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Abstract 

Modern deep learning training procedures rely on model regularization techniques 
such as data augmentation methods, which generate training samples that increase 
the diversity of data and richness of label information. A popular recent method, mixup, 
uses convex combinations of pairs of original samples to generate new samples. 
However, as we show in our experiments, mixup  can produce undesirable synthetic 
samples, where the data is sampled off the manifold and can contain incorrect labels. 
We propose ζ-mixup, a generalization of mixup  with provably and demonstrably desir-
able properties that allows convex combinations of T ≥ 2 samples, leading to more 
realistic and diverse outputs that incorporate information from T  original samples 
by using a p-series interpolant. We show that, compared to mixup, ζ-mixup  better pre-
serves the intrinsic dimensionality of the original datasets, which is a desirable property 
for training generalizable models. Furthermore, we show that our implementation of ζ
-mixup  is faster than mixup, and extensive evaluation on controlled synthetic and 26 
diverse real-world natural and medical image classification datasets shows that ζ
-mixup  outperforms mixup, CutMix, and traditional data augmentation techniques. The 
code will be released at https:// github. com/ kakum arabh ishek/ zeta- mixup.

Keywords: Deep learning, Classification, Data augmentation, Mixup, Intrinsic 
dimensionality, Data manifold

Introduction
Deep learning-based techniques have demonstrated unprecedented performance 
improvements over the last decade in a wide range of tasks, including but not limited 
to image classification, segmentation, and detection, speech recognition, natural lan-
guage processing, and graph processing [1–4]. These deep neural networks (DNNs) 
have a large number of parameters, often in the tens to hundreds of millions, and 
training accurate, robust, and generalizable models has largely been possible because 
of large public datasets [5–7], efficient training methods [8, 9], hardware-accelerated 
training [10–13], advances in network architecture design [14–16], advanced opti-
mizers [17–20], new regularization layers [21, 22], and other novel regularization 
techniques. While techniques such as weight decay [23], dropout [21], batch nor-
malization [22], and stochastic depth [24] can be considered as “data independent” 
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regularization schemes [25], popular “data dependent” regularization approaches 
include data augmentation [14, 26–29] and adversarial training [30, 31].

Given the large parameter space of deep learning models, training on small data-
sets tends to cause the models to overfit to the training samples. This is especially 
a problem when training with data from high-dimensional input spaces, such as 
images, because the sampling density is exponentially proportional to 1/D , where D is 
the dimensionality of the input space [32]. As D grows larger (typically 104 to 106 for 
most real-world image datasets), we need to increase the number of samples expo-
nentially in order to retain the same sampling density. As a result, it is imperative that 
the training datasets for these models have a sufficiently large number of samples in 
order to prevent overfitting. Moreover, deep learning models generally exhibit good 
generalization performance when evaluated on samples that come from a distribution 
similar to the training samples’ distribution. In addition to their regularization effects 
to prevent overfitting [33, 34], data augmentation techniques also help the training by 
synthesizing more samples in order to better learn the training distributions.

Traditional image data augmentation techniques include geometric- and intensity-
based transformations, such as affine transformations, rotation, scaling, zooming, 
cropping, adding noise, etc., and are quite popular in the deep learning literature. For 
a comprehensive review of data augmentation techniques for deep learning meth-
ods on images, we refer the interested readers to the survey by Shorten et al. [35]. In 
this paper, we focus on a recent and popular data augmentation technique based on 
a rather simple idea, which generates a convex combination of a pair of input sam-
ples, variations of which are presented as mixup [36], Between-Class learning [37], 
and SamplePairing [38]. The most popular of these approaches, mixup [36], performs 
data augmentation by generating new training samples from convex combinations of 
pairs of original samples and linear interpolations of their corresponding labels, lead-
ing to new training samples, which are obtained by essentially overlaying 2 images 
with different transparencies, and new training labels, which are soft probabilistic 
labels. Other related augmentation methods can broadly be grouped into 3 catego-
ries: (a) methods that crop or mask region(s) of the original input image followed by 
mixup   like blending, e.g.,   CutMix [39] and GridMix [40], (b) methods that gener-
ate convex combinations in the learned feature space, e.g.,  manifold mixup [41] and 
MixFeat [42], and (c) methods that add a learnable component to mixup, e.g.,   Ada-
MixUp [25], AutoMix [43], and AutoMix [44]. A comparison of existing mixing-based 
data augmentation methods is presented in Table 2.

mixup, however, can lead to ghosting artifacts in the synthesized samples (as we show 
later in the paper, e.g.,  in Fig. 3), in addition to generating synthetic samples with wrong 
class labels. Moreover, because mixup   uses a convex combination of only a pair of 
points, it can lead to the synthetic samples being generated off the original data manifold 
(Fig. 1a). This in turn leads to an inflation of the manifold, which can be quantified by 
an increase in the intrinsic dimensionality of the resulting data distribution, as shown in 
Fig. 6, which is undesirable since it has been shown that deep models trained on data-
sets with lower dimensionalities generalize better to unseen samples [45]. Additionally, 
mixup-like approaches, which crop or mask regions of the input images, may degrade 
the training data quality by occluding informative and discriminatory regions of images, 
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which is highly undesirable for high-stakes applications such as medical image analysis 
tasks.

The primary hypothesis of mixup  and many of its derivatives is that a model should 
behave linearly between any two training samples, even if the distance between samples 
is large. This implies that we may train the model with synthetic samples that have very 
low confidence of realism; in effect over-regularizing. We instead argue that a model 
should only behave linearly nearby training samples and that we should thus only gener-
ate synthetic examples with high confidence of realism. This is supported by research 
in cognitive sciences for humans’ categorical perception, where it has been shown that 
human perception between object category boundaries is warped and is not as linear as 
mixup  seems to suggest [46–49]. To achieve this, we propose ζ-mixup, a generalization 
of mixup  with provably desirable properties that addresses the shortcomings of mixup. 
ζ-mixup  generates new training samples by using a convex combination of T  samples 
in a training batch, requires no custom layers or special training procedures to employ, 
and is faster than mixup   in terms of wall-clock time. We show how, as compared to 
mixup, the ζ-mixup  formulation allows for generating more realistic and more diverse 

Fig. 1 Overview of mixup  (b) and ζ-mixup  (a, c, d). The original and synthesized samples are denoted by ◦ 
and 

�
 respectively, and line segments indicate which original samples were used to create the new ones. 

The line thicknesses denote the relative weights assigned to original samples. Observe how ζ-mixup  can 
mix any number of samples (e.g.,  3 in (a), 4 or 8 in (c), and 4 in (d)), and that ζ-mixup ’s formulation allows 
the generated samples to be close to the original distribution while still incorporating rich information from 
several samples. d Illustrates a toy dataset with 3 classes, wherein a mini-batch of 4 elements is sampled, 
then the data and the labels are mixed using a set of weights generated with an example value of the 
hyperparameter γ , and finally this synthesized data is used to train a classification model
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samples that better conform to the data manifold (Fig. 1b) with richer labels that incor-
porate information from multiple classes, and that mixup   is indeed a special case of ζ
-mixup. We show qualitatively and quantitatively on synthetic and real-world datasets 
that ζ-mixup ’s output better preserves the intrinsic dimensionality of the data than that 
of mixup. Finally, we demonstrate the efficacy of ζ-mixup  on 26 datasets comprising a 
wide variety of tasks from natural image classification to diagnosis with several medical 
imaging modalities.

Method
Vicinal risk minimization

Revisiting the concept of risk minimization from Vapnik [50], given X  and Y as the 
input data and the target labels respectively, and a family of functions F  , the super-
vised learning setting consists of searching for an optimal function f ∈ F : X → Y , 
which minimizes the expected value of a given loss function L over the data distribution 
P(x, y); (x, y) ∈ (X ,Y) . Table  1 lists all the mathematical notations used in this paper. 
This expected value of the loss, also known as the expected value of the risk, is given by:

In scenarios when the exact distribution P(x, y) is unknown, such as in practical super-
vised learning settings with a finite training dataset {xi, yi}Ni=1 , the common approach is 
to minimize the risk w.r.t. the empirical data distribution approximated by using delta 
functions at each sample,

and this is known as empirical risk minimization (ERM). However, if the data distribu-
tion is smooth, as is the case with most real datasets, it is desirable to minimize the risk 
in the vicinity of the provided samples [50, 51],

where 
{

(x̂, ŷ)
}m̂

i=1
 are points sampled from the vicinity of the original data distribution, 

also known as the vicinal distribution Pvic(x, y) . This is known as vicinal risk minimiza-
tion (VRM) and theoretical analysis [50–52] has shown that VRM generalizes well when 
at least one of these two criteria are satisfied: (i) the vicinal data distribution Pvic(x, y) 
must be a good approximation of the actual data distribution P(x, y), and (ii) the class 
F  of functions must have a suitably small capacity. Since modern deep neural networks 
have up to hundreds of millions of parameters, it is imperative that the former criteria is 
met.

Data augmentation

A popular example of VRM is the use of data augmentation for training deep neu-
ral networks. For example, applying geometric and intensity-based transformations 
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to images leads to a diverse training dataset allowing the prediction models to gen-
eralize well to unseen samples [35]. However, the assumption of these transforma-
tions that points sampled in the vicinity of the original data distribution share the 
same class label is rather limiting and does not account for complex interactions (e.g.,  
proximity relationships) between class-specific data distributions in the input space. 
Recent approaches based on convex combinations of pairs of samples to synthesize 
new training samples aim to alleviate this by allowing the model to learn smoother 
decision boundaries [41]. Consider the general K-class classification task. mixup [36] 
synthesizes a new training sample (x̂, ŷ) from training data samples (xi, yi) and (xj , yj) as

where � ∈ [0, 1] . The labels yi , yj are converted to one-hot encoded vectors to allow 
for linear interpolation between pairs of labels. However, as we show in our experi-
ments ("Results and Discussion" Section), mixup   leads to the synthesized points 
being sampled off the data manifold (Fig. 1 (a)).

ζ‑mixup  formulation

Going back to the K-class classification task, suppose we are given a set of T  points 
{xi}

T
i=1 in a D-dimensional ambient space RD with the corresponding labels {yi}Ti=1 in 

a label space S = {l1, · · · , lK} ∈ R
K . Keeping in line with the manifold hypothesis [53, 

54], which states that complex data manifolds in high-dimensional ambient spaces 
are actually made up of samples from manifolds with low intrinsic dimensionali-
ties, we assume that the T  points are samples from K manifolds {Mi}

K

i=1 of intrinsic 
dimensionalities {di}Ki=1 , where di << D ∀i ∈ [1,K] (Fig.  1a). We seek an augmenta-
tion method that facilitates a denser sampling of each intrinsic manifold Mi , thus 
generating more real and more diverse samples with richer labels. Following Wood 
et al. [55, 56], we consider criteria 1 through 3 below for evaluating the quality of syn-
thetic data: 

1. realism: allowing the generation of correctly labeled synthetic samples close to the 
original samples, ensuring the realism of the synthetic samples,

2. diversity: facilitating the generation of more diverse synthetic samples by allowing 
exploration of the input space, and

3. label richness when generating synthetic samples while still staying on the manifold 
of realistic samples.

In addition to the above three criteria, we also aim for the following two objectives: 

4. valid probabilistic labels from combinations of samples along with
5. computationally efficient (e.g.,  avoiding inter-sample distance calculations) augmen-

tation of training batches.

To this end, we propose to synthesize a new sample (x̂k , ŷk) as

(4)
x̂ = �xi + (1− �)xj

ŷ = �yi + (1− �)yj .
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where wi s are the weights assigned to the T  samples. One such weighting scheme that 
satisfies the aforementioned requirements consists of sample weights from the terms of a 
p-series, i.e.,  wi = i−p , which is a convergent series for p ≥ 1 . Since this implies that the 
weight assigned to the first sample will be the largest, we want to randomize the order of 
the samples to ensure that the synthetic samples are not all generated near one original 
sample. Therefore, building upon the idea of local synthetic instances initially proposed 
for the augmentation of connectome dataset [57], we adopt the following formulation: 
given T  samples (where 2 ≤ T ≤ m ≤ N  and thus, theoretically, the entire dataset), an 
T × T  random permutation matrix π , and the resulting randomized ordering of samples 
s = π [1, 2, . . . ,T ]

T , the weights are defined as

where C is the normalization constant and γ is a hyperparameter. As we show in our 
experiments later, γ allows us to control how far the synthetic samples can stray away 
from the original samples. Moreover, in order to ensure that yk in Eq. (5) is a valid proba-
bilistic label, wi must satisfy wi ≥ 0 ∀i and 

∑T
i=1 wi = 1 . Accordingly, we use L1-normali-

zation and C =
∑T

j=1 j
−γ is the T-truncated Riemann zeta function [58] ζ(z) evaluated 

at z = γ , and call our method ζ-mixup. The algorithmic formulation of ζ-mixup is pre-
sented in Algorithm 1.

An illustration of ζ-mixup   for T = 3,D = 3, d1 = d2 = d3 = 2 is shown in Fig. 1a. 
Notice how despite generating convex combinations of samples from disjoint mani-
folds, the resulting synthetic samples are close to the original ones. A similar obser-
vation can be made for T = 4 and T = 8 is shown in Fig.  1c. Figure  1d shows an 
overview of how ζ-mixup generates new samples for a mini-batch of size m = T = 4 , 
with 3 classes ( K = 3 ) and the hyperparameter γ = 2.4.

Since there exist T ! possible T × T  random permutation matrices, given T  original 
samples, ζ-mixup  can synthesize T ! new samples for a single value of γ , as compared to 
mixup  which can only synthesize 1 new sample per sample pair for a single value of �.

As a result of the aforementioned formulation, ζ-mixup   presents two desirable 
properties that we present in the following 2 theorems. Theorem  1 states that for 
all values of γ ≥ γmin , the weight assigned to one sample is greater than the sum of 
the weights assigned to all the other samples in a batch, thus implicitly introducing 
the desired notion of linearity in only the locality of the original samples. Theorem 2 
states the equivalence of mixup  and ζ-mixup  and establishes the former as a special 
case of the latter.

Theorem 1 For γ ≥ γmin = 1.72865, the weight assigned to one sample dominates all 
other weights, i.e., ∀ γ ≥ 1.72865,

(5)

x̂k =

T
∑

i=1

wixi

ŷk =

T
∑

i=1

wiyi,

(6)wi =
s
−γ

i

C
, i ∈ [1,T ],
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Proof Let us consider the case when T → ∞ . We need to find the value of γ such that

Note that 
∑

∞

i=1 i
−γ

= ζ(γ ) is the Riemann zeta function at γ . Using a solver, we get 
γ ≥ 1.72865 . Therefore, ∀ γ ≥ γmin = 1.72865,

�

Theorem 2 For T = 2 and γ = log2

(

�

1−�

)

 , ζ-mixup  simplifies to mixup.

Proof When T = 2 , ζ-mixup  (Eq. 5) generates new samples by

where

(7)w1 >

T
∑

i=2

wi.

(8)w1 >

∞
∑

i=2

wi

(9)⇒
1−γ

C
>

∞
∑

i=2

i−γ

C
; C =

∞
∑

j=1

j−γ ,

(10)⇒ 1−γ
>

∞
∑

i=2

i−γ
(since C > 0),

(11)⇒ 1−γ
+ 1−γ

> 1−γ
+

∞
∑

i=2

i−γ ,

(12)⇒ 2 >

∞
∑

i=1

i−γ .

(13)w1 >

∞
∑

i=2

wi >

T
∑

i=2

wi ⇒ w1 >

T
∑

i=2

wi.

(14)

xk =

2
∑

i=1

wixi = w1x1 + w2x2

yk =

2
∑

i=1

wiyi = w1y1 + w2y2,
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For this to be equivalent to mixup  (Eq. 4), we should have

Solving for γ , we have

�

Datasets and experimental details
Synthetic data

To emulate realistic settings where class distributions are not always necessarily linearly 
separable, we first generate two-class distributions of 29 = 512 samples with non-linear 
class boundaries in the shape of interleaving crescents (CRESCENTS) and spirals (SPI-
RALS), and add Gaussian noise with zero mean and standard deviation σ = 0.1 to the 
points as shown in the “Input” column of Fig. 2a. Next, moving on to higher dimensional 
spaces, we generate synthetic data distributed along a helix. In particular, we sample 213 
= 8,192 points off a 1-D helix embedded in R3 (see the “Input” column of Fig. 2b) and, as 
a manifestation of low-D manifolds lying in high-D ambient spaces, a 1-D helix in R12 . 
This is done in accordance with the manifold hypothesis [53, 54] which states that com-
plex data manifolds in high-dimensional ambient spaces (e.g.,  3 dimensions in Fig. 2b) 
are actually made up of samples from a manifold with a low intrinsic dimensionality (i.e.,  
1-dimensional helix in Fig. 2b).

Natural image datasets (NATURAL)

Broadly speaking, natural images are those acquired by standard RGB cameras in a “rea-
sonably ordinary environment” [59] whereas medical images are acquired with special-
ized imaging equipment. We use this distinction between natural images and medical 
images to highlight the differences in what these two broad categories of images encode 
[60–62]. In this paper, we use MNIST [26], CIFAR-10 and CIFAR-100 [63], Fashion-
MNIST (F-MNIST) [64], STL-10 [65], and, to evaluate models on real-world images but 

(15)w1 =
1−γ

1−γ + 2−γ
; w2 =

2−γ

1−γ + 2−γ
.

(16)w1 = �; w2 = 1− �.

(17)w1 =
1−γ

1−γ + 2−γ
= �

(18)⇒
1

1+ 2−γ
= �

(19)⇒ 2−γ
=

1− �

�

(20)⇒ γ = − log2
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�

)
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Fig. 2 Visualizing how mixup  and ζ-mixup  synthesize new samples. Notice that mixup  produces samples 
that (a) are assigned wrong labels and (b, c) are sampled off the original data manifold, with an extreme 
example being where the points are sampled from the hollow region in the helix. A moderately low value 
of γ allows for a more reasonable exploration of the data manifold, with higher values of T  allowing for more 
diversity in the synthesized points
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with faster training times, two 10-class subsets of the standard ImageNet [5]: Imagenette 
and Imagewoof [66].

F-MNIST, just like MNIST, has 28× 28 grayscale images. Unlike the CIFAR data-
sets which have RGB images with 32× 32 spatial resolution, STL-10 consists of RGB 
images with a higher 96× 96 resolution and also has fewer training images than testing 
images per class. Finally, Imagenette and Imagewoof are 10-class subsets of the stand-
ard ImageNet [5] dataset allowing for evaluating models on natural image datasets but 
with more realistic training times and computational costs. The list of ImageNet classes 
and the corresponding synset IDs from WordNet in both these datasets are shown in 
Table 3. Both the datasets have standardized training and validation partitions.

Training details

Because of the ease with which modern deep neural networks can achieve very high 
classification accuracy on the MNIST dataset, we reserve its usage to visualization pur-
poses only and use the other 6 datasets for training and evaluating deep classification 
models. For all the datasets, we train and validate deep models with the ResNet-18 archi-
tecture [16] on the standard training and validation partitions and use random horizon-
tal flipping for data augmentation. We report the overall accuracy as the metric since the 
datasets have balanced class distributions.

For CIFAR-10, CIFAR-100, F-MNIST, and STL-10, the ResNet-18 models are trained 
on the original image resolutions, whereas for Imagenette and Imagewoof, the images 
are resized to 224 × 224 . For CIFAR-10, CIFAR-100, F-MNIST, the models are trained 
for 200 epochs with an initial learning rate of 0.1, which is decayed by a multiplicative 
factor of 0.2 at 80th , 120th , and 160th epochs, with batches of 128 images for CIFAR 
datasets and 32 images for F-MNIST. For STL-10, the models are trained for 120 epochs 
with a batch size of 32 and an initial learning rate of 0.1, which is decayed by a multipli-
cative factor of 0.2 at 80th epoch. Finally, for Imagenette and Imagewoof, the models are 
trained for 80 epochs with a batch size of 32 and an initial learning rate of 0.01, which is 
decayed by a multiplicative factor of 0.2 at 25th , 50th , and 65th epochs. All models are 
optimized using cross entropy loss and mini-batch stochastic gradient descent (SGD) 
with Nesterov momentum of 0.9 and a weight decay of 5e−4.

Since ζ-mixup can interpolate between samples at both image- and patch-levels, we 
carry out an additional set of experiments to evaluate ζ-mixup ’s performance when used 
in conjunction with other orthogonal augmentation techniques. In particular, we assess 
if using ζ-mixup along with CutMix outperforms using only CutMix. We perform these 
experiments on the CIFAR-10 and CIFAR-100 datasets and with 4 model architectures: 
ResNet-18 [16], ResNet-50 [16], MobileNetV2 [67], and EfficientNet-B0 [68]. All the 
models are trained for 200 epochs with an initial learning rate of 0.1, which is decayed by 
a multiplicative factor of 0.2 at 100th and 150th epochs, and with batches of 128 images. 
As before, we use the cross entropy loss and SGD with Nesterov momentum of 0.9 and a 
weight decay of 5e−4 to optimize the classification models.

Skin lesion diagnosis datasets (SKIN)

Next, we move to the medical image diagnosis task and focus on skin lesion clas-
sification. Skin lesion imaging has 2 pre-dominant modalities: clinical images and 
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dermoscopic images. While both capture RGB images, clinical images consist of close-
up lesion images acquired with consumer-grade cameras, whereas dermoscopic images 
are acquired using a dermatoscope which allows for identification of detailed morpho-
logical structures [69] along with fewer imaging-related artifacts [70]. We use 10 skin 
lesion image diagnosis datasets: International Skin Imaging Collaboration (ISIC) 2016 
[71], ISIC 2017 [72], ISIC 2018 [73, 74], Memorial Sloan-Kettering Cancer Center data-
sets (MSK-1 through MSK-5, collectively known as MSK) [75], UDA [75], DermoFit † 
[76], derm7point-{C†,D} [77], PH2 [78], and MED-NODE† [79]. The derm7point dataset 
[77] contains multi-modal images and are therefore 2 datasets: derm7point-C† (contain-
ing clinical images) and derm7point-D (containing dermoscopic images). All the data-
sets have dermoscopic images, except those denoted by a †.

Training details

For all the datasets, we train classification models with the ResNet-18 and the ResNet-50 
[16] architectures. For data augmentation, we take a square center-crop of the image 
with edge length equal to 0.8* min(height, width) and then resize it to 256× 256 spatial 
resolution. The ISIC 2016, 2017, and 2018 come with standardized partitions that we use 
for training and evaluating our models, and for the other 7 datasets, we perform a strati-
fied split in the ratio of training : validation : testing :: 70  : 10  : 20. Given the inherent 
class imbalance in these datasets, we report three evaluation metrics which take class 
imbalance into account: balanced accuracy (i.e.,   macro-averaged recall per class) [80] 
and micro- and macro-averaged F1 scores.

For all the datasets, we use the 5-class diagnosis labels used in the original dataset 
paper and in the literature [77, 81, 82]: “basal cell carcinoma”, “nevus”, “melanoma”, “seb-
orrheic keratosis”, and “others”.

For all the datasets except ISIC 2018, we use a batch size of 32 images and train the 
models for 50 epochs with an initial learning rate of 0.01, which was decayed by a multi-
plicative factor of 0.1 every 10 epochs. Given that the ISIC 2018 dataset is considerably 
larger, we train it for 20 epochs with 32 images in a batch and an initial learning rate of 
0.01, which was decayed by a multiplicative factor of 0.1 every 4 epochs. As with experi-
ments with the natural image datasets, all models are optimized using cross entropy loss 
and SGD with Nesterov momentum of 0.9 and a weight decay of 5e−4.

Datasets of other medical imaging modalities (MEDMNIST)

To evaluate our models on multiple medical imaging modalities, we use 10 datasets from 
the MedMNIST Classification Decathlon [83]: PathMNIST‡ (histopathology images 
[84]), DermaMNIST‡ (multi-source images of pigmented skin lesions [74]), OCTMN-
IST (optical coherence tomography (CT) images [85]), PneumoniaMNIST (pediat-
ric chest X-ray images [85]), BloodMNIST‡ (microscopic peripheral blood cell images 
[86]), TissueMNIST (microscopic images of human kidney cortex cells [87]), BreastMN-
IST (breast ultrasound images), and OrganMNIST_{A, C, S} (axial, coronal, and sagit-
tal views respectively of 3D CT scans [88, 89]). Datasets denoted by ‡ consist of RGB 
images, others consist of grayscale images.
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Training details

For all the datasets, we train and evaluate classification models with the ResNet-18 
architecture on the standard training, validation, and testing partitions. The images are 
used in their original 28× 28 spatial resolution, and the evaluation metrics reported are 
the same as in the original dataset paper [83]: overall accuracy and area under the ROC 
curve.

For all the datasets, we use a learning rate of 0.01 and following the original paper [83], 
we use cross entropy loss with SGD on batches of 128 images to optimize the classifica-
tion models.

Results and discussion
We present experimental evaluation on controlled synthetic (1-D manifolds in 2-D and 
3-D, 3-D manifolds in 12-D) and on 26 real-world natural and medical image datasets 
of various modalities. We evaluate the quality of ζ-mixup ’s outputs: directly, by assess-
ing the realism, label correctness, diversity, richness [55, 56], and preservation of intrin-
sic dimensionality of the generated samples; as well as indirectly, by assessing the effect 
of the samples on the performance of downstream classification tasks. For classification 
tasks, we compare models trained with ζ-mixup ’s outputs against those trained with tra-
ditional data augmentation techniques (ERM) and with mixup ’s outputs.

Since ζ-mixup   and mixup   are used to perform data augmentation on-the-fly while 
training DNNs, it is imperative that in addition to assessing their contribution to the 
downstream task ("Evaluation on downstream task: classification"), we also evaluate the 
quality of the synthesized samples, in terms of realism, diversity, and richness of labels 
[55, 56]. We now elaborate these properties in context of our work below.

Realism and label correctness

While it is desirable that the output of any augmentation method be different from the 
original data in order to better minimize Rvic ("Method"), we want to avoid sampling syn-
thetic points off the original data manifold, thereby also ensuring trustworthy machine 
learning [90].

Consider the CRESCENTS and the SPIRALS datasets, two 2D synthetic data distribu-
tion described in "Synthetic Data" Section and visualized as “Input” in Fig. 2a. Applying 
mixup  to CRESCENTS and SPIRALS datasets shows that mixup  does not respect the 
individual class boundaries and synthesizes samples off the data manifold, also known 
as manifold intrusion [25]. This also results in the generated samples being wrongly 
labeled, i.e.,  points in the “red” class’s region being assigned “blue” labels and vice versa, 
which we term as “label error”. On the other hand, ζ-mixup  preserves the class decision 
boundaries irrespective of the hyperparameter γ and additionally allows for a controlled 
interpolation between the original distribution and mixup-like output. With ζ-mixup, 
small values of γ (greater than γmin ; see Theorem 1) lead to samples being generated fur-
ther away from the original data and as γ increases, the resulting distribution approaches 
the original data.
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Applying mixup   in 3D space (Fig.  2b) results in a somewhat extreme case of the 
generated points sampled off the data manifold, filling up the entire hollow region in 
between the helical distribution. ζ-mixup, however, similar to Fig. 2a, generates points 
that are relatively much closer to the original points, and increasing the value of γ to a 
large value, say γ = 6.0 , leads the generated samples to lie almost perfectly on the origi-
nal data manifold.

Moving on to higher dimensions with the MNIST data, i.e.,   784-D, we observe that 
the problems with mixup ’s output are even more severe and that the improvements by 
using ζ-mixup  are more conspicuous. For each digit class in the MNIST dataset, we take 
the first 10 samples as shown in Fig. 3a and use mixup  and ζ-mixup   to generate 100 
new images each (Fig. 3b, c). It is easy to see that the digits in ζ-mixup ’s output are more 
discernible than those in mixup ’s output.

Finally, to analyze the correctness of probabilistic labels in the outputs of mixup  and 
ζ-mixup, we pick 4 samples each from the respective outputs and inspect their proba-
bilistic soft labels. mixup ’s outputs (Fig. 3d) all look like images of handwritten “8”. The 
soft label of the first digit in Fig. 3d is [0, 0.53, 0, 0, 0, 0.47, 0, 0, 0, 0], where the ith index 
is the probability of the ith digit, implying that this output has been obtained by mix-
ing images of digits “1” and “5”. Interestingly, neither the resulting output looks like the 
digits “1” or “5” nor is the digit “8” one of the classes used as input for this image. I.e., 
there is a disagreement, with mixup, between the appearance of the synthesized image 
and its assigned label. Similar label error exists in the other images in Fig. 3d. On the 
other hand, there is a clear agreement between the images produced by ζ-mixup  and the 
labels assigned to them (Fig. 3e).

Next, we set out to quantify (i) realism and (ii) label correctness of mixup   and ζ
-mixup-synthesized images. To this end, we assume access to an Oracle that can recog-
nize MNIST digits. For (i), we hypothesize that the more an image is realistic, the more 
the Oracle will be certain about the digit in it, and vice-versa. For example, although the 
first image in Fig. 3d is a combination of a “1” and a “5”, the resulting image looks very 
similar to a realistic handwritten “8”. On the other hand, consider the highlighted and 
zoomed digits in Fig.  3b. For an Oracle, images like these are ambiguous and do not 
belong to one particular class. Consequently, the uncertainty of the Oracle’s prediction 
will be high. We therefore adopt the Oracle’s entropy ( H ) as a proxy for realism. For 
(ii), we use cross entropy (CE) to compare the soft labels assigned by either mixup  or ζ
-mixup  to the label assigned by the Oracle. For example, if the resulting digit in a syn-
thesized image is deemed an “8” to an Oracle and the label assigned to the sample, by 
mixup  or ζ-mixup, is also “8”, then the CE is low and the label is correct. We also note 
that for the Oracle, the certainty of the predictions is correlated with the correctness 
of label. Finally, to address the issue of what Oracle to use, we adopt a highly accurate 
LeNet-5 [26] MNIST digit classifier that achieves 99.31% classification accuracy on the 
standardized MNIST test set.

Figure  3f, g show the quantitative results for the realism ( ∝ 1/H ) of mixup   and ζ-
mixup ’s outputs, and the correctness of the corresponding labels ( ∝ 1/CE) as evaluated 
by the Oracle, respectively, using kernel density estimate (KDE) plots with normalized 
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areas. For both metrics, lower values (along the horizontal axes) are better. In Fig.  3f, 
we observe the ζ-mixup   has a higher peak for low values of entropy as compared to 
mixup, indicating that the former generates more realistic samples. The inset fig-
ure therein shows the same plot with a logarithmic scale for the density, and ζ-mixup 

Fig. 3 Visualizing the results obtained using mixup  (b) and ζ-mixup  (c) on images (a) from the MNIST 
dataset. In d and e, we visualize the probabilistic “soft” labels assigned to images generated by mixup  and ζ
-mixup  respectively. Notice how all images in d look close to the digit “8” while their assigned soft labels do 
not contain the class “8”. ζ-mixup  alleviates this issue and the soft labels in e correspond exactly to the class 
the synthesized images belong to. Also note how mixup  produces images with a wrong label, i.e., a label 
different from the original labels of the two images it is interpolated from. In f and g, we evaluate the realism 
of mixup ’s and ζ-mixup ’s generated samples and the correctness of the corresponding labels by measuring 
the entropy of the Oracle’s predictions ( H ) and the cross entropy of the Oracle’s predictions with the soft 
labels (CE) respectively. For both f and g, lower values are better
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’s improvements over mixup   for higher values of entropy are clearly discernible here. 
Similarly, in Fig. 3g, we see that the cross entropy values for ζ-mixup  are concentrated 
around 0, whereas those for mixup  are spread out more widely, implying that the former 
produces fewer samples with label error. If we restrict our samples to only those whose 
entropy of Oracle’s predictions was less than 0.1, meaning they were highly realistic sam-
ples, the label correctness distribution remains similar as shown in the inset figure, i.e.,  
mixup ’s outputs that look realistic are more likely to exhibit label error.

Note that similar problems with unrealistic synthesized images exist with skin lesion 
images, as shown in the outputs of mixup   applied to 100 samples from ISIC 2017 
(Fig. 4) and ISIC 2018 (Fig. 5) datasets. mixup  generates images that contain (1) over-
lapping lesions with different diagnoses, (2) overlapping artifacts (dark corners, stickers, 
ink markers, hair, etc.) overlapping the lesion, or (3) images with unrealistic anatomi-
cal arrangements such as lesion or hair appearing outside the body. However, despite ζ
-mixup ’s outputs exhibiting a higher degree of realism compared to those of mixup, we 
acknowledge that it is difficult to accurately estimate the realism of medical images with-
out expert assessment.

Diversity

We can control the diversity of ζ-mixup ’s output by changing T  , i.e.,   the number of 
points used as input to ζ-mixup, and the hyperparameter γ . As the value of γ increases, 

Fig. 4 Visualizing the results obtained using mixup  (b) and ζ-mixup  (c, d, e) on images (a) from the ISIC 2017 
dataset, with three values of γ (2.4, 2.8, 4.0) used for ζ-mixup. Note how mixup  synthesizes unrealistic images 
with ghosting (selected images highlighted in blue in b), as evidenced by either multiple lesions overlapping 
or with artifacts (dark corners, stickers, ink markers) overlapping the lesion. On the other hand, for all values of 
γ , ζ-mixup  produces visibly more realistic images
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the resulting distribution of the sampled points approaches the original data distribu-
tion. For example, in Fig. 2a, we see that changing γ leads to an interpolation between 
mixup-like and the original input-like distributions. Similarly, in Fig. 2c, we can see the 
effects of varying the batch size T  (i.e.,  the number of input samples used to synthesize 
new samples) and γ . As T  increases, more original samples are used to generate the syn-
thetic samples, and therefore the synthesized samples allow for a wider exploration of 
the space around the original samples. This effect is more pronounced with smaller val-
ues of γ because with the weight assigned to one point, while still dominating all other 
weights, is not large enough to pull the synthetic sample close to it. This, along with 
fewer points to compute the weighted average of, leads to samples being generated far-
ther from the original distribution as γ decreases. On the other hand, as γ increases, the 
contribution of one sample gets progressively larger, and as a result, the effect of a large γ 
overshadows the effect of T .

Richness of labels

The third desirable property of synthetic data is that, not only the generated samples 
should be able to capture and reflect the diversity of the original dataset, but also build 
upon it and extend it. As discussed in "Method", for a single value of � , mixup   generates 
1 synthetic sample for every pair of original samples. In contrast, given a single value 
of γ and T  original samples, ζ-mixup  can generate T ! new samples. The richness of the 

Fig. 5 Visualizing the results obtained using mixup  (b) and ζ-mixup  (c, d, e) on images (a) from the ISIC 2018 
dataset, with three values of γ (2.4, 2.8, 4.0) used for ζ-mixup. Similar to Fig. 4, mixup  synthesizes unrealistic 
images with ghosting (selected images highlighted in blue in b), with multiple lesions overlapping, with 
artifacts (hair) overlapping the lesion, or with unrealistic anatomical arrangements (lesion, hair overflowing 
outside the body). And as before, for all values of γ , ζ-mixup  produces more realistic images
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generated labels in ζ-mixup  comes from the fact that, unlike mixup  whose outputs lie 
anywhere on the straight line between the original 2 samples, ζ-mixup  generates sam-
ples which are close to the original samples (as discussed in “Realism” above) while still 
incorporating information from the original T  samples. As a case in point, consider the 
visualization of the soft labels in mixup ’s and ζ-mixup ’s outputs on the MNIST dataset. 
Examining Fig. 3b, d again, we note mixup ’s outputs are only made up of inputs from at 
most 2 classes. On the other hand, because of ζ-mixup ’s formulation, the outputs of ζ
-mixup  can be made up of inputs from up to min(T ,K) classes. This can also be seen in 
ζ-mixup ’s outputs in Fig. 3e: while the probability of one class dominates all others (see 
Theorem 1), inputs from multiple classes, in addition to the dominant class, contribute 
to the final output and therefore this is reflected in the soft labels, leading to richer labels 
with information from multiple classes in 1 synthetic sample, which in turn arguably 
allow models trained on these samples to better learn the class decision boundaries.

Preserving the intrinsic dimensionality of the original data

As a direct consequence of the realism of synthetic data discussed above and its relation 
to the data manifold, we evaluate how the intrinsic dimensionality (ID hereafter) of the 
datasets change when mixup  and ζ-mixup  are applied.

According to the manifold hypothesis, the probability mass of high-dimensional data 
such as images, speech, text, etc. is highly concentrated, and optimization problems in 
such high dimensions can be solved by fitting low-dimensional non-linear manifolds 
to points from the original high-dimensional space, with this approach being known as 
manifold learning [53, 54, 59]. This idea that real world image datasets can be described 
by considerably fewer dimensional representations [91], also known as the intrinsic 
dimensionality, has fuelled research into lower dimensional representation learning 
techniques such as autoencoders [92, 93]. Moreover, recent research has concluded that 
deep learning models are easier to train on datasets with low dimensionalities and that 
such models exhibit better generalization performance [45].

While the ID of a dataset can be estimated globally, datasets can have heterogeneous 
regions and thus consist of regions of varying IDs. As such, instead of a global estimate 
of the ID, a local measure of the ID (local ID hereafter), estimated in the local neigh-
borhood of each point in the dataset with neighborhoods typically defined using the 
k-nearest neighbors, is more informative of the inherent organization of the dataset. For 
our local ID estimation experiments, we use a principal component analysis-based local 
ID estimator from the scikit-dimension Python library [94] using the Fukunaga-
Olsen method [95], where an eigenvalue is considered significant if it is larger than 5% of 
the largest eigenvalue.

With our 3D manifold visualizations in Fig. 2b, we saw that mixup  samples points off 
the data manifold while ζ-mixup   limits the exploration of the high-dimensional space, 
thus maintaining a lower ID. In order to substantiate this claim with quantitative results, 
we estimate the IDs of several datasets, both synthetic and real-world, and compare how 
the IDs of mixup- and ζ-mixup-generated distributions compare to those of the respec-
tive original distributions. For synthetic data, we use the high-dimensional datasets 
described in "Synthetic data", i.e.,  1-D helical manifolds embedded in R3 and in R12 . For 
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Fig. 6 Visualizing how ζ-mixup  affects the local intrinsic dimensionality of synthesized datasets distributed 
as 1D helices (a, b) and 3D manifold (c) in a higher dimensional embedding space as the hyperparameter γ 
changes. The mean and the standard deviation of the intrinsic dimensionality are shown using lines (bold or 
dashed-dotted) and shaded bands respectively. The vertical dotted line in all the plots denotes the value of 
γ = γmin (Theorem 1)
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real-world datasets, we use the entire training partitions (50,000 images) of CIFAR-10 
and CIFAR-100 datasets.

For each point in all the 4 datasets, the local ID is calculated using a k-nearest neigh-
borhood around each point with k = 8 and k = 128 [94, 95]. The means and the stand-
ard deviations of the local ID estimates for all the datasets: original data distribution, 
mixup ’s output, and ζ-mixup ’s outputs for γ ∈ [0, 15] , are visualized in Fig. 6.

The results in Fig. 6 support the observations from the discussion around the realism 
("Realism and Label Correctness" Section) and the diversity ("Diversity") of outputs. In 
particular, notice how mixup ’s off-manifold sampling leads to an inflated estimate of 
the local ID, whereas the local ID of ζ-mixup ’s output is lower than that of mixup  and, 
as expected, can be controlled using γ . This difference is even more apparent with real-
world high-dimensional (3072-D) datasets, i.e.,  CIFAR-10 and CIFAR-100, where for all 
values of γ ≥ γmin (Theorem 1), as γ increases, the local ID of ζ-mixup ’s output drops 
dramatically, meaning the resulting distributions lie on progressively lower dimensional 
intrinsic manifolds.

We note, however, that for some datasets,when employing large values of γ , the local 
ID of ζ-mixup outputs may be lower than the local ID of the original dataset (Fig. 6). 
Since we use the same number of nearest neighbors ( nNN = {8, 128} ) across all methods 
to perform PCA-based local ID estimation [95], higher values of γ lead to synthesized 
samples being closer to each other and the distribution of the resulting augmented sam-
ples being more compact than the original dataset (“vanilla” in Fig.  6). Fig.  7 shows a 
visual explanation for this: consider a synthetic two-class 2D data distribution, and its 
mixup and ζ-mixup augmented outputs (Fig. 7a–c) respectively). We see that if we were 
to estimate the local ID for this data without any augmentation (Fig. 7d), the samples are 
comparatively more spread out, compared to ζ-mixup outputs (Fig. 7e). If we were to fit 
an ellipse (representing the covariance of the data or the result of PCA) to estimate the 
local ID, notice how ζ-mixup ’s more compact distribution leads to an ellipse with higher 
eccentricity than the one for the original distribution.

Evaluation on downstream task: classification

We compare the classification performance of models trained using traditional data 
augmentation techniques, e.g.,   rotation, horizontal and vertical flipping, and cropping 
(“ERM”), against those trained with mixup ’s and ζ-mixup ’s outputs. Additionally, we 
also evaluate if there are performance improvements when ζ-mixup   is applied in con-
junction with an orthogonal augmentation technique, CutMix.

We do not compare against optimization-based mixing methods (e.g.,   Co-Mixup 
[96]), which, while conceptually orthogonal to ζ-mixup and potentially complemen-
tary, involve the use of combinatorial optimization and specialized libraries1. These 
methods, by design, introduce a significant computational overhead that places the 
burden of image understanding on the data augmentation process. This increased 
computational cost is evident in model training times. For instance, CIFAR-100 mod-
els trained using mixup, ζ-mixup, CutMix, and even the combination of CutMix and 
ζ-mixup take up almost the same time as ERM (approximately 1h 20 m; Table 9). On 

1 https:// github. com/ Borda/ pyGCO.

https://github.com/Borda/pyGCO
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the other hand, Co-Mixup, due to its reliance on optimation, requires training times 
that are over an order of magnitude larger (over 16h; similar to the training time in the 
official repository’s training log2). We also refrain from extensive comparison against 

Fig. 7 Augmenting a 2D data distribution with non-linear class boundaries (a) with mixup (b) and ζ-mixup 
(c). Notice how ζ-mixup generates samples closer to the original data, and this explains why the local intrinsic 
dimensionality (ID) estimates for ζ-mixup (d) may sometimes be lower than the original dataset (e) (Fig. 6): 
the Fukunaga-Olsen method for local ID estimation using PCA based on nearest-neighbor sampling may 
yield a more compact distribution for ζ-mixup. Conversely, with mixup, a test sample may lie in the vicinity 
(calculated using k-nearest neighbors; k = {8, 16} ) of training samples from classes different from the test 
image’s correct label, leading to an incorrect prediction (f). This is less likely with ζ-mixup (g)

2 https:// github. com/ snu- mllab/ Co- Mixup/ blob/ main/ check point/ cifar 100_ preac tresn et18_ eph300_ comix up/ log. txt.

https://github.com/snu-mllab/Co-Mixup/blob/main/checkpoint/cifar100_preactresnet18_eph300_comixup/log.txt
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methods that interpolate in the latent space (e.g.,  manifold mixup [41]) for two main 
reasons. First, the the computational demands associated with these methods are 
considerably higher: while ERM, mixup, ζ-mixup models trained on CIFAR-100 con-
verge in a reasonable amount of time, typically within 200 epochs and approximately 
1 h, training a model with manifold mixup extends to 2000 epochs and requiring over 
16  h (Table 9). Moreover, the theoretical justifications associated with such methods 
are not unanimously agreed upon [97]. Nevertheless, despite this considerably higher 
computational burden, we compare manifold mixup to ζ-mixup on nine diverse natu-
ral and medical image classification datasets.

Table 4 presents the quantitative evaluation for the natural image datasets. For all our 
experiments with mixup, we use the official implementation by the authors3. mixup sam-
ples its interpolation factor � from a Beta(α,α ) distribution, and following the original 
mixup paper [36], their code implementation4, as well as several other works [39, 42, 44, 
98–100], we set α = 1 , which results in � being sampled from a U[0, 1] uniform distribu-
tion. For all our experiments with ζ-mixup, we synthesize new training samples through 
convex combinations (Eqn. 5, Eqn. 6) of all the samples in a training batch, i.e., T (num-
ber of samples used for interpolation) = m (number of samples in a training batch). For 
comparison against mixup-based models, we choose 3 values of γ for the corresponding 
ζ-mixup-based models:

• γ = 2.4 : to allow exploration of the space around the original data manifold,
• γ = 4.0 : to restrict the synthetic samples to be close to the original samples, and
• γ = 2.8 : to allow for a behavior that permits exploration while still restricting the 

points to a small region around the original distribution.

We see that 17 of the 18 models in Table  4 trained with ζ-mixup   outperform their 
ERM and mixup  counterparts, with the lone exception being a model that is as accu-
rate as mixup. We also observe a performance improvement when ζ-mixup   is applied 
along with CutMix, as shown in Table  5. To show that the performance gains from ζ
-mixup  are achievable for all reasonable values of γ , for these experiments, we sample a 
new γ ∈ U[1.72865, 4.0] for each mini-batch.

Next, Table 6 shows the performance of the models on the 10 skin lesion image diag-
nosis datasets ( γ = {2.4, 2.8, 4.0} ). For both ResNet-18 and ResNet-50 and for all the 
10 SKIN datasets, ζ-mixup   outperforms both mixup   and ERM on skin lesion diag-
nosis tasks. Finally, Table 7 presents the quantitative evaluation on the 8 classification 
datasets from the MedMNIST collection, but use ζ-mixup  only with γ = 2.8 . In 8 out 
of the 10 datasets, ζ-mixup  outperforms both mixup  and ERM, and in the other 2, ζ
-mixup  achieves the highest value for 1 metric out of 2 each.

Note that these selected values of γ can be changed to other reasonable values (see 
"ζ-mixup: hyperparameter sensitivity analysis and ablation study" for sensitivity analy-
sis of γ ), and as shown above qualitatively and quantitatively, the desirable properties 
of ζ-mixup   hold for all values of γ ≥ γmin . Consequently, our quantitative results on 

3 https:// github. com/ faceb ookre search/ mixup- cifar 10.
4 https:// github. com/ faceb ookre search/ mixup- cifar 10/ blob/ main/ train. py# L119.

https://github.com/facebookresearch/mixup-cifar10
https://github.com/facebookresearch/mixup-cifar10/blob/main/train.py#L119
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classification tasks on 26 datasets show that ζ-mixup  outperforms ERM and mixup  for 
all the datasets and, in most cases, using all three selected values of γ.

For a more intuitive explanation of how ζ-mixup leads to superior performance, let 
us revisit the synthetic data distribution in Fig. 7, now with a test sample (denoted by a 
green square). With mixup, the test sample may lie in the vicinity of incorrectly labeled 
mixup-augmented training samples. We study the classes of the samples in the vicinity 
of a test sample using its k-nearest neighbors, k = {8, 16} . Such errors, i.e., a test sample 
falling in the vicinity of training samples of a different class leading to misclassification, 
are less likely with ζ-mixup since it generates training samples that are closer to the orig-
inal data distribution.

This can also be observed on real-world datasets. We choose two skin lesion image 
datasets from our experiments spanning two imaging modalities, and two model archi-
tectures for our analysis: the ResNet-50 model trained on ISIC 2017 (dermoscopic 
images) and the ResNet-18 model trained on derm7point: Clinical (clinical images). 
Fig. 8a shows 14 sample images from the test sets of each of the two datasets that were 
misclassified by both ERM and mixup, but were correctly classified by ζ-mixup for all 
values of γ (Table  6). To study the distribution of training samples and their labels in 
the vicinity of these test images, we perform the following analysis: for both the mod-
els, we generate mixup- and ζ-mixup-synthesized training samples, and compute 
their features using the pre-trained classification models. This results in 2048-dimen-
sional and 512-dimensional feature vectors for ISIC 2017 (ResNet-50) and derm7point 
(ResNet-18), respectively. For 12 of these 14 test images from derm7point (Fig. 8a), there 
were more training samples with correct labels in the vicinity of the test samples (meas-
ured by calculating the 128-nearest neighbors in the 512-dimensional feature space) for 
the ζ-mixup-trained model than the mixup-trained model. Overall, the number of cor-
rectly labeled nearest neighbor training samples was 208.2% more for ζ-mixup compared 
to mixup. The corresponding numbers for ISIC 2017 (2048-dimensional feature space) 
were 14 out of 14 test samples and 1908.8% more correctly labeled nearest neighbor 
training samples. The distances for the nearest neighbors were calculated using cosine 
similarity.

Next, we project these onto a 2D embedding space through t-distributed Stochastic 
Neighbor Embedding (t-SNE) [101] using the openTSNE Python library [102], repre-
senting each training sample’s feature using a class color-coded circle. Finally, we pro-
ject the test samples’ features onto the same embedding spaces, denoted by squares. It 
should be noted that this t-SNE representation drastically reduces the dimensionality 
of the features ( {512, 2048} -D → 2-D), causing some information loss. We observe that 
with mixup (Fig. 8b, d), several test samples fall in the vicinity of training samples of a 
different class than the correct class of the test sample, potentially leading to misclas-
sification. Examples of this include a ‘NEV’ misclassified as ‘MEL’, ‘NEV’ misclassified 
as ‘SK’, and ‘SK’ misclassified as ‘NEV’ in Fig. 8b and ‘NEV’ misclassified as ‘MEL’ and 
‘MISC’ misclassified as ‘MEL’ in Fig.  8d. With ζ-mixup, on the other hand, these test 
samples are less likely to have training images of a different class than the test sample’s 
class in their vicinity (Fig. 8c, e).

Finally, we also compare ζ-mixup to the computationally intensive manifold 
mixup. As mentioned above, manifold mixup requires an order of magnitude more 
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Fig. 8 Visualizing how ζ-mixup improves performance over mixup. Sample images from two skin lesion 
datasets with different imaging modalities: ISIC 2017 and derm7point. Sample test images from both 
datasets that were misclassified by mixup-augmented models (a), when embedded in a 2D space for t-SNE 
visualization, show that they lie in the vicinity of training samples from classes different from the test images’ 
labels, leading to wrong predictions (b, d). On the other hand, with ζ-mixup-augmented models, the test 
images are more likely to be in a region of training samples from the same class as that of the test images (c, e)
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number of epochs for convergence. For instance, while all of ERM, mixup, and ζ-
mixup require 200 epochs, ζ-mixup is trained for 2000 epochs [41]. However, in an 
effort to understand the performance gains obtained from such a massive computa-
tional requirement, we evaluate manifold mixup on 9 datasets: we choose 2 datasets 
from NATURAL (CIFAR-10, CIFAR-100), 3 datasets from MEDMNIST (BreastMN-
IST, PathMNIST, TissueMNIST), and 4 datasets from SKIN (derm7point: Clinical, 
MSK, ISIC 2017, DermoFit), thus covering natural and medical image datasets of var-
ious resolutions ( 28× 28 , 32× 32 , 224 × 224 ), multiple medical imaging modalities 
(dermoscopic and clinical skin images, ultrasound images, histopathology images, 
microscopic images), image types (BreastMNIST and TissueMNIST are grayscale 
while others are RGB), and model architectures (ResNet-18, ResNet-50). For CIFAR-
10 and CIFAR-100, we follow the experimental settings of Verma et al. [41], and since 
they did not perform experiments on our other datasets, we scale the corresponding 
experimental settings (i.e., the number of training epochs and the learning rate sched-
uler milestones) accordingly. Therefore, for the 3 MEDMNIST datasets, the manifold 
mixup-augmented classification models are trained for 1, 000 epochs with a learning 
rate of 0.01. For the 4 SKIN datasets, the manifold mixup models are trained for 500 
epochs with an initial learning rate of 0.01 decayed by a multiplicative factor of 0.1 

Fig. 9 Comparing ζ-mixup to manifold mixup on nine natural and medical image datasets spanning 
two model architectures, multiple medical imaging modalities, and image types (RGB and grayscale). All 
models trained with manifold mixup are optimized for 10× the number of epochs compared to their ζ
-mixup counterparts. We use the same metrics for evaluation as reported in Tables 4, 6 and 7. The dotted 
lines connecting the pairs of metric values for ζ-mixup and manifold mixup are color-coded: green indicates 
that the metric is higher for the model trained with manifold mixup, and red denotes vice versa. The metrics 
reported here are the mean values of three runs for each model. For all metrics, higher values are better. 
Note that despite being an order of magnitude more computationally expensive, manifold mixup does not 
consistently outperform ζ-mixup 
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every 100 epochs. The quantitative results for all metrics in all datasets are visualized 
in Fig.  9. For 2 datasets, manifold mixup outperforms ζ-mixup, and for 3 datasets, 
manifold mixup achieves one superior metric than ζ-mixup. However, for 4 datasets, 
ζ-mixup outperforms manifold mixup across all metrics. Therefore, despite being 
considerably more computationally intensive (each manifold mixup model is trained 
for 10× the number of epochs compared to a ζ-mixup trained on the same dataset), 
manifold mixup-trained models do not demonstrate a clear and consistent perfor-
mance improvement over the comparatively more efficient ζ-mixup.

ζ‑mixup: hyperparameter sensitivity analysis and ablation study

We conduct extensive experiments on CIFAR-10 and CIFAR-100 datasets to analyze the 
effect of ζ-mixup ’s hyperparameter: γ on the performance of ζ-mixup, and also analyze 
how the weight-decay of SGD-based optimization affects model performance.

First, we vary the hyperparameter γ by choosing values from [1.8, 2.0, 2.2, · · · , 5.0] and 
train and evaluate ResNet-18 models on CIFAR-10 and CIFAR-100. The corresponding 
overall error rates (ERR) are shown in Fig. 10 (a) and (b), respectively. We observe that 
for almost all values of γ , ζ-mixup achieves lower or equal error rate (ERR) than mixup, 
thus supporting our claims with our results on 26 datasets that performance gains with ζ
-mixup are achievable for all values of γ ≥ γmin.

To further understand the effect of ζ-mixup augmentation on model optimization in 
the presence of weight decay, we perform another extensive hyperparameter study: we 
observe model performance by varying both γ and the weight decay ( L2 penalty) for 
SGD. We sample the hyperparameter γ from a uniform distribution over [1.0, 6.0] and 
the weight decay from a log-uniform distribution over [5e − 5, 1e − 3] , and use Weights 
and Biases [103] to perform a Bayesian search [104–107] in this space. We train and 
evaluate ResNet-18 models on the CIFAR-10 and CIFAR-100 datasets. For each of the 
two datasets, we train 200 models, each optimized with a different combination of γ and 
weight decay. To visualize the results, we plot three values: γ , weight decay, and final test 
accuracy of the resultant model using parallel coordinates plots [108, 109] (Fig. 10c, d). 
Models trained with γ < γmin are shown in light gray.

The parallel coordinates plots can be read by following a curve through the 3 col-
umns, where each curve denotes an experiment with the values of, in order left-to-right, 
γ , weight decay, and test accuracy. For all columns, a lighter color indicates a higher 
value. We observe that the best performing models (i.e., the curves with the lightest 
shades of yellow) emanate from smaller values of γ (i.e., approximately in the range of 
[1.72865, 4.0] ) and larger weight decays (approximately in the range of [5e − 4, 1e − 3] ). 
On the other hand, larger values of γ , which lead to data distributions similar to the 
“vanilla” distribution (Fig. 2a), yield lower classification accuracies (i.e., the curves with 
dark purple colors), validating our hypothesis that the augmented samples do not con-
siderably explore the space around the original samples.

Finally, to understand the individual contribution of each of the two components of ζ
-mixup: the mixing of all the samples in a batch (i.e., T = m original samples; Eq. 5) and 
sampling of weights from a normalized p-series for the original samples (Eq. 6), towards 
its superior performance, we perform the following ablation study. We train models with 
one of these components removed at a time, and study the effect on the downstream 



Page 26 of 41Abhishek et al. Journal of Big Data           (2024) 11:43 

classification performance. For this, we use the CIFAR-100 dataset because of its large 
number of classes (100) and use the experimental settings from "Evaluation on down-
stream task: classification" and Table 4: ResNet-18 architecture trained for 200 epochs 

Fig. 10 Hyperparameter sensitivity analysis for ζ-mixup  on CIFAR-10 and CIFAR-100. In a, b, γ is varied from 
[1.8, 5.0] and the resulting ERR is shown. In c, d, 200 models are trained by varying γ uniformly in [1.0, 6.0] 
and weight decay log-uniformly in [5e−5, 1e−3] . Each model is denoted by a curved line passing through 
the value of γ (left column) and weight decay (middle column) used for training, connecting it to the 
corresponding model’s test accuracy (right column). The lines are color-coded according to the models’ test 
accuracy. Models with γ < γmin are shown in light gray
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with an initial learning rate of 0.1 decayed by a multiplicative factor of 0.2 at 80, 120, 
and 160 epochs, γ = 2.8 , and m = 128 . The quantitative results for this ablation study 
are presented in Table  8. To begin with, note that mixup is a special case of ζ-mixup 
(Theorem 2) where the former uses neither of the aforementioned components. Then, 
we modify mixup to mix samples using the proposed weighting scheme (Eq.  6) while 
retaining mixup ’s choice of mixing only 2 samples. This results in an improved perfor-
mance over mixup. For the next experiment, we mix the entire batch (i.e., T = m ) but 
with weights sampled from a Dirichlet distribution Dir(α) with α = [1.0, 1.0, · · · 1.0] , 
since this is a multivariate generalization of the Beta(1.0,  1.0) distribution-sampled 
weights used for mixup. Unsurprisingly, we observe that mixing a large number of sam-
ples ( m = 128 ) with a weighting scheme that does not have a large weight assigned to a 
single sample results in very poor performance. Such a weighting scheme violates one of 
the desirable properties of an ideal augmentation method ("ζ-mixup Formulation"), since 
the synthesized samples will be generated away from the original samples, leaving the 
original data manifold (Fig. 1) and therefore exhibit a higher local intrinsic dimensional-
ity (Fig. 6) and lower realism. Finally, ζ-mixup, which uses both of these components, 
outperforms all these methods.

Computational efficiency

The ζ-mixup   implementation in PyTorch [110] is shown in Listing  1. Unlike 
mixup  which performs scalar multiplications of � and 1− � with the input batches, ζ
-mixup  performs a single matrix multiplication of the input batches with the weights. 
With our optimized implementation, we find that model training times using ζ-
mixup  are as fast as, if not faster than, those using mixup  when evaluated on datasets 

Table 1 Summary of notations

Notation Description Notation Description

x Input data sample H Entropy

y Target label sample D Dimensionality of the input space

x̂ Synthesized input data sample U Uniform distribution

ŷ Synthesized target label sample α mixup hyperparameter

X Input data distribution M Data manifold

Y Target label distribution d Intrinsic dimensionality of a manifold

P(x, y) Data distribution over the input and the 
target

N Number of samples in a dataset

Pvic(x , y) Vicinal data distribution T Number of samples used for interpolation

L Loss function m Number of samples in a mini-batch

R Risk π T × T  random permutation matrix

Remp Empirical risk s Randomized ordering of samples

Rvic Vicinal risk wi Per-sample weight in ζ-mixup

� Linear interpolation factor C Normalization constant for ζ-mixup weights

K Number of unique classes in the label 
distribution

γ ζ-mixup hyperparameter

S Label space γmin Minimum value of γ to achieve the desir-
able properties of ζ-mixup (see Theorem 1)
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Table 2 A brief comparison of existing mixing-based data augmentation methods summarizing 
their key idea, the space in which the interpolation is performed, the number of hyperparameters in 
the method, and the number of samples used for mixing to generate 1 new sample

Method Key idea Interpolation 
space

Number of 
hyperparameters

Involves 
additional 
optimization

Number 
of samples 
mixed

SamplePairing 
[38]

Linear interpola-
tion of pairs of 
images with a 
ratio � = 0.5 ; use 
labels of the first 
image

Input 0 ✗ 2

Between-Class 
Learning [37]

Linear interpola-
tion of pairs of 
images from 
different classes 
and their labels

Input 0 ✗ 2

mixup [36] Linear interpola-
tion of pairs of 
samples and their 
labels

Input 1 (α) ✗ 2

CutMix [39] Paste a rectan-
gular patch from 
one image onto 
another; mix 
labels propor-
tionally

Input 3 (rx , ry , �) ✗ 2

GridMix [40] Paste a grid-
based region 
from one image 
onto another; 
assign a mixed 
label and grid-
based labels

Input 2 (N, p) ✗ 2

Manifold Mixup 
[41]

Linear interpola-
tion of latent 
representations 
and their labels

Latent 1 (α,S) ✗ 2

MixFeat [42] Linear interpola-
tion of latent 
representations 
only

Latent 1 (σ ) ✗ 2

AdaMixUp [25] Train an addi-
tional network 
to learn mixing 
policy from data

Input 0 ✓ 2

AutoMix [44] Bi-level optimiza-
tion for mixed 
sample genera-
tion and mixup 
classification

Input 3 (α, l,m) ✓ 2

OptTransMix, 
AutoMix [43]

Optimization 
using optimal 
transport (Opt-
TransMix) in 
input space or 
DNNs (AutoMix) 
in latent space 
for barycenter 
learning

Input/Latent 2 (n, σ) ✓ 2

SuperMix [99] Iterative opti-
mization-based 
salient masks for 
mixing

Input 5 (α, κ , k, σ , �s) ✓ 3
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For all the methods listed in this table, the variable names of the hyperparameters are listed as they appear in the respective 
original papers to facilitate easy cross referencing. For Manifold Mixup, S denotes the set of eligible layers. Note that some of 
these methods [25, 43, 44, 96, 99] rely on optimizing additional parameters. Our proposed method, ζ-mixup, does not rely 
on any optimization, and is the only method that mixes up to m samples, where m is the batch size of the mini-batch

Table 2 (continued)

Method Key idea Interpolation 
space

Number of 
hyperparameters

Involves 
additional 
optimization

Number 
of samples 
mixed

Co-Mixup [96] Iterative 
optimization-
based mixing 
to maximize 
data saliency 
and encourage 
submodular 
diversity

Input 6 (α,β , γ , η, τ ,ω) ✓ 4

ζ-mixup
(Ours)

p-series-
weighted convex 
combination of 
entire mini-batch 
of samples and 
their labels

Input 1 (γ ) ✗ m(≥ 2)

Table 3 List of classes from ImageNet and the corresponding WordNet synset IDs in Imagenette 
and Imagewoof datasets

Imagenette Imagewoof

ImageNet class WordNet synset ID ImageNet class WordNet synset ID

tench n01440764 Australian terrier n02096294

English springer n02102040 Border terrier n02093754

cassette player n02979186 Samoyed n02111889

chain saw n03000684 Beagle n02088364

church n03028079 Shih-Tzu n02086240

French horn n03394916 English foxhound n02089973

garbage truck n03417042 Rhodesian ridgeback n02087394

gas pump n03425413 Dingo n02115641

golf ball n03445777 Golden retriever n02099601

parachute n03888257 Old English sheepdog n02105641

Table 4 Classification error rates (ERR) on NATURAL

The lowest and the second lowest errors are formatted with bold and underline respectively. Percentage relative 
improvements over mixup  are shown in green. ERRs are reported as mean ± standard deviation over 3 runs. Lower values 
are better

Method CIFAR‑10 CIFAR‑100 F‑MNIST STL‑10 Imagenette Imagewoof
# images (#classes) 60,000 (10) 60,000 (10) 60,000 (10) 13,000 (10) 13,394 (10) 12,954 (10)

ERM 5.48± 0.03 23.33± 0.09 6.11± 0.02 25.74± 0.17 16.08± 0.15 30.92± 0.02

mixup 4.68± 0.09 21.85± 0.07 6.04± 0.20 25.31± 0.33 16.20± 0.03 30.80± 0.04

ζ-mixup ( γ = 2.4) 4.42± 0.02

 + 5.56%
21.50± 0.04

 + 1.60%
6.04± 0.04

 + 0.00%
24.14± 0.10

 + 4.62%
15.16± 0.07

 + 6.42%
30.72± 0.02

 + 0.26%
ζ-mixup ( γ = 2.8) 4.67± 0.05

 + 0.21%
21.35± 0.02

 + 2.29%
5.70± 0.07

 + 5.63%
24.82± 0.03

 + 1.94%
15.62± 0.07

 + 3.58%
30.21± 0.05

 + 1.92%
ζ-mixup ( γ = 4.0) 4.42± 0.01

 + 5.56%
21.28± 0.02

 + 2.61%
5.89± 0.04

 + 2.48%
24.92± 0.22

 + 1.54%
15.92± 0.07

 + 1.73%
30.67± 0.03

 + 0.42%
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with different spatial resolutions: CIFAR-10 ( 32× 32 RGB images), STL-10 ( 96× 96 
RGB images), and Imagenette ( 224 × 224 RGB images), as shown in Table 9. Moreover, 
when using mixup  and ζ-mixup  on a batch of 32 tensors of 224 × 224 spatial resolution 
with 3 feature channels, which is the case with popular ImageNet-like training regimes, 
ζ-mixup  is over twice as fast as mixup  and over 110 times faster than the original local 
synthetic instances implementation [57].

Conclusion
We proposed ζ-mixup, a parameter-free multi-sample generalization of the popular 
mixup  technique for data augmentation that uses the terms of a truncated Riemann 
zeta function to combine T ≥ 2 samples of the original dataset without significant 
computational overhead. We presented theoretical proofs that mixup   is a special 
case of ζ-mixup  (when T = 2 and with a specific setting of ζ-mixup ’s hyperparameter 
γ ) and that the ζ-mixup  formulation allows for the weight assigned to one sample to 
dominate all the others, thus ensuring the synthesized samples are on or close to the 
original data manifold. The latter property leads to generating samples that are more 
realistic and, along with allowing T > 2 , generates more diverse samples with richer 
labels as compared to their mixup  counterparts. We presented extensive experimen-
tal evaluation on controlled synthetic (1-D manifolds in 2-D and 3-D; 3-D manifolds 

Table 5 Classification error rate (ERR) improvements on CIFAR-10 and CIFAR-100 datasets with ζ-
mixup  applied in conjunction with CutMix

The lowest errors are formatted with bold. Percentage relative improvements over using only CutMix are shown in green. 
ERRs are reported as mean ± standard deviation over 3 runs. Lower values are better

Method ResNet‑18 ResNet‑50 MobileNetV2 EfficientNet‑B0

CIFAR-10

 CutMix 4.13± 0.01 4.08± 0.12 8.97± 0.08 9.99± 0.29

 + ζ-mixup 3.84± 0.08

 + 7.02%
3.61± 0.06

 + 11.52%
8.18± 0.09

 + 8.81%
9.15± 0.08

 + 8.41%
CIFAR-100

 CutMix 19.97± 0.07 18.99± 0.08 28.93± 0.18 31.55± 0.15

 + ζ-mixup 19.54± 0.06

 + 2.15%
18.86± 0.04

 + 0.68%
28.31± 0.25

 + 2.14%
30.73± 0.07

 + 2.29%
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in 12-D) and 26 real-world (natural and medical) image datasets of various modali-
ties. We demonstrated quantitatively that, compared to mixup: ζ-mixup  better pre-
serves the intrinsic dimensionality of the original datasets; provides higher levels of 
realism and label correctness; and achieves stronger performance (i.e., higher accu-
racy) on multiple downstream classification tasks. Future work will include exploring 
ζ-mixup   in the learned feature space, although opinions on the theoretical justifica-
tions for interpolating in the latent space are not yet converged [97].

Table 8 Ablation study to analyze the contribution of both the components of ζ-mixup when used 
in isolation on CIFAR-100: mixing more than 2 samples and using weights from a normalized p-series 
for the mixing

Note that since ζ-mixup is a generalization of mixup (Theorem 2), ζ-mixup without both these components reduces to mixup 
(first row). Next, modifying mixup to use ζ-mixup ’s weighting scheme but only for 2 samples (second row) outperforms 
mixup, but is inferior to ζ-mixup. On the other hand, mixing the entire batch ( T = m ) but with a Dirichlet distribution 
leads to extremely poor performance (third row). Finally, using both of these components, i.e., ζ-mixup, leads to the best 
performance

Mixes > 2 samples Uses normalized p‑series weights 
for mixing

Method name CIFAR‑100 ERR

✗
T = 2

✗
weights from a Beta(α , α)
distribution; α = 1

mixup 21.85± 0.07

✗
T = 2

✓
weights from a
normalized p-series

- 21.77± 0.17

✓
T = m

✗
weights from a Dirichlet(α)
distribution; α = 1

- 94.69± 0.08

✓
T = m

✓
weights from a
normalized p-series

ζ-mixup 21.35± 0.02

Table 9 Benchmarking various methods for training models on CIFAR-100, STL-10, Imagenette, and 
for augmenting a batch of 32 RGB images of 224× 224 spatial resolution

Note that mixup, ζ-mixup, CutMix, and CutMix + ζ-mixup require 200 epochs of training for CIFAR-100, whereas Manifold 
Mixup and Co-Mixup require 2000 and 300 epochs respectively. CutMix experiments were performed on CIFAR-10 and 
CIFAR-100, and training times on STL-10 and Imagenette were not available from the original paper either (†). Similarly, 
given the large computational cost for Manifold Mixup and Co-Mixup, we did not train them on STL-10 and Imagenette, and 
their training times are missing from the respective paper too (‡). We also were unable to benchmark these two methods 
on a batch of 32 images (last column; ‡‡) since these methods require a DNN forward pass and gradients respectively for 
augmentation. Finally, the local synthetic instances method [57] is not optimized for training DNNs (§), as it is two orders of 
magnitude slower than ζ-mixup (see last column)

Method CIFAR‑100 (200 
epochs)

STL‑10
(200 epochs)

Imagenette (80 
epochs)

[32, 3, 224, 224]
torch.Tensor

Wall Time mixup [36] 1h 20m ± 23s 24m 59s ± 16.9s 45m 39s ± 8.5s 745µ s ± 9.55µs

ζ-mixup 1h 20m ± 17s 24m 58s ± 4.6s 45m 34s ± 14.1s 345µ s ± 2.53µs

CutMix [39] 1h 22m ± 13s † † 176µ s ± 1.4µs

CutMix [39] + ζ
-mixup

1h 22m ± 9s † † 169µ s ± 757ns

Manifold Mixup [41] 16h 15m
(2000 epochs)

‡ ‡ ‡‡

Co-Mixup [96] 16h 35m
(300 epochs)

‡ ‡ ‡‡

Local synthetic
instances [57]

§ § § 38.7ms ± 1.33 ms
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