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Introduction
Data labeling for classification modeling is often a resource-intensive task that has pro-
hibitive costs and is highly susceptible to errors and inconsistencies [1]. When using 
labeled datasets in machine learning, label quality is very important. Noisy or inaccu-
rately labeled data can drastically impact the effectiveness and usability of classification 
models [2]. However, a significant proportion of newly created datasets are unlabeled 
by default [3]. Interestingly, the vast amounts of newly generated raw data, paradoxi-
cally, presents both an advantage and challenge for machine learning. Large amounts 
of data often yield improved performance in machine learning [4], but the scarcity of 
class labels, in domains such as medical image diagnosis or fraud detection, significantly 
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decreases the viability of supervised models as they require labels to function effectively. 
Domains such as these have additional labeling challenges resulting from privacy con-
cerns or the required human experts to effectively label fraud [5]. Unsupervised learn-
ing becomes a clear choice when working with unlabeled data. These types of models 
learn from just the dataset features and class labels are entirely unused in the training 
process. Though it is possible to use unsupervised learners for classification, they often 
underperform the supervised alternative [6]. There is an important need for advances in 
machine learning research that addresses the problems with unlabeled data.

Another significant challenge in machine learning is the issue of class imbalance. 
This issue arises prominently in datasets where the class representation is significantly 
skewed, i.e., the number of observations in one class are significantly outnumbered by 
the number of instances in the other classes. While class imbalance can occur in datasets 
with more than two classes, our work focuses on the binary class problem. However, all 
the research presented can be adapted to the multi-class problem through class decom-
position [7]. A dataset can be considered imbalanced if the ratio of one class to another 
is anything other than balanced, but it is often only considered imbalanced when the 
ratio of one class to another starts to exceed 1:4 [8]. In these cases, it is important to 
note that class imbalance does not guarantee a worse performance, provided that each 
class has sufficient representation. More extreme cases of class imbalance, or high class 
imbalance, are denoted when the class ratio starts to exceed 1:1000, or more. High class 
imbalance introduces additional levels of complexity and challenges, which necessitates 
additional considerations for effective model training and classification [9]. Our work 
seeks to improve upon the existing research in strategies and methodologies specifically 
designed to combat the challenges of the combination of unlabeled data and high class 
imbalance. This is especially important for anomaly detection fraud detection since these 
problems are inherently highly imbalanced, i.e., fraud and anomalies are very infrequent.

To evaluate our methodology, we apply it to the credit card fraud detection data-
set [10]. This is a freely and publicly available dataset [11] that consists of anonymized 
credit card transactions used for credit card fraud detection. It is a binary labeled data-
set where the fraudulently labeled instances represent only 0.172% of all instances. This 
dataset was chosen because it consists of real-world credit card transactions, as opposed 
to simulated data, its high class imbalance and potential to serve as a realistic bench-
mark for finding credit card fraud [12]. Importantly, to the best of our knowledge, this 
dataset is the only publicly available large data for credit card fraud analysis that consists 
of real world labeled transactions.

Leveraging machine learning techniques to analyze financial data used to find fraudu-
lent activity, such as the credit card fraud detection dataset, is critical for several rea-
sons. In focusing on credit card fraud, the scale of fraudulent activities is enormous. 
Huge strain is levied on the global financial system due to the billions of U.S. dollars lost 
to fraud globally and increases the cost for all other card holders [13]. Using advance-
ments in machine learning to combat fraud can help alleviate the imposed financial bur-
dens. Additionally, quickly and accurately finding fraudulent transactions can stand as 
a large deterrent to potential fraudsters as well as bolster the integrity of the credit card 
industry as a whole. Machine learning models are not only faster than expert human 
analysis, but they have the potential to just as quickly find trends or anomalies that lead 
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to fraud that may go unnoticed by manual inspections. Furthermore, deploying machine 
learning models to find fraud can optimize the entire investigative process.

In this study, we extensively evaluate a novel approach for synthesizing new binary 
class labels in the context of highly imbalanced large data. The methodology effectively 
addresses the challenges of both class imbalance and the challenges associated with 
unlabeled data. Given an unlabeled dataset, the method uses a neural network (NN) to 
learn from the dataset features and it calculates an error metric for each instance which, 
in turn, is used to label instances as either positive or negative. For the scope of our work, 
positive instances represent fraudulent activity and negative instances indicate no fraud. 
Additionally, the method identifies majority instances near the class boundary and reas-
signs their label. For the scope of this work, instances that are either fraudulent or legiti-
mate are separated by a class boundary. Empirical results show that this improves the 
quality of the data for supervised learning and subsequently improves performance. Our 
experimental results show that the synthesized labels are effective in training supervised 
classifiers for fraud detection with and without the additional positive labels.

The remainder of the paper is organized as follows. The "Related works" section pro-
vides a review of related works in the context of automatically labeling data and high-
lights how our research is novel in its field.  The  "Methodology" section  provides an 
in-depth detail of the methodology, including its inputs and outputs. In "Results and 
analysis", we detail the dataset which we apply our method to, detail the supervised clas-
sifiers used to evaluate and validate the method’s newly synthesized class labels, and pre-
sent our empirical results and analysis.  The  "Conclusion" section  concludes the paper 
and discusses potential areas of future work.

Related works
After our literature review, it was clear that our methodology is pioneering research in 
the field of addressing automated binary class labeling of highly imbalanced large or big 
data. Given the novelty of our work, the available related works are only loosely related 
and may not provide a basis for direct comparisons. However, we feel including tangen-
tially related works provides a relevant context for our paper and further highlights the 
uniqueness of our work.

Baek et. al [14] aim to develop a method for detecting network anomalies in a super-
vised manner without needing intensive network traffic analysis by experts. Their 
approach consists of three key steps. First, they estimate labels for the training data 
using a clustering technique. Second, they train supervised models using the estimated 
labels and third, they use this supervised model to classify individual data points as 
either normal network behavior or anomalous network behavior. During the first step, 
they use K-means clustering to cluster their data. The main premise for labeling clusters 
as anomalous is twofold. The first rule to label clusters as anomalous is if a cluster is 
small or sparse. However, relying only on this produces unsatisfactory results; thus, they 
aim to improve this by introducing an additional rule when labeling clusters. The sec-
ond rule for labeling clusters as anomalous is if a cluster is dense, it must be anomalous. 
During their work, they observed that several network attack types have similar patterns 
with only minor differences. For many instances, one type of attack in the dataset exhib-
its very similar feature values which creates dense clusters. Using this knowledge, they 
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were able to improve the estimated labels during the clustering phase, which in turn, 
increased the performance of supervised learners using them. This differs from our 
work in a significant way as their work required finding details in features that correlated 
to their target label manually and ours does not. This makes their clustering approach 
entirely dependent on finding such a pattern, if one even exists, and dependent on an 
intensive investigation of the dataset features with prior knowledge. This approach is 
unable to find new patterns that would be a signal for an anomalous instance. Addition-
ally, this approach would not work with a dataset that has anonymized features, as is the 
case with the dataset used in this work.

Moslehi et. al [15] use a clustering approach and an algorithm designed to label the 
clusters. They use K-means clustering to improve the clustering labeling process, and 
their work’s premise is that labeling the full dataset might not be possible. Instead, they 
suggest labeling a representative portion of the data based on the clusters formed in this 
subset. Their aim is to improve the quality of label assignment to clusters. As such, they 
use a secondary dataset as the source of their labels. The instances in their dataset have 
statistics generated by their clustering technique. These statistics are then matched to 
the same type of statistics of instances in another dataset, which already have an assigned 
label. Thus, they are using a secondary, labeled dataset as a look up table to assign labels 
to their data. This differs from our work significantly in that they do not create new class 
labels for their dataset. They are essentially assigning class labels from an existing source 
based on a similarity measurement, i.e., their work requires a secondary labeled dataset 
to assign labels to their unlabeled dataset. Additionally, their dataset is very small, with 
only 385 samples, and is significantly smaller than the dataset we used and evaluated in 
this paper.

Maqbool et. al [16] present an automated approach for labeling clusters based on key-
word identifiers in their dataset. Their keywords are ranked using two ranking schemes: 
frequency and inverse frequency and the work is in the domain of legacy software sys-
tems. Given this, the need for an automated approach is clear since without appropri-
ate labels being assigned to clusters, the clusters may not be readily interpretable. Their 
experimental results demonstrate that their labeling is an improvement over the existing 
work. Similarly, Rauber [17] introduces an approach for labeling self-organizing maps 
[18] applied to relatively small text datasets. This work also assigns labels to the clusters 
that are pulled from a set of words contained in the features of the dataset. Though our 
work aims to be automated, similar to [16], it is significantly different. The dataset in [16] 
has keywords in the features, which are ranked according to their two schemas. These 
keywords are then, in turn, used as cluster labels, i.e., the labels used are directly derived 
from the features of the dataset. Our dataset does not contain keywords from which we 
can generate labels. Instead, our approach calculates an error statistic using an autoen-
coder trained on only numeric features in an unsupervised fashion. The binary class 
label that is generated by our approach is primarily determined by this error statistic.

These tangentially related works differ from our work in four significant and key ways. 
First, the clustering approaches reviewed do not adequately address the challenges 
posed by highly imbalanced datasets, and the existing research does not consider this 
type of data. For example, [14] uses a dataset that is class balanced. A second impor-
tant difference is that these works all use datasets significantly smaller than the size for 
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which our method is designed. For instance, a dataset with 385 samples is used in [15]. 
Third, our work does not directly use aspects of the dataset features as the source for 
the class labels. Keywords are used as labels in [16], whereas our work uses data that 
only has numeric values as features. Fourth, and most importantly, our approach is auto-
mated by nature. It does not require intensive human intervention and is appropriate for 
highly imbalanced large and big datasets. This is not the case for other works, such as in 
[14–16].

Methodology
The methodology presented in this paper synthesizes binary class labels in the context 
of highly imbalanced large data. To the best of our knowledge, this is the first work in 
this area and the first method of its kind. The approach uses an underlying learner to 
effectively learn from just the dataset features and calculates an error metric for each 
instance after training. The instances are then sorted, from highest to lowest error. 
Instances with higher error are considered more likely to be in the positive class, in our 
empirical results positive represents fraudulent activity, and instances with lower error 
are considered more likely to be in the majority class, or non-fraud. The data is now in 
a state such that there exists a gradient from most likely positive to most likely negative 
and there exists an area in between the two ends that instances are equally likely to be in 
one class or the other.

The instances that the learner is uncertain about are in a gray area. Additionally, a 
threshold must be chosen so that instances above it are labeled as positive and nega-
tive if below. A portion of instances below the threshold but are near it are added to 
the minority class. Since these instances are nearest to the threshold they aren’t strongly 
assigned to the majority. Labeling some of these instances as positive aims to add diver-
sity to the minority instance group which is intended to improve model generalization 
and performance. These instances near the boundary can be considered as potential 
noisy instances and the alternative to placing them in the minority would be to remove 
them. This, however, would remove potentially valuable information from the training 
data. Various levels of increasing the number of positive instances are explored. Our 
results show that adding these uncertain instances, that are near the class boundary, to 
the positive class improves supervised learning and resulting classification performance 
on the original ground truth labels.

Underlying learner

The first step in synthesizing new class labels is to learn from the dataset features 
using a fully connected autoencoder. An autoencoder is a type of artificial neural 
network that is typically used for unsupervised learning. These architectures are an 
effective learner in the context of high class imbalance [19–21], making it a good fit 
for our target dataset. Autoencoders, fully connected or otherwise, were designed to 
encode and decode data often by using hidden layers [22]. Other types of layers, used 
in other NN architectures as well, can be used in, such as convolutional, recurrent, 
fully connected layers, or a combination of different layer types. As their name sug-
gests, autoencoders are made up of two main components, an encoder and a decoder, 
and aim to automatically encode and decode, or reconstruct data. First, the encoder 
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segment of the autoencoder encodes the input data, which is at a relatively high-
dimensionality, by transforming it into a compressed, lower-dimensional representa-
tion. This compressed representation is then used as an input to the next part, the 
decoder. The decoder then uncompresses the lower dimensional data back into the 
same higher dimensionality of the original input data, i.e., this part of the autoen-
coder attempts to reverse the compression while maintaining the information con-
tained in the data.

To measure and quantify the difference between the input data and the output of the 
architecture, a reconstruction error metric is used. The higher the reconstruction error, 
the more different the input data and the autoencoder’s representation output are. A 
lower reconstruction error indicates the autoencoder is better at reconstructing the 
compressed input data. For the autoencoder used in this work, the reconstruction error 
is measured as mean squared error (MSE). The metric, MSE, calculates the average of 
the squares of errors between the actual and predicted values, or the input data and the 
reconstructed data. MSE is defined in Eq. 1, where n is the total number of observations, 
yi are the actual values, and ŷi are the predicted values. During the training process, the 
optimization algorithm attempts to minimize the reconstruction error. A high recon-
struction error for an instance, among other instances with a lower error, might indicate 
that instance is somehow significantly different, i.e., it can be considered an outlier or 
anomaly. As such, researchers have successfully used autoencoders in various different 
domains such as dimensionality reduction, image and video processing, and anomaly 
detection, among others.

In general, autoencoders are trained in a similar fashion to other NN. The weights 
between neurons are incrementally changed to minimize an objective function. We 
use backpropagation to train the autoencoder by minimizing the reconstruction 
error. The autoencoder used to generate class labels uses fully connected layers where 
the input layer has the same number of neurons as the number of features in our data 
and is illustrated in Fig. 1. From the left, the encoder portion has a single 100-neu-
ron layer fully connected to the second hidden layer with 50 neurons. They both use 
the ReLu activation function. This layer is the end of the encoder portion and is con-
nected to the decoder portion. The decoder’s architecture mirrors the encoder. A 
50-neuron layer fully connected to a 100-neuron layer. All layers in the decoder use 
the Tanh activation function and the final output layer uses ReLu. We train using a 
learning rate set to 0.0001, a batch size of 256, Adam optimizer function, and MSE 
as the loss metric, and a validation set size of 20%. We train using the EarlyStopping 
function to monitor training loss with the patience set to 25 epochs and 250 epochs 
as a maximum. Keras [23], version 2.8.0, was used to define, train, and make predic-
tions with the autoencoder.

It is important to reiterate that the autoencoder is trained in an unsupervised man-
ner. This is necessary because the method is synthesizing new class labels and in prac-
tice, this would be done using unlabeled data. Once the autoencoder is fully trained, 

(1)MSE =
1

n

n∑

i=1

(yi − ŷi)
2
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we apply the autoencoder to the data to get a reconstruction error for each instance. 
The instances are then sorted from greatest to least MSE. Since our target dataset is a 
binary fraud detection dataset, and its domain has high class imbalance, instances in 
the minority class are more likely to have a high error and are ranked at the top of the 
list and instances in the majority class are more likely to have a lower error and are at 
the bottom of the list.

Input parameters

For the methodology to automatically synthesize class labels, it requires a minimal 
amount of input parameters. One parameter is the desired number of instances to be 
targeted as the positive class. This means our methodology utilizes domain expertise as 
a critical input component. In comparison with a strictly data-driven approach, which 
primarily uses only patterns present within the data, the addition of domain expertise 
allows for the methodology to be easily tailored for specific domain applications with 
minimal change and is not limited by patterns present in only one domain or data-
set. Consider the domain of financial fraud detection. Datasets in this domain, such as 
the credit card fraud detection dataset used in our experiments, significant amount of 
expert human intervention is required to accurately detect fraudulent cases. Addition-
ally, there are significant privacy concerns associated with this since detailed personal 
financial details are required to be inspected. When human inspection is required, it 
is reasonable to assume this sensitive information could not be obfuscated, and thus, 
there would be fewer possible people allowed to do this. However, it is reasonable to 

Fig. 1 Autoencoder visualization of the encoder and decoder components
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assume that domain experts would know of or easily be able to determine an expected, 
or acceptable, amount of fraud to identify. Using domain expertise also offers additional 
speed advantages. Though training and consuming the autoencoder is the most compu-
tationally demanding part of the overall methodology, it is domain agnostic. Only after 
this are the class labels considered, using input from the domain expertise. Once the 
NN is trained and the reconstruction error is calculated for all instances, the process 
of assigning labels is computationally trivial. Thus, another advantage to using domain 
expertise is if the expected level of fraud, or imbalance, changes. Adapting to this change 
and synthesizing new labels for the same data would happen quickly.

The other input parameter, though not strictly required, is the number of majority 
instances nearest to the class boundary to be labeled as positive, P. Consider the sorted 
list of instances that are not labeled as positive. Since they are sorted from greatest 
reconstruction error to least, the instances at the bottom are more likely to be in the neg-
ative class than the ones at the top and the instances at the top are not only least likely 
to be in the majority class, but they are also nearest to the class boundary, as defined by 
the reconstruction error. Instances near this class boundary, or ones the methodology is 
least confident in labeling as positive or negative, if labeled incorrectly, can contribute to 
the noise when training supervised classifiers and reduce classification performance. An 
input parameter defines what number of these instances, the ones not labeled positive, 
to be added to the majority class before the remaining ones are labeled as negative. This 
number happens in a top-down fashion. The method does this to improve classification 
performance by aiming to increase the number of instances, actual fraudulent instances, 
in the minority class for model training. It is possible to set this input parameter to 0% 
and it will consider all majority instances as such. Section "Results and analysis" presents 
the classification results after using several different percentages and shows its effect on 
classification performance.

Methodology output

The output of the methodology is a result of the input parameters, the desired number 
of positive-labeled instances and the features of the dataset. The methodology automati-
cally produces a dataset that has the same features as the input dataset and the newly 
synthesized binary class labels and the total size of the dataset is the same size as the 
input. This dataset can be used to train supervised classifiers and then used to get clas-
sification predictions on unseen test data. In the case of our experiments, we synthesize 
class labels on a credit card fraud detection dataset, and, in practice, the subsequently 
trained supervised classifiers would then be used for fraud detection on new, unseen 
future data.

Results and analysis
We designed our experiments to measure the quality and efficacy of our method’s newly 
synthesized binary class labels for highly imbalanced data. To achieve this, we apply our 
method to a widely used labeled fraud detection dataset, using only the features, to generate 
new and independent class labels. The method produces an imbalanced set of positive and 
negative class labels, where there are significantly more instances in the negative, or non-
fraud, class. This imbalance is expected in this type of dataset. We then train supervised 
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classifiers on the newly created class labels entirely and measure their classification perfor-
mance using the original class labels, used as ground truth labels. Additionally, we selec-
tively label instances in the majority, that are nearest the class boundary, and label them as 
positive. This effectively adds instances to the positive-labeled ones. The premise behind 
this is these instances were least confidently assigned to the majority by the methodology 
and adding additional instances to the positives would capture more of the actual fraud 
instances in the positive class in the training data. Increasing the number of positives by 
using the instances that were least separated during the unsupervised learning process, 
aims to improve classification performance.

Dataset for labeling

The dataset we consider for our experiments is the publicly available [11] and widely ref-
erenced credit card fraud detection dataset, originally introduced in [10]. A collaborative 
effort between Worldline, a large payment processing company, and the Université Libre 
de Bruxelles created this dataset. It contains over 280,000 credit card transactions, each of 
which have 30 independent features that have been anonymized using principal component 
analysis (PCA). They are European credit card transactions recorded between September 
1st through September 30th, 2013. This makes this dataset unique in that it is the only pub-
licly available credit card transaction data that represents a snapshot of real-world credit 
card usage and patterns.

This dataset is a fraud detection dataset where the binary class labels signify the transac-
tion is either a genuine credit card usage or fraudulent credit card usage. It is important 
to note that the provided class labels are only used as ground truth labels in calculating 
the classification performance of supervised learner. They are completely ignored by our 
method during the synthesizing of the new class labels. As is expected with fraud detec-
tion datasets, this dataset is highly class imbalanced. The number of genuine transactions 
significantly outnumber the fraudulent ones. A detailed breakdown of the dataset and its 
imbalance is presented in Table 1. There are originally 30 independent features, “Amount”, 
“Time”, and “V1” through “V28”. The “V” features are the anonymized features generated by 
PCA by the researchers who originally created the data. We omit the “Time” feature for the 
entirety of our study since previous work as shown that this feature contributes to noise and 
does not have any meaningful predictive value [24].

In the domain of fraud detection, obtaining accurate class labels presents unique and sig-
nificant challenges, including labeling financial transactions as genuine or fraudulent. As an 
example, as a result of the financial aspect of datasets like the one we use, there are addi-
tional challenges presented by privacy concerns. This is why the credit card fraud detec-
tion dataset we use has had all personally identifiable information either anonymized or 
removed from the features. This allows these transactions to be a part of a publicly available 
dataset that represents real transactions, as opposed to simulated credit card transactions. 
These challenges substantially restrict the availability of a freely accessible credit card fraud 

Table 1 Credit card fraud detection dataset class characteristics

Minority count Majority count Total count Minority imblalance Features

492 284,315 284,807 0.1727% 29
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detection dataset, containing real word examples. Meaning that this dataset, to the best of 
our knowledge, is the only publicly available dataset for credit card fraud detection analy-
sis. Thus, our experiments solely focus on this dataset. Another challenge in this dataset 
domain is it is inherently difficult to precisely pinpoint fraudulent credit card activity. To 
ensure accurate labeling of fraudulent instances, it often requires extensive corroborative 
manual investigation by financial experts. This is both costly and time-consuming, due to 
the required expert human involvement. Even with tedious expert financial analysis, some 
types of fraud are not always evident and can pose additional challenges to precise and 
timely fraud labeling.

Performance metrics

We present one performance metric when measuring the classification performance of 
the supervised learners, the area under the precision-recall curve (AUPRC). This perfor-
mance metric is used to validate and evaluate the effectiveness of the synthesized class 
labels by summarizing the classification performance of supervised classifiers trained 
using the new labels and tested on original unseen labels. For binary classification prob-
lems, including fraud detection, it is conventional to use a confusion matrix illustrated in 
Table 2, to summarize the classification results. AUPRC values are derived from the TP, 
FP, FN, and TN values.

AUPRC is related to the widely used receiver operating characteristic curve (ROC) that 
was first introduced by Provost et al. [25]. It summarizes the true positive rate vs. the 
false positive rate. This curve illustrates the trade-off between incorrectly classified nega-
tive instances and correctly classified positive instances. Davis et al. [26] show that the 
ROC curves, and thus the area under the receiver operating characteristic curve (AUC-
ROC or simply AUC), can show overly optimistic results for classification results of 
highly imbalanced data and can be misleading, especially with credit card fraud detec-
tion [27]. AUPRC is related to AUC in that like AUC, AUPRC is a single number that 
summarizes the classification performance of a model and is an area under a curve. Thus, 
the superior alternative is the precision-recall (PR) curves, and the area under this curve. 

(2)FPR =
FP

FP + TN

(3)Precision =
TP

TP + FP

(4)Recall =TPR =
TP

TP + FN

Table 2 Confusion matrix

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)
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The AUPRC is the area under the PR curve and is a better measure of classification per-
formance with highly imbalanced data [24, 28], and is the performance metric of interest 
presented in our empirical results. Further, Davis et. al [26] state that a curve can only 
dominate in the ROC space if and only if it dominates in the PR space. Thus, a classifier 
that has superior performance in the PR space would also have superior performance in 
the ROC space, over another model. PR summarizes a classifier’s performance in terms 
of precision and recall, or TPR, while ROC summarizes a classifier’s performance in 
terms of FPR and TPR. This makes AUC less sensitive to the change in FP as the number 
of negative instances grows, which is the case for highly imbalanced dataset (negative 
instances far outnumber the positives). The range of scores for AUPRC are between 0.0 
and 1.0. A classifier with an AUPRC score of 1.0 is one that can identify all true positives 
with no misclassification and has perfect precision and recall across all thresholds. The 
minimum AUPRC is 0.0, though in practice it is the class imbalance ratio. For example, 
when working with a dataset that has a class imbalance ratio of 0.1727%, as is the case 
with our data, the minimum AUPRC score would be effectively 0.001727. Thus, a higher 
AUPRC score indicates a higher performing classifier.

Classifiers

Six supervised classifiers were used to evaluate our class label synthesizing method: 
decision tree, random forest, extra trees, logistic regression, Naïve Bayes, and a multi-
layer perceptron. decision trees (DT) are a widely used supervised method for classifi-
cation and regression tasks. They consist of a hierarchical tree structure that has a root 
node, branches, internal nodes, and leaf nodes. The internal decision nodes are condi-
tions or tests based on the data attributes and the leaf nodes are the final output, either 
a numeric value for regression or a class decision when used as a classifier. We use a DT 
as a classifier in our experiments. The goal is to create a model that uses simple decision 
rules derived from the features in the training dataset to predict a target value. To do so, 
a DT uses a divide and conquer strategy by conducting a greedy search to find optimal 
split points within a tree. This process is repeated in a recursive manner until all or most 
of the instances have been assigned under specific class labels. The depth, or size, of the 
DT has a large impact on its accuracy and performance. Many cases the leaves are pure 
nodes. When all data in a node belongs to a single class that node is considered pure. 
For example, in a fraud detection dataset where there are instances classified as fraud 
or non-fraud, a node is pure if all the sample data is either fraud or non-fraud. As trees 
grow in size, maintaining purity in the leaf nodes becomes more difficult and can often 
lead to overfitting. Pruning is often used to reduce tree size and avoid overfitting. This is 
a process that trims branches from the tree that split on features with low importance. 
One advantage to the DT is in its relative structural simplicity. This allows for ease of 
interpretability and can be easily visualized. Other more complex models such as neural 
networks, often referred to as black box models, are significantly harder to interpret and 
visualize. One large disadvantage to DT is a result of their simplicity. DT can underper-
form other models with similar data.

The second supervised classifier we use in our experiments is random forest (RF). RF 
is an ensemble method first introduced by Breiman et al. [29] and as its name implies, it 
consists of multiple tree classifiers. These trees are developed using a bootstrap sampling 
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method of the training data, i.e., sampling with replacement. RF are built with an ensem-
ble of DTs to promote diversity among the individual trees to improve the disadvantages 
of DT, such as reducing the tendency to overfit. For every split in each tree only a ran-
dom subset of the features is considered, as opposed to DT where all of them can be 
used. The ensemble of trees that individually consider only a subset of the data produces 
a method that is robust to overfitting. RF is able to use datasets that have high dimen-
sionality without the need for feature selection or elimination of features. Additionally, 
RF is easily interpretable, like DT. RF provides a measure of feature significance that 
highlights which features have the most importance for classification. Since each tree is 
a DT, they are each easily interpretable, but it is the combination of them all that gives 
RF its robustness. Though, as the number of trees in the forest increases, the require-
ments for computing power and memory go up. When RF is making predictions, each 
tree in the forest provides its own classification prediction and RF uses a majority voting 
mechanism to make its final prediction.

The third classifier we use to evaluate our synthesized labels is Extra trees (ET), or 
Extremely Randomized Trees, introduced by Geurts et al. [30]. ET is an extension of the 
RF algorithm and differs in two main ways. First, when the ET algorithm splits the com-
ponents of the tree it is done in a completely randomized way as opposed to RF, which 
computes optimal split points, using each feature that is considered, for tree splitting. 
This inherent randomness of ET contributes to a more diversified ensemble of trees. It 
also reduces the computational requirements by not calculating optimal split points dur-
ing ET training. Secondly, in ET, each of the individual trees are trained using all the 
training samples in the training dataset. RF uses random subsets for each individual tree. 
ET’s differences from RF produce a classifier that is less prone to overfitting. ET uses 
majority voting of its forest trees to make final predictions, like RF.

The fourth supervised classifier used in our study is a widely known and used statis-
tical method that is used primarily for binary classification, namely logistic regression 
(LR). LR estimates the probability that an input instance belongs to a class by fitting the 
data to the logistic function curve or sigmoid function. The dependent variable can be 
categorical and the relationship between the input features and dependent variable is 
non-linear but can be defined by log-odds. The sigmoid function, useful for probability 
estimates, is an S-shaped curve that accepts any real number and will map it to a value 
between 0 and 1. To calculate a probability, LR takes a linear combination of the input 
features then applies the logistic function. A threshold, typically 0.5, is used to convert 
the numeric probability to a classification output. Instances above the threshold are in 
the positive class and instances below are in the negative class. LR is advantageous in 
that it is easily interpretable and easily implemented. The coefficients of a trained LR 
model can be used to provide insights into features and their importance. LR has been 
used across many domains and is a foundational model and maintains its relevance in 
statistics and machine learning applications.

The fifth supervised classifier used is Naïve Bayes (NB). NB is a widely known, rel-
atively simple, probabilistic classifier based on the Bayes’ theorem. It makes the naïve 
assumption that there is conditional independence between the features given a class 
label. Though they are one of the simplest of their kind, which makes them train quickly, 
they can achieve good performance in practice and have been widely used in areas such 
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as text classification, sentiment analysis, and spam detection, a type of outlier or fraud 
detection. NB calculates the posterior probabilities of each class given a set of features 
and assigned the class with the highest probability to the input instance. It often only 
requires one pass through the data for estimation, which contributes to its speed and 
efficiency. Different variations of the NB classifier exist, such as Multinomial Naïve 
Bayes, Bernoulli Naïve Bayes, and Gaussian Naïve Bayes, among others. Multinomal NB 
is well suited for data with discrete features, Bernoulli NB is well suited for datasets with 
Boolean features, and Gaussian NB, the type we use in our experiments, is well suited 
to datasets with continuous numeric features and assumes the features have a Gaussian 
distribution. Another advantage to NB is that it is inherently interpretable, like DT. NB 
does have its disadvantages. One significant disadvantage is the strong conditional inde-
pendence of the features. This may not always reflect real-world data and can potentially 
negatively affect classification performance. NB was chosen for our study due to its suit-
ability to a large array of machine learning tasks and because it is a widely understood 
and known classifier.

The sixth, and final, supervised classifier we use with the synthesized class labels is a 
multilayer perceptron (MLP). An MLP is a type of artificial neural network that consists 
of at least three layers: an input layer, one or more hidden layers, and an output layer. It is 
the most basic architecture type for NNs. Each node, also referred to as a neuron or per-
ceptron, in a layer is connected to one or more nodes in the next layer. A fully connected 
network, the MLP we use is fully connected, is where every node in one layer is individ-
ually connected to every node in the next. Thes types of NN are known as feed forward 
networks. Input data moves from the input layer through the hidden layers and finally 
to the output layer, where the final numeric prediction or classification is produced. An 
MLP is capable of approximating non-linearly separable data. This makes it well suited 
for complex machine learning tasks. The neurons in the hidden layer use a non-linear 
activation function, such as a sigmoid function or a rectified linear unit (ReLu) func-
tion. The connections between neurons are a combination of numeric weights and are 
incrementally changed during the training process when the MLP is fitted to the training 
data. How specifically the weights are modified is dependent on the type of optimization 
algorithm used during training. We use backpropagation and a gradient descent optimi-
zation method to train the MLP used in our experiments. Backpropagation computes 
the gradient of the loss function, or error, for a given input–output pair. The gradients 
are used to update the weights to minimize the loss function. This process is repeated 
for all instances in the training data and is repeated for several epochs. An epoch is com-
pleted after one pass through the training data is completed. A sufficient size and num-
ber of hidden layers is what gives an MLP its performance. However, excessive number 
of neurons or layers, relative to the complexity of the classification task or training data, 
can lead to overfitting.

To more completely evaluate the performance of the supervised classifiers trained 
on our method’s synthetized labels, we compare the classification performance of an 
unsupervised anomaly detection method as a baseline. This baseline represents the 
expected performance in finding fraudulent instances when learning from new data that 
does not have class labels. We use a popular outlier or anomaly detection method as 
our baseline model, namely isolation forest (IF), originally introduced by Liu et  al. in 
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[31]. Like many of our supervised learners, IF is a tree-based algorithm and as its name 
suggests, it attempts to isolate anomalies from the rest of the dataset. IF accomplishes 
this by recursively partitioning the training data into smaller and smaller sets. The main 
premise behind this is anomalies are inherently “few and different” [31]. Thus, anom-
alous instances have a higher probability of being isolated by the algorithm than non-
anomalies. During the recursive process, data-induced random trees are created until 
all instances are isolated. Anomalies then have tree paths than non-anomalies [31] for 
two main reasons: (1) anomalous datasets are inherently class imbalanced and anomalies 
are fewer in number than normal ones; and (2) instances are more likely to be separated 
earlier in the recursive process if they have separable attributes. The IF algorithm creates 
a forest of trees. Instances that have shorter paths across many trees are more likely to 
be anomalous. IF is a good baseline to compare to since it is widely used and has been 
shown to outperform RF and local outlier factor on a highly imbalanced Medicare fraud 
detection dataset [32]. When IF determines an instance is anomalous, that is equivalent 
to classifying that instance to the minority class. Thus, for our experiments, we train 
an IF using only the dataset features and measure its classification performance using 
the original labels of the dataset. IF does not use the method’s newly synthesized labels. 
For our experimental analysis, we only consider model performance. We don’t consider 
other factors such as required computational time, model interpretability, or other non-
classification-performance measures.

For all six classifiers used to evaluate our synthesized labels, as well as the baseline 
model we compare them to, IF, we use the implementation provided in Scikit-learn [33], 
version 1.3.0. We use defaults values for DT. This consists of using the Gini criterion for 
impurity and best splits are chosen (as opposed to random splits). The DT does not have 
a predetermined maximum tree depth which results in nodes that are expanded until all 
leaf nodes are pure or until all leaf nodes contain less than two samples. The minimum 
samples per leaf node is set to 1 and the minimum number of samples required to split 
an internal node is set to 2. The DT will use all consider all available features when look-
ing for the best split. Our RF used consists of 100 trees in the forest. It uses the Gini 
criterion, a minimum of 2 samples to split an internal node, and the minimum number 
of samples per leaf node is 1, like the configuration for DT. The difference between the 
individual trees in our RF and the DT is the RF consists of trees no larger than 4. The 
ET configuration used also has 100 trees in the forest. It also uses the Gini configura-
tion, minimum samples per leaf node set to 1, and minimum samples to split set to 2, 
however the maximum depth is set to 8. The parameters for LR are all kept to the library 
defaults. For NB, we use the GaussianNB variant in the library and set all parameters 
to their defaults. The MLP architecture consists of one hidden layer with 100 neurons, 
uses the ReLu activation function [34], and the Adam algorithm for weigh optimization, 
which is type of stochastic gradient descent [35]. The log-loss function is used as the 
loss function. The MLP is trained using a batch size of 200, and a constant learning rate, 
for 300 epochs with default settings for early stopping. IF has only one parameter [31], 
namely the contamination rate. This value was set to the dataset’s expected fraud rate, 
provided by domain expertise.

Any other parameters not explicitly stated were left as the library defaults. This was 
chosen for ease of comparison. Additionally, we aim to evaluate the quality of the 
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synthesized labels and their classification performance across several different super-
vised learners. Finding the optimal settings for a given learner is out of scope for this 
paper, hence, we do not perform any hyperparameter tuning on for the classifiers. We 
use 5-fold cross validation, where the training splits have the synthesized labels and the 
test splits use the original class label, when evaluating the classifiers. We repeat this for 
10 rounds each to provide a basis for statistical comparison and to avoid any potential 
abnormally high or low classification performance. Any AUPRC value shown in a table is 
the average value across the fifty trials.

Experimental results

We first apply the methodology to the credit card fraud detection dataset in order to 
measure the effectiveness of the newly synthesized labels. First, we train the autoen-
coder on the dataset to calculate the reconstruction error for every row and sort from 
greatest to least. Next, we set the method’s first input to produce 500 instances in the 
positive class, i.e., it labels 500 instances as fraud. The 500 instances at the top, which 
have the highest reconstruction error, are labeled. Labeling 500 as positive was selected 
by domain expertise. The other method’s other input parameter is then set to determine 
what number of instances in the majority, that the method is most uncertain of, are to 
be labeled with the positives. For our experiments and results in the tables, P is the total 
number of positive-labeled instances for that experiment. For example, when P = 700, 
this means a total of 700 instances are labeled as positive which is comprised of 500 set 
by the first parameter, and an additional 200 instances from the majority that were added 
to the positive class. For our experiments, we set P to: 500, 600, 700, 800, 900, 1000, 
1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, and 
2500. During experimentation, we observed that the AUPRC performance of the learn-
ers started to reach their peak at around 1500 positive-labeled instances. We chose to 
include up to P = 2500 since for most learners, the AUPRC started to drop off after 1500 
and including up to 2500 shows a more complete picture of how the number of syn-
thetic positive labels affects supervised classification performance. Increasing P beyond 
2500 does not contribute to a better understanding of the quality of the new labels and it 
would show unnecessary results. In total, 21 P values are examined, each repeated for 10 
replications, which results in 210 experimental trials.

Though the method exclusively uses the dataset features to generate class labels, it is 
important to note that the original class labels, as provided by the original dataset, are 
maintained for each row. These original labels, or ground truth labels, are used only to 
calculate the AUPRC score for the supervised classifiers trained on using the synthe-
sized labels. This is implemented in the K-fold cross validation steps. We use 5-fold cross 
validation which results in 5 splits so that there can be 5 different folds using 80% of the 
data for training and 20% for the test split. We used the stratified K-fold method which 
attempts to maintain the class imbalance ratio between the splits using the original class 
labels. This is an important consideration since the unseen test split should have the 
same distribution and characteristics as the overall dataset. This ensures a test split that 
is representative of the overall population of the dataset. The data in the training folds 
use the synthesized labels and the test folds have the original labels. This is repeated for 
all six supervised classifiers. We use 5-fold cross validation when measuring the AUPRC 
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for IF and all six supervised classifiers. However, in the case of IF, we do not use the syn-
thesized labels since IF is an unsupervised anomaly detection method and does not use 
labels during training but it does use the ground truth labels for the test split and perfor-
mance evaluation.

We use one-factor analysis of variance (ANOVA) as a test to determine if there are 
statistical differences between the various metrics we compare. We compare the mean 
AUPRC score vs. all levels of positive-labeled instances, or P, the one factor. As can be 
observed in Table 3, for all six classifiers the number of positive instances significantly 
influences AUPRC, as indicated by the low p-value of less than 2e–16 in most cases. 
Therefore, we can reject the null hypothesis and conclude that there are statistically sig-
nificant differences between the mean AUPRC values. We also perform Tukey’s honestly 
significant difference (HSD) test to rank our results as needed [36, 37]. The Tukey HSD 
test is a widely used pairwise comparison test used following ANOVA to determine 
which groups’ means differ from each other. Here, the mean is the average AUPRC value 
across the 5-folds and 10 replications, i.e., the mean across 50 different folds. We apply 
ANOVA and the Tukey HSD test to the AUPRC score across the various different levels 
of P to measure if adding some of the most uncertain instances to the positive instances 
changes classification performance. The outcome of a Tukey test on a pair is a range 
of confidence intervals and if the interval includes zero, it would suggest that the two 
respective groups do not significantly differ from each other. As an example, if one mean 
belongs to group “a” and another belongs to group “b”, they are statistically significantly 
different. However, if one mean is in group “a” and another, yet different, mean is also 
in group “a”, they are not statistically significantly different. Further, if there are multi-
ple overlapping letters, groups that have the same letter in them do not differ statisti-
cally but groups that do not share similar letters are statistically different. For example, if 
there are three groups, “a”, “ab”, and “b”, the first group and second group are not statisti-
cally different, and the second and third group are not statistically different, however, 
the first and third group are statistically different. We provide an in-depth analysis of the 
AUPRC performance across varying levels of P. Note that even though we provide com-
parisons across supervised learners using our labeling approach, this paper’s focus is on 
the efficacy of our novel method and the synthesized labels, not an in-depth analysis of 
the supervised methods themselves.

We examine the AUPRC scores for all models and across all levels of positive labels. 
As mentioned previously, AUPRC scores are the main performance indicators that 

Table 3 ANOVA table for AUPRC across all levels of P 

Classifier Df Sum Sq Mean SQ F value Pr(>F) Df Sum Sq Mean SQ
Positive labels Residuals

DT 20 1.0176 0.05088 63.52 < 2e−16 1029 0.8242 0.0008

RF 20 0.2861 0.014306 7.771 < 2e−16 1029 1.8943 0.001841

ET 20 0.1707 0.008534 4.782 2.99E−11 1029 1.8362 0.001784

LR 20 0.8621 0.0431 24.44 < 2e−16 1029 1.8149 0.00176

NB 20 0.0288 0.001441 3.251 1.96E−06 1029 0.4561 0.000443

MLP 20 0.9528 0.04764 27.41 < 2e−16 1029 1.7883 0.00174
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should be primarily considered. AUPRC provides a better metric in the context of 
high class imbalance. Table 5 shows the AUPRC scores for all P values. We can com-
pare that to the IF’s AUPRC score of 0.2414, shown in Table 4. When P=500, or when 
no additional instances are added to the positive class, our method outperforms IF 
for DT, RF, ET, and NB. The LR and MLP classifiers underperform the baseline IF 
by a small amount with AUPRC scores of 0.2301 and 0.1904, respectively. As the P 
increases, all 6 learners show very similar trends; AUPRC scores increase as P starts 
to increase. Once there are 700 total positive instances, LR outperforms IF by a signif-
icant margin with 0.2607 AUPRC. For the MLP classifier, it takes longer for it to out-
perform IF. For this learner, it requires 1100 positive instances in its training data for 
it to first outperform IF with an AUPRC of 0.2476. It then achieves its best AUPRC of 
0.2899 at 1700 positive instances. This makes MLP the worst performing supervised 
classifier in our work. Though with enough positive labels, our method produces 
labeled data that is of sufficient quality to outperform the baseline.

Table 4 Isolation forest performance results

Isolation forest

P AUPRC

N/A 0.2414

Table 5 Average classifier AUPRC performance results with respect to number of positive-labeled 
instances P 

AUPRC

P DT RF ET LR NB MLP

500 0.2935 0.3394 0.3357 0.2301 0.3693 0.1904

600 0.3008 0.3404 0.3491 0.2355 0.3717 0.1935

700 0.3029 0.3493 0.3569 0.2607 0.3735 0.1962

800 0.3111 0.3470 0.3574 0.2610 0.3779 0.2090

900 0.3146 0.3607 0.3649 0.2759 0.3791 0.2198

1000 0.3181 0.3529 0.3670 0.2793 0.3814 0.2345

1100 0.3292 0.3523 0.3675 0.2818 0.3814 0.2476

1200 0.3363 0.3487 0.3613 0.2831 0.3826 0.2409

1300 0.3542 0.3602 0.3795 0.3074 0.3842 0.2576

1400 0.3565 0.3608 0.3806 0.3108 0.3837 0.2517

1500 0.3714 0.3596 0.3842 0.3226 0.3833 0.2692

1600 0.3751 0.3615 0.3832 0.3241 0.3838 0.2685

1700 0.3774 0.3597 0.3859 0.3256 0.3852 0.2899

1800 0.3801 0.3623 0.3834 0.3219 0.3851 0.2763

1900 0.3818 0.3547 0.3825 0.3220 0.3861 0.2825

2000 0.3764 0.3491 0.3741 0.3118 0.3860 0.2766

2100 0.3737 0.3393 0.3712 0.3108 0.3860 0.2735

2200 0.3767 0.3328 0.3683 0.3117 0.3866 0.2688

2300 0.3758 0.3221 0.3650 0.3106 0.3869 0.2672

2400 0.3763 0.3125 0.3592 0.3093 0.3879 0.2651

2500 0.3813 0.3009 0.3616 0.3191 0.3893 0.2659
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We used three different tree-based classifiers in our experiments, DT, RF, and ET. 
DT is the simplest classifier of these three and is a building block used by the forests in 
RF and ET. When learning from 500 positive labels, DT has an AUPRC of 0.2935 and 
underperforms both RF and ET, 0.3394 and 0.3357 AUPRC respectively. This shows 
that the added complexity of the RF and ET classifiers are better able to capture the pat-
terns in the data for fraud detection when the fewest number of positives are used. All 
three of these significantly outperform IF. However, when P increases so do the AUPRC 
scores for DT, RF and ET. This pattern can be seen in both Tables 5 and 6. In general, 
the AUPRC increases with P up until a certain point, and then the AUPRC values level 
off and increasing P no longer increases AUPRC. When increasing P to a minimum of 
1700 positives, DT performs nearly as good as the more complex ET model and out-
performs the RF model. RF and ET aren’t computationally prohibitive, but they do take 
more time and resources to fully train than the simpler DT classifier. Using less compu-
tational resources can suggest that our method used with DT would be a wholistically 
better choice, but we don’t use overall training time as a factor. Thus, we would say the 
model with the outright highest performance metric is the best choice. Even though in 
practice, other factors may be of consideration.

As can be seen in Table 6 when DT uses 1700, 1800, 1900, and 2500 positive instances, 
the model achieves its highest AUPRC performance. All three of these belong in Group 
‘a’, which indicates their AUPRC values are not statistically different. This is also the case 
for RF and ET. For both of these classifiers, using 1700 positive instances produces an 

Table 6 Tukey HSD test for decision tree, random forest, and extra trees, ordered by AUPRC

DT RF ET

P AUPRC Group P AUPRC Group P AUPRC Group

1900 0.3818 a 1800 0.3623 a 1700 0.3859 a

2500 0.3813 a 1600 0.3615 a 1500 0.3842 a

1800 0.3801 a 1400 0.3608 a 1800 0.3834 a

1700 0.3774 a 900 0.3607 a 1600 0.3832 a

2200 0.3767 ab 1300 0.3602 a 1900 0.3825 a

2000 0.3764 ab 1700 0.3597 a 1400 0.3806 a

2400 0.3763 ab 1500 0.3596 a 1300 0.3795 a

2300 0.3758 ab 1900 0.3547 a 2000 0.3741 ab

1600 0.3751 ab 1000 0.3529 a 2100 0.3712 ab

2100 0.3737 abc 1100 0.3523 ab 2200 0.3683 ab

1500 0.3714 abc 700 0.3493 ab 1100 0.3675 ab

1400 0.3565 bcd 2000 0.3491 ab 1000 0.3670 ab

1300 0.3542 cd 1200 0.3487 ab 2300 0.3650 abc

1200 0.3363 de 800 0.3470 ab 900 0.3649 abc

1100 0.3292 ef 600 0.3404 abc 2500 0.3616 abc

1000 0.3181 efg 500 0.3394 abc 1200 0.3613 abc

900 0.3146 fg 2100 0.3393 abc 2400 0.3592 abc

800 0.3111 fgh 2200 0.3328 abc 800 0.3574 abc

700 0.3029 gh 2300 0.3221 bcd 700 0.3569 abc

600 0.3008 gh 2400 0.3125 cd 600 0.3491 bc

500 0.2935 h 2500 0.3009 d 500 0.3357 c
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optimal AUPRC score. Similar to DT, 1700 is in the highest Group ‘a’. It is important to 
note that in the Tukey HSD Table 6, the results are sorted from highest AUPRC score 
to lowest. Unlike DT, RF achieves an optimal AUPRC score with as few as 900 positive 
instances but is a lower AUPRC than DT. ET achieves an optimal AUPRC score with 
as few as 1300 positive instances and it is a higher AUPRC score than RF and DT. This 
shows that the combination of the ET algorithm and our method with a minimum of 
1300 positive instances produces the best AUPRC score for the tree-based classifiers in 
our study.

Similar patterns can be observed for the other three learners, LR, NB, and MLP. Gen-
erally, as P increases, so do their respective AUPRC scores. Additionally, when training 
with 1700 positive instances, LR, NB, and MLP achieve optimal AUPRC scores. This can 
be seen in Table 7 where LR and MLP have the highest AUPRC score with 1700 posi-
tives and NB’s AUPRC for 1700 is in Group ‘abc’. Group ‘a’ and Group ‘abc’ both contain 
the letter ‘a’. Thus, they are not statistically different groups. I.e., though NB achieves its 
highest AUPRC score of 0.3893 with 2500 positive instances, its performance isn’t dis-
similar to its AUPRC of 0.3852 it gets with 1700 positive labels. NB does exhibit simi-
lar patterns as the others, where its AUPRC generally increases with P, but its rate of 
increase is slower than the others. Additionally, its lowest AUPRC score, training with 
500 positive instances, is higher than the best scores from RF, LR, and MLP. Since the 
rate of AUPRC increase is less than the others, between P = 500 and P = 2500, we can 
determine that increasing moving instances from the majority to the minority has a 

Table 7 Tukey HSD test for logistic regression, Naïve Bayes, and MLP, ordered by AUPRC

LR NB MLP

P AUPRC Group P AUPRC Group P AUPRC Group

1700 0.3256 a 2500 0.3893 a 1700 0.2899 a

1600 0.3241 a 2400 0.3879 ab 1900 0.2825 ab

1500 0.3226 a 2300 0.3869 ab 2000 0.2766 abc

1900 0.3220 a 2200 0.3866 abc 1800 0.2763 abc

1800 0.3219 a 1900 0.3861 abc 2100 0.2735 abc

2500 0.3191 a 2100 0.3860 abc 1500 0.2692 abcd

2000 0.3118 ab 2000 0.3860 abc 2200 0.2688 abcd

2200 0.3117 ab 1700 0.3852 abc 1600 0.2685 abcd

2100 0.3108 ab 1800 0.3851 abc 2300 0.2672 abcd

1400 0.3108 ab 1300 0.3842 abcd 2500 0.2659 abcd

2300 0.3106 ab 1600 0.3838 abcd 2400 0.2651 abcd

2400 0.3093 abc 1400 0.3837 abcd 1300 0.2576 bcde

1300 0.3074 abc 1500 0.3833 abcd 1400 0.2517 cde

1200 0.2831 bcd 1200 0.3826 abcd 1100 0.2476 cdef

1100 0.2818 bcd 1000 0.3814 abcd 1200 0.2409 def

1000 0.2793 cd 1100 0.3814 abcd 1000 0.2345 efg

900 0.2759 d 900 0.3791 abcd 900 0.2198 fgh

800 0.2610 de 800 0.3779 abcd 800 0.2090 gh

700 0.2607 de 700 0.3735 bcd 700 0.1962 h

600 0.2355 ef 600 0.3717 cd 600 0.1935 h

500 0.2301 f 500 0.3693 d 500 0.1904 h
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smaller effect than it does with all other classifiers. Additionally, NB achieves the highest 
AUPRC score of 0.3893 which is marginally higher than ET’s at 0.3859. We can conclude 
that all supervised classifiers effectively train on our method synthesized labels. Most 
classifiers outperform the baseline IF learner without any additional positive labels, but 
all six have increasing AUPRC performance up until the 1700 mark. At that level of P, 
all six classifiers have an optimal AUPRC performance and any additional increase in P 
doesn’t increase performance in a statistically significant way.

Conclusion
This study presents a detailed evaluation of a novel method for synthesizing class labels 
for highly imbalanced credit card fraud detection data. Large data is commonly without 
labels and the datasets that do contain labels, can often come at a large financial cost, 
time cost, and are prone to noise and inaccuracies due to their required human creation. 
Another significant challenge in machine learning is when data has a high class imbal-
ance which can significantly degrade machine learning classification performance.

This methodology effectively addresses the challenges of large unlabeled data as well as 
the challenges associated with high class imbalance. To evaluate the method, it is applied 
to a widely used, publicly available credit card fraud detection dataset. This highly imbal-
anced dataset has new binary class labels synthesized by our unique method, exclusively 
leveraging the feature values in an unsupervised manner. Varying levels of P, num-
ber of positive-labeled instances created by the method, were applied to capture more 
actual fraud instances in the training data. These new binary class labels are then used 
to train supervised classifiers for fraud detection. Our empirical results show that the 
synthesized labels are effective, and are of high enough quality, to enable supervised 
learning, on otherwise unlabeled data, that achieves higher classification performance 
than a widely used unsupervised anomaly detection method. The results show that all 
six supervised classifiers in our study, at most all levels of P, significantly outperform 
IF. Further, the results show that increasing P captures more trainable information and 
is reflected in the significant improvement of the supervised classifiers trained on the 
synthesized labels, as measured by AUPRC. Increasing the P is not strictly necessary to 
outperform a baseline for all supervised classifiers, however, it has its clear advantages 
in improving classification performance. We can conclude that this method effectively 
learns from imbalanced dataset features to produce usable class labels for credit card 
fraud detection. Future work includes evaluating the method with other large and highly 
imbalanced datasets in other domains and exploring algorithmic ways to choose P.
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