-
cise class. Next, each repetition is processed into arrays of key points, forming a pat-
tern for each exercise repetition. These pre-processed datasets are then fed to LSTM
RNN to study keypoints patterns of each exercise class. The main features used in this
research for pose tracking are key points. Keypoints are representations of human pose
in the form of joints and skeletons. For example, 14 joints consist of nose, neck, left and
right shoulder, left and right elbow, left and right wrists, waist, left and right eyes, left
and right ears for a single set of key points. Pre-processed keypoints collection will be
labeled based on each exercise group.

Proposed methodology
Data retrieval

The author decided at the outset to use four types of exercise in this experiment. The
types of exercises are planks, sit-ups, push-ups, and squats. For the plank, the subject
holds the position for 30 s times four sets. For push-ups, the target does 15 reps times
four sets. For sit-ups, 15 repetitions times four sets, and for squats, 15 repetitions times
four sets. Figure 2 shows the process of the video recording for the dataset. The data
collection process starts recording a video where the author does 1 set of exercise move-
ments per video. The video was recorded using a smartphone camera with 1280x720
pixels and 30 frames per second (FPS). The camera is about 2 ms away from the subject.
The angle of the video is taken so that all or at least most of the body parts are visible.
This is done so that the resulting data have as much information as possible about the
positions of the limbs. Thus, the hope is that the patterns of exercise movements can be

Fig. 2  Data collection

Page 7 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

more visible in the data so that our neural network model can learn from the data more
easily.

Apart from exercise movement videos, the author also recorded videos where the sub-
ject raises his right hand. This was necessary because we needed to train a model to
detect a subject holding his right hand up. This detection process will become a trigger
that tells the system to classify the exercise by looking at the starting pose. This process
will be explained in more detail in the model development chapter.

Preprocessing data

Before the data can be used, the data needs to be pre-processed. First, the resolution
of each video is reduced to 720x404 pixels to reduce the size of the data. Furthermore,
FPS is also standardized to 24 FPS to have the same number of FPS across all videos.
By doing this, the raw video that was 30-50 megabytes in size becomes 1-3 megabytes.
Next, each exercise video is cut into shorter videos of 1 exercise movement repetition.
This cutting process is done manually by looking at the subject’s initial position and end-
ing position in the video. Then, the author determines the duration of the repetition
video for each type of exercise. For example, for push-ups, the author determines the
duration to be 1 s per repetition, while for sit-ups and squats, the author determines the
duration for 2 s per repetition. The duration of the videos is determined based on the
observation that sit-ups and squats have an average duration of 2 s while push-ups have
1. Finally, for the plank type exercise, because it is different from other types of exercise
that aim to count the number of repetitions, the plank is an exercise to maintain the
position for a set amount of time. So the author decided to process the video of 1 plank
repetition into a duration of 1 s.

The author carried out a mirror process for all exercise repetition videos to add vari-
ation to the data, so the amount of data is doubled. The videos will be used as the data
source for the LSTM-based exercise evaluation model. The videos are further processed
by cutting each frame into images which will be used as the data source for our binary
classification model. The images are organized into three main folders: the exercise
starting pose, right hand up, and exercise pose. Inside the exercise starts, the pose folder
is images of the subjects in the starting pose of each exercise. The images are separated
into four folders for each type of exercise, namely planks, push-ups, sit-ups, and squats.
In each exercise folder, the data is further divided into two folders named positive and
negative. The positive folder contains data containing images of subjects in the starting
position of the related exercise. In contrast, the negative folder contains images where
the subject is not in the starting position of the exercise.

In the right-hand up folder, the data is divided into a positive folder and a negative
folder. The exercise poses folder contains video data that have been processed previously.
In this folder, the videos are separated into four folders according to the type of exercise.
The organized data will now be further processed to extract the key points of the sub-
ject’s body joints. This process is done by using several libraries. First, an open Pose is
used to detect the position of key points. The position of the obtained key points is then
normalized to be relative to the bounding box of the target. This is done so that the posi-
tion of the key points does not depend on the subject’s position relative to the image
box. For example, in 2 different images, wherein image A, the position of the subject

Page 8 of 27Japhne et al. Journal of Big Data (2024) 11:101

is at the top left of the image, and an image B, the subject is at the bottom right of the
image, but the pose of the subject is the same, the keypoint values in both images will be
the same. After that, the keypoint numbers are further normalized using the MinMax
Scaler from the sci-kit learn library. They result in the keypoint numbers having a value
between 0 and 1.

The image extraction process will produce data that is the spatial representation of
the subject’s joints in the image. In code, this spatial representation is an array with 14
pairs of keypoint position coordinates in the picture. The body parts stored are the neck,
right and left shoulders, right and left elbows, right and left wrists, waist, right and left
thighs, right and left knees, and right and left ankles. For the right hand up image data,
the number of key points taken is 13 pairs where the body parts stored are the nose,
neck, right and left shoulders, right and left elbows, right and left wrists, waist, right and
left eyes, and right and left ears. For video data, the extraction process will produce spa-
tiotemporal data that represents the movement of the joints of the subject’s body from 1
frame to the next in 1 video, where the joints have taken are the same as those taken in
the exercise image data.

Model development

Figures 3, 4 and 5 illustrate the proposed models to train the datasets. In the applica-
tion, we use several deep neural network models. One model is used to detect the sub-
ject raising his hand, another to classify the type of exercise, three models to classify the
starting and ending position of each exercise, and four models to evaluate the move-
ment of each exercise. The model that detects the raising of the hand uses a feedforward
neural network. This model has an input layer with a one-dimensional array of 26 neu-
rons corresponding to 13 pairs of key points in the upper body joints. The output of this
model is a number from 0 to 1, which represents the confidence model that the subject is
raising his right hand.

Fig. 3  Neural network to predict subject is raising their right hand up

Page 9 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

The exercise starting position classifier model also uses a feedforward neural network.
This model has an input layer with a one-dimensional array of 28 neurons to receive 14
pairs of key points from all over the body. In addition, this model has several outputs
according to the number of exercise classes available. For the exercise movement evalua-
tion model, the architecture used combines a feedforward neural network and LSTM. To

Fig. 4  LSTM network to predict confidence of each repetition

Fig. 5  Neural network to predict Initial Pose Exercise Class

Page 10 of 27Japhne et al. Journal of Big Data (2024) 11:101

predict an exercise’s start/end movement, we use a feedforward neural network, while to
evaluate if the movement is correct, we use LSTM. The model for classifying the initial
position of exercise movements also has a standard feedforward neural network archi-
tecture. This model has an input layer with a one-dimensional array of 28 neurons to
receive 14 pairs of key points from all over the body. In addition, this model has several
outputs according to the number of exercise classes available. For LSTM, the input layer
of this model is in the form of a two-dimensional array of 24x28, where 24 is the number
of frames in a video data, and 28 is the number of 14 pairs of flattened key points. The
number of frames is different for each exercise, so the model is 48x28. For example, 48 is
the number of frames of sit-ups and squats. The output of this model is a floating-point
number between 0 and 1, representing the confidence of the model that the subject has
done one repetition of exercise movement correctly. We applied k-fold cross-validation
for data validation to validate our models, and we will use a 9:1 comparison of training
and test data.

Application development

At this stage, the author will create a simple application to demonstrate the use of the
deep learning models. The application will combine the models that have been made
previously. The input given in the exercise evaluation application system is a video of
the subject doing an exercise. This video will then be processed using the Open Pose
application to retrieve key points from the subject detected. These key points are fea-
tures that will be inputted into the ANN and LSTM models. Finally, the model will clas-
sify the exercise type from the subject’s pose and evaluate it based on these features. An
overview of how the application works are illustrated in image 4.n. First, the application
will wait until it detects that the subject’s right hand is up. The right-hand detection will
trigger the next step of classifying the exercise type. The subject needs to hold the start-
ing position of the type of exercise they are doing. Once the exercise type is classified,
the subject can start doing the exercise, and the application will evaluate the exercise
movements.

Right hand up detection

The image is first processed through the OpenPose application to retrieve key points
used as input. Next, key points are normalized using the MinMax scaler before inputting
the right hand up detection model. Once a right hand up pose is detected, the applica-
tion will start exercise type classification.

Exercise type classification

The image is first processed through the OpenPose application to retrieve key points
used as input. Next, key points are normalized using the MinMax scaler and fed to the
initial pose detection model. Then the application saves the target exercise type result.

Exercise evaluation with LSTM

Before processing the image, the application loads the LSTM and binary classification
model according to the saved exercise type, and then the image is cropped to fit the tar-
get. OpenPose then processes the image to retrieve key points that will be used as input.

Page 11 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

Finally, key points are normalized using the MinMax scaler. Exercise evaluation is car-
ried out for each repetition. If the target is detected to be in an exercise starting position,
the system starts the collection of target key points. When the end of the exercise repeti-
tion is detected, and the number of key points collected is at least 12, these are used as
input for the LSTM model to be evaluated. After detecting the ending position of repeti-
tion, the system will start collecting the target key points again until it finds the ending
position of the next repetition. This is done repeatedly until the application is turned off.

Result and analysis
In this experiment, we trained three different models: binary pose model, multiclass ini-
tial pose model, and exercise pose evaluation model. The physical resources required to
run the model must be considered, such as the need for a GPU to carry out training and
testing. For informational purposes of assessing the feasibility and practicality of this
approach we ran the experiment with the following system specifications: CPU AMD
Ryzen 5 2600 six-core processor; 16 GB of RAM; GPU GeForce GTX 1070 TI.

Binary pose model

For this model, we tried 24 combinations of hyperparameters. The parameters that
change in the combination set are the number of layers and batch size. For model valida-
tion, we used a 10-fold cross-validation method. Table 2 shows the hyperparameters that
are constant in each experiment. Table 2 shows that the learning rate used for all binary
classification models is 0.01. The first has 60 hidden units, followed by 30 hidden units
in the following layer. The hidden layers use ReLu as its activation function, and the out-
put layer uses the Sigmoid activation function. Hyperparameters that changed were the
batch size (25, 50 and 100) and the number of layer (2 or 3).

There are four models to classify push ups, sit ups, squats, and raising your right hand.
The first three models were created to classify when to start or when to end reps for a
specific exercise, while the last model is used to activate the evaluation. Each model has
a total of 24 combinations of hyperparameters, and the time required to train the model
depended heavily on the batch size, the time needed to train a model with a batch size of
25 is 30 s on average, if the batch size is 50 it takes 20 s on average, and lastly a batch size
of 100 takes less than 15 s. Running the three batch size experiment will take 65 s or just
above one minute.

Taking this into account, in a 24 hyperparameter combination the three batch sizes
will be re-run eight times. Which will make training the entire model combinations

Table 2  Default parameters

Learning rate 0.01

Layer 1 units 60

Layer 2 units 30

Dropout 0.2

Activation function in hidden layer ReLu

Activation function in output layer Sigmoid

Optimizer SGD

Loss Binary cross entropy

Page 12 of 27Japhne et al. Journal of Big Data (2024) 11:101

take about 8 min, and because the authors used a 10-fold cross validation method,
the total time required to validate each model will be around 80 min in training time.
Multiply this again by the four models needed to be tested, it will need 5 h and 20 min
of training time to train and validate all four models.

Push up

Table 3 and Fig. 6 show the results of training the binary push up the model using
various hyperparameters. The best training results for the binary push up the model
are obtained when training the model with three layers, 60 hidden units for the first
layer and 30 for the second and third layers, 200 epochs and a batch size of 25.

Push-up Binary Model Result Analysis Based on the training results in Table 3, the
model with more layers has lower loss and validation loss. Although the accuracy
recorded for the two types of models is not very different. Nevertheless, of the param-
eters that can be changed, batch size seems to be the most influential. Because the
amount of loss in a small batch is better than the others, it can be seen that a batch of
25 will produce a better model than when using a batch of 50.

Table 3  Comparison of the results of the push up binary pose classification training model with a
dropout of 0.2

The bold value means the best result or value

Num hidden Epoch Batch size Loss acc val_loss val acc

60-30 100 25 0.0587 0.98264 0.04792 0.98618

50 0.09735 0.96974 0.09267 0.96909

100 0.17356 0.94043 0.17115 0.93746

150 25 0.04427 0.98721 0.04282 0.98637

50 0.06578 0.98026 0.05794 0.98182

100 0.12741 0.95897 0.11659 0.96317

200 25 0.04083 0.98804 0.03648 0.98989

50 0.05565 0.9834 0.05025 0.98387

100 0.09736 0.97028 0.09396 0.96882

250 25 0.03624 0.98954 0.05726 0.978

50 0.04975 0.98522 0.30758 0.92977

100 0.08149 0.97494 0.14809 0.94564

60-30-30 100 25 0.0357 0.98908 0.03915 0.98868

50 0.04612 0.98648 0.04237 0.98628

100 0.08286 0.97546 0.08802 0.97153

150 25 0.02802 0.99164 0.05762 0.97976

50 0.03618 0.9894 0.0382 0.98728

100 0.05257 0.98468 0.10352 0.97337

200 25 0.02515 0.99221 0.02576 0.99202
50 0.0311 0.99108 0.0341 0.9909

100 0.04356 0.98722 0.04356 0.98692

250 25 0.02131 0.99339 0.14881 0.97884

50 0.02743 0.99197 0.557 0.9317

100 0.03704 0.9889 0.65989 0.92376

Page 13 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

Squat

Table 4 and Fig. 7 illustrate the training results of the binary squat model. The best
training results for the binary squat model were obtained when training the model
with three layers, 60 hidden units for the first layer and 30 for the second and third
layers, 200 epochs and 25 batch sizes.

Squat Binary Model Result Analysis Based on the training results in Table 4, the dif-
ferences between the hyperparameter models do not significantly affect the results.
The difference in loss can be seen, and the validation loss for each variation is not too
different, with a difference of only 0.01. Likewise accuracy, and validation accuracy
which has a difference of not more than 0.002. The training results do not seem to
be too affected by the batch size because the difference in loss and accuracy between
batch sizes is minimal compared to the push-up model (Table 5).

Sit up

Table 6 and Fig. 8 shows the results of training the binary sit up model. The best train-
ing results for the binary squat model were obtained when training the model with
three layers, 60 hidden units for the first layer and 30 for the second and third layers,
200 epochs and 100 batch sizes.

Sit-up Binary Model Result Analysis Based on the training results in Table 6, the
differences between the hyperparameter models do not significantly affect the results.
The difference in loss can be seen, and the validation loss for each variation is not too
different, with only 0.003. The training results do not affect the number of layers and
batch size because the difference in loss and accuracy is minimal.

Fig. 6  Best result for Push-up model

Page 14 of 27Japhne et al. Journal of Big Data (2024) 11:101

Table 4  Comparison of results of the squat binary pose classification training model with a dropout
of 0.2

The bold value means the best result or value

Num hidden Epoch Batch size Loss acc val_loss val acc

60-30 100 25 0.02693 0.99153 0.02568 0.99184

50 0.029 0.99143 0.02687 0.99203

100 0.0357 0.99104 0.03203 0.99239

150 25 0.02449 0.99202 0.02351 0.99203

50 0.02712 0.99133 0.02497 0.99294

100 0.03165 0.99095 0.02636 0.99258

200 25 0.02323 0.99219 0.02138 0.99268

50 0.02596 0.99157 0.02383 0.99194

100 0.02979 0.99124 0.02563 0.99184

250 25 0.02195 0.9926 0.02264 0.99183

50 0.02492 0.99182 0.02369 0.99149

100 0.0278 0.99128 0.02504 0.99166

60-30-30 100 25 0.02417 0.99203 0.02353 0.99258

50 0.02679 0.99126 0.0272 0.99159

100 0.02737 0.99151 0.0276 0.99075

150 25 0.02067 0.99286 0.0245 0.99204

50 0.02295 0.9923 0.024 0.99248

100 0.02653 0.99141 0.02424 0.9922

200 25 0.01846 0.99337 0.01944 0.99257
50 0.02184 0.99241 0.02136 0.99221

100 0.02381 0.99194 0.03085 0.98781

250 25 0.01806 0.99348 0.01969 0.99201

50 0.02219 0.99253 0.02173 0.99211

100 0.02386 0.9921 0.0218 0.99193

Fig. 7  Best result for Squat model

Page 15 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

Table 5  Comparison of the training results of the situp binary pose classification model with a
dropout of 0.2

The bold value means the best result or value

Num hidden Epoch Batch size Loss acc val_loss val acc

60-30 100 25 0.0045 0.99913 0.00419 0.9992

50 0.00633 0.99878 0.00469 0.9991

100 0.00941 0.99813 0.00621 0.999

150 25 0.00352 0.99927 0.004306 0.9992

50 0.00484 0.99904 0.00403 0.9992

100 0.00701 0.99869 0.00481 0.9992

200 25 0.00374 0.99922 0.003591 0.9993

50 0.00455 0.99914 0.003834 0.9993

100 0.00592 0.99904 0.00465 0.9992

250 25 0.00334 0.99928 0.004052 0.9993

50 0.00397 0.99915 0.003678 0.9992

100 0.00549 0.9989 0.00425 0.9993

60-30-30 100 25 0.0036 0.99921 0.003995 0.9992

50 0.00436 0.99918 0.004155 0.9992

100 0.00592 0.99893 0.00484 0.9991

150 25 0.0033 0.99917 0.004548 0.9992

50 0.00382 0.99922 0.004019 0.9992

100 0.005 0.99906 0.00385 0.9922

200 25 0.00287 0.99932 0.004134 0.9992

50 0.00359 0.99919 0.004166 0.9993

100 0.00421 0.99917 0.0036 0.9993

250 25 0.00272 0.9994 0.004316 0.9991

50 0.00321 0.9993 0.004514 0.9991

100 0.00392 0.99924 0.003558 0.9992

Fig. 8  Best result for Sit-up model

Page 16 of 27Japhne et al. Journal of Big Data (2024) 11:101

Table 6  Comparison of training results for the right hand up binary pose classification model with a
dropout of 0.2

The bold value means the best result or value

Num hidden Epoch Batch size Loss acc val_loss val acc

60-30 100 25 0.03478 0.98841 0.03227 0.98873

50 0.04416 0.98377 0.04062 0.98454

100 0.06071 0.97872 0.05534 0.97977

150 25 0.03107 0.99001 0.02983 0.98982

50 0.03822 0.98676 0.03517 0.98732

100 0.04945 0.98135 0.0458 0.98145

200 25 0.02751 0.9915 0.02637 0.99215

50 0.0354 0.98833 0.03256 0.98842

100 0.0437 0.98402 0.04051 0.98434

250 25 0.02497 0.99216 0.02334 0.99316

50 0.03314 0.9888 0.03081 0.98945

100 0.04107 0.98488 0.03765 0.98573

60-30-30 100 25 0.02206 0.99315 0.02278 0.99228

50 0.03094 0.98934 0.03057 0.98979

100 0.04322 0.9834 0.04174 0.98302

150 25 0.01305 0.9963 0.01605 0.99494

50 0.02475 0.99216 0.02531 0.9913

100 0.03485 0.9879 0.034 0.987

200 25 0.01044 0.99708 0.0123 0.9966

50 0.01983 0.99381 0.01972 0.99363

100 0.03055 0.98969 0.02911 0.98998

250 25 0.00642 0.99831 0.009 0.99744
50 0.01481 0.99586 0.0148 0.99576

50 0.02623 0.99159 0.02651 0.99114

Fig. 9  Best result for Right Hand Up model

Page 17 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

Right Hand Up

Table 6 and Fig. 9 shows the results of training the binary right hand up model. The
training process is carried out with various hyperparameters. The best training results
for the binary right hand up model were obtained when training the model with three
layers, 60 hidden units for the first layer and 30 for the second and third layers, 250
epochs and a batch size of 10.

Right Hand Up Binary Model Result Analysis Based on the training results in Table 6,
the differences between the hyperparameter models do not significantly affect the
results. The difference in loss can be seen, and the validation loss for each variation is
not too different, with a difference of only 0.03. Likewise, accuracy and validation accu-
racy which has a difference of not more than 0.02. It looks again like the push-up model
results that a batch of 25 will produce a better model than when using a batch size of 50
or 100.

Multi class pose model

In this experiment, we tried 24 hyperparameter combinations. The parameters that will
change for this model are the number of layers and batch sizes. Meanwhile, for model
validation, the author uses the 10-fold cross-validation. Table 7 shows that the learn-
ing rate for all multi-pose classification models is 0.01. The first has 60 hidden units,
followed by 30 in the following layer. The hidden layers use ReLu as its activation func-
tion, and the output layer uses the Softmax activation function. Hyperparameters that
changed were the batch size (10, 25, and 50) and the number of layers (2 and 3).

Multi class pose model result analysis Table 8 shows the ten best training results from
the multi-pose evaluation model. Based on the table, it can be seen that a model with
two layers, dropout of 0.2, trained with a batch size of 10, and epoch of 150 results in
more accurate models than any other combination.

Figure 10 show the best training result. From the beginning it can be seen that the
amount of loss has dropped dramatically until the 20th epoch. But it has started to fall
slowly starting in the 40th epoch. It seems that the number of training iterations is not
too influential after the 80th epoch, because based on image loss and accuracy it is quite
stable when it is at the 100th epoch.

However, the difference between the ten best results is not too significant. Compared
to other studies that have tried to classify multi-class poses using neural networks, the

Table 7  Default Parameters

Learning rate 0.01

Layer 1 units 60

Layer 2 units 30

Dropout 0.2

Activation function in hidden layer ReLu

Activation Function in output layer Softmax

Optimizer SGD

Loss Sparse cat-
egorical cross
entropy

Page 18 of 27Japhne et al. Journal of Big Data (2024) 11:101

best accuracy result obtained was 94.5% compared to the current model accuracy of
high 99.965% in the authors’ trial [20]. Compared to previous research feed-forward
architecture, the results obtained in this experiment are quite state of the art.

LSTM pose evaluation model

In this experiment we tried 54 combinations of hyperparameters. The parameters that
will change includes the number of layers (2, 3, and 4), the hidden units (11, 22, and 44),
the batch size (100, 150, and 200) and the size of the dropout layer (0.3 and 0.5). Mean-
while, in Table 9 there is a list of hyperparameters that will not change during the train-
ing process.

It can be seen that the learning rate used for all models is 0.01. In the hidden layer,
the activation function used is ReLu with a Sigmoid output layer. The output layer
implements the Sigmoid function because this model requires a result between 0 and

Table 8  Comparison of the top 10 training results for the multi-pose classification model with a
dropout of 0.2

The bold value means the best result or value

Num hidden Epoch Batch size Loss acc val_loss val acc

60-30 150 10 0.00767 0.99824 0.002364 0.99965
250 10 0.00572 0.98841 0.002396 0.9993

200 25 0.01329 0.99753 0.00377 0.9993

200 10 0.00699 0.99849 0.0045 0.9993

250 25 0.01049 0.99783 0.005348 0.9993

60-30-30 250 25 0.00555 0.99888 0.003508 0.99965

100 25 0.01365 0.99723 0.003809 0.99965

200 50 0.01392 0.99741 0.003996 0.99965

250 50 0.0109 0.99782 0.004064 0.9993

150 25 0.0092 0.99833 0.004189 0.9993

Fig. 10  Best result for Multi-Class Pose Classification Model

Page 19 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

1 for both classes. We applied Adam as the optimizer. For model validation we used the
10-fold cross validation method.

There are four models used to evaluate push ups, sit ups, planks, and squats. Each
model has a total of 54 combinations of hyperparameters. To train one model it needed
an average of 1000 s of training time. Training all 54 combinations of hyperparameters
will take 54.000 s, which is about 15 h of training time. Multiply this again by the four
models needed to be trained, the model will need 60 h of training time to train all four
models.

Push up evaluation model

Table 10 shows the 10 best training results from the LSTM Push Up Evaluation Model.
The training process is carried out with all the different combinations of hyperparam-
eters. The best training results for the LSTM Push Up Evaluation Model were obtained
when training a model with 2 LSTM layers, with each layer having 44 hidden units, 450
epochs, 0.3 dropouts, and 150 batch sizes.

Figure 11 shows the best training results. From the beginning it can be seen that the
amount of loss has dropped dramatically from the beginning to the 150th epoch. But it
has started to fall slowly starting in the 250th epoch. It looks like the number of training
iterations doesn’t really affect it after the 300th epoch, because based on image loss and
accuracy it’s quite stable at the 320th epoch.

Table 9  Default parameters

Learning rate 0.01

Decaying learning rate Polynomial Decay

Decay steps 10

End learning rate 0.00001

Activation function in hidden layer ReLu

Activation function in output layer Sigmoid

Optimizer Adam

Loss Binary cross entropy

Table 10  Comparison of the top 10 training results for the LSTM Push Up Evaluation Model

The bold value means the best result or value

Layers num_hidden epoch batch size dropout loss acc val_loss val_acc

2 44 450 150 0.3 0.00986 0.9997 0.0125 0.99946
44 450 100 0.3 0.00838 0.99974 0.01255 0.99901

22 450 100 0.5 0.02386 0.99449 0.02544 0.99622

3 44 450 200 0.3 0.01089 0.99969 0.01804 0.99865

22 418 150 0.5 0.02557 0.99564 0.02318 0.99766

44 450 100 0.3 0.00958 0.9997 0.02507 0.99829

4 44 397 150 0.3 0.01058 0.99967 0.01537 0.99865

44 278 200 0.5 0.01257 0.99886 0.01925 0.99802

22 450 150 0.3 0.01716 0.99777 0.02183 0.9974

22 450 100 0.3 0.01274 0.99861 0.02359 0.99748

Page 20 of 27Japhne et al. Journal of Big Data (2024) 11:101

Push Up Evaluation Model Result Analysis Based on the training results in Table 10,
the model with 2 layers has lower loss and validation loss. The best results apply the
largest hidden unit with a total of 44 in each layer. The number of hidden units greatly
affects the performance of the model because it can be seen that of the 30 best hyper-
parameter combinations, only 4 models have 11 hidden units. These 4 models are also
in the last 9th position. To summarize the results of the experiment it seems that batch
size, the number of layers, and the size of the dropouts are not seen as significant deter-
minants compared to hidden units.

Sit up evaluation model

Table 11 shows the top 10 best training results from the lstm sit up evaluation model.
The training process is carried out with different combinations of hyperparameters.
The author tries 2 dropout values of 0.3 and 0.5. There are 3 types of batch sizes 100,

Fig. 11  Best result for LSTM Push Up Evaluation Model

Table 11  Comparison of the top 10 training results for the LSTM Sit Up Evaluation Model

The bold value means the best result or value

Layers Num_hidden Epoch Batch size Dropout Loss acc val_loss val_acc

2 11 450 150 0.3 0.09677 0.96768 0.06187 0.99423
22 450 200 0.5 0.12769 0.952 0.08339 0.97944

11 450 150 0.5 0.13232 0.9477 0.09096 0.99676

22 450 150 0.3 0.10537 0.95237 0.11266 0.9583

11 450 100 0.3 0.23065 0.94526 0.11823 0.9738

11 450 200 0.3 0.16388 0.92437 0.12841 0.95109

3 11 450 150 0.3 0.12415 0.96964 0.09807 0.98424

11 450 100 0.5 0.20543 0.91332 0.12648 0.9637

4 11 450 100 0.3 0.119 0.95866 0.09478 0.96695

11 450 200 0.3 0.15941 0.948 0.09746 0.96419

Page 21 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

150 and 200. For the layers tested, there are 2, 3 and 4 layers. The layers that are tried
always have hidden units of 11, 22, and 44 units.

The best training results for the lstm sit up evaluation model were obtained when
training a model with 2 layers of LSTM, with each layer having 11 hidden units, 450
epochs, 0.3 dropouts, and 150 batch sizes.

Figure 12 shows the best training results. From the beginning it can be seen that the
amount of loss has dropped dramatically from the beginning to the 100th epoch. But
it has started to fall slowly starting at the 200th epoch.

Sit Up Evaluation Model Result Analysis Based on the training results in Table 11
the model with 2 layers has lower loss and validation loss. The best results apply the
smallest hidden unit with a total of 11 in each layer. The number of hidden units
greatly affects the performance of the model, because it can be seen that of the 30
best hyperparameter combinations, only 2 models have 44 hidden units and these
models are also in the last 9th position.

Batch size, number of layers, and dropouts are not seen as significant determinants
compared to hidden units. The number of hidden units in the best sit up model is
inversely proportional to the results of the push up model. But the least number of
layers still gives more optimal results.

Plank evaluation model

Table 12 shows the 30 best training results from the lstm push up evaluation model.
The training process is carried out with different combinations of hyperparameters.
The author tries 2 dropout values of 0.3 and 0.5. There are 3 types of batch sizes 100,
150 and 200. For the layers tested, there are 2, 3 and 4 layers. The layers that are tried
always have hidden units of 11, 22, and 44 units.

Fig. 12  Best result for LSTM Sit Up Evaluation Model

Page 22 of 27Japhne et al. Journal of Big Data (2024) 11:101

The best training results for the lstm push up evaluation model were obtained when
training a model with 3 LSTM layers, with each layer having 44 hidden units, 450
epochs, 0.3 dropouts, and 200 batch sizes.

Figure 13 shows the best training results. From the beginning it can be seen that the
amount of loss has dropped very drastically from the beginning to the 50th epoch.
But it has started to fall slowly starting at the 100th epoch. It looks like the number
of training iterations doesn’t really affect it after the 200th epoch, because based on
image loss and accuracy it’s quite stable at the 220th epoch.

Plank evaluation model result analysis Based on the training results in Table 12, the
model with 3 layers has lower loss and validation loss. The best results apply the larg-
est hidden unit with a total of 44 in each layer. The number of hidden units greatly
affects the performance of the model because it can be seen that of the 30 best hyper-
parameter combinations, only 4 models have 11 hidden units.

Table 12  Comparison of the top 10 training results for the LSTM Plank Evaluation Model

The bold value means the best result or value

Layers Num_hidden Epoch Batch size Dropout Loss acc val_loss val_acc

2 44 450 200 0.3 0.00994 0.99967 0.01261 0.99944

22 399 150 0.5 0.01883 0.99734 0.01444 0.99936

44 450 150 0.3 0.01019 0.99945 0.01608 0.99936

22 214 150 0.3 0.01312 0.99919 0.01656 0.99928

3 44 450 200 0.3 0.00922 0.99967 0.01218 0.99936
44 450 100 0.3 0.00683 0.99986 0.01291 0.99944

44 450 200 0.5 0.01036 0.9995 0.01575 0.99928

22 390 100 0.3 0.01127 0.99938 0.01659 0.99896

44 445 100 0.5 0.00809 0.99967 0.01706 0.99936

4 44 450 150 0.5 0.00811 0.99979 0.01632 0.99952

Fig. 13  Best result for LSTM Plank Evaluation Model

Page 23 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

Batch size, number of layers, and dropouts are not seen as significant determinants
compared to hidden units. The results of the plank model seem to be similar to the push
up model where the number of hidden units with the best results has a value of 44. This
is probably because the size of the input layer push up and plank models is similar, in
contrast to the size of the input layer sit up model.

Squat evaluation model

Table 13 shows the 30 best training results from the lstm push up evaluation model.
The training process is carried out with different combinations of hyperparameters. The
author tries 2 dropout values of 0.3 and 0.5. There are 3 types of batch sizes 100, 150 and
200. For the layers tested, there are 2, 3 and 4 layers. The layers that are tried always have
hidden units of 11, 22, and 44 units.

Table 13  Comparison of the top 10 training results for the LSTM Squat Evaluation Model

The bold value means the best result or value

Layers Num_hidden Epoch Batch size Dropout Loss acc val_loss val_acc

2 11 450 150 0.3 0.12197 0.97698 0.09153 0.99479
11 450 100 0.3 0.16882 0.95291 0.11122 0.98135

11 450 200 0.5 0.27013 0.8656 0.14923 0.93986

22 450 200 0.3 0.56749 0.92771 0.47996 0.95082

3 11 450 150 0.3 0.21074 0.93615 0.21212 0.96326

11 450 100 0.3 0.20653 0.95861 0.24605 0.97328

4 22 450 100 0.3 0.18659 0.89956 0.13617 0.93564

44 450 200 0.5 0.19491 0.9698 0.20188 0.98745

44 450 150 0.3 0.5213 0.92851 0.22831 0.97973

44 450 100 0.5 0.64791 0.93383 0.39157 0.96737

Fig. 14  Best result for LSTM Squat Evaluation Model

Page 24 of 27Japhne et al. Journal of Big Data (2024) 11:101

The best training results for the lstm push up evaluation model were obtained when
training a model with 2 LSTM layers, with each layer having 11 hidden units, 450
epochs, 0.3 dropouts, and a batch size of 150.

Figure 14 shows the best training results. From the beginning it can be seen that the
amount of loss has dropped dramatically from the beginning to the 100th epoch. But it
has started to fall slowly starting at the 200th epoch. It looks like the number of training
iterations doesn’t really affect it after the 200th epoch, because based on image loss and
accuracy it’s quite stable at the 220th epoch.

Squat evaluation model result analysis Based on the training results in Table 13, the
model with 2 layers has lower loss and validation loss. The best results apply the smallest
hidden unit with a total of 11 in each layer. The number of hidden units greatly affects
the performance of the model, because it can be seen from the 30 best hyperparameter
combinations that no model has 44 hidden units.

Batch size, number of layers, and dropouts are not seen as significant determinants
compared to hidden units. The results of the squat model resemble the results of the sit
up model. But inversely proportional to the push-up or plank model. The difference is in
the different number of input layers where the squat and sit up models require 48 inputs,
while the push up and plank models require 24 inputs.

Accuracy comparisons

Figure 15 shows the confusion matrix for the initial pose detector model. The total
data used for testing the initial pose detector model is 2821, where 706 for plank initial
pose data, 694 for the push-up pose, 753 for the sit-up pose, and 668 for squat. Based
on the confusion matrix, the model successfully classified all the data. Figure 16 shows
the confusion matrix result for the Binary Pose Models. The push-up binary pose model
resulted in a very small error of 0.83% for the not pushing up class and 0.21% for push
up. For the sit-up binary pose model, the result shows an error of 0.48% in detecting the

Fig. 15  Initial Pose Detector Confusion Matrix

Page 25 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

Fig. 16  Binary Pose Confusion Matrix

Fig. 17  LSTM Model Confusion Matrix

Page 26 of 27Japhne et al. Journal of Big Data (2024) 11:101

not-push-up class and the correct result for the rest of the prediction. The squat binary
pose model produced an error of 1.86% in detecting the not-squat-class, and the right-
hand-up binary pose model resulted in an error of 0.12% in predicting the not-right-
hand-up class, and 3.86% error for a not-right-hand-up.

Finally, Fig. 17 shows the confusion matrix result for the LSTM evaluation model. For
the LSTM plank evaluation model, the result shows an error in classifying not plank of
0.31% and an error of 0.14% in classifying plank. The push-up LSTM model resulted in
an error of 0.10% in classifying not push-up and 0.02% classifying push-up. The sit-up
LSTM model had no error, and the squat LSTM model did not produce any error.

Conclusion and future work
This research contributes to the data collection and deep learning exploration to model
pose estimation in several physical excersice activities. The model proposed achieved a
minimum accuracy of 90% to detect the user that raises their right hand, detect exercise
type based on the user pose, and track the repetitions done by the user. Moreover, the
research contributes to datasets collection in push-ups, sit-ups, squats, and planks as
well as highly accurate human activity recognition model by using the combination of
spatiotemporal features extraction using Open Pose, LSTM for sequence classification,
and MLP for human activity recognition. The tasks in this research highly implement-
ing multiple neural network models to identify the subject, classify the initial pose, and
predict exercise repetitions using exercise key points work great for counting exercise
repetitions based on visual-based detection. With proper object detection, LSTM is
the right approach to analyze each exercise class repetitions patterns using a key-point-
based dataset. Combined with spatiotemporal features extracted using open pose, the
trained models could identify basic human activity recognition. These neural network
models can be improved further using higher quantity and quality datasets.

Author contributions
All authors contribute equally.

Funding
There is no funding available for this research.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no Competing interests.

Received: 6 April 2023 Accepted: 7 April 2024

References
	1.	 Roque FR, Briones AM, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mes-

enteric and coronary arteries in hypertension. Br J Pharmacol. 2012;168:686.

Page 27 of 27Japhne et al. Journal of Big Data (2024) 11:101 	

	2.	 Jeong H-C, So W-Y. Difficulties of online physical education classes in middle and high school and an efficient
operation plan to address them. Int J Environ Res Public Health. 2020;17:9. https://​doi.​org/​10.​3390/​ijerp​h1719​7279.

	3.	 Gray S, Finch C. The causes of injuries sustained at fitness facilities presenting to victorian emergency departments -
identifying the main culprits. Injury Epidemiol. 2015. https://​doi.​org/​10.​1186/​s40621-​015-​0037-4.

	4.	 Bratland-Sanda S, Mathisen TF, Sundgot-Borgen C, Sundgot-Borgen J, Tangen JO. The impact of covid-19 pandemic
lockdown during spring 2020 on personal trainers’ working and living conditions. Front Sports Active Living.
2020;2:201. https://​doi.​org/​10.​3389/​fspor.​2020.​589702.

	5.	 Kaur H, Singh T, Arya YK, Mittal S. Physical fitness and exercise during the covid-19 pandemic: a qualitative enquiry.
Front Psychol. 2020;11:2943. https://​doi.​org/​10.​3389/​fpsyg.​2020.​590172.

	6.	 Bravata D, Smith-Spangler C, Sundaram V, Gienger A, Lin N, Lewis R, Stave C, Olkin I, Sirard J. Using pedometers
to increase physical activity and improve health: a systematic review. JAMA J Am Med Assoc. 2007;298:2296–304.
https://​doi.​org/​10.​1001/​jama.​298.​19.​2296.

	7.	 Nelson R, Hayes S. Theoretical explanations for reactivity in self-monitoring. Behav Modif. 1981;5:3–14. https://​doi.​
org/​10.​1177/​01454​45581​51001.

	8.	 Morris D, Saponas T, Guillory A, Kelner I. Recofit: using a wearable sensor to find, recognize, and count repetitive
exercises. Conf Hum Factors Comput Syst Proc. 2014. https://​doi.​org/​10.​1145/​25562​88.​25571​16.

	9.	 Chen W, Yu C, Tu C, Lyu Z, Tang J, Ou S, Fu Y, Xue Z. A survey on hand pose estimation with wearable sensors and
computer-vision-based methods. Sensors. 2020;2:4. https://​doi.​org/​10.​3390/​s2004​1074.

	10.	 Seel T, Kok M, McGinnis R. Inertial sensors-applications and challenges in a nutshell. Sensors. 2020;20:6221. https://​
doi.​org/​10.​3390/​s2021​6221.

	11.	 Bruno B, Mastrogiovanni F, Sgorbissa A. Wearable inertial sensors: Applications, challenges, and public test benches.
Robot Automation Mag IEEE. 2015;22:116–24. https://​doi.​org/​10.​1109/​MRA.​2015.​24482​79.

	12.	 Nishani E, Cico B. Computer vision approaches based on deep learning and neural networks: Deep neural networks
for video analysis of human pose estimation, 2017; https://​doi.​org/​10.​1109/​MECO.​2017.​79772​07.

	13.	 Cao Z, Hidalgo G, Simon T, Wei S, Sheikh Y. Openpose: Realtime multi-person 2d pose estimation using part affinity
fields. CoRR abs/1812.080082018. arXiv:​1812.​08008.

	14.	 Rushil K, Karan A, et al. Gymcam: detecting, recognizing and tracking simultaneous exercises in unconstrained
scenes. ACM Journals. 2018;2.

	15.	 Dua N, Singh S, Semwal V. Multi-input cnn-gru based human activity recognition using wearable sensors. Comput-
ing. 2021;103:1–18. https://​doi.​org/​10.​1007/​s00607-​021-​00928-8.

	16.	 Fourie M, van der Haar D. Computer Vision for the Ballet Industry: A Comparative Study of Methods for Pose Recog-
nition, 2020; 118-129.

	17.	 Scott J, Collins R, Funk C, Liu Y. 4d model-based spatiotemporal alignment of scripted taiji quan sequences. In: 2017
IEEE International Conference on Computer Vision Workshops (ICCVW), 2017;795–804. https://​doi.​org/​10.​1109/​
ICCVW.​2017.​99

	18.	 Wang J, Tan S, Zhen X, Xu S, Zheng F, He Z, Shao L. Deep 3d human pose estimation: a review. Comput Vis Image
Understand. 2021;210: 103225. https://​doi.​org/​10.​1016/j.​cviu.​2021.​103225.

	19.	 Torres JM, Zhao Y, Yang R, Chevalier G, Xu X, Zhang Z. Deep residual bidir-lstm for human activity recognition using
wearable sensors. Mathl Probl Eng. 2018;2018:7316954. https://​doi.​org/​10.​1155/​2018/​73169​54.

	20.	 Guerra BMV, Ramat S, Gandolfi R, Beltrami G, Schmid M. Skeleton data pre-processing for human pose recognition
using neural network*. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology
Society (EMBC), 2020;4265–4268. https://​doi.​org/​10.​1109/​EMBC4​4109.​2020.​91755​88

	21.	 Vonstad EK, Su X, Vereijken B, Bach K, Nilsen JH. Comparison of a deep learning-based pose estimation system to
marker-based and kinect systems in exergaming for balance training. Sensors. 2020;20:23. https://​doi.​org/​10.​3390/​
s2023​6940.

	22.	 Angelini F, Fu Z, Long Y, Shao L, Naqvi SM. ActionXPose: A novel 2D multi-view pose-based algorithm for real-time
human action recognition 2018. arXiv:​1810.​12126

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/ijerph17197279
https://doi.org/10.1186/s40621-015-0037-4
https://doi.org/10.3389/fspor.2020.589702
https://doi.org/10.3389/fpsyg.2020.590172
https://doi.org/10.1001/jama.298.19.2296
https://doi.org/10.1177/014544558151001
https://doi.org/10.1177/014544558151001
https://doi.org/10.1145/2556288.2557116
https://doi.org/10.3390/s20041074
https://doi.org/10.3390/s20216221
https://doi.org/10.3390/s20216221
https://doi.org/10.1109/MRA.2015.2448279
https://doi.org/10.1109/MECO.2017.7977207
http://arxiv.org/abs/1812.08008
https://doi.org/10.1007/s00607-021-00928-8
https://doi.org/10.1109/ICCVW.2017.99
https://doi.org/10.1109/ICCVW.2017.99
https://doi.org/10.1016/j.cviu.2021.103225
https://doi.org/10.1155/2018/7316954
https://doi.org/10.1109/EMBC44109.2020.9175588
https://doi.org/10.3390/s20236940
https://doi.org/10.3390/s20236940
http://arxiv.org/abs/1810.12126

	Fitcam: detecting and counting repetitive exercises with deep learning
	Abstract
	Introduction
	Related work
	Dataset
	Right hand up neural network dataset
	Multi-class pose network dataset
	Starting pose network dataset
	Exercise pose evaluation dataset

	Proposed methodology
	Data retrieval
	Preprocessing data
	Model development
	Application development
	Right hand up detection
	Exercise type classification
	Exercise evaluation with LSTM

	Result and analysis
	Binary pose model
	Push up
	Squat
	Sit up
	Right Hand Up

	Multi class pose model
	LSTM pose evaluation model
	Push up evaluation model
	Sit up evaluation model
	Plank evaluation model
	Squat evaluation model

	Accuracy comparisons

	Conclusion and future work
	References

