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Introduction
Detecting credit card fraud is crucial within the finance industry and heavily relies on 
the information stored in transaction datasets. However, the finance field and machine 
learning face a significant research challenge due to the quality of data, as it directly 
influences decisions made during modeling and analysis [1, 2]. To tackle this issue, we 
delve into the available feature space, extracting a pertinent set of features. This under-
scores the importance of feature selection as an essential data cleansing step before 
engaging in any modeling process. Feature selection has found application in various 
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contexts within data mining and machine learning, with the goal of removing irrelevant 
or redundant features from the analysis. This not only results in expedited model train-
ing but also enhances classifier performance.

This study delves into a comparison between two feature selection methods: Shapley 
Additive exPlanation (SHAP)-value-based selection [3] and commonly used impor-
tance-based selection [4, 5]. SHAP leverages game theory concepts to compute feature 
importance in two steps: training a classification model using all features in the initial 
interaction and then computing SHAP values for each feature, subsequently ranking 
them to identify the most significant features for modeling the target problem. On the 
other hand, importance-based selection computes feature importance for all features 
during the model training process. Both methods are embedded since they involve 
the model-building process. In our feature selection process, we utilize five learn-
ers: Extreme Gradient Boosting (XGBoost) [6], Decision Tree (DT) [7], CatBoost [8], 
Extremely Randomized Trees (ET) [9], and Random Forest (RF) [10]. The selection of 
these five learners is based on their ability to generate an importance ranking list during 
the model-building process. LightGBM [11] was not included in our choices due to its 
poor performance, as indicated by our preliminary results in comparison to other learn-
ers. We have designated the SHAP-value-based methods as SHAP-XGBoost, SHAP-DT, 
SHAP-CatBoost, SHAP-ET, and SHAP-RF, while referring to the importance-based 
methods simply as XGBoost, DT, CatBoost, ET, and RF. In total, there are 10 feature 
selection methods, five from each category.

To conduct our study, we focus on the Credit Card Fraud Detection Dataset, a set 
of anonymized financial transactions available on Kaggle [12]. This dataset is the only 
publicly available large data for credit card fraud analysis. Hence the scope of the study 
is limited to one dataset. With 284,807 transactions and 30 independent features, only 
492 (0.172%) records are labeled fraudulent. Using two different feature selection meth-
ods, we assess the performance of five sets of classifier models using different feature 
selection techniques (SHAP-XGBoost vs. XGBoost, SHAP-DT vs. DT, SHAP-CatBoost 
vs. CatBoost, SHAP-ET vs ET, and SHAP-RF vs RF) with their respective selected fea-
tures. The top 3, 5, 7, 10, and 15 features are selected based on their respective scores. 
For classification, we build credit card fraud detection models using the five classifiers, 
the same models used in feature selection. The classifiers are evaluated using the Area 
Under the Precision Recall Curve (AUPRC) metric [13], and we additionally perform a 
statistical test with a significance level of α = 0.01 to assess the statistical significance of 
our results.

To the best of our knowledge, this study is the first comprehensive empirical investi-
gation comparing the performance of SHAP-value-based feature selection and impor-
tance-based feature selection in the context of fraud detection and potentially other 
application domains in machine learning.

The remainder of the paper is organized as follows. We begin with an overview of 
related work, which shows the novelty of the research work we exhibit here. Following 
that we present the methodology used in the experiment, including explanations of two 
feature methods, classifiers, cross-validation, and performance metric. We then describe 
the datasets, experimental design, and experimental results. Finally, we conclude the 
article with key highlights of this study, and offers suggestions for future work.
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Related work
Feature selection is a widely used technique in various data mining and machine learn-
ing applications. Its primary objective is to identify a subset of features that minimizes 
prediction errors for classifiers. In this study, we conducted a comprehensive literature 
review of research that employs either SHapley Additive exPlanations (SHAP) values 
or the model’s built-in feature importance list for feature selection. While we found a 
limited number of studies that utilized the model’s built-in feature importance list for 
feature selection in the context of the Credit Card Fraud Detection Dataset, we did not 
come across any studies that used SHAP for feature selection specifically in credit card 
fraud detection. Instead, we found a few studies that applied SHAP for feature selection 
in other application domains. Moreover, we did not encounter any studies that directly 
compared the performance of models built with features selected by SHAP feature 
importance versus models built with features selected by built-in feature importance. 
Therefore, our study presents a unique contribution to the field of credit card fraud 
detection, as it explores the comparison between SHAP and the model’s built-in feature 
importance list for feature selection, a perspective that has not been extensively explored 
in the existing literature.

Rtayli and Enneya [14] applied a supervised feature selection method, Random For-
est, to identify the most predictive features. Random Forest (RF) is an ensemble learning 
algorithm that is trained in parallel through bagging [15]. Recently, RF has been increas-
ingly exploited as a feature selection method because it can handle complex, high-
dimensional datasets and can detect interactions between features. It also reduces the 
risk of overfitting, which occurs when a model is too complex and fits the training data 
too closely. Moreover, RF calculates the feature importance by measuring the decrease 
in the impurity of the node when the feature is used for the split. The more the impu-
rity decreases, the more important the feature is considered. By ranking the features 
based on their importance, RF can help select the most relevant features for the clas-
sification task. After selecting a feature subset from the Credit Card Fraud Detection 
Dataset, the authors ran Support Vector Machine to find fraudulent transactions. The 
model achieved an Accuracy of 95.12%, a Sensitivity of 87%, and an AUC of 0.91, outper-
forming three other models (Isolation Forest, Decision Tree, and Local Outlier Factor). 
The study does not provide clear information regarding the number of selected features. 
Additionally, the authors did not conduct a comparison of the performance between the 
selected features and the usage of all the available features. Furthermore, it is worth not-
ing that the use of AUC as a metric for classification of imbalanced data has been found 
to be misleading [16].

In their study using the Credit Card Fraud Detection Dataset [12], Rosley et al. [17] 
first filtered out the data with a z-score greater than or equal to 3 and then normal-
ized the remaining data using min-max scaling. Then they used Boruta to compute 
the importance score of each feature. Boruta [18] is a supervised feature selection 
algorithm that is designed as a wrapper around a Random Forest classifier to identify 
important features in a dataset. They kept the features with an importance score of 
0.5 or higher to train the Autoencoder for each iteration. The model detected credit 
card fraud by defining a threshold in the reconstruction error to flag the transac-
tions as legitimate or fraudulent. However, the number of features selected in the 
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preprocessing step has not been specified by the authors. The authors evaluated the 
models using Accuracy, Precision, Recall, and F1 score. When working with datasets 
that exhibit significant class imbalance, these may not be suitable metrics due to the 
overwhelming size of the majority class.

Waspada et al. [4] use the RF classifier to calculate the importance score of each fea-
ture. Features with a low importance score are discarded. The paper lists the impor-
tance score of all features. The authors analyze several factors (dataset split ratio, the 
selection of top k features, the amount of fraud data on training data, and the set-
ting of hyper-parameter values) that influence the performance of the Isolation Forest 
(IF) model to detect fraud on credit card transactions. Isolation Forest is a popular 
unsupervised outlier detection method. Their findings indicate that the best results 
can be obtained by setting training–testing ratio of 60:40, using the top five features 
( V14,V4,V17,V12,V11 ), using only 60% of fraud data, and setting hyper-parameters 
with the number of trees 100, 128 sample maximum, and 0.001 contamination. The 
model shows impressive results obtaining precision of 80.7143%, recall of 76.3514%, 
F1 score of 78.4722%, Area Under the Receiver Operating Characteristic Curve 
(AUC) of 0.97371, and Area under the Precision-Recall Curve (AUPRC) of 0.759228. 
Waspada et al. utilized only a single importance-based feature selection method and 
did not incorporate SHAP for feature selection, which we have implemented in our 
study.

In their study, Liu et  al. [19] utilized SHAP for feature selection on the UCI Par-
kinson’s disease medical dataset [20]. They combined SHAP values with four classi-
fiers: Deep Forest (gcForest), Extreme Gradient Boosting (XGBoost), Light Gradient 
Boosting machine (LightGBM), and Random Forest (RF). Each classifier was used to 
calculate the SHAP values of individual features. To assess the effectiveness of SHAP 
feature selection, they compared it with three filter-based feature selection methods: 
Fscore, analysis of variance (Anova-F), and Mutual Information. The experiments 
were conducted with a training and testing ratio of 70:30, and the feature selection 
was applied to the training dataset. The results showed that the gcForest model based 
on SHAP value feature selection achieved an impressive classification Accuracy of 
91.78% and an F1-score of 0.945, with 150 features selected. This performance sur-
passed the outcomes of other feature selection methods considered in their study. 
While the authors specifically employed SHAP-value-based feature selection on the 
training dataset, we utilized the SHAP method across the entire dataset and subse-
quently conducted cross-validation following the feature selection procedure.

Marcilio and Eler [21] employed the SHAP method as a feature selection technique 
and compared it against three widely used feature selection methods: Mutual Infor-
mation, Recursive Feature Elimination, and ANOVA. The SHAP process involved 
utilizing XGBoost as the underlying model. They conducted experiments on five 
UCI datasets using the XGBoost classifier and three other UCI datasets using the 
XGBoost regressor. The results of their study revealed that SHAP outperformed the 
three commonly used methods in terms of the Area Under the Receiver Operating 
Characteristic Curve (AUC) metric. However, it was observed that SHAP required 
more computational time compared to the other feature selection methods. It is 
worth noting that the datasets used in Marcilio and Eler’s experiments are not highly 
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imbalanced, and not in the credit card fraud domain. In addition, the datasets are 
significantly smaller in size compared to the Kaggle Credit Card Fraud Detection 
Dataset, which caught our attention.

In our review of the literature, we discovered that only a single method of feature 
selection, either based on SHAP values or importance, was employed. Notably, no 
research has been identified that compares these two methods, particularly within 
the domain of credit card fraud detection. In order to fill this gap, our study under-
took a comparative analysis of these two feature selection methods, employing five 
learners in each approach.

Methodology
Importance‑based feature selection methods

Importance-based feature selection methods leverage decision trees to identify rel-
evant features from a given dataset. These decision tree-based classifiers, such as 
Extreme Gradient Boosting (XGBoost) [6, 22], Extremely Randomized Trees (ET) 
[9], Random Forest (RF) [23], CatBoost [8], and Decision Tree [7], possess a built-
in capability to determine feature importance during model fitting in supervised 
machine learning. Consequently, they can rank features based on their significance 
in classification tasks, making them valuable for feature selection. By discarding less 
relevant features and retaining the most important ones, more efficient and accurate 
models can be created.

In this study, five importance-based feature selection methods were employed: 
XGBoost [22], Decision Tree (DT) [7], CatBoost [8], Extremely Randomized Trees 
(ET) [9], and Random Forest (RF) [10].

XGBoost and CatBoost stand out as widely used gradient boosting algorithms, 
each employing distinct approaches to compute feature importance scores. While 
both algorithms construct ensembles of decision trees, their methodologies for 
deriving feature importance scores vary. In XGBoost, these scores are calculated 
using the “gain” method, evaluating the influence of each feature on model perfor-
mance throughout the boosting process. In contrast, CatBoost’s ensemble of deci-
sion trees calculates feature importance based on the frequency of a feature being 
utilized for splitting and the subsequent improvement in model performance 
achieved through those splits.

A Decision Tree classifier is a type of machine learning algorithm used for clas-
sification tasks. It constructs a tree-like model of decisions and their potential out-
comes by recursively splitting the data based on the most informative features at 
each node. Decision trees generate feature importance scores by evaluating their 
ability to reduce Gini impurity (or increase purity) within the data as the tree is built.

Extremely Randomized Trees and Random Forest, both rooted in decision tree 
ensembles, share common principles like Gini impurity and the Mean Decrease in 
Impurity to gauge feature importance. However, Extremely Randomized Trees intro-
duce heightened randomness in the decision-making process during tree construc-
tion. This added stochasticity can result in divergent importance scores, potentially 
impacting the balance between model bias and variance.
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SHAP‑value‑based feature selection methods

Shapley Additive exPlanation (SHAP), introduced by Lundberg and Lee [3], has gained 
popularity as a method for interpreting machine learning model predictions. By uti-
lizing Game Theory techniques [24], SHAP provides insights into the contribution of 
each feature to specific predictions. It falls under a family of additive feature attribution 
techniques that remain model-agnostic, making them universally applicable to various 
machine learning and deep learning models. These techniques attribute significance to 
individual input features, facilitating better understanding of model behavior.

In the context of feature selection, SHAP-based methods work as follows: classifica-
tion models, such as XGBoost and Decision Tree in this study, are trained on the entire 
dataset. Subsequently, SHAP values are computed for each instance, and these values 
are then aggregated across the dataset to derive average absolute values for each feature. 
The computation of SHAP values becomes computationally complex due to this process. 
The average SHAP value indicates the typical impact of each feature on model predic-
tions across the entire dataset, while the absolute SHAP value represents the feature’s 
importance, irrespective of its direction (positive or negative). By sorting features based 
on their average absolute SHAP values in descending order, features with higher SHAP 
values are identified as more influential in influencing the model’s predictions.

Classification

In this study, credit card fraud detection models were built with five different classifi-
ers, namely XGBoost [6], Decision Tree (DT) [7], CatBoost [8], Extremely Randomized 
Trees (ET) [9], and Random Forest (RF) [10]. Among these five learners, XGBoost, Cat-
Boost, ET, and RF are ensemble of Decision Tree-based classifiers [25]. We select these 
learners on the basis that they are highly effective for dealing with complex, high-dimen-
sional data and are known for their excellent performance in a wide range of classifica-
tion tasks [25].

XGBoost and CatBoost are all gradient boosting frameworks that are widely used 
for machine learning tasks, particularly for classification. These two algorithms are 
known to be highly effective and produce accurate predictions. However, the perfor-
mance may vary depending on the specific dataset and problem at hand. XGBoost 
is an advanced refinement the Gradient Boosted Decision Tree (GBDT) ensem-
ble method. GBDTs were initially introduced by Friedman in 2001 [26]. XGBoost 
enhances GBDTs in multiple ways. Firstly, it employs an improved loss function dur-
ing training that includes an additional term for regularization, effectively preventing 
overfitting. Secondly, XGBoost introduces an “approximate algorithm” for calculating 
splits in the constituent decision trees, which is highly suitable for distributed envi-
ronments and cases where the entire dataset cannot fit into main memory. Moreover, 
XGBoost incorporates a specialized algorithm for handling sparse data, where most 
values are nearly constant with occasional aberrations. The “sparsity aware split find-
ing” feature enables XGBoost to capitalize on sparse data efficiently. CatBoost, on the 
other hand, is known for its robustness in handling categorical features and missing 
values, making it suitable for datasets with such characteristics. CatBoost’s core algo-
rithm is Ordered Boosting, which involves sorting the instances used by Decision 
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Trees. In contrast, XGBoost relies on a weighted quantile sketch and a function that 
takes into account sparsity. A weighted quantile sketch is an approximate tree learn-
ing [27] technique that is utilized for merging and pruning operations, while sparsity 
deals with values that are either zero or missing.

Breiman introduced the concept of Bagging in the domain of machine learning in 
a 1996 paper [28]. As our research revolves around binary classification, our focus is 
on Breiman’s ideas about Bagging applied to binary classification. Extremely Rand-
omized Trees (ET) and Random Forest (RF) are both ensemble learning algorithms 
that belong to the bagging family of decision tree-based methods. Random Forest, 
which was introduced by Breiman [10]. Random Forest builds upon the Bagging 
principle with an added improvement. In a Random Forest, each tree is constructed 
using a random subset of features and samples. This randomness helps to decorrelate 
the trees and reduce overfitting. Extremely Randomized Trees extends the concept 
of Random Forest by selecting values for Decision Tree splits at random, poten-
tially making them more robust and computationally efficient in some scenarios. The 
choice between the two often depends on the specific characteristics of the data and 
the desired trade-off between bias and variance. We skip the detailed information 
about these learners and readers are referred to [25].

Decision Tree (DT) is a widely used supervised machine learning algorithm, promi-
nently applied to classification and regression tasks. It is a non-linear model that 
recursively partitions input data into subsets based on feature values. Each node in 
the decision tree represents a decision based on a specific feature and threshold, facil-
itating predictions based on the input data’s feature values. The resulting decision tree 
structure is highly interpretable, with each internal node representing a feature-based 
decision, edges signifying outcomes, and leaf nodes providing predictions.

To ensure the reproducibility of our results, we modified specific hyperparameter 
settings from their default values as listed in Table  1. Furthermore, we set random 
number generator seeds for all classifiers to ensure consistent and repeatable out-
comes. All other settings were left at their default values. The determination of tree 
depths was guided by previous experimentation documented in [1], aiming to achieve 
a suitable trade-off between capturing complex patterns in the data and mitigating 
overfitting.

Table 1 Hyperparameter settings used in experiments

∗ Setting selects Graphics Processing Unit (GPU) implementation of the classifier

Classifier Parameter name Parameter setting

CatBoost task_type GPU∗

max_ctr_complexity 1

max_depth 5

ET max_depth 8

XGBoost max_depth 3

tree_method gpu_hist∗

Random Forest max_depth 4
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Performance metric

To assess the effectiveness of feature selection techniques, we constructed classifica-
tion models subsequent to the feature selection process. The evaluation of these mod-
els in this study was based on the Area under the Precision-Recall Curve (AUPRC) 
metric.

In a two-class classification problem, such as distinguishing fraud (positive) and 
normal (negative) instances, we encounter four potential prediction outcomes: true 
positive (correctly classified positive instances), false positive (negative instance mis-
takenly classified as positive), true negative (correctly classified negative instances), 
and false negative (positive instance mistakenly classified as negative).

AUPRC represents the area under the Precision-Recall curve, which illustrates the 
trade-off between Recall (True Positive Rate) and Precision for specific classification 
thresholds. The definition of precision is

and the Recall or True Positive Rate is defined as

To calculate AUPRC, we plot precision against recall for many classification thresholds 
and then determine the area under the curve. A higher AUPRC value indicates superior 
model performance. AUPRC ranges from a minimum of zero to a maximum of one.

Cross‑validation

Cross-validation refers to a technique used to allow for the training and testing of 
machine learning models without resorting to using the same data [29]. The process 
involves dividing the dataset into a predetermined number of subsets or folds in a 
relatively balanced manner. In this study, we utilized five-fold cross-validation, where 
each fold served as the test data, while the remaining four folds were designated as 
the training data. To minimize any potential bias arising from a fortuitous or unfa-
vorable split, we conducted ten independent runs of the five-fold cross-validation.

It is important to note, for reproducibility, that the feature selection process was 
conducted separately from the cross-validation step. In other words, the feature 
selection procedures were performed on the original dataset.

Experiments
Dataset

The experiments conducted in this study utilized the Credit Card Fraud Detection 
Dataset, which is available for download from the Kaggle website [12]. This data-
set consists of anonymized financial transactions, specifically credit card trans-
actions conducted by European cardholders over a two-day period in September 
2013. As stated previously, out of a total of 284,807 transactions, 492 of them are 

(1)
true positives

true positives + false positives

(2)
true positives

true positives + false negatives
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fraudulent transactions, resulting in an imbalanced dataset with only 0.172% of trans-
actions being fraudulent, while the rest are considered normal or non-fraudulent 
transactions.

The Credit Card Fraud Detection Dataset has 30 numerical input features, out of 
which V1,V2, ...,V28 have undergone numerical transformation using Principal Com-
ponent Analysis (PCA) for data analysis and feature reduction purposes. However, the 
“Time” and “Amount” features were not transformed. The “Time” feature denotes the 
time in seconds since the first transaction, while the “Amount” feature represents the 
amount of the credit card transaction. The “Time” feature was excluded from the analy-
sis to avoid influencing the reliability of the results since it is a unique feature that a 
model can memorize. As a result, there are 29 input features available for further experi-
mentation. Prior to being input to the classifiers for training or classification, the features 
were normalized to fit within the [0, 1] range. The class feature is utilized to distinguish 
between legitimate and fraudulent transactions. In this context, a value of 1 represents a 
fraudulent transaction, while a value of 0 signifies a normal transaction.

Experimental design

In our experiments, we investigated two different feature selection techniques, SHAP-
value-based feature selection and importance-based feature selection methods. To assess 
the efficacy of a feature selection method, we constructed classification models utilizing 
the subset of features chosen by the feature selection approach. Classification models 
were built with five classifiers, XGBoost, Decision Tree (DT), CatBoost, Extremely Ran-
domized Trees (ET), and Random Forest (RF).

We conducted our experiments on a distributed computing platform consisting of 
nodes equipped with 16-core Intel Xeon CPUs, 256 GB RAM per CPU, and Nvidia V100 
GPUs. All training and testing programs were implemented using the Python program-
ming language. SHAP is publicly available as an open source library for the Python pro-
gramming language [30]. In addition to the SHAP values for feature importance, this 
library also supplies several tools for visualizing SHAP feature importance values. The 
Python data science stack [31] was employed for experiment implementations.

First, we ranked the features using ten feature selection methods (SHAP-XGBoost, 
XGBoost, SHAP-DT, DT, SHAP-CatBoost, CatBoost, SHAP-ET, ET, SHAP-RF, and 
RF) separately. Following feature ranking, we chose the top 3, 5, 7, 10, and 15 features, 
including the class attribute, to construct the final training datasets. Subsequently, we 
applied classifiers to these training datasets, ensuring that the classifier used in the 
model-building process remained consistent with the one employed in feature selection. 
We used AUPRC to evaluate the performance of the classification models. For each fea-
ture selection method and classifier, we have a total of 5 (feature subset sizes) × 10 (runs) 
× 5 (folds) = 250 AUPRC scores.

Results and discussion

As mentioned earlier, we have introduced ten feature selection methods, two feature 
selection techniques combined with five classifiers. We present the feature importance 
lists obtained from each method, where we focus on the top 15 most important features. 
The importance is determined either by SHAP values (for SHAP-XGBoost, SHAP-DT, 
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SHAP-CatBoost, SHAP-ET, and SHAP-RF) or built-in importance scores (for XGBoost, 
DT, CatBoost, ET, and RF). In Tables 2, 3, 4, 5, 6, we display the feature rankings, where 
rank 1 corresponds to the highest SHAP value or importance score. It’s important to 
note that SHAP values may vary when different trained models are utilized. Notably, 
among all ten feature selection methods, feature V14 stood out as one of the top three 
features. Additionally, feature V4 consistently appeared and held a ranking within the top 
15 across all feature selection methods.

The classification performance results in terms of AUPRC are shown in Tables 7, 8, 
9, 10, 11. The reported values represent averages across ten rounds of five-fold cross-
validation outcomes. The results were obtained by creating new datasets using the 3, 

Table 2 Features selected by SHAP-XGBoost and XGBoost; the features are listed in order of their 
importance values from top to bottom

Ranking SHAP‑XGBoost XGBoost

1 V14 V17

2 V4 V14

3 V12 V10

4 Amount V27

5 V8 V12

6 V11 V26

7 V7 V4

8 V10 V1

9 V5 V8

10 V19 V7

11 V26 V16

12 V27 V9

13 V3 Amount

14 V16 V13

15 V18 V3

Table 3 Features selected by SHAP-DT and DT; the features are listed in order of their importance 
values from top to bottom

Ranking SHAP‑DT DT

1 V14 V17

2 V17 V14

3 V12 V27

4 V4 V12

5 V1 V10

6 V20 V26

7 V19 V24

8 V8 V16

9 V10 V7

10 V7 V20

11 V21 V4

12 V26 V1

13 V27 V23

14 Amount V19

15 V22 V15
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5, 7, 10, and 15 highest-ranked features along with the class attribute to form the final 
training data. We conducted statistical z-tests [32] on pairs of models (same classi-
fier but different feature selection methods), where each pair consists of one model 
built with n of the most important features selected by SHAP or the model’s built-in 
feature importance list. The value of n ranges from 3 to 15. The null hypothesis is that 
there is no significant difference between the mean AUPRC scores of the two models. 
In Tables  7, 8, the Winner column indicates whether the SHAP or built-in feature 
selection method has a higher mean AUPRC value based on the outcome of a z-test 
with a significance level of α = 0.01 . If the difference in means is not significant, we 
report a tie.

Table 4 Features selected by SHAP-CatBoost and CatBoost; the features are listed in order of their 
importance values from top to bottom

Ranking SHAP‑CatBoost CatBoost

1 V1 V1

2 V14 V4

3 V4 V14

4 V8 Amount

5 V26 V11

6 V6 V26

7 Amount V13

8 V24 V8

9 V12 V17

10 V13 V3

11 V11 V20

12 V18 V18

13 V10 V24

14 V17 V15

15 V19 V28

Table 5 Features selected by SHAP-ET and ET; the features are listed in order of their importance 
values from top to bottom

Ranking SHAP‑ET ET

1 V14 V14

2 V17 V17

3 V12 V12

4 V4 V10

5 V10 V11

6 V11 V16

7 V16 V18

8 V3 V4

9 V9 V9

10 V18 V3

11 V7 V7

12 V19 V2

13 V1 V21

14 V2 V19

15 V15 V26
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Table 6 Features selected by SHAP-RF and RF; the features are listed in order of their importance 
values from top to bottom

Ranking SHAP‑RF RF

1 V14 V17

2 V17 V12

3 V12 V14

4 V10 V10

5 V4 V16

6 V1 V11

7 V11 V9

8 V16 V4

9 V2 V7

10 V7 V18

11 V19 V26

12 V3 V21

13 V5 V1

14 Amount V8

15 V18 V3

Table 7 Comparison of SHAP and XGBoost feature selection methods in terms of their AUPRC 
scores

Size SHAP‑XGBoost XGBoost p‑value Winner

3 0.7247 0.7727 0.0000 XGBoost

5 0.8165 0.7978 0.0121 Tie

7 0.8302 0.8255 0.5005 Tie

10 0.8446 0.8350 0.0041 SHAP-XGBoost

15 0.8535 0.8557 0.7097 Tie

Table 8 Comparison of SHAP and DT feature selection methods in terms of their AUPRC scores

Size SHAP‑DT DT p‑value Winner

3 0.7421 0.7323 0.4968 Tie

5 0.7493 0.7414 0.6293 Tie

7 0.7594 0.7666 0.7013 Tie

10 0.7380 0.7686 0.2429 Tie

15 0.7664 0.7564 0.5058 Tie

Table 9 Comparison of SHAP and CatBoost feature selection methods in terms of their AUPRC 
scores

Size SHAP‑CatBoost CatBoost p‑value Winner

3 0.6106 0.7235 0.0000 CatBoost

5 0.7266 0.7745 0.0000 CatBoost

7 0.7897 0.8279 0.0000 CatBoost

10 0.8333 0.8472 0.0000 CatBoost

15 0.8506 0.8491 0.7502 Tie
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Table  7 shows a tie for XGBoost models built on feature subset sizes of 5, 7, and 
15. However, for feature subset size 3, the p-value is less than the significance level 
of 0.01, indicating a significant difference in the AUPRC scores. Therefore, XGBoost 
outperforms SHAP-XGBoost for feature count 3. On the other hand, for feature sub-
set size 10, SHAP-XGBoost outperforms XGBoost.

Table  8 indicates that there is no significant difference in the AUPRC scores 
between SHAP-DT and DT for any of the feature counts tested (3, 5, 7, 10, and 15). 
As a result, we cannot declare a winner between the two feature selection methods 
based on the AUPRC scores. Tables 10 and 11 are similar to Table 8. The results sug-
gest that, for the given dataset and evaluation metric, there is no consistent superior 
performance between the SHAP feature selection methods and the traditional impor-
tance-value based decision tree, extra tree, or random forest methods across different 
feature sizes.

Table  9 presents a comparison between SHAP-CatBoost and CatBoost feature 
selection methods in terms of their AUPRC scores for different feature sizes. In sum-
mary, for feature sizes 3–10, CatBoost consistently outperforms SHAP-CatBoost 
in terms of AUPRC, and the differences are statistically significant with p-values of 
0.0000. However, for size 15, there is no statistically significant difference between the 
two methods, resulting in a tie.

Table 10 Comparison of SHAP and ET feature selection methods in terms of their AUPRC scores

Size SHAP‑ET ET p‑value Winner

3 0.7796 0.7843 0.6756 Tie

5 0.8172 0.8118 0.4243 Tie

7 0.8143 0.8137 0.9179 Tie

10 0.8175 0.8168 0.9152 Tie

15 0.8086 0.8048 0.7238 Tie

Table 11 Comparison of SHAP and RF feature selection methods in terms of their AUPRC scores

Size SHAP‑RF RF p‑value Winner

3 0.8097 0.8137 0.5673 Tie

5 0.8396 0.8248 0.0133 Tie

7 0.8416 0.8382 0.6126 Tie

10 0.8447 0.8479 0.6399 Tie

15 0.8544 0.8512 0.6693 Tie

Table 12 ANOVA for Size, Classifier and Technique as factors of performance in terms of AUPRC

Df Sum Sq Mean Sq F value Pr(>F)

Size 4 1.90 0.48 237.44 less than 10−4

Classifier 4 2.11 0.53 262.91 less than 10−4

Technique 1 0.05 0.05 24.77 less than 10−4

Residuals 2490 4.99 0.00
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In general, the performance of the two feature selection methods is comparable across 
various scenarios. However, there are specific instances, such as with certain XGBoost 
and CatBoost models, where distinctions arise. Notably, XGBoost demonstrates supe-
rior performance over SHAP-XGBoost when the feature subset size is 3, while CatBoost 
outperforms SHAP-CatBoost for feature sizes 3, 5, 7, and 10. Moreover, SHAP-XGBoost 
surpasses XGBoost when the feature subset size is 10.

An analysis of variance (ANOVA) [33] was performed on AUPRC performance met-
rics, and the results are reported in Table 12. Three factors, Size, Classifier, and Tech-
nique, were considered in the analysis. The Size Factor included feature subset sizes of 3, 
5, 7, 10, and 15, the Classifier Factor included five classifiers, while the Technique factor 
included two feature selection methods, SHAP-value based (Represented with SHAP) 
and Importance-value based (represented with Importance). The statistical test used a 
significance level of α = 1% . The ANOVA results indicate that there were significant dif-
ferences among the groups in each of the main factors in terms of the AUPRC metric, 
as all Pr(>F) or p-values in the last column of the table were less than the cutoff of 0.01.

Since the ANOVA test results revealed that all factors had a significant impact on 
AUPRC scores, we conducted Tukey’s Honestly Significant Difference (HSD) tests [34] 
to rank the Technique and Classifier based on their impact on AUPRC scores. The per-
formance was ranked alphabetically, with group ‘a’ having the highest AUPRC scores. 
Items in the same performance group indicate no statistically significant difference 
between them. The HSD test results are presented in Tables 13, 14, 15.

Based on the HSD tests, it is evident that feature selection with a subset size of 15 and 
10 yields superior performance in AUPRC compared to smaller subset sizes. This sug-
gests that constructing models with a feature subset size of 15 or 10 is advantageous. 
The reduced size leads to faster model training times and improved outcomes. Among 
the five classifiers, RF demonstrated the highest AUPRC, followed by XGBoost and ET, 

Table 13 HSD test groupings after ANOVA of AUPRC for the Size factor

Group a consists of: 15

Group ab consists of: 10

 Group b consists of: 7

Group c consists of: 5

Group d consists of: 3

Table 14 HSD test groupings after ANOVA of AUPRC for the Classifier factor

Group a consists of: RF

Group b consists of: XGBoost, ET

Group c consists of: CatBoost

Group d consists of: DT

Table 15 HSD test groupings after ANOVA of AUPRC for the Technique factor

Group a consists of: Importance

Group b consists of: SHAP
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while DT showed relatively poorer performance. Table   15 indicates that the impor-
tance-value-based feature selection method significantly outperforms the SHAP-value-
based feature selection method, across all feature subsets sizes, and learners.

As mentioned earlier, SHAP is an external tool, and the computational time for SHAP 
feature selection depends on several factors, including the model’s complexity, the num-
ber of features, the dataset size, and the number of instances for which SHAP values 
need to be computed. The complexity of computing SHAP values is generally higher 
than other feature importance methods like decision-tree-based classifiers. Therefore, 
we conclude that using the built-in feature importance to select feature subsets may be 
more suitable for models with a large number of features and a large dataset.

Conclusion
The challenge of dealing with high dimensionality in machine learning significantly 
affects the evaluation of model performance. This study specifically concentrates on 
the comparison of two feature selection techniques: identifying the most crucial fea-
tures through SHAP values and relying on the model’s intrinsic feature importance list. 
Using the Credit Card Fraud Detection Dataset, we generate multiple training datasets. 
We employ five classifiers with distinct feature subset sizes, applying both feature selec-
tion methods to each classifier. Our results indicate that, on the whole, feature selection 
methods based on importance values outperform those based on SHAP values across 
the classifiers used in this study and various feature subset sizes.

However, notable variations arise in XGBoost models. XGBoost surpasses SHAP-
XGBoost for a feature subset size of 3, while SHAP-XGBoost outperforms XGBoost for 
a feature subset size of 10. In the case of CatBoost, CatBoost outperforms SHAP-Cat-
Boost for feature sizes less than 15. It is important to note that calculating SHAP feature 
importance introduces an additional step in the experimental methodology. Accord-
ing to our findings, the return on investment for implementing SHAP may be relatively 
low, particularly when built-in feature selection methods are available, especially for 
large datasets. Additionally, the considerable computational expenses associated with 
SHAP may render it impractical for handling Big Data. For future research, our plan is to 
explore these two feature selection methods across diverse application domains.
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