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Introduction
The corneal endothelium is responsible for maintaining corneal transparency, and dys-
function of hexagonal corneal endothelial cells leads to corneal opacity and blindness. 
According to the 2020 statistical report of the Eye Bank Association of America (EBAA), 
53.5% of all keratoplasty procedures were performed for corneal endothelium disease 
(CED), and 76.7% of the indications for endothelial keratoplasty (EK) were for CED [1]; 
in addition, the number of EK procedures increased 15.3% to 30,098 in 2021 [2]. Similar 
patterns have been observed in the United States and Europe. In 2016, 58.4% of patients 
in Germany underwent keratoplasty for CED [3]. These finding suggest that CEDs are 

Abstract 

Purpose: To use artificial intelligence to establish an automatic diagnosis system 
for corneal endothelium diseases (CEDs).

Methods: We develop an automatic system for detecting multiple common CEDs 
involving an enhanced compact convolutional transformer (ECCT). Specifically, we 
introduce a cross‑head relative position encoding scheme into a standard self‑atten‑
tion module to capture contextual information among different regions and employ 
a token‑attention feed‑forward network to place greater focus on valuable abnormal 
regions.

Results: A total of 2723 images from CED patients are used to train our system. It 
achieves an accuracy of 89.53%, and the area under the receiver operating characteris‑
tic curve (AUC) is 0.958 (95% CI 0.943–0.971) on images from multiple centres.

Conclusions: Our system is the first artificial intelligence‑based system for diagnos‑
ing CEDs worldwide. Images can be uploaded to a specified website, and automatic 
diagnoses can be obtained; this system can be particularly helpful under pandemic 
conditions, such as those seen during the recent COVID‑19 pandemic.
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the most common indication for keratoplasty, and their incidence has increased in recent 
years. Ophthalmologists should be more aware of the incidence of CEDs worldwide.

The corneal endothelium is the innermost layer of the cornea, and CEDs cannot be 
accurately diagnosed without specific examination equipment, leading to very high 
rates of clinical missed diagnosis and misdiagnosis. CEDs include Fuchs’ endothelial 
corneal dystrophy (FECD), posterior polymorphous corneal dystrophy (PPCD), bullous 
keratopathy, iridocorneal endothelial (ICE) syndrome and viral endotheliitis. In the past, 
diagnosing CEDs was difficult due to the lack of appropriate equipment. In recent years, 
with the advent of in vivo confocal microscopy (IVCM), the morphology and structure 
of corneal endothelial cells can be clearly observed and analysed in vivo, and even mild 
oedema of the cornea can be detected at the corneal endothelial level. This technological 
progress has great importance for the understanding and diagnosis of CED [4–8]. As 
the application of IVCM (HRT III) devices in ophthalmology continues to advance and 
experience accumulates, imaging features of diagnostic significance are constantly being 
refined and summarized, and the characteristics and diagnostic criteria of these diseases 
have been clarified. Unfortunately, however, the microscope itself, while providing clear 
images, cannot supply reports or directly provide a diagnosis, similar to computed 
tomography (CT) and magnetic resonance imaging (MRI). Therefore, images are sent 
to doctors for analysis, but diagnosis is often difficult because CEDs are not common 
in clinical practice; doctors have a very limited understanding of this disease, and no 
analysis software is provided for the machine. Moreover, China lacks systematic training 
on IVCM images and a detailed atlas of CEDs. As a result, the ability to read IVCM 
images remains limited, and IVCM is often not used effectively. Therefore, the ability to 
diagnose CEDs in China remains inadequate.

Artificial intelligence (AI) has demonstrated rapid advancements in disease diagnosis. 
In ophthalmology, substantial progress has been made in the diagnosis of fundus 
diseases using deep neural networks [9–12] and the detection of glaucomatous optic 
neuropathy with multimodal machine learning [13]. However, AI-based diagnosis of 
corneal diseases is in its infancy and has focused mainly on corneal endothelial cell 
(CEC) morphology [14], keratitis [15, 16] and keratoconus [17, 18]. According to a 
literature review, there is no research on the diagnosis of CEDs using AI technology.

The aim of this study is to develop an automatic diagnostic system to identify FECD, 
PPCD, owl eye cells in cytomegalovirus (CMV) infection, viral endotheliitis (other 
CEDs) and normal corneas using AI technology. Through observation and investigation 
of the imaging characteristics of different endothelial diseases, we identify three aspects 
that should be considered when designing a proposed model. First, local features and 
long-range context information are both useful for improving the discriminability 
of representations, and not all regions in IVCM images equally contribute to helping 
identify diseases. For example, guttata are markers of FECD, and owl eye cells are 
markers of CMV infection, both of which occupy limited areas. However, in corneas 
with PPCD, there is a wide area of abnormal regions, such as craters or ridges, on the 
corneal endothelium. Second, certain spatial interactions and implicit relationships 
among abnormal regions or cells may be key to avoiding misdiagnosis. For example, 
guttata can sometimes be found in corneas with PPCD, which may be confused with 
FECD. However, guttata appear in the middle of the cornea and spread to other parts 
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of the cornea in FECD, while they are distributed along the ridges in PPCD. Third, our 
dataset for endothelial diseases is relatively small compared with public DR grading 
datasets. Therefore, models suitable for small-scale datasets are more effective for this 
task.

After considering the above aspects, in this paper, we incorporate a cross-head relation-
aware self-attention mechanism and a token-attention feed-forward network (TaFFN) 
into a compact convolutional transformer (CCT) [19] to enhance its discriminability, 
termed an enhanced CCT (ECCT), for diagnosing CEDs from IVCM images. The CCT 
is designed by adding convolutional blocks to generate tokens from input images with 
the goal of maintaining local information and reducing the computational burden for 
subsequent transformer blocks. Therefore, the CCT not only combines local features 
and global representations but is also suitable for small datasets. Based on the CCT, 
we introduce a cross-head relative position encoding (CHRPE) scheme to the standard 
multihead self-attention module with the goal of capturing spatial relationships and 
semantic information among different tokens. Inspired by LocalViT [20], we adopt a 
TaFFN to adaptively learn the importance of each token for different inputs.

Overall, our contributions are as follows:

1) To our knowledge, this is the first study to utilize deep learning methods to 
automatically diagnose CEDs from IVCM images; these methods can assist 
ophthalmologists in clinical diagnosis and promote the application of IVCM.

2) We propose a CHRPE scheme to aggregate the spatial interactions and contextual 
information among different regions. To give more weight to valuable abnormal 
regions, we propose a TaFFN.

3) The experimental results show that our ECCT is superior in identifying endothelium 
diseases compared to certain popular convolutional neural network (CNN)-based 
methods and transformer-based methods.

Methods
Image capture

In this prospective study, images of corneal endothelial cells are acquired using an 
IVCM system (HRT III Rostock Cornea Module [RCM]; Heidelberg Engineering GmbH, 
Heidelberg, Germany). The specific IVCM image acquisition steps have been described 
previously [21]. The images are taken from the focal zone of the cornea using section 
mode and saved in JPG format with 8-bit grey levels and a size of 384 × 384 pixels 
(400 × 400  μm). The study is performed according to the tenets of the Declaration of 
Helsinki and was approved by the institutional review board of Peking University Third 
Hospital (PUTH) (IRB00006761-M2022834). All participants provided written informed 
consent to participate in the study.

Procedure

First, we select IVCM endothelial images from CED patients. CEDs are diagnosed by 
corneal specialists (J H, GG X and RM P) in the ophthalmology department of PUTH. 
CMV endotheliitis is confirmed by reverse transcription‒polymerase chain reaction 
(RT‒PCR). Next, the images are used to train our automatic diagnosis system. Seven 
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Chinese hospitals (Beijing Tongren Hospital, Shenyang the Fourth Hospital of People, 
The First Hospital of China Medical University, The Affiliated Hospital of Qingdao Uni-
versity, Baotou Chaoju Eye Hospital, Liaoning Aier Eye Hospital and The First Affili-
ated Hospital of Northwest University) supply data to construct the multicentre test set, 
which is used to test the automatic diagnosis system (Fig. 1). The diagnosis of CED is 
reviewed by a corneal specialist (J H) from the PUTH Ophthalmology Department. An 
example IVCM image of a CED is shown in Fig. 2.

Datasets

The datasets include IVCM images from the PUTH ophthalmology department and the 
multicentre cohort. A total of 3723 images are included in the PUTH dataset, which is 
divided into a development set and a testing set. The development set (3110 images) is 
used to train (2723 images) and validate (387 images) the model. The testing set (613 
images) is used to test the model. The images are divided so that data from the same 
patient are not include in both the development set and the testing set. The total number 
of images for each of the diseases in the PUTH dataset is shown in Table 1.

A total of 449 IVCM images from multiple centres are included in the testing set.

Development of the automated algorithm

CNNs have achieved great success in various medical image analysis tasks. The con-
volution operations in CNNs utilize convolution kernels with shared weights to inter-
act with input images, and their limited receptive field cannot establish long-range 
feature dependencies. Recently, transformers with a self-attention mechanism were 
employed to capture long-range information and global representations. The trans-
former was first introduced to solve problems in natural language processing [22], 
in which it has demonstrated excellent performance. Subsequently, the vision trans-
former (ViT) first applied a standard transformer for image recognition and achieved 
great performance [23]. The authors of the ViT argued that transformers, unlike 

Fig. 1 Summary flow chart of our research. The brown arrow shows the training procedure of the automatic 
diagnosis system. The blue arrow shows the validation procedure using CED images from multiple centres
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CNNs, lack inductive biases and must be trained on large-scale datasets to eliminate 
inductive biases. Therefore, some studies have attempted to add locality to transform-
ers, producing systems such as the CCT [19]. The CCT combines local features and 
global representations while reducing the computational burden for the standard 
transformer, thus making it suitable for small-scale learning in medical research.

Fig. 2 Example IVCM images of CEDs included in our study. The first row shows FECD of different severities; 
the second line shows different kinds of PPCD; the third line shows different kinds of owl eye cells; and the 
fourth line shows positive examples for the “others” group

Table 1 Characteristics of the datasets

Item PUTH dataset Multicentre dataset

Total no. of images 3723 449

No. of subjects 301 231

Age, mean/range 51.9/5–88 52.4/7–87

No. of males 140 110

No. of females 161 121

Training set Validation set Test set Test set

Normal 167 (6%) 33 (9%) 40 (7%) 32 (8%)

FECD 279 (10%) 38 (10%) 100 (16%) 239 (53%)

PPCD 1508 (56%) 213 (55%) 284 (46%) 50 (11%)

CMV owl eye cell 576 (21%) 82 (21%) 124 (20%) 24 (5%)

Others 193 (7%) 21 (5%) 65 (11%) 104 (23%)

Total 2723 387 613 449
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We briefly revisit the CCT as follows. It consists of two parts: a convolutional tokeniza-
tion and a transformer encoder followed by sequence pooling (SeqPool). Given an input 
image, several convolutional blocks, each of which contains a convolutional layer, a rectified 
linear unit (ReLU) activation function, and a max pooling layer, are used to generate tokens 
(a sequence of vectors) [24]. Then, the transformer encoder takes the tokens as input and 
utilizes a series of stacked transformer blocks to extract global features. Each transformer 
block comprises two sublayers: a multihead self-attention (MHSA) module and a feed for-
ward network (FFN). The normalization layer and the residual connection are applied to 
the two sublayers. Finally, to predict the final class index, the SeqPool module is used to 
pool the output sequential embeddings of the transformer encoder in a learnable attention 
scheme and generate probability estimates for different class labels.

We propose a transformer-based model based on the CCT [19] for automatically 
diagnosing CEDs from IVCM images. The diagnosis task is regarded as a five-class 
classification problem (normal, FECD, PPCD, CMV and others). To identify the correct 
CED, two factors are considered: (1) certain spatial interactions and implicit relationships 
between abnormal regions or cells may be key to avoiding misdiagnosis, and (2) not all 
regions in the IVCM images contribute equally to disease diagnosis. Based on the above 
observations, we incorporate a cross-head relation-aware self-attention mechanism and 
a TaFFN into the CCT to enhance its discriminability, producing an ECCT. Specifically, a 
novel CHRPE scheme, which utilizes cross-head features to capture spatial relationships 
and semantic information among different regions, is introduced to the standard MHSA 
module. The TaFFN employs a token-attention scheme to adaptively learn the importance 
of each token and substitutes for the conventional FFN.

Cross‑head relative position encoding

Transformers cannot explore the order of sequential tokens. Therefore, position encoding 
methods, including absolute and relative position encoding, have been studied recently 
to add token location information. For absolute position encoding [22], the encodings 
are learnable or generated from sinusoidal functions with different frequencies and then 
added to the input tokens. The ViT [23] utilizes this approach. Relative position encoding 
[25] focuses on the pairwise distances between sequential tokens and was further improved 
by Transformer-XL [26] and image RPE (iRPE) [27]. In this paper, we use relative position 
encoding to extract implicit relationships among different regions in IVCM images. The 
authors of iRPE [27] introduced two relative position modes, bias and contextual, where the 
bias mode represents encodings as learnable scalars that are independent of input tokens, 
and the contextual mode represents encodings as trainable vectors that need to interact 
with query embedding. The encodings are applied to each attention head independently 
of the MHSA module, as shown in Fig. 3a. Specifically, for an input sequence X ∈ Rn×d , an 
MHSA module configured with iRPE runs self-attention k times (i.e., k attention heads) in 
parallel, which can be formulated as follows:

(1)MHSA(Q,K ,V ) = softmax

(

QKT + B
√

dk

)

V
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where the query Q, the key K and the value V are generated by applying projection 
matrices to X and reshaping; generally, we have Q,K ,V ∈ Rk×n×dk and dk = d/k . 
B ∈ Rk×n×n is the relative position encoding for k heads. In contextual mode, each 
Bk0ij ∈ R in the B matrix is calculated as follows:

where k0 ∈ [0, k) is the k0-th head, i, j ∈ [0, n) are position indices, and rk0ij ∈ Rdk is a 
trainable vector that interacts with query embedding Qk0i . rk0ij can also be operated on 
both query and key embeddings. To represent the relative position on 2D feature maps, 
rk0ij can be defined by multiple mapping methods following the original iRPE [27].

However, employing iRPE at each attention head independently ignores information 
from other heads, which may cause performance degradation. Especially in contextual 
mode, representations from multiple heads can help to learn more sufficient semantic 
information. On the other hand, the pairwise positional relationships between tokens 
are the same for all attention heads; thus, it is reasonable to maintain consistent relative 
position encoding among various attention heads. Therefore, we design our CHRPE 
based on iRPE to utilize cross-head embeddings to obtain richer encodings. Specifically, 
query Q is reshaped to Q′ ∈ Rn×kdk to aggregate cross-head features, and multiplication 
of the trainable vectors Rij ∈ Rkdk and Qi′ is performed to generate positional encoding. 
Finally, the relative position encoding matrix B can be broadcast-added to the attention 
maps in each head. As illustrated in Fig. 3b, our cross-head relation-aware MHSA can be 
formulated as follows:

(2)Bk0ij = Qk0ir
T
k0ij

(3)CH −MHSA(Q,K ,V ) = softmax

(

QKT ⊕ B
√

dk

)

V

Fig. 3 Comparison between a the multihead self‑attention (MHSA) module configured with image RPE 
(iRPE) and b the proposed cross‑head, relation‑aware MHSA. The green areas are newly added parts
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where ⊕ is the broadcast addition. Additionally, the proposed cross-head relation-aware 
MHSA configured with CHRPE also provides certain interactions of information among 
different heads.

Token‑attention feed‑forward network

In a standard transformer, the FFN is composed of two fully connected layers that 
establish global information along the embedding dimension. A nonlinear activation 
function is applied in the hidden layer. To add more locality, LocalViT [20] incorpo-
rates a novel FFN that first converts the input sequence to a 2D feature map, then 
performs two 1 × 1 convolutions along with a depthwise convolution, and finally con-
verts the feature map back to a sequence, as shown in Fig. 4a.

In this study, not all regions in IVCM images contribute equally to identify-
ing CEDs, and each disease has its own characteristic area that should be given 
additional attention. To determine the importance of each token, we propose a 
TaFFN inspired by LocalViT. Specifically, we reshape the 2D feature map so that a 

(4)Bij = Qi′R
T
ij

Fig. 4 Comparison between a the local feed‑forward network and b the proposed token‑attention 
feed‑forward network (TaFFN). The orange areas are newly added parts
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squeeze-and-excitation (SE) module [28] can be applied on the tokenwise dimension. 
As shown in Fig. 4b, for an input sequence Z ∈ Rn×d , our TaFFN can be formulated as 
follows:

where h and w are the height and width of the 2D feature map, respectively; W1 and W2 
are the two 1 × 1 convolutions; Wd is the depthwise convolution; and σ is the nonlinear 
activation function. R represents a reshaping operation that converts Ur ∈ Rd×h×w to 
U ∈ Rn×d×1 . The SE module learns the importance in the token dimension and weights 
U to generate V  , and then, R−1 converts V ∈ Rn×d×1 to V r ∈ Rd×h×w . In this way, the 
model is configured to focus on regions that contain more information.

Implementation details

To train the proposed model, the development set is randomly divided into a training set 
(2723 images) and a validation set (387 images). All the input images have a resolution 
of 384 × 384 pixels, and the pixel values are normalized to values of 0–1. To reduce the 
risk of overfitting, data augmentation strategies, including random cropping, random 
horizontal flipping, random erasing [29], CutMix [30] and RandAugment [31], are 
adopted on the training set. For the structure of our proposed network, the number of 
convolutional blocks in the convolutional tokenization is set to 4 for 16 × downsampling. 
For the transformer encoder, the number of transformer blocks and the number of 
attention heads are set to 10 and 8, respectively; the dimension of sequential embeddings 
is set to 512. During training, we first train the proposed model on the ImageNet [32] 
dataset and then fine-tune the pretrained parameters on our own CED training set. For 
fine-tuning, the AdamW optimizer is used with a weight decay of  5e−2 and a batch size 
of 40 [33]. We train the network for 100 epochs. The learning rate starts at  5e−5 and then 
gradually decreases to  1e−8 with the cosine annealing schedule [34].

Results
Results with the PUTH testing set

The total accuracy of our ECCT system in the PUTH testing set is 97.06%, and the area 
under the receiver operating characteristic curve (AUC) is 0.991 (95% CI 0.984–0.997) 
(Fig. 5a). The sensitivities for normal corneas, FECD, PPCD, owl eye cells in CMV infec-
tion and other conditions are 95.000%, 100.000%, 97.183%, 100.000% and 87.692%, 
respectively, and the corresponding specificities are 99.826%, 97.856%, 100.000%, 
98.978% and 99.818%, respectively.

(5)Zr
= Seq2Img(Z) ∈ Rd×h×w

(6)Ur
= Wdσ(W1Z

r)

(7)V r
= R−1(SE(R(Ur)))

(8)Y r
= W2V

r

(9)Y = Img2Seq
(

Y r
)

∈ Rn×d
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Results with a multicentre testing set

The total accuracy in the multicentre testing set using the ECCT is 89.53%, and the AUC 
is 0.958 (95% CI 0.943–0.971) (Fig. 5b). The sensitivities for normal corneas and those 
with FECD, PPCD, owl eye cells in CMV infection and others are 96.875%, 98.326%, 
100.000%, 91.667% and 61.539%, respectively, and the corresponding specificities are 
98.801%, 94.762%, 96.742%, 96.236% and 99.420%, respectively.

Comparison with other AI methods on the PUTH testing set

To verify the performance of our method, we compare the ECCT with other state-of-the-
art CNNs and ViTs on the PUTH testing set and the multicentre testing set. Two CNNs, 
ResNet [35] and EfficientNet [36], and two ViT models, DeiT [37] and Swin Trans-
former [38], are used for the comparisons. Specifically, we use ResNet-34, EfficientNet-
B5, DeiT-S and Swin-T to balance the number of parameters with the proposed ECCT. 
For fairness, we also utilize ImageNet [32] for pretraining and adopt the same training 
configuration as the proposed ECCT. The total accuracy in the PUTH testing set using 
ResNet-34 is 96.90%, and the AUC is 0.996 (95% CI 0.994–0.998) (Fig. 5a). The sensitivi-
ties for normal corneas and those with FECD, PPCD, owl eye cells in CMV infection and 
others are 92.500%, 99.000%, 97.535%, 100.000% and 87.692%, respectively; the corre-
sponding specificities are 99.651%, 98.830%, 99.088%, 98.569% and 99.818, respectively. 
The total accuracy in the PUTH testing set using EfficientNet-B5 is 95.92%, and the 
AUC is 0.997 (95% CI 0.995–0.998) (Fig. 5a). The sensitivities for the above corneas are 
100.000%, 98.000%, 96.127%, 97.581% and 86.154%, respectively, and the correspond-
ing specificities are 98.778%, 98.440%, 98.784%, 99.387% and 99.453%, respectively. The 
total accuracy in the PUTH testing set using DeiT-S is 96.74%, and the AUC is 0.996 
(95% CI 0.992–0.999) (Fig. 5a). The sensitivities are 92.500%, 99.000%, 96.831%, 99.194% 
and 90.769%, respectively, and the corresponding specificities are 99.302%, 99.025%, 
99.392%, 98.569% and 99.635%, respectively. The total accuracy in the PUTH testing 
set using Swin-T is 97.72%, and the AUC is 0.997 (95% CI 0.994–0.999) (Fig. 5a). The 
sensitivities are 92.500%, 100.000%, 97.535%, 99.194% and 95.385%, respectively, and 
the corresponding specificities are 100.000%, 99.610%, 99.088%, 98.364% and 99.818%, 
respectively. The confusion matrices of the different algorithms are shown in Fig. 6a. The 
t-distributed stochastic neighbour embedding (t-SNE) technique indicates that the fea-
tures of each category learned by the ECCT algorithm are nearly as separable as those 

Fig. 5 The AUCs of the different automatic diagnostic systems on the PUTH and multicentre datasets. a 
The AUCs of the different automatic diagnostic systems on the PUTH dataset. b The AUCs of the different 
automatic diagnostic systems on the multicentre dataset
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learned by ResNet-34, EfficientNet-B5, DeiT-S and Swin-T (Fig. 6b). The detailed per-
formance of the five AI algorithms on the PUTH test dataset is shown in Tables 2 and 3.

Comparison with other AI methods on the multicentre testing set

The total accuracy on the multicentre testing set using ResNet-34 is 85.52%, and the 
AUC is 0.939 (95% CI 0.923–0.951) (Fig. 5b). The sensitivities for normal corneas and 
those with FECD, PPCD, owl eye cells in CMV infection and other conditions are 
81.250%, 97.908%, 96.000%, 83.333% and 53.846%, respectively, and the specificities are 
98.801%, 90.952%, 93.734%, 96.706% and 99.420%, respectively. The total accuracy on 
the multicentre testing set using EfficientNet-B5 is 85.52%, and the AUC is 0.943 (95% 
CI 0.925–0.958) (Fig. 5b). The sensitivities for the different types of corneas are 90.603%, 
95.816%, 98.000%, 83.333% and 54.808%, respectively, and the specificities are 97.842%, 
93.810%, 93.233%, 96.706% and 99.420%, respectively. The total accuracy on the multi-
centre testing set using DeiT-S is 86.41%, and the AUC is 0.949 (95% CI 0.934–0.961) 
(Fig.  5b). The sensitivities for the different types of corneas are 93.750%, 94.561%, 
98.000%, 87.500% and 59.615%, respectively, and the specificities are 99.041%, 95.238%, 
93.484%, 95.529% and 99.420%, respectively. The total accuracy on the multicentre test-
ing set using Swin-T is 80.62%, and the AUC is 0.929 (95% CI 0.911–0.943) (Fig. 5b). The 
sensitivities for the different types of corneas are 84.375%, 88.285%, 94.000%, 75.000% 
and 56.731%, respectively, and the specificities are 98.082%, 85.714%, 92.983%, 97.177% 
and 97.391%, respectively. The confusion matrices of the different algorithms are shown 
in Fig. 7a. The t-SNE technique indicates that the features of each category learned by 
the ECCT algorithm are more separable than those learned by ResNet-34, EfficientNet-
B5, DeiT-S and Swin-T (Fig. 7b). The detailed performances of the five AI algorithms on 
the multicentre test dataset are shown in Tables 2 and 3.

Heatmaps

To analyse the regions with the greatest contributions to the diagnosis of CEDs using 
our system, we generate a heatmap that visualizes the attention maps in the transformer 
blocks of the ECCT by using the attention rollout method [39]. For the CED find-
ings, the heatmaps effectively highlight the regions containing lesions on the corneal 

Fig. 6 Performance of the deep learning algorithms on the PUTH test dataset. a Confusion matrices 
describing the accuracies of the five deep learning algorithms. b Visualization by t‑distributed stochastic 
neighbour embedding (t‑SNE) of the separability of the features learned by the deep learning algorithms. 
Different coloured point clouds represent different categories of features
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endothelium. Typical examples of heatmaps for corneas with FECD, PPCD, owl eye cells 
in CMV infection, and other CEDs and for normal corneas are presented in Fig. 8.

We also compare the heatmaps from other methods, such as the class activation maps 
of ResNet-34 and the attention maps of DeiT-S, to our heatmap in Fig. 9. Compared to 
the class activation maps of ResNet-34, the attention mechanism in DeiT-S and ECCT 
tends to activate abnormal regions precisely for all cases due to its ability to handle 
long-range dependencies; compared to DeiT-S, ECCT captures more complete features, 
which illustrates its greater discriminative capacity for learned features.

Misclassified images

In the PUTH testing set, one “normal” image is misclassified as an “owl eye” image, 
and another “normal” image is misclassified as “others”. One “PPCD” image is misclas-
sified as a “normal” image, five “PPCD” images are misclassified as “FECD”, and two 

Table 2 Performance of the five AI algorithms in the PUTH and multicentre test datasets

FECD: Fuchs’ endothelial corneal dystrophy; PPCD: posterior polymorphous corneal dystrophy

CED/algorithms PUTH test dataset Multicentre enter test dataset

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Normal

 ECCT 95.000 99.826 96.875 98.801

 ResNet‑34 92.500 99.651 81.250 98.801

 EfficientNet‑B5 100.000 98.778 90.625 97.842

 DeiT‑S 92.500 99.302 93.750 99.041

 Swin‑T 92.500 100.000 84.375 98.082

FECD

 ECCT 100.000 97.856 98.326 94.762

 ResNet‑34 99.000 98.830 97.908 90.952

 EfficientNet‑B5 98.000 98.441 95.816 93.810

 DeiT‑S 99.000 99.025 94.561 95.281

 Swin‑T 100.000 99.610 88.285 85.714

PPCD

 ECCT 97.183 100.000 100.000 96.742

 ResNet‑34 97.535 99.088 96.000 93.734

 EfficientNet‑B5 96.127 98.784 98.000 93.233

 DeiT‑S 96.831 99.392 98.000 93.484

 Swin‑T 97.535 99.088 94.000 92.983

Owl eye cells

 ECCT 100.000 98.978 91.667 96.235

 ResNet‑34 100.000 98.569 83.333 96.706

 EfficientNet‑B5 97.581 99.387 83.333 96.706

 DeiT‑S 99.194 98.569 87.500 95.529

 Swin‑T 99.194 98.364 75.000 97.177

Others

 ECCT 87.692 99.818 61.539 99.420

 ResNet‑34 87.692 99.818 53.846 99.420

 EfficientNet‑B5 86.154 99.453 54.808 99.420

 DeiT‑S 90.769 99.635 59.615 99.420

 Swin‑T 95.385 99.818 56.731 97.391
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“PPCD” images are misclassified as “owl eye”. Six “others” images are misclassified as 
“FECD”, and two “others” images are misclassified as “owl eye”. In the multicentre test-
ing set, one “normal” image is misclassified as “PPCD”; three “FECD” images are mis-
classified as “PPCD”, and one “FECD” image is misclassified as “others”; one “owl eye” 
image is misclassified as “PPCD”, and one “owl eye” image is misclassified as “others”; 
five “others” images are misclassified as “normal”, ten “others” images are misclassified 
as “FECD”, nine “others” images are misclassified as “PPCD”, and sixteen “others” images 
are misclassified as “owl eye”. The details of the classification errors from the ECCT are 
described in Fig. 10.

Ablation studies on the internal PUTH testing set

To verify the effectiveness of each component of our method, we conduct experiments 
without ImageNet pretraining on the PUTH testing set. Specifically, we separately 
analyse the effects of CHRPE and TaFFN. To verify the effectiveness of CHRPE, we 
compare the results of three RPE options: without RPE, iRPE and CHRPE. The findings 
show that taking relative positional relationships into account is effective in extracting 
the characteristics of CEDs, and the proposed CHRPE performs better than the iRPE, 

Table 3 Overall performance of the five AI algorithms in the PUTH and multicentre test datasets

Underlined numbers indicate the best results when training from scratch; bold numbers indicate the best results when fine-
tuning with ImageNet pretraining

Algorithms Pretraining PUTH testing set Multicentre 
testing set

Params (M) MACs (G) Throughput 
(Images/s)

ACC (%) AUC ACC (%) AUC 

ECCT – 96.09 0.993 83.29 0.942 18.49 23.48 82

ResNet‑34 – 94.94 0.993 81.95 0.946 21.29 10.8 280

EfficientNet‑B5 – 87.92 0.979 78.39 0.935 28.35 7.08 65

DeiT‑S – 86.78 0.974 68.15 0.865 21.81 12.43 215

Swin‑T ‑ 89.07 0.977 75.05 0.919 27.57 12.8 145

ECCT ImageNet 97.06 0.991 89.53 0.958 18.49 23.48 82

ResNet‑34 ImageNet 96.90 0.996 85.52 0.939 21.29 10.8 280

EfficientNet‑B5 ImageNet 95.92 0.996 85.52 0.943 28.35 7.08 65

DeiT‑S ImageNet 96.73 0.996 86.41 0.949 21.81 12.43 215

Swin‑T ImageNet 97.71 0.997 80.62 0.929 27.57 12.8 145

Fig. 7 Performance of the deep learning algorithms on the multicentre test dataset. a Confusion matrices 
describing the accuracies of the five deep learning algorithms. b Visualization by t‑distributed stochastic 
neighbour embedding (t‑SNE) of the separability of the features learned by the deep learning algorithms. The 
differently coloured point clouds represent the different feature categories
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as shown in Table 4. For the feed-forward network (FFN), we also compare the results 
of three options: linear FFN, local FFN and TaFFN. A linear FFN is used in the standard 
transformer and is composed of two fully connected layers. A local FFN is the type of 
FFN adopted in LocalViT. As shown in Table 5, the performance of TaFFN is better than 
that of the other FFNs.

Discussion
The total accuracy of the ECCT on the PUTH testing set is 97.06%, and the AUC is 0.991. 
Moreover, the total accuracy of the ECCT on the multicentre testing set is 89.53%, and 
the AUC is 0.958. The t-SNE technique shows that the features of each category learned 
by the ECCT algorithm are more separable than those of the other four AI algorithms 
on both the PUTH and multicentre testing datasets, as shown in Fig. 6b and Fig. 7b. As 
shown in Fig. 5 and Tables 2 and 3, ECCT not only performs well on the PUTH dataset 

Fig. 8 Colour heatmaps demonstrating typical findings for different corneas, shown in pairs with the original 
images (left) and the corresponding heatmaps (right) for each category. a Normal. b. FECD. c PPCD. d Owl 
eye cells in CMV infection. e Other CEDs
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but also achieves the best accuracy and sensitivity and significantly surpasses the other 
four AI algorithms on the multicentre dataset, which demonstrates the superiority of 
our system in generalizing to unseen images.

According to the heatmaps, the ECCT effectively highlights the regions containing 
lesions on the corneal endothelium. This finding suggests that the ECCT can accurately 
focus on the regions with lesions in CEDs, especially in PPCD and owl eye cell images, 
which are often ignored or unknown by junior ophthalmologists.

The sensitivity for “others” is relatively lower on the multicentre testing set because 
the “others” images in the PUTH dataset mainly focus on areas of disturbance that are 
similar to FECD, PPCD and owl eye cell images; consequently, the “others” images in the 
PUTH dataset are unable to depict all the alterations seen in endotheliitis. The “others” 
images from the multicentre dataset contain different diseases that are not found in the 
PUTH dataset, which is why these images are the most commonly misclassified.

While the automatic diagnosis of several diseases, such as diabetic retinopathy, dia-
betic macular oedema and keratitis, has been studied in ophthalmology, most of the 
systems were developed with large datasets (tens of thousands of images). However, for 
the diagnosis of CEDs based on IVCM images, there are no public datasets, and PPCD 
and CMV cases are relatively rare; thus, our datasets are relatively small. In the PUTH 
dataset, we collect multiple images from different corneal positions for each patient to 
increase the number of PPCD and CMV images. To learn discriminative feature rep-
resentations on such a small-scale dataset, the proposed ECCT is based on the main 

Fig. 9 Comparison among class activation maps of ResNet‑34, attention maps of DeiT‑S and attention maps 
of ECCT. The first row shows the original images
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Fig. 10 Typical examples of misclassified images

Table 4 Ablation studies of CHRPE

RPE ACC (%) AUC 

w/o RPE 94.78 0.989

iRPE 95.11 0.991

CHRPE 96.09 0.993
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architecture of the CCT, utilizing convolutional blocks to avoid overfitting and trans-
former blocks to capture long-range information. As shown in Table 2, we also conduct 
experiments without ImageNet pretraining (i.e., training from scratch). The table shows 
the superiority of the ECCT in both configurations. First, this shows that the ECCT can 
achieve reasonable performance by training from scratch on our relatively small data-
set, while other transformer-based methods (DeiT-S and Swin-T) do not perform well. 
Second, pretraining on ImageNet significantly boosts the performance of all the meth-
ods, which shows that features learned from natural images are also helpful for medical 
image tasks.

Furthermore, the proposed architecture captures both local and global features for 
various patterns of endothelial diseases, as implied by the heatmap comparisons (Fig. 9) 
to other CNN- and transformer-based methods. Moreover, to establish contextual 
relationships among different lesion regions when designing the model, we integrate 
a CHRPE scheme into a standard multihead self-attention module by utilizing cross-
head features to obtain richer encoding. In addition, a TaFFN is introduced to learn the 
importance of tokens for all transformer blocks. Ablation studies on the PUTH testing 
set demonstrate the advantages of adopting both CHRPE and TaFFN (Tables 4 and 5).

The prevalence of FECD is approximately 7.33%, and the total number of people 
aged > 30 years with FECD is currently estimated to be nearly 300 million. An increase 
of 41.7% in the number of FECD-affected patients is expected by 2050 [40]. The 
prevalence of FECD varies by race and geographic location. A study from Iceland (a 
white population) revealed that the prevalence of cornea guttata was 9.2% [41]. In Asia, 
the incidence of FECD is lower than that in Europe, with rates of 6.7% [42] and 4.1%, 
respectively, among Singaporean and Japanese individuals [43]. There are no data on the 
prevalence of FECD in China, which reflects the lack of diagnostic ability for this disease 
in the country. Therefore, developing an automatic diagnostic system for this disease is 
logical.

PPCD is a relatively rare, autosomal dominant disease. Ophthalmologists have a 
poor understanding of this disease, which can easily lead to missed diagnoses. Many 
asymptomatic PPCD cases are found and diagnosed during air force/civil aviation 
physical examinations in China [44]. IVCM reveals hyporeflective, crater-like, vesicular 
lesions of different sizes on the corneal endothelium [45].

CMV endotheliitis is defined as corneal endothelium-specific inflammation 
triggered by CMV infection [46] and has been reported mainly in Asian countries 
[47]. The Japan Corneal Endotheliitis Study, which included the largest case series of 
106 patients, reported that CMV endotheliitis is most common in middle-aged and 
older men [48]. The features of the owl eye morphology include large cells with nuclei 
presenting a highly reflective area surrounded by a halo of low reflection [7]. These 

Table 5 Ablation studies of TaFFN

FFN ACC (%) AUC 

Linear FFN 93.15 0.991

Local FFN 93.96 0.989

TaFFN 96.09 0.993
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cells, which are considered pathognomonic for CMV, can be detected with IVCM, 
which may be helpful as an adjunct examination method. IVCM can assist in the 
evaluation of FECD guttae and owl eye cells. Our system can effectively distinguish 
between these two diseases. Images of other corneal endotheliitis patients were 
used as disturbance terms in our study, which is important for improving diagnostic 
accuracy. The characteristics of corneal endotheliitis on IVCM are diverse and might 
be confused with those of FECD, PPCD and owl eye cells.

IVCM is a very effective methodology for studying corneas and improving the 
diagnostic ability for CEDs. For the reasons mentioned above, the ability to diagnose 
CEDs in China remains low. We used an HRT III machine agent to establish five 
WeChat groups of 500 people each; these groups consisted of ophthalmologists 
who, every day, consulted on IVCM images within the groups. The development 
of this system can greatly improve the level of CED diagnosis. Due to the COVID-19 
pandemic, free personnel flow between cities is sometimes restricted; with this system, 
ophthalmologists can upload images to a website and automatically obtain a diagnosis.

Although this study includes a large sample, it is still relatively small compared to 
that of other AI systems. More images of endotheliitis patients from multiple centres 
will be used to train and improve our system. The diagnosis of CEDs using the 
proposed system should be further confirmed through large-scale clinical trials.

Conclusion
This is the first report of an AI diagnostic system for CEDs, and our results show 
that this system can achieve excellent diagnosability. IVCM is a reliable and effective 
diagnostic method for CEDs.

Once an ophthalmologist suspects CEDs after IVCM examination, the obtained 
image is input into our system, and the system automatically recognizes the image 
and assists in diagnosis to improve the ophthalmologist’s understanding of CED.

However, images of endotheliitis patients are still rarer than those of other CEDs. 
In the future, additional images of endotheliitis patients from multiple centres will be 
used to train and improve our system. Moreover, the proposed system was tested on an 
ordinary computer, after which the system was tested online and run on a web page.

With the increased incidence of CEDs, this AI system will play a key role in the 
prevention of corneal blindness.
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