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Abstract 

Background: Predicting patient mortality risk facilitates early intervention in inten-
sive care unit (ICU) patients at greater risk of disease progression. This study applies 
machine learning methods to multidimensional clinical data to dynamically predict 
mortality risk in ICU patients.

Methods: A total of 33,798 patients in the MIMIC-III database were collected. An inte-
grated model NIMRF (Network Integrating Memory Module and Random Forest) based 
on multidimensional variables such as vital sign variables and laboratory variables 
was developed to predict the risk of death for ICU patients in four non overlapping 
time windows of 0–1 h, 1–3 h, 3–6 h, and 6–12 h. Mortality risk in four nonoverlapping 
time windows of 12 h was externally validated on data from 889 patients in the respira-
tory critical care unit of the Chinese PLA General Hospital and compared with LSTM, 
random forest and time-dependent cox regression model (survival analysis) methods. 
We also interpret the developed model to obtain important factors for predicting mor-
tality risk across time windows. The code can be found in https:// github. com/ wyuex 
iao/ NIMRF.

Results: The NIMRF model developed in this study could predict the risk of death 
in four nonoverlapping time windows (0–1 h, 1–3 h, 3–6 h, 6–12 h) after any time point 
in ICU patients, and in internal data validation, it is suggested that the model is more 
accurate than LSTM, random forest prediction and time-dependent cox regression 
model (area under receiver operating characteristic curve, or AUC, 0–1 h: 0.8015 [95% 
CI 0.7725–0.8304] vs. 0.7144 [95%] CI 0.6824–0.7464] vs. 0.7606 [95% CI 0.7300–0.7913] 
vs 0.3867 [95% CI 0.3573–0.4161]; 1–3 h: 0.7100 [95% CI 0.6777–0.7423] vs. 0.6389 [95% 
CI 0.6055–0.6723] vs. 0.6992 [95% CI 0.6667–0.7318] vs 0.3854 [95% CI 0.3559–0.4150]; 
3–6 h: 0.6760 [95% CI 0.6425–0.7097] vs. 0.5964 [95% CI 0.5622–0.6306] vs. 0.6760 [95% 
CI 0.6427–0.7099] vs 0.3967 [95% CI 0.3662–0.4271]; 6–12 h: 0.6380 [0.6031–0.6729] vs. 
0.6032 [0.5705–0.6406] vs. 0.6055 [0.5682–0.6383] vs 0.4023 [95% CI 0.3709–0.4337]). 
External validation was performed on the data of patients in the respiratory critical 
care unit of the Chinese PLA General Hospital. Compared with LSTM, random for-
est and time-dependent cox regression model, the NIMRF model was still the best, 
with an AUC of 0.9366 [95% CI 0.9157–0.9575 for predicting death risk in 0–1 h]. The 
corresponding AUCs of LSTM, random forest and time-dependent cox regression 
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model were 0.9263 [95% CI 0.9039–0.9486], 0.7437 [95% CI 0.7083–0.7791] and 0.2447 
[95% CI 0.2202–0.2692], respectively. Interpretation of the model revealed that vital 
signs (systolic blood pressure, heart rate, diastolic blood pressure, respiratory rate, 
and body temperature) were highly correlated with events of death.

Conclusion: Using the NIMRF model can integrate ICU multidimensional variable 
data, especially vital sign variable data, to accurately predict the death events of ICU 
patients. These predictions can assist clinicians in choosing more timely and precise 
treatment methods and interventions and, more importantly, can reduce invasive 
procedures and save medical costs.

Keywords: Real-time prediction, Risk of death, Machine learning, Predictive models, 
ICU

Introduction
Prediction of mortality risk in ICU patients is an important topic in ICU clinical prac-
tice. Effectively predicting the risk of death of patients can assist clinicians in taking 
reasonable treatment and intervention measures earlier and improve the prognosis of 
patients. Modeling the risk of death in patients was performed more than half a century 
ago: the Apgar score for assessing neonatal risk [1] was first published in 1952, followed 
by the introduction of acute physiology, age, and chronic health assessment (APACHE 
scoring system) in 1981 by the Kanus et  al. [2] and the widely used Simplified Acute 
Physiology Score (SAPS) [3] was released in 1984. However, these scoring systems and 
prognostic models are defined by physicians based on their own experience, selected 
patients, and statistical analysis. However, the treatment methods and levels of treat-
ment vary in different countries and regions, resulting in the above scoring system being 
less indicative of prognosis [4–10]. The Simplified Acute Physiology Score-III (SAPS-III) 
was developed on a global scale to avoid regional differences, providing a custom for-
mula to correlate risk-adjusted expected mortality with ward location, but risk-adjusted 
mortality predictions include overestimation of expected mortality [10, 11] or underes-
timation of observed mortality [12]. In addition, the occurrence and development of dis-
ease in critically ill patients is an extremely rapid pathophysiological process rather than 
a static state. It is not possible to simply observe and measure at a time point to explain 
the current situation of the patient or the response to treatment. Faced with changing 
baseline characteristics, therefore, designers of scoring systems need to review models at 
regular intervals or define increasingly complex scores in pursuit of high accuracy, such 
as the Acute Physiology and Chronic Health Assessment (APACHE) IV [11]. The clinical 
variables required for scoring are almost twice those of APACHE II. This is undoubtedly 
unrealistic in actual clinical implementation, so we urgently need a real-time tool that 
can objectively assess the risk of death of patients.

Machine learning enables to learn from data and make predictions, and the learn-
ing performance increases with the training data [13]. In terms of predicting the risk 
of death for ICU patients, machine learning technology has better predictive perfor-
mance than traditional scoring methods such as APACHE and SAPS [14]. At present, 
some studies have been used to predict the prognosis of ICU patients through machine 
learning. For example, Gong et al. used logistic regression to predict patient in-hospital 
mortality and prolonged hospital stay based on electronic health records (EHRs) and 
finally demonstrated that for both outcomes, EHR-specific events were mapped to a set 
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of shared clinical concepts of features, indicating that it yielded better results than using 
EHR-specific events alone [15]. Recent studies have shown that novel neural architec-
tures (including LSTM-based neural architectures) perform well in predicting mortality 
in hospitalized patients with an AUC value of 0.93 [16].

MIMIC is a large, freely usable clinical intensive care database published by the 
Computational Physiology Laboratory of the Massachusetts Institute of Technology. It 
records clinical data of patients admitted to the Beth Israel Deaconess Medical Center, 
including detailed information on patient demographics, laboratory tests, medication 
use, vital signs, surgical procedures, disease diagnosis, drug management, and survival 
status. It now includes versions II, III, and IV. Due to the large sample size, comprehen-
sive information, and long patient tracking time of MIMIC, many ICU mortality risk 
prediction studies are based on this database. Ghassemi et  al. [17] used a latent vari-
able model to decompose the free text hospital records of MIMIC-II into meaningful 
features, predicting in-hospital, 30 days after discharge, and 1 year after discharge mor-
tality rates. A retrospective model combining potential thematic and structural features 
predicted in-hospital, 30 days after discharge, and 1 year mortality rates with AUCs of 
0.96, 0.82, and 0.81, respectively. Zhang et al. [18] extracted non-invasive variable data 
from MIMIC-III that can be obtained through monitors and manual measurements, 
and trained four machine learning models to predict 28-day mortality. Among them, the 
optimal model based on the LightGBM algorithm showed good performance, with an 
accuracy of 0.797 and an AUC of 0.879. However, most machine learning models for 
predicting the death risk of ICU patients predict 28-day mortality or in-hospital mortal-
ity, and it is difficult to achieve real-time dynamic prediction. Many models use a small 
number of features for prediction [19]. In fact, using fewer features in prediction is also 
in line with the goal of making faster predictions for ICU patients, resulting in a better 
prediction effect. In addition, most of the published machine learning studies on ICU 
patients are based on the MIMIC database [20], and there are few studies on Chinese 
ICU data or are based on the data of inpatients in the intensive care unit of a domes-
tic hospital, lacking external validation [21]. This study aims to build a model based on 
MIMIC data and multidimensional data such as vital sign variables and laboratory vari-
ables to dynamically predict the mortality risk of ICU patients after any time point in 
real-time. The model is interpreted to better understand the contribution of predictive 
models and features.

Method
Study population and dataset

Our study was based on the MIMIC-III critical care database. First, we define some 
terms: in MIMIC-III, each patient has one or more hospital admissions; during an 
admission, a patient may have one or more ICU stays (ICU stays), which we call frag-
ments (episodes); and a clinical event refers to a measurement, observation, or treat-
ment of a patient. A sample is a single record processed by the model, and a sample in 
this study is an event that occurred within a window of observational data before the 
time of interest.

The data preparation process is shown in Fig. 1, including three parts: original data-
base sorting, patient data processing, and clinical event data processing. (1) Organizing 
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the original database. Relevant data were extracted from the original MIMIC-III inten-
sive care database and organized by patient, including more than 60,000 ICU admis-
sions for more than 40,000 intensive care patients. (2) Patient data processing. Exclusion 
criteria were used for admissions and ICU admissions: admitted patients transferred to 
different general wards or ICU wards and patients with multiple ICU admissions were 
excluded to avoid ambiguity in the analysis results related to admissions rather than 
ICU admissions, taking into account differences in physiology between adults and chil-
dren, and excluding all ICU admissions younger than 18 years. The resulting root cohort 
contained 33,798 patients, a total of 42,276 ICU admissions, and more than 250 mil-
lion clinical events. (3) Data processing of clinical events. Remove more than 44.5 mil-
lion events that cannot be reliably matched to ICU admissions in the root cohort: first, 
remove events without an admission ID (HADM_ID), events with an admission ID but 
not in stays.csv, where stays.csv is a table that associates ICU admission attributes (such 
as length of stay and mortality) with admission IDs; second, for events with missing ICU 
admission IDs (ICUSTAY_ID), reliable recovery of ICU admission IDs by admission ID; 
and finally, deletion of ICU admission IDs Events not listed in stays.csv.

After the data preparation is completed, the validation set and the test set are divided 
according to the proportion of 15%. In addition, the same process was used to process 
the electronic case data from the PLA General Hospital for the validation work in the 
study.

Variable selection

We have reviewed the physiological variables used in existing studies on patient mortal-
ity risk (Table 1), and summarized clinically significant variables suggested by multiple 
doctors from different hospitals to generate candidate predictive variables. Based on the 
training set data, the pairwise Pearson correlation coefficients of the candidate predic-
tors are calculated to analyze the correlation between the variables. A predefined pre-
dictor is generated by removing one of the two predictors with a correlation coefficient 
greater than 0.6 to avoid redundancy in the model variables.

Sample generation

The risk of death within a time window is usually defined as a dichotomous classification 
based on data from a limited period of time after ICU admission, with data labels indi-
cating whether a patient died within a certain time window after the moment of inter-
est. The general model uses the data of the first period of time after admission to the 
ICU. We use the data of a certain observation time window before the time of interest to 

Fig. 1 Data preparation flow chart
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Table 1 Variables used in studies related to mortality risk of ICU patients (6 categories)

Category Variable References Static/dynamic

Blood gas (A-a)DO2 [2, 23] Dynamic

Blood gas FIO2 [22] Dynamic

Blood gas HCO3 [2, 23] Dynamic

Blood gas Oxygenation index (P/F) [3, 19, 23] Dynamic

Blood gas PaO2 [2, 23] Dynamic

Blood gas Potassium [2, 3, 22, 23] Dynamic

Blood gas Sodium [2, 3, 22, 23] Dynamic

Blood gas SpO2 [18, 22] Dynamic

Blood gas PH (arterial blood) [2, 23] Dynamic

Demographic Age [2, 3, 15, 18–22] Static

Demographic Appearance [1] Static

Demographic Comorbid [20, 23] Static

Demographic ICU type [3, 15, 21] Static

Demographic Sex [15, 20–22] Static

Hemodynamic BSA [19] Dynamic

Hemodynamic Cardiac index [23] Dynamic

I/O Input (24 h) [19] Dynamic

I/O Output (24 h) [19] Dynamic

I/O Urine volume [3, 22] Dynamic

Lab Actual bicarbonate [3] Dynamic

Lab Albumin [19] Dynamic

Lab Blood lactic acid [19] Dynamic

Lab Blood urea nitrogen [3] Dynamic

Lab Chloride [22] Dynamic

Lab Creatinine [2, 17, 22, 23] Dynamic

Lab Glucose [22, 23] Dynamic

Lab Hemoglobin [19, 23] Dynamic

Lab Platelet count [19, 22, 23] Dynamic

Lab Total bilirubin [3, 19, 23] Dynamic

Lab White blood cell count [2, 3, 17, 23] Dynamic

Lab White blood cell percentage [2] Dynamic

Vital Apgar activity [1] Dynamic

Vital Apgar grimace [1] Dynamic

Vital Apgar respiration [1] Dynamic

Vital BMI [22] Dynamic

Vital CHS [2, 3] Dynamic

Vital DBP [3, 15, 17, 18, 21–23] Dynamic

Vital GCS [2, 3, 22, 23] Dynamic

Vital Height [15, 19, 21] Dynamic

Vital HR [2, 3, 17–19, 22, 23] Dynamic

Vital MBP [2, 15, 18, 19, 21–23] Dynamic

Vital NEWS [17] Dynamic

Vital Pulse [1] Dynamic

Vital RASS [23] Dynamic

Vital RR [2, 17, 18, 22, 23] Dynamic

Vital SAPS-II [20] Dynamic

Vital SBP [15, 18, 21–23] Dynamic

Vital Temperature [2, 3, 17–19, 22, 23] Dynamic

Vital Weight [15, 18, 19, 21] Dynamic
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obtain more real-time dynamic information and choose the observation time window to 
be 48 h to ensure that the detection is more likely to reflect the patient’s characteristics 
of disease changes.

To prepare training samples for mortality risk prediction within a certain time win-
dow, first, compile the time series of events for each segment processed by the process 
in Fig. 1 and only retain the predefined model variable data. Second, slice the time series 
to generate samples and corresponding labels, record the start time of a patient sample 
as t0 and the end time as t1. Then, the patient sample is the time series data in the time 
period of (t0, t1). For the patient sample and a certain time window (h0, h1) (for example, 
to predict the risk of death within 1 to 3  h from a patient’s time of interest, the time 
window is (1, 3)). If the patient dies within the (t1 + h0, t1 + h1) time period, then this 
sample is a positive sample for predicting the risk of death within that time window, 
labeled as “death within this time window”. If the patient survives or dies outside the 
(t1 + h0, t1 + h1) time period, then this sample is a negative sample for predicting the 
risk of death within that time window, labeled as “death outside this time window” Then, 
the sample is a negative sample for the prediction of death risk in this time window, and 
the label is “death outside this time window”. The specific sample generation rules are 
as follows: (1) based on the time of death of the dead patient in the ICU, a certain 48-h 
data is intercepted forward as a positive sample, where the 48-h data start time = death 
time − random time period − 48  h, data end time = death time − random time period, 
the random time period corresponds to the time window, and is a random number in the 
time window interval, to ensure that the positive samples that died within the time win-
dow are generated; (2) For patients who did not die in the ICU, extract the data within 
48 h after admission to the ICU is used as a negative sample; (3) For the segments with 
time series data less than 48 h extracted based on the above two rules, we fill in the data 
to 48 h. For details, see the description in “Variable data preprocessing” section.

Real-time and accurate monitoring and condition judgment of critically ill patients are 
of great significance. According to clinical guidelines, patient treatment usually needs to 
complete the corresponding goals within 1 h, 3 h, and 6 h. Therefore, this study selected 
0–1 h, 1–3 h, 3–6 h, and 6–12 h as the preliminary research time window. Unless other-
wise specified, “1 h”, “3 h”, “6 h” and “12 h” mentioned later represent 0–1 h, 1–3 h, 3–6 h 
and 6–12 h, respectively.

To better predict the death risk of patients in different time windows, we hope to 
reduce the misidentification between death samples in different time windows. There-
fore, for negative samples corresponding to a certain time window, in addition to the 
aforementioned negative samples generated by patients who did not die in the ICU, sam-
ples that died in other time windows were generated by deceased patients in the ICU, 
and the positive samples corresponding to this time window were the previously gener-
ated samples that died in this time window.

Variable data preprocessing

The different data units, missing data, and non-numerical variables of clinical data make 
difficulties in establishing machine learning models. Data preprocessing is a necessary 
for making raw data suitable for predictive model development. It includes five steps: 
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data assembly, missing value filling, One-Hot encoding, data normalization, and data 
mapping.

Data assembly: The finalized predictor data were compiled from multiple MIMIC-III 
variables (Additional file 1: Appendix S1). For example, there are 8 variables in the chart 
events table (ITEM_ID are 3655, 677, 676, 223762, 3654, 678, 223761, 679) correspond-
ing to body temperature, these variables have different units (Celsius °C, Fahrenheit °F), 
we put this All values of the 8 variables are converted to data in degrees Celsius. Similar 
summarization and unit conversion preprocessing were also performed on the other 42 
variables to maintain the consistency of the data distribution of the same variables.

Missing value filling: The data sample in this study needs to have at least one piece of 
data per hour to improve data quality. The statistics of the proportion of missing data for 
each variable are shown in Additional file 1: Appendix S2. For time series data samples 
of less than 48 h, the first and last data are used to copy and complete them at the begin-
ning and the end, respectively; for missing variable data, the previous data at the near-
est time point are used for filling. If all variable data were missing, a normal value was 
selected from the normal range of the variable to fill in.

Data mapping: Based on the extracted 48-h time series sample data, divide it into 48 
time periods in units of 1 h, and sequentially take the latest collected predictive variable 
data from each time period as the corresponding data for that time period. The final 
generated multi-dimensional variable data slice sample is a 48 × 43 dimensional matrix. 
The number of rows 48 represents the total amount of data in the 48 h slice sample, and 
the number of columns 43 corresponds to the number of predicted variables.

One-Hot encoding: Using One-Hot encoding to encode type variables as state values 
for further data analysis [22]. In this study, the type variable is stool color (including 10 
categories: Black, BrightRedBlood, Brown, Clay, Clear, Golden, Green, Maroon, Melena, 
Others).

Data normalization: Divide the data of each variable by its maximum absolute value, 
and scale it to a range (0, 1) to reduce the adverse impact of dimensional differences on 
the algorithm.

Model development

The samples in this study are model variable data from a certain 48 h time period. In 
practical clinical practice, some variable data has a huge amount and are collected with 
small time intervals (such as respiration, heart rate, etc.), thus can be considered as time 
series data within 48 h. However, other part of the variable data has a long-time inter-
val for collection, with sparse data within 48 h, making it difficult to form a time series. 
We designed memory modules and random forest modules respectively for the charac-
teristics of time series data and non-time series data. The memory module fully learns 
the temporal information of the data, and the random forest module simulates clinical 
diagnosis to improve algorithm accuracy and increase model interpretability. The inte-
gration of two modules has constructed a NIMRF model (Network Integrating Memory 
Module and Random Forest) that can fully learn time series and non-time series infor-
mation, as shown in Fig. 2. The above two sub modules respectively use LSTM [23] and 
random forest [24] as the backbone networks, and make appropriate adjustments and 
improvements based on the characteristics of the mortality risk prediction task in this 
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study (such as complex sample data and easy overfitting) on the basis of the backbone 
network. The internal and external validation results demonstrate that NIMRF has 
relatively accurate predictive performance, and the details of these architectures are 
explained in Additional file 1: Appendix S3. The study design and model development 
are shown in Fig.  3. For each moment of interest, we developed four NIMRF models 
to predict a patient’s risk of death 1, 3, 6, and 12 h after that moment. In addition, we 
also used LSTM and random forest algorithm models to predict the mortality risk in the 
above four-time windows.

Fig. 2 NIMRF network structure diagram

Fig. 3 Schematic diagram of study design and model development. For the time of interest (Prediction 
Point), the variable data in the observation data window (Data Window) before the time are collected to 
predict the death risk at this time. P1: 1-h mortality risk prediction; P3: 3-h mortality risk prediction; P6: 6-h 
mortality risk prediction; P12: 12-h mortality risk prediction
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Model comparison

Firstly, three machine learning algorithms are briefly introduced: (1) LSTM [23] (Long 
Short Term Memory Network) is a special type of RNN (Recurrent Neural Network, 
a type of neural network used to process sequence data), which uses several structures 
called “thresholds” to manage information transmission, selectively allowing informa-
tion to pass through. Therefore, it can perform better in longer sequences compared 
to ordinary RNNs; (2) Random Forest [24] is an ensemble learning algorithm that uses 
decision trees as the basic unit and combines the prediction results of multiple decision 
trees to obtain the final prediction result. (3) The Cox proportional hazards model [25] is 
a commonly used survival analysis method that uses final outcome and survival time as 
dependent variables to calculate survival probabilities at different times.

Based on the model variables in this study, in addition to NIMRF, we developed four 
models using LSTM and random forest algorithm for predicting the risk of death within 
the four-time windows mentioned above. Considering that our study is a time-varying 
event, we also attempted to develop a Cox regression model based on survival analy-
sis. Through Schoenfeld residual validation, we found that some variables in this study 
did not meet the proportional risk hypothesis required by Cox regression (proportional 
risk hypothesis test is in Additional file 1: Appendix S4). Therefore, we introduced the 
time-dependent variable x * log (t + 20) into the Cox model to address this issue and also 
developed a Cox regression model with time-dependent covariates for prediction. As for 
NIMRF, we also trained models for prediction based on the other two variable combina-
tion schemes: (1) based on the variable combination age, sex, Vent, BMI, urine output, 
GCS, FIO2, HR, RR, T, SPO2, SBP, DBP, MBP, chlorine, creatinine, glucose, potassium, 
sodium, platelet count, pH, as described in Reference 18; (2) all vital sign variables 
selected in our study are SBP, DBP, HR, RR, and Temperature.

The output of the model developed above is the probability of patient death predicted 
by the model in the corresponding time window. Based on this, the performance of the 
model is statistically analyzed and compared.

Statistical analysis

We calculated the AUC (area under the receiver operating characteristic curve) based 
on the aforementioned divided MIMIC test set data and the electronic case data of the 
Chinese People’s Liberation Army General Hospital from 2007 to 2016 to evaluate the 
performance of the prediction model and calculated the 95% confidence of the AUC by 
the bootstrapping method. In addition, the sensitivity and specificity of the model under 
different thresholds were calculated.

Model interpretation

For the memory module of the model, we use a fully connected layer after the input 
layer to represent the variable distribution of the input and then use the Leaky-ReLU 
activation layer to increase the nonlinearity of the model. At this time, for each 
variable, the corresponding fully connected layer is calculated. The weight param-
eter average reflects the contribution of each variable in the model prediction. For 
the random forest module of the model, the Scikit-learn library is used to calculate 
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and visualize the contribution of each variable in the random forest model. Using 
the SHAP method to interpret the model output, studying the importance and posi-
tive negative relationships of each variable in predicting mortality risk in the NIMRF 
model through global interpretation, and obtaining the role of each variable in indi-
vidual prediction through local interpretation.

Result
Study population characteristics

Based on the MIMIC-III critical care database, 33,798 patients were included in the 
study, including 23,556 in the training set, 5070 in the validation set, and 5172 in the 
test set. We also conducted external verification based on the data of patients in the 
respiratory intensive care unit of the Chinese People’s Liberation Army General Hos-
pital (hereinafter referred to as the hospital dataset), including the electronic medical 
record data of a total of 889 patients from 2007 to 2016. The corresponding sample 
size statistics for the four-time windows are shown in Table 2. In addition, according 
to the proportion of positive and negative samples in the MIMIC test set, we ran-
domly selected samples from the full set of samples generated by the hospital data 
to form a hospital test subset (hereinafter referred to as the hospital data subset) so 

Table 2 Statistics of MIMIC-III sample characteristics

Training set
n = 23,556

Validation set
n = 5070

Test set
n = 5172

Age, mean (SD) 64 (18) 64 (18) 64 (18)

Gender

 Female, n (%) 10,278 (44) 2230 (44) 2251 (44)

 Male, n (%) 13,278 (56) 2840 (56) 2921 (56)

Race

 Asian, n (%) 578 (2.45) 111 (2.19) 132 (2.55)

 Black, n (%) 1857 (7.88) 403 (7.95) 381 (7.37)

 Hispanic/Latino, n (%) 782 (3.32) 174 (3.43) 165 (3.19)

 Other/unknown, n (%) 3573 (15.17) 765 (15.09) 790 (15.27)

 White, n (%) 16,766 (71.18) 3617 (71.34) 3704 (71.62)

Deaths in ICU, n (rate per 1000 admis-
sions)

2006 (85) 407 (80) 463 (90)

Table 3 Hospital patient characteristics statistics

Universal set
n = 889

Subset
n = 605

Age, mean (SD) 66.80 (17.36) 65.30 (18.32)

Gender

 Female, n (%) 264 (29.70) 264 (43.64)

 Male, n (%) 625 (70.30) 341 (56.36)

Race

 Asian, n (%) 889 (100) 605 (100)

 Deaths in ICU, n (rate per 1000 admissions) 116 (130) 52 (86)
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that it has a similar composition ratio to the MIMIC test set. It is convenient to com-
pare the test results of MIMIC and hospital data. The MIMIC-III and hospital patient 
characteristics used in the study are shown in Tables 2 and 3.

Model variables

The candidate predictors of the model include a total of 76 kinds of vital sign variables 
and laboratory variables. For the two predictors whose Pearson correlation coefficient is 
greater than 0.6, one of them is deleted. In this process, there are two groups of variables 
with strong correlation but high clinical value, and we kept these variables in the model 
variables. These two groups of variables are hemoglobin and red blood cell count (Pear-
son correlation coefficient is 0.8761), low-density cholesterol, and total calcium (Pearson 
correlation 0.8795). Finally, 43 variables were retained as model variables, as shown in 
Table 4, and the correlation between variables is shown in Fig. 4.

The performance comparison

In this study, we developed the NIMRF model to predict the death risk of ICU patients at 
1 h, 3 h, 6 h, and 12 h after a certain time. Based on the 43 model variables in our study, 
we tried random forest, LSTM model and time-dependent cox regression model to pre-
dict the death risk of the corresponding time window. In addition, a prediction model 
was trained using NIMRF for the combination of variables in Reference 18, vital sign 
variables in our study, and laboratory variables in our study. The prediction performance 
of the seven methods is compared based on the MIMIC test set, the hospital dataset, 
the hospital data subset, and the full test data composed of the aforementioned MIMIC 
test set and hospital dataset. Among the seven methods, the NIMRF model trained on 
43 predictive variables has the best predictive performance: the AUC for predicting the 
risk of death within 1 h on the hospital dataset is 0.9366 [95% CI 0.9157–0.9575], and 
the AUC for random forest, LSTM prediction is 0.7437 [95% CI respectively], 0.7083–
0.7791], 0.9263 [95% CI 0.9039–0.9486] and 0.2447 [95% CI 0.2202–0.2692]. Sensitivity 
analysis of the model showed that the sensitivity of NIMRF was higher than that of the 
other six methods under the same specificity. For the full test data, when the specific-
ity was 90%, the NIMRF model had a sensitivity of 67% for prediction of mortality risk 
within 1 h, compared with 62% for the LSTM, 37% for the random forest and 7% for cox 
regression model (Table  5). The sensitivity of the NIMRF model trained based on the 
variables in Reference 18 and the vital signs variables in our study were 63% and 65%, 
respectively. Based on four test sets, the AUC values of the six methods are detailed in 
Additional file 1: Appendix S5.

Model validation

The NIMRF model developed in this study is validated based on the MIMIC test set, the 
hospital dataset, a subset of the hospital data, and the full test data. For the four-time 
windows of 1 h, 3 h, 6 h, and 12 h, the corresponding 4 models (NIMRF-H1, NIMRF-H3, 
NIMRF-H6, NIMRF-H12) on the test data are shown in Table 6. As expected, NIMRF-
H1 has the best performance with an AUC of 0.9366 [95% CI 0.9157–0.9575] on the 
hospital dataset. The AUCs of NIMRF-H3, NIMRF-H6, NIMRF-H12 were 0.8548 [95% 
CI 0.8198–0.8898], 0.6780 [95% CI 0.6352–0.7207], and 0.6453 [95% CI 0.6110–0.6796], 
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Table 4 Model variables

The second column is the source table of the variable from the MIMIC-III database; the third column is the value used for 
missing data imputation in the variable data preprocessing step, which is the normal value selected from the normal range 
of the corresponding variable; the fourth column describes how the model handles variables

Variable MIMIC-III table Supplementary 
value

Modeled as References

Albumin Chartevents, labevents 4 Continuous [19]

Alkaline phosphate Chartevents, labevents 90 Continuous –

Amylase Chartevents, labevents 85 Continuous –

Bicarbonate Chartevents, labevents 25 Continuous [3]

Chloride Chartevents, labevents 101 Continuous [2, 3, 22, 23]

Conjugated bilirubin Chartevents, labevents 0.3 Continuous –

Creatine kinase MB isoenzyme Labevents 3 Continuous –

Creatinine Chartevents 0.9 Continuous [2, 17, 22, 23]

Creatinine kinase(CK) Labevents 108 Continuous –

D-Dimer Chartevents, labevents 300 Continuous –

Diastolic blood pressure Chartevents 59 Continuous [3, 15–18, 21–23]

Ferritin Labevents 86 Continuous –

Folate Labevents 9 Continuous –

HDL cholesterol Labevents 54 Continuous –

Heart rate Chartevents 86 Continuous [2, 3, 17–19, 22, 23]

Hematocrit Chartevents, labevents 43 Continuous –

Hemoglobin Chartevents, labevents 13 Continuous [19, 23]

Iron labevents 90 Continuous –

LDL cholesterol Labevents 100 Continuous –

Lactate dehydrogenase Labevents 180 Continuous –

Lactic acid Chartevents 1.1 Continuous –

Lymphocytes Labevents 30 Continuous –

Magnesium Chartevents, labevents 2 Continuous –

Phosphate Labevents 3.7 Continuous –

Potassium Chartevents, labevents 4 Continuous [2, 3, 22, 23]

Prothrombin time Chartevents, labevents 12.1 Continuous –

Red blood cell count Labevents 4.5 Continuous [2, 3, 17, 23]

Respiratory rate Chartevents 19 Continuous [2, 17, 18, 22, 23]

Sodium Chartevents, labevents 141 Continuous [2, 3, 22, 23]

Stool color chartevents Golden Categorical –

Systolic blood pressure Chartevents 118 Continuous [3, 15, 17, 18, 21–23]

TCO2 Chartevents 25 Continuous –

TG Chartevents 125 Continuous –

Temperature Chartevents 36.6 Continuous [2, 3, 17–19, 22, 23]

Total iron binding capacity Labevents 320 Continuous –

Total protein pleural Labevents 2 Continuous –

Total bilirubin Chartevents, labevents 0.7 Continuous [3, 19, 23]

Total calcium Labevents 9.6 Continuous –

Total cholesterol Labevents 170 continuous –

Total protein chartevents, labevents 7 Continuous –

Triiodothyronine(T3) Labevents 150 Continuous –

Uric acid Chartevents, labevents 4.8 Continuous –

Vitamin B12 Labevents 230 Continuous –
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respectively. Similarly, on the MIMIC test set, the hospital data subset with the same 
proportion of positive and negative samples as the MIMIC test set, and all the test data, 
NIMRF-H1 still performs the best, with an AUC of 0.8015 on the three datasets [95% CI 
0.7725–0.8304], 0.9115 [95% CI 0.8829–0.9400], 0.8500 [95% CI 0.8303–0.8697].

Feature importance

For the corresponding memory modules of the four-time window death risk prediction 
models, the top 25 variables with the highest contribution are shown in Fig. 5a, and there 
are 21 variables (Table 7) with the highest contribution in no less than 3 models. 25, of 
which 2 variables ranked in the top 25 in terms of contribution in the 4 models, namely, 
red blood cell counts and sodium. For the explanation modules of the four models, the 
top 25 variables with the highest contribution are shown in Fig. 5b. The variables with 
the top 25 contributions in the four models (Table 8) are the same, and the variables with 
the top 5 contributions were all the same five vital sign variables: systolic blood pressure, 
heart rate, diastolic blood pressure, respiratory rate, and body temperature. We have 
drawn a visual heatmap of the contribution of each variable to the random forest module 
of the model at each hour (Fig. 6) to show this situation more intuitively. The row rep-
resents the data collection time, and the column represents the variable. The brighter 
the pixel point is, the greater the contribution of the corresponding variable at the cor-
responding moment. The lit areas in the corresponding heatmaps of the four models are 
basically the same.

Fig. 4 Variable correlation heatmap. CK-MB creatine kinase MB isoenzyme, CK creatinine kinase, DBP diastolic 
blood pressure, LD lactate dehydrogenase, RBC red blood cell count, SBP systolic blood pressure, TIBC total 
iron binding capacity
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For the four-time window mortality risk prediction model, the SHAP algorithm can quan-
tify the group factor contribution (global interpretation) and individual factor contribution 
(local interpretation) of NIMRF. Taking the one-hour mortality risk prediction model as an 

Table 5 Sensitivity and specificity at different thresholds

No. 4 is a NIMRF model based on 43 model variables, No. 1, No. 2, and No. 3 are random forest, LSTM, and Cox regression 
models based on 43 model variables, respectively. No. 5 and No. 6 are NIMRF models based on Reference 18 variables and 
vital sign variables in our study, respectively

No. Algorithm Variables Model cut-off Sensitivity (%) Specificity (%)

1 RF Model variables ≥ 0.5692 51 85

≥ 0.5808 37 90

≥ 0.6192 24 95

≥ 0.7009 9 99

2 LSTM Model variables ≥ 0.4298 66 85

≥ 0.4389 62 90

≥ 0.4596 57 95

≥ 0.5622 41 99

3 Cox Model variables ≥ 0.9110 12 85

≥ 0.9162 7 90

≥ 0.9482 1 95

≥ 0.9875 0 99

4 NIMRF Model variables ≥ 0.4179 89 51

≥ 0.4419 80 74

≥ 0.4499 76 80

≥ 0.4588 72 85

≥ 0.4705 67 90

≥ 0.4894 58 95

≥ 0.5675 40 99

5 NIMRF Reference variables ≥ 0.4759 73 80

≥ 0.4885 69 85

≥ 0.5044 63 90

≥ 0.5291 52 95

≥ 0.5914 36 99

6 NIMRF Model vital sign variables ≥ 0.4387 74 80

≥ 0.4461 70 85

≥ 0.4572 65 90

≥ 0.4809 57 95

≥ 0.5694 39 99

Table 6 NIMRF model performance (AUC) test

NIMRF-H1 NIMRF-H3 NIMRF-H6 NIMRF-H12

AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI

Dataset from 
MIMIC

0.8015 (0.7725, 
0.8304)

0.7100 (0.6777, 
0.7423)

0.6761 (0.6425, 
0.7097)

0.638 (0.6031, 
0.6729)

Dataset from 
hospital

0.9366 (0.9157, 
0.9575)

0.8548 (0.8198, 
0.8898)

0.678 (0.6352, 
0.7207)

0.6453 (0.6110, 
0.6796)

Data subset 
from hospital

0.9115 (0.8829, 
0.9400)

0.7913 (0.7512, 
0.8315)

0.6614 (0.6160, 
0.7068)

0.6445 (0.5974, 
0.6917)

All test data 0.8500 (0.8303, 
0.8697)

0.7045 (0.6788, 
0.7303)

0.6745 (0.6482, 
0.7008)

0.6467 (0.6224, 
0.6711)
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example, the global and local explanations of the model are shown in Figs. 7 and 8. As time 
series data is used, variables at different times are considered as different features. In our study, 
there were a total of 4750 related features among the 43 variable indicators. In the feature 
names in the figure, “value” represents the observed data at a certain time, “mask” represents 
the observed data at a certain time, and the subscript number represents the time. Figure 7a 
shows that for the top 50 important features in predicting the risk of death within one hour, 
there are a total of 18 vital sign related features, involving all vital sign variables included in our 
study, namely systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, and 
body temperature. The blue color in Fig. 7b indicates a small observed value of the character-
istic factor, while the red color indicates a large observed value of the characteristic factor. The 
horizontal axis represents the SHAP value. Generally, the higher the SHAP value, the higher 
the risk of death. Figure 7b shows that: (1) for a certain moment, the SBP for multiple hours 
before that moment is negatively correlated with the risk of death within one hour after that 
moment, listed in descending order of feature importance as the previous 7th, 2nd, 25th, and 

Fig. 5 Ranking of the top 25 variables by contribution
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24th hours (systolic blood pressure value 42, systolic blood pressure value 47, systolic blood 
pressure value 24, systolic blood pressure value 25); (2) In addition, the diastolic blood pres-
sure (diastolic blood pressure value 47) in the second hour prior to a certain moment, heart 
rate (heart rate value 49, heart rate value 48) in the first hour, respiratory rate (respiratory rate 
value 49) in the first hour, and body temperature (temperature value 13) in the previous 36 h 
are negatively correlated with the risk of death within the first hour after that moment.

Figure 8 shows the individual factor contribution values corresponding to randomly selected 
samples of two different patients, with red indicating unfavorable factors and blue indicating 
favorable factors. Figure 8a shows that the systolic blood pressure and diastolic blood pressure 
of the patient are unfavorable factors at multiple times, and their blood pressure has initially 
increased in the past 48 h, and then continued to decrease within 9 h before death (systolic 
bloodpressure value 12, 42, 46, 47 were 0.466, 0.545, 0.466, 0.388, respectively, and diastolic 
blood pressure value 6, 40, 46, 47 were 0.413, 0.5, 0.423, 0.365, respectively). The sum of the 
contribution values of all factors plus the baseline value of 0.519 is 0.692 > 0.5, indicating that 
the patient died within one hour after that time, which is consistent with the fact. Figure 8b 
shows that the important unfavorable factors of the patient are laboratory variables at certain 
times [Bicarbonate, Prothrombin, Chlorine, Creatinine Kinase (CK), Lactic acid, Red blood 
cell count], and the important favorable factors include multiple vital sign variables (systolic 
blood pressure, diastolic blood pressure, heart rate). The total contribution value of all factors 
plus the baseline value of 0.519 is 0.385 < 0.5, so the patient will not die within one hour after 
that moment, which is consistent with the fact.

Table 7 List of top 25 variables in NIMRF memory module contribution

The contribution is ranked in the top 25 in the memory module of no less than 3 models

Variable Rank of the importance

NIMRF-H1 (MM) NIMRF-H3 (MM) NIMRF-H6 (MM) NIMRF-H12 
(MM)

Magnesium 1 9 24 28

Hemoglobin 2 5 11 36

Temperature 4 24 4 30

Phosphate 5 13 12 43

Uric acid 7 43 5 3

Red blood cell count 8 10 10 25

Triiodothyronine (T3) 9 35 22 23

Creatinine 10 3 42 6

Respiratory rate 11 34 1 8

Sodium 14 8 17 4

Stool color 16 15 34 1

Total calcium 17 7 18 31

Vitamin B12 18 25 43 16

Creatine kinase MB isoenzyme 19 36 9 14

Potassium 20 6 29 9

Systolic blood pressure 25 17 16 5

Diastolic blood pressure 33 2 6 2

Lactic acid 40 18 8 20

Hematocrit 42 4 14 12
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Discussion
In this study, we developed the NIMRF model to predict the mortality risk of ICU 
patients in real-time based on multidimensional data on vital sign variables and labora-
tory variables in the MIMIC-III database, explained the model, and found that vital signs 
are important for patient prognosis. Predictive value, in addition to external validation 
of the model using data from the Chinese PLA General Hospital.

Table 8 List of the top 25 variables in the NIMRF random forest module contribution

Variable Rank of the importance

NIMRF-H1 (MM) NIMRF-H3 (MM) NIMRF-H6 (MM) NIMRF-H12 
(MM)

Systolic blood pressure 1 1 1 2

Heart rate 2 3 2 1

Diastolic blood pressure 3 2 3 4

Respiratory rate 4 4 4 3

Temperature 5 5 5 5

Hematocrit 6 6 7 11

Potassium 7 7 8 8

Red blood cell count 8 9 9 6

Bicarbonate 9 13 15 14

Hemoglobin 10 8 6 9

Phosphate 11 15 10 7

Magnesium 12 16 11 13

Chloride 13 10 13 15

Prothrombin time 14 14 16 16

Total calcium 15 12 14 12

Sodium 16 11 12 10

Lactic acid 17 17 17 17

Creatinine 18 18 18 18

Alkaline phosphate 19 19 20 20

TCO2 20 21 19 19

Creatinine kinase (CK) 21 22 21 23

Lactate dehydrogenase 22 25 25 25

Total bilirubin 23 20 22 21

Lymphocytes 24 23 24 22

Albumin 25 24 23 24

Fig. 6 Heatmap of the variable contribution of the NIMRF random forest module. The row represents 
the time of the sample data, and the column represents the variable; the brighter the pixel, the greater 
the contribution of the corresponding variable at the corresponding moment. The lighted areas in the 
corresponding heatmaps of the four models are basically the same, indicating that the random forest module 
for the four models is the variables with high contribution are the same
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Most of the prediction models for the death of ICU patients are based on data from 
the initial period of admission to predict 28-day mortality or in-hospital mortality 
[17, 26]. This predictive model is difficult to provide timely information and has lim-
ited impact on daily evaluation and treatment. In this study, four models were devel-
oped based on the developed NIMRF network to predict the mortality risk of patients 
in four nonoverlapping time windows of 0–1 h, 1–3 h, 3–6 h, and 6–12 h after any 
time. In this way, real-time dynamic monitoring of the condition of ICU patients 
can be performed to provide more information. Based on the hospital dataset, the 
AUCs of the four NIMRF models for predicting the risk of death in patients in the 
aforementioned four-time windows were0.9366 [95% CI 0.9157–0.9575], 0.8548 [95% 
CI 0.8198–0.8898], 0.6780 [95% CI 0.6352–0.7207], 0.6453 [95% CI 0.6110–0.6796]. 

Fig. 7 Global interpretation of the one hour mortality risk prediction model. The vertical axis represents the 
characteristic factor, where "value" represents the observed data at a certain moment, "mask" represents the 
observed data at a certain moment, and the subscript number represents the moment. The horizontal axis 
of Figure (a) represents the result of taking the absolute value of SHAP in Figure (b) first and then taking the 
average value. The horizontal axis in Figure (b) represents the SHAP value, where each point in Figure (b) 
represents a sample, with blue indicating small feature values and red indicating large feature values
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Overall, we can now predict with high accuracy the risk of death across time windows 
after any given moment in time.

Considering the high complexity of the task of predicting the prognosis of ICU 
patients, we based our current study on four test datasets (MIMIC test set, hospi-
tal dataset, hospital data subset, and the full composition of the MIMIC test set and 
hospital dataset) to evaluate three different prediction methods: NIMRF, LSTM and 
random forest. The result is that for the prediction of death risk in different time win-
dows of different test sets, the NIMRF model predicts the highest AUC value, and the 
sensitivity of NIMRF is higher than the other two under the same specificity, which 
indicates that the NIMRF model currently developed by us has the best prediction 
performance and model availability. In addition, although the MIMIC test set and 
the hospital data subset have similar population characteristics, the test performance 
on the hospital data subset is higher than that on the MIMIC test set, which may be 
related to the more realistic and reliable death time of the hospital data.

The ranking of the contribution of the feature variables indicates the importance 
of each variable to the prediction. In this study, for the random forest modules of the 
four models, the top 5 contributing variables are all vital sign variables (systolic blood 
pressure, heart rate, diastolic blood pressure, respiratory rate and body temperature), 
which can be understood that the vital signs are more essential for model prediction. 
In actual clinical practice, vital signs are important signs that mark the existence and 
quality of life activities and are one of the important items for evaluating the body. 
Monitoring the vital signs of patients in the intensive care unit (ICU) is absolutely 
necessary to help evaluate overall health [27]. There are currently some big data stud-
ies based on vital signs. Daniel et al. [27] used machine learning to predict heart rate, 
blood oxygen level  (SpO2), mean arterial pressure (MAP), respiratory rate (RR) and 
systolic blood pressure (SBP) in the next hour. Mohamadlou et al. [28] used a gradi-
ent boosting algorithm to predict severe AKI characterized by vital signs and Scr, this 

Fig. 8 Partial explanation of the one hour mortality risk prediction model. The horizontal axis represents the 
SHAP value, and the vertical axis represents the feature. Red indicates that features have a positive impact on 
prediction (arrow to the right), while blue indicates that features have a negative impact on prediction (arrow 
to the left). The E [f (x)] below is the baseline value of SHAP, and the f (x) above is the total SHAP value of the 
sample
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algorithm achieved AUROC 0.872 during the onset of the disease. For the prediction 
of 12 h, 24 h, 48 h, and 72 h before onset, the algorithm achieved AUROC values of 
0.800, 0.795, 0.761, and 0.728, respectively. Sivasubramanium et al. [29] validated the 
feasibility of sepsis classification based on vital sign data. Heart rate, respiratory rate 
and blood pressure can be used as important classification value, and fluid therapy for 
blood pressure can also significantly change the prognosis of patients. This study also 
shows that vital signs are an important factor affecting the prognosis of ICU patients, 
and clinicians need to pay more attention to the management and regulation of vital 
signs with higher contribution.

Our research is based on the MIMIC-III dataset to develop a model, including multi-
dimensional features such as vital sign variables and laboratory variables, and externally 
validated findings related to hospital data, with the aim of predicting the risk of short-
term mortality in real time and assisting clinicians in making timely decisions about 
treatment and intervention. There are some limitations in our study. First, we choose the 
observation data window length of 48 h, and the time windows are 0–1 h, 1–3 h, 3–6 h, 
and 6–12 h. This setting can be used as an example to demonstrate the feasibility of real-
time dynamic prediction of patient mortality risk in ICU based on machine learning. In 
practical applications, the corresponding observation data window duration and predic-
tion time window can be set according to clinical needs. Second, the current model has 
the best performance in predicting the risk of death within 1 h, and clinical decisions can 
be made with greater reference to predictive information from this time window; with 
the extension of time, the treatment measures and treatment background will change. 
Data heterogeneity causes the performance of the prediction model to decrease with the 
delay of the prediction window (1–3 h, 3–6 h, 6–12 h), but the impact can be minimized 
by expanding the training data set, increasing the diversity of the training samples, and 
attempting to model clinical intervention variables such as treatment. Third, from the 
explanatory results of the model in our study, vital sign variables are very important for 
predicting the mortality risk of ICU patients, and in practical applications, vital sign 
variables are characterized by a large amount of data, high reliability, and ease of pro-
cessing and analysis. In the study of ICU patients, an attempt can be made to build a 
mortality risk prediction model for ICU patients by filtering data only for vital sign vari-
ables. Finally, Goh et al. show that unstructured data can improve the performance of 
the model [30], and we will consider adding some unstructured data features to the fea-
ture set.

Conclusion
In this study, based on multidimensional variables such as vital sign variables and labo-
ratory variables, we used machine learning to establish a dynamic prediction model to 
predict the mortality risk of ICU patients in four nonoverlapping time windows with 
high accuracy. The interpretation of the model proposes factors that affect the predic-
tion. These predictions can assist clinicians in choosing more timely and reasonable 
treatments and interventions. Based on ICU multisource heterogeneous data, this study 
established a real-time dynamic mortality risk model using machine learning algo-
rithms. The NIMRF method may provide more stable and reliable results, especially at 
the first hour of judgment. Data on vital signs showed encouraging predictive effects and 
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became an important indicator of prognosis. That is, with the help of big data modeling 
and methodology, these easily accessible vital sign parameter data have gained a new 
lease of life, showing the indicator advantages of continuous and dynamic analysis. This 
can provide a prognostic method that can be easily generalized and applied to assist cli-
nicians in selecting more timely and rational treatments and interventions.
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