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Introduction
Physical activity is defined as any voluntary bodily movement produced by skeletal mus-
cles that requires energy expenditure [1]. Physical activity encompasses all activities, at 
any intensity, performed during any time of day or night. It includes both exercise and 
incidental activity integrated into daily routines, such as walking to the local shop, clean-
ing, working, active transport, etc. [2]. Driven by daily routine, some physical activities of 
humans over a period of time are regular, for instance, commuting on time during week-
days or exercising regularly. On the other hand, influenced by the external environment 
and unexpected events, the physical activities of humans can be drastically random as 
well. To what extent are an individual’s physical activities regular? This is a fundamental 
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question about human behavior understanding. Our goal here is to measure the regular-
ity of human physical activities. The accurate measurement of regularity can facilitate 
advancements in human activity modeling and prediction [3], and further enable the 
implementation of tailored interventions aimed at improving health outcomes.

Conventional methods [4, 5] measure the regularity of human life by designing 
diary-like instruments to record the occurrence of particular events. Such data collec-
tion requires the subjects to record their activities of daily living manually. Therefore it 
is expensive and subjective, and also constrained to small sample sizes and short time 
spans. The proliferation of smartphones and wearable devices provides new opportuni-
ties to collect sensor data about human physical activities on a large scale and over a 
long period of time [6]. In particular, wearable devices that are worn all the time pro-
vide accurate and continuous monitoring of physical activity in a free-living environ-
ment [7]. Multiple sensor data, including step counts, calorie expenditures, exercise 
intensity, heartbeats, and so on, are collected at a fine granularity and form the basis for 
subsequent analysis. Such longitudinal sensor data can reflect an individual’s all physical 
activities more accurately and informatively [8]. This makes it possible to measure the 
different aspects of human physical activities in detail and reliably.

Regularity refers to the extent to which individual activities repeat over time in 
fixed patterns [3]. It not only depends on the variability in the characteristics of a 
single type of activity but also on the cycles or patterns existing in activity sequences. 
Existing metrics utilizing longitudinal sensor data to measure regularity are either 
based on periodicity or stability. However, both periodicity and stability are special 
types of regularity. They cannot provide a comprehensive measurement of regularity 
for human physical activity. In information theory, entropy quantifies the uncertainty 
of a random variable and it also measures the degree of randomness in the system [9]. 
There are several entropy models that can be used to determine the regularity of serial 
data based on the presence of patterns. The entropy rate measures how the entropy of 
a sequence changes over time, allowing the randomness of the sequence to be quanti-
fied [10]. In practice, the entropy rate has been used extensively to assess the regu-
larity of categorical sequences, including human mobility [3, 11], human economic 
behavior [12], human online life [13], web browsing behavior [14] and patient health 
records [15]. Additionally, Pincus et al. [16] devised Approximate Entropy (ApEn) as 
the measurement of regularity that can be applied to short and noisy time series of 
continuous values. Richman et  al. [17] developed Sample Entropy (SampEn), which 
addresses the issues of bias and lack of relative consistency in approximate entropy, 
to measure the regularity of clinical and experimental time series. While approximate 
entropy and sample entropy are initially developed for physiological applications, 
both of them have been used in other fields such as medicine [18–20], economics [21, 
22], climatology [23–25], gait analysis [26, 27], and battery health prognostics [28, 
29]. In a nutshell, entropy rate is inversely proportional to the sum of the lengths of 
new subsequences at each position in the whole sequence. Approximate entropy and 
sample entropy rely on the conditional probability that close patterns of subsequences 
with length m remain close on next incremental comparisons. All of them take into 
account the evolution of ordered subsequences, which, in fine granular data, can be 
regarded as patterns. As a result, entropy models can potentially accommodate more 
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and prior unknown patterns, and thus can provide a more comprehensive measure-
ment of regularity than the metrics based only on periodicity or stability. Despite this, 
there is, to date, very little research on the application of these entropy models to 
human physical activity data.

In this paper, we aim to investigate the applicability of entropy models to quantify the 
regularity of human physical activities from longitudinal sensor data. First, the entropy 
rate calculation procedure is modified to allow it to be applied to physical activity data 
with continuous values. Then, we compare the applicability of entropy rate, approximate 
entropy, and sample entropy as measurements of the regularity of physical activities. 
By simulating real-life activity patterns with synthesized data, we validate the perfor-
mance of entropy models under different scenarios. Results indicates that entropy rate 
is more suitable alternative to approximate entropy and sample entropy. Entropy rate 
can identify not only the magnitude and amount of randomness, but also the macro-
scopic variations, such as the differences on duration and occurrence time, which can 
not be recognized by approximate entropy and sample entropy. We then further evaluate 
the performance of the three entropy models by correlating their respective entropy val-
ues with prediction errors obtained from multiple forecast models, on real-world physi-
cal activity data samples. We show that again entropy rate outperforms the other two 
entropy models with a correlation coefficient as high as 0.895. We then conclude that 
entropy rate is a reliable measurement of human physical activity regularity.

Utilizing entropy rate as the measurement, we investigate the interpersonal and 
intrapersonal variation of regularity for 686 individuals. We find that the regularity 
varies considerably across individuals and the difference in activities composition can 
explain a large part of the variation. Meanwhile, the majority of individuals maintain sta-
ble physical activity habits and their regularity does not change significantly over time.

The contributions of this study are summarized as follows: 

1 We modify the calculation procedure of entropy rate so that it can be applied to 
physical activity data.

2 We propose a framework to validate the performance of entropy models on both 
synthesized and real-world physical activity data. Experiment results demonstrate 
that entropy rate is more suitable than approximate entropy and sample entropy for 
measuring the regularity of human physical activities.

3 Our analysis of human physical activity regularity using entropy rate reveals that var-
iations in regularity among individuals are primarily associated with the composition 
of activities. In addition, the regularity of most individuals remains stable over time.

The rest of the paper is organized as follows. We first present the related work on 
human behavior regularity in Sect. “Related work”. Then we describe the details of 
entropy models in Sect. “Measurement of regularity”. Section “Validation of entropy 
models” displays the performance of three entropy models on physical activity data. 
More results about human physical activity regularity are shown in Sect. “Human 
physical activity regularity”, followed by a “Discussions” section, in which we discuss 
the finding as well as limitations of our study. Finally, in Sect. “Conclusions”, we con-
clude our work and discuss future research directions.
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Related work
The concept of regularity is recognized as a fundamental aspect in the field of human 
behavior understanding. Prior to the widespread adoption of wearable technology, a sig-
nificant body of literature has utilized survey data to assess the regularity in human daily 
activities. The Social Rhythm Metric (SRM) [4, 5] is a widely used metric that quantifies 
the regularity of an individual’s daily activities with respect to their timing. The SRM is 
calculated by first having subjects record the occurrence of various event categories, and 
then determining the habit time of each event through an outlier elimination algorithm. 
The average count of events that occur within the habit time for each event category is 
then used to reflect the subject’s level of daily lifestyle regularity. Despite its widespread 
usage in studies exploring the relationship between health outcomes and lifestyle regu-
larity [30–32], the SRM ignores the interconnections among successive events, leading 
to an incomplete representation of regularity.

In recent years, mobile sensing has shown increasing potential for tracking human 
daily activities of living. The widespread use of smartphones and wearable devices has 
enabled the collection of rich, longitudinal sensor data that characterizes an individual’s 
activities, sleep patterns, and application usage. These data provides a foundation for 
studying the regularity of human daily activities and has resulted in the proposal of sev-
eral metrics. These metrics can be broadly categorized into two groups: those that focus 
on quantifying the periodicity in the sensor data and those that employ stability to cap-
ture the essence of regularity.

Since human behaviors are driven by an internal biological clock that regulates the 
sleep-wake cycle and repeats roughly every 24 h, the 24-h periodicity is usually regarded 
as a measurement of human life regularity. Saeb et al. [33] and Wang et al. [6] proposed 
circadian rhythm to measure the strength with which an individual follows a 24-h 
rhythm in behaviors. Sensor data was converted to the frequency domain, and the circa-
dian rhythm was determined by energy that falls within the 24 ± 0.5 h. Phillips et al. [34] 
developed the sleep regularity index (SRI), which calculates the percentage probability 
of an individual being in the same state (asleep vs. awake) at any two time-points 24 h 
apart, as the measurement of sleep regularity. A similar metric can be extended to sen-
sor data other than sleep. In reference [6, 35], regularity index (RI) and flexible regularity 
index (FRI) were proposed to assess the difference between the same time points across 
different days. The RI calculates the product of rescaled values of the same time points 
from different days to evaluate the difference, while the FRI uses edit distance. It should 
be noted that these metrics only focus on the similarity of data points at 24-h intervals 
and do not take into account the orderliness of successive data points.

Other metrics in the literature treat the stability as a proxy for regularity. Standard devia-
tions are commonly used to measure the variance of daily activities. Marschollek et al. [36] 
employed the standard deviation of all time differences between physical activity event 
starts as a measure of regularity. Fischer et al. [37] applied the standard deviation to features 
of daily sleep (e.g. sleep onset, sleep offset, midsleep, duration) to quantify sleep regularity. 
Wang et al. [6] directly calculate standard deviation of physical activity data as a metric for 
human physical activity variability. Wil et al. [38] introduced the concepts of inter-daily sta-
bility and intra-daily variability to assess rest-activity rhythms. Inter-daily stability evaluates 
the consistency of daily activity patterns with respect to the average pattern across days, 
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and it reflects the stability of rest-activity rhythms over multiple days. Intra-daily variability 
is calculated as the ratio of the mean squared the first deviation of the data and the popula-
tion variance of the data, which detects fragmentation of rest-activity rhythms. In addition 
to rest-activity rhythms, they can also be applied to measure sleep regularity [37]. However, 
stability is only one aspect of regularity, as periodic signals with large variations can still be 
considered regular. Therefore, the use of stability alone may not be sufficient to represent 
regularity.

It is evident that none of the metrics previously discussed are capable of assessing the 
regularity of human daily activities comprehensively. These metrics are limited in their 
scope, as they make prior assumptions about the definition of regularity. A comprehen-
sive regularity measurement should consider all possible patterns present in the sensor 
data. In the following section, we introduce entropy-based metrics that circumvent the 
limitations of the previously mentioned metrics, offering a more inclusive measurement 
of regularity.

Measurement of regularity
The antithesis of regularity is randomness. The analysis of the randomness of a series 
has its roots in information theory and the concept of entropy. Entropy quantifies the 
amount of information of random variables based on the probability distributions. 
It can also measures the degree of randomness in the system [10]. However, Shannon 
entropy has a limitation in its inability to capture patterns present in sequential data, 
as it disregards the temporal correlation among elements in sequence. The real entropy 
of a sequence depends not only on the frequency of elements in the sequence, but also 
on the order in which the elements are combined. Entropy rate, approximate entropy, 
and sample entropy are three kinds of entropy that consider the ordered sub-sequence 
existed in the sequence.

Entropy rate

Mathematically, a series from real-world can be modeled as a stochastic process X , 
which is an indexed sequence of random variables [X1,X2...,Xn] . And there can be an 
arbitrary dependence among the random variables. The joint entropy of the collection of 
random variables is

The entropy rate of a stochastic process is the asymptotic rate at which the entropy of a 
sequence grows with increasing n. The entropy rate H(X) is defined as follows.

As shown in Eq. (2), entropy rate is the average entropy over all random variables and it 
means the average information gain with the increment of the sequence. Reference [9] 
proves that this limit of Eq. (2) exists for all stationary random processes and is equal to

(1)H(X1,X2, ...,Xn) = −
∑

x1∈�1

∑

x2∈�2

...
∑

xn∈�n

p(x1, x2, ..., xn)log2p(x1, x2, ..., xn).

(2)H(X) = lim
n→∞

1

n
H(X1, ...,Xn).

(3)H(X) = lim
n→∞

H(Xn|X1, ...,Xn−1),
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where H(Xn|X1, ...,Xn−1) is the conditional entropy of the last variable given the previ-
ous n− 1 values. Equation (3) indicates that the entropy rate account for the depend-
encies among random variables. The stronger dependencies among variables in a 
stochastic process, the more information the previous variables provide about the next 
one, and therefore the lower the entropy rate of the process. In contrast, if all variables of 
the process are independent, the entropy rate of the process is exactly equivalent to the 
Shannon entropy of the process, which is the upper bound for the entropy rate.

The estimation of entropy rate can be challenging since it is difficult to know the joint 
probability distribution of finite sequences in real-world data. Here, we introduce an esti-
mation algorithm based on Lempel-Ziv data compression [39], which is known to rapidly 
converge to the real entropy rate of a time series. For a time series with length n, the entropy 
rate is estimated by

where �i is the length of the shortest substring starting at position i which doesn’t previ-
ously appear from position 1 to i − 1 . We illustrate the estimation procedure of entropy 
rate of a discrete sequence X = (a, b, a, b, c) in Table 1 for a better understanding. The 
notation X[1 : i] is historical subsequence before position i. Si is the shortest subse-
quence that never appeared in X[1 : i] , and �i is the length of the shortest subsequence 
Si . For i = 1, 2, 5 , �i = 1 , since the symbols in these positions are new symbols. While, 
for i = 3 , the shortest new subsequence is abc, because the historical subsequence ab 
appears in position 3 again. A similar situation also occurs in position 4. Above exam-
ple tells us if there are some fixed patterns that appear in the sequence repeatedly, their 
�i will be larger and the entropy rate will be smaller. In the extreme case of a sequence 
whose symbols are all unique, �i = 1 for all symbols and 

∑n
i=1�i = n . In this case, the 

entropy rate is maximum, equal to the Shannon entropy of sequence, which is log2(n) . 
It also have been proven that Hest will converge to the actual entropy rate when n 
approaches infinity [40].

Approximate entropy

Approximate entropy is a statistic quantifying the regularity and complexity of short and 
noisy time series data [41]. It originated from the analysis of complexity in dynamic sys-
tems and is seen as the information-theoretic rate of entropy for approximating Markov 
chains [42]. Approximate entropy measures the logarithmic probability that nearby pat-
tern runs remain close in the next incremental comparison. The calculation of approxi-
mate entropy requires two parameters, which are m, the length of the template, and r, 
a noise filter. Statistically, it would be the equivalent of dividing the space of states into 
cells of width r, to estimate the conditional probabilities of the m-th order.

Given a sequence of data X = [x1, x2, ..., xn] of length n, form subsequences sm(1) 
through sm(n−m+ 1) , defined by sm(i) = [xi, xi+1, ..., xi+m−1] . The distance between 
sm(i) and sm(j) is defined as the maximum difference in their respective scalar compo-
nents, which is

(4)Hest =
n× log2(n)∑n

i=1�i
,

(5)d[sm(i), sm(j)] = maxk=1,2,...,m(|xi+k−1 − xj+k−1|).
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We define a quantity named correlation integral,

which is the average number of subsequences similar to sm(i) . Then we compute,

Finally, the approximate entropy of the sequence is

From Eq. (8), we can see that approximate entropy is inversely proportional to the condi-
tional probability that similar subsequences of length m stay consistent at the next posi-
tion. Greater likelihood of remaining close, implying regularity, produces smaller ApEn 
values, and conversely.

Pincus showed that approximate entropy would converge to the entropy rate for 
independent identical distribution series and finite Markov chains [16]. However, this 
does not hold in more general cases, since approximate entropy is designed as a rela-
tive measurement used to compare the regularity of different time series. Approximate 
entropy can vary significantly with the choice of m and r, but the relativity of approxi-
mate entropy is enough to discriminate different systems. Pincus [43] pointed that, in 
general, given two data series X1 and X2 , when ApEn(m1, r1)(X1) < ApEn(m1, r1)(X2) 
then ApEn(m2, r2)(X1) < ApEn(m2, r2)(X2) . Additionally, the selection of appropriate 
values for m and r is crucial in ensuring accurate estimation of the conditional prob-
ability from data series of length n. It is recommended that m has a relatively low value, 
e.g., 2 or 3, since a reasonable estimation of conditional probability needs preferably 30m 
points. The value of r could be proportional to the standard deviation of the series.

Sample entropy

Approximate entropy is biased statistic. The bias arises from the calculation of correla-
tion integral Cm

i (r) , which allows each subsequence to count itself to ensure the loga-
rithms remain finite. As a consequence, the conditional probability is overestimated. If 
we call Bi is the number of subsequences with length m that are similar to subsequence 
sm(i) , and Ai is the number of subsequences with length m+ 1 that are similar to sub-
sequence sm+1(i) . The approximate entropy calculate (Ai + 1)/(Bi + 1) as conditional 
probability, which is greater than the real one Ai/Bi . This bias is obviously more impor-
tant for series with a small number of points n.

Richman et al. [17] defined sample entropy, a statistic which does not have self-count-
ing and eliminates the bias of approximate entropy. And the calculation procedure of 
sample entropy is simpler than approximate entropy. We define:

(6)Cm
i (r) =

1

n−m+ 1

n−m+1∑

j=1

#d[sm(i), sm(j)] ≤ r,

(7)�m(r) =
1

n−m+ 1

n−m+1∑

i=1

log2(C
m
i (r)).

(8)

ApEn(m, r) = �m(r)−�m+1(r)

≈ −(n−m)−1
n−m∑

i=1

log2(
Cm+1
i (r)

Cm
i (r)

).
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where A is the counts that two subsequences are similar with length m, and B is the 
counts that two subsequences are similar with length m+ 1 . By constraining j  = i , self-
counting is avoided. Then sample entropy is calculated as:

Since A is always less than or equal to B, the ratio A/B is an unbiased conditional proba-
bility less than or equal to unity. In addition to self-counting, another difference between 
SampEn and ApEn is the position of logarithm. The sum of all subsequences is inside 
the logarithm in SampEn and outside in ApEn. This operation reduces the probability of 
undefined logarithms when self-counting is not allowed. Sample entropy demonstrates 
improved relative consistency in comparison to approximate entropy and provides a 
more effective means of quantifying regularity in a system [17].

In practice, entropy rate is commonly used to measure regularity of categorical 
time series, such as human mobility and human online life. Approximate entropy 
and sample entropy are used extensively in physiological and medical applications. 
However, there has been a lack of studies that apply these entropy-based metrics 
to assess the regularity of human physical activities. As a result, the suitability of 
these entropy models in measuring the regularity of human activities remains to be 
verified.

Adapting entropy rate to samples with continuous values

To apply entropy rate to longitudinal sensor data that can reflect an individual’s physi-
cal activities, we modify the estimation procedure of entropy rate. As outlined in Eq. 
(4), calculating �i is essential for estimating entropy rate. In its original definition, �i 
represents the length of the shortest subsequence which starts from position i and never 
exists previously. While this definition is appropriate for categorical time series, it is too 
rigid for time series with continuous values, such as step counts or calorie expenditures, 
where small numerical differences can still be considered as equivalent status. There-
fore, we generalize the definition of �i by replacing existence with similarity. Based on 
distance function d[sm(i), sm(j)] in Eq. (5), we consider two subsequences are similar if 
d[sm(i), sm(j)] ≤ r . �i is redefined as the length of the shortest subsequence which starts 
from position i and never exists similar subsequences previously. This modification not 
only enables the entropy rate to be applied to continuous series, but also makes the com-
parison among entropy rate, approximate entropy, and sample entropy in a more fair 
manner, due to the same parameter r. For simplicity, we use the entropy rate to denote 
the modified entropy rate in subsequent sections.

(9)A =

n−m∑

i=1

n−m∑

j=1,j �=i

#d[sm+1(i), sm+1(j)] ≤ r,

(10)B =

n−m∑

i=1

n−m∑

j=1,j �=i

#d[sm(i), sm(j)] ≤ r,

(11)SampEn(m, r) = − log2(
A

B
)
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Validation of entropy models
In this part, we validate the applicability of entropy rate, approximate entropy, and sam-
ple entropy for measuring the regularity of human physical activities using longitudinal 
sensor data.

synthesized physical activity data

To validate the applicability of entropy rate, approximate entropy, and sample entropy, 
we need to know the real regularity of longitudinal sensor data, or at least the relative 
regularity among these data, as the ground truth. However, the diversity of individual 
lifestyles results in a mixture of varying kinds of regularity and a multitude of random 
noises in real-world sensor samples. This makes it challenging to manually distinguish 
which samples exhibit a higher degree of regularity.

Despite the complexity of real-world data, it is possible to construct synthesized physi-
cal activity data with controlled randomness to obtain a relative regularity. Moreover, 
the synthesized data should be considered as a simulation of activity patterns that occur 
in real life. An analysis of a real-world dataset is depicted in Fig.  1, which reveals the 
average step counts per minute within a week across hundreds of users. Similar shapes 
from Monday to Friday indicate distinct circadian rhythms existed in human physical 
activities. Three prominent peaks can be identified in the morning, noon, and evening 
of weekdays, which indicates collective exercise preference. Based on these observa-
tions, a basic activity pattern was constructed for the synthesized data, that is, exercise 
at preference time every day. The inherent randomness in human life, however, affects 
the occurrence time, duration, and intensity of exercise from day to day. Additionally, 
trivial activities in daily life, such as housework, may also occur randomly. By controlling 
the degree of randomness in these elements, synthesized physical activity data can be 
generated with known relative regularity.

More specifically, we model synthesized physical activity data as the superposition 
of two types of physical activities, which are exercise and trivial activity. Exercise usu-
ally lasts for a long period of time with a steady intensity, and is accompanied by some 

Fig. 1 Average step counts per minute within a week across users from a real-world dataset. On the one 
hand, the similar shapes are on weekdays or weekends suggesting a clear circadian rhythm in human activity. 
On the other hand, the patterns on weekdays and weekends are markedly different
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preference in terms of timing. The trivial activity, by contrast, only lasts a few minutes, 
fluctuates in intensity, and occurs randomly throughout the day. Mathematically, synthe-
sized data of one day can be expressed as

where Ei denotes i-th exercise of the day, and its parameters, ti , di , and inti represent 
occurrence time, duration, and intensity of the exercise, respectively. TAj is the j-th triv-
ial activity of the day. Trivial activities can be considered as noise in daily life and are 
assumed to be independently and identically distributed. A complete synthesized sample 
consists of data from several consecutive days. For simplicity, we assume that data from 
different days are independent.

Initially, we consider a completely regular scenario where exercise of constant inten-
sity and equal duration are performed at the same time every day. Taking the minute-
level step counts data as an example, three exercises that occur every day at 8:00, 12:00, 
and 20:00 with an intensity of 100 steps per minute and a duration of 60 min consti-
tute a very regular sample. In this case, M is set to 3, and the parameters of exercise are 
also fixed on daily basis. To simulate the variability of exercise, we add normally dis-
tributed disturbances to the occurrence time, duration, and intensity of exercise. These 
disturbances are denoted as dist ∼ N (0, σt), disd ∼ N (0, σd), disint ∼ N (0, σint) , respec-
tively. The standard deviation determines the degree of disturbance. A smaller standard 
deviation results in a more regular exercise pattern, while a larger standard deviation 
increases the level of disruption to the regularity. For trivial activities, their duration are 
generated from a geometric distribution with a mean of 3 min, and they are randomly 
placed throughout the day. The step counts per minute in trivial activities are sampled 
from a uniform distribution range from 20 to 150. Due to the random nature of trivial 
activity, an increase in the number of trivial activities leads to a decline in regularity. 
Therefore, the number of trivial activities, N, can be also used to control the degree of 
disturbance, like standard deviations. In Fig. 2, we visualize four synthesized samples, 
and each sample contains only one specific disturbance. The title of subplot indicates 
the type and degree of the disturbance. The x-axis is the time of day, and each line in the 
subgraph is the step counts waveform of a day. The y-axis is the number of days.

Using different parameters, we construct 2-week synthesized samples under these 
disturbances. The standard deviation of occurrence time ranges from 0 to 180 min in 
30-minute increments and the standard deviation of duration ranges from 0 to 60 min 
in 10-min increments. The standard deviation for intensity, measured in terms of step 
counts per minute, is varied from 0 to 100 in increments of 10. The disturbances from 
normal distributions are limited to ±σ to avoid cases of overlapping of exercise or mean-
ingless values such as negative duration or step counts. The number of trivial activities 
per day ranges from 0 to 50. For each parameter of disturbances, we construct 100 sam-
ples. Fig. 3 shows the entropy rate, approximate entropy, and sample entropy of synthe-
sized samples with different parameters. The noise filter r equals 10 to distinguish the 
smallest disturbance and the length of template m is 2, as [43] suggested. The solid lines 
represent trends of average value, and the shaded parts are 95% confidence intervals.

(12)Y =

M∑

i=1

Ei(ti, di, inti)+

N∑

j=1

TAj ,
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From Fig. 3a and b, we can find that approximate entropy and sample entropy remain 
unchanged with different disturbances on exercise’s occurrence time and duration. 
Although the duration and occurrence time of exercise varies, the conditional probabil-
ity that similar subsequences of length m stay consistent at the next position is almost 
invariable. This stability is a result of the reliance of approximate entropy and sample 
entropy on the evolution of small-scale subsequences. Variations in the duration and 
occurrence time of exercise can be considered as alterations in macro regularity, and 
they are difficult to distinguish at a small-scale. In the analysis of approximate entropy 
and sample entropy, the length of template m determines the size of subsequences. Due 

Fig. 2 Visualization of synthesized physical activity samples with four types of disturbance. a Normally 
distributed disturbance with a standard deviation of 60 min was added to the occurrence time of exercise. b 
Normally distributed disturbance with a standard deviation of 60 min was added to the duration of exercise. 
c Normally distributed disturbance with a standard deviation of 50 step/minute was added to the intensity of 
exercise. d Trivial activities were added to daily exercise
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to the small value of m, approximate entropy and sample entropy are less sensitive to 
such macro irregularities. While the entropy rate increases with the degree of distur-
bance. The entropy rate increases greatly from zero disturbance to a small disturbance, 
then the increment of entropy rate becomes smaller with the increment of disturbance. 
We can understand this phenomenon from the perspective of lossless data compression. 
For the completely regular sample, all activities are exactly the same and can be com-
pressed as one symbol. However, a small disturbance leads to minor variations among 
activities, resulting in the need to compress each unique activity as a separate symbol. 
As the disturbance level increases, the number of identical activities decreases and all 
activities must be compressed as distinct symbols, leading to a gradual decrease in the 
growth rate of entropy rate. Fig. 3c shows the performance of three entropy models on 

Fig. 3 Entropy rate, approximate entropy, and sample entropy of synthesized samples under different 
degree of disturbance. A good metric should monotonically increase with the degree of disturbance, and 
only the entropy rate satisfies this expectation
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synthesized samples under different degree of disturbance on exercise’s intensity. The 
disturbance can be regarded as noise of varying magnitudes applied to the original sig-
nal. It is observed that the approximate entropy increases as the magnitude of the noise 
increases. The larger the noise, the wider range of values at each time points. And the 
probability that similar subsequences are still close at the next moment becomes smaller. 
Entropy rate is also increasing and leveling off faster. This trend is similar to Fig.  3a 
and b for the same reason. We zoom in on the sample entropy curve in Fig. 3c, which 
increases and then decreases as disturbance increases. This is because sample entropy 
sums over the numerator and denominator of all subsequences separately when calculat-
ing the conditional probability. As shown in Fig. 3d, all three entropy models increase 
with the increment of trivial activities, which means all of them are able to distinguish 
the amount of noise in physical activity data.

Summarizing the performance of three kinds of entropy on synthesized physical activ-
ity data, we can find that approximate entropy and sample entropy can not distinguish 
the macroscopic variation of physical activity, such as duration and occurrence time, 
as the entropy rate can. Additionally, approximate entropy and entropy rate are able 
to identify the magnitude and amount of noise in physical activity data, while sample 
entropy can only identify the amount of noise.

Real‑world physical activity data

The synthesized physical activity data can be used to validate the applicability of entropy 
rate, approximate entropy, and sample entropy under specific situations. However, it 
is not sufficient to evaluate the applicability of these three kinds of entropy based only 
on the results of synthesized data, given that the real situation is more complex than 
synthesized data. A demonstration of how well these three types of entropy perform on 
real-world physical activity data will be more convincing. Although it is hard to know 
the real regularity of real-world samples, predictability can serve as a proxy for regular-
ity. Since good prediction rely on capturing the genuine patterns and relationships which 
exist in the historical data [44], regular data is more predictable.

Predictability is a measure of how well future values of a time series can be forecasted 
[45]. To evaluate the predictability of a time series with length n, a forecasting approach 
is employed starting at an initial position i. The i-th data point is predicted based on 
the previous data points, and this procedure is repeated until i = n . The predictability of 
the time series is determined by the average error of the predictions made at each posi-
tion. It is important to note that the predictability of a time series is not only dependent 
on the degree of regularity present in the series, but also on the choice of forecasting 
models. To mitigate the effect of model choice on predictability, we employ four widely 
used time series forecasting models, including both classical statistical models and deep 
learning models, as follows.

• Exponential smoothing (ES). Forecasts produced using ES are weighted averages of 
past observations, with the weights decaying exponentially as the observations get 
older [44]. ES method can capture the trend and seasonality of time series by apply-
ing exponential smoothing recursively [46].
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• Prophet. Prophet forecasts time series based on an additive model where non-linear 
trends are fit with yearly, weekly, and daily seasonality, plus holiday effects [47].

• Recurrent neural networks (RNN). RNN is a class of neural networks allowing out-
put from nodes affects subsequent input, which is able to capture long-term tempo-
ral dependencies. Long Short-Term Memory (LSTM) [48] and Gated Recurrent Unit 
(GRU) [49] are two popular variants of RNN, which have been shown to achieve 
state-of-the-art results in applications with time series.

• N-BEATS. N-BEATS is a deep neural architecture based on backward and forward 
residual links and a very deep stack of fully-connected layers [50]. The residual con-
nection enables the stacks to focus on predicting errors from the previous stack, 
which implements an automatic time series decomposition.

We first conduct these forecasting models on synthesized physical activity data to assess 
the feasibility of using predictability as a proxy for regularity. To reduce computational 
overhead, the data is first reduced from minute-level to hour-level by summing the val-
ues per minute within one hour. In this way, the total length of 30-day synthesized sam-
ples is reduced to 720. We historically forecast the entire sample starting from the first 
1/3 time steps, so that the forecast horizon is long enough and sufficient historical data 
is available for the initial forecast. The raw series of each user are first normalized before 
inputting forecasting models. Then, these forecast values are denormalized and used to 
calculated prediction errors with raw data. The mean absolute error (MAE) is used as a 
metric to evaluate the forecasting performance of the models. Since the impact of distur-
bance on intensity will cancel out after the summation process, we validate the perfor-
mance of forecasting models in hourly synthesized samples with the presence of other 
three kinds of disturbances. The results, as shown in Fig. 4, demonstrate that the MAE 
of all models increases with the increase of the disturbance level. The trend of prediction 
error is consistent with our expectation of regularity, and this indicates that the predic-
tion error can serve as a reliable proxy for regularity. At the same time, the performance 
of forecasting models varies in order under different disturbances. This indicates that 
the regularity captured by different forecasting models is different and it is necessary to 
employ multiple forecasting models to evaluate entropy models.

We then present three real-world physical activity datasets. (1) SJTU dataset. This 
dataset contains minute-level step counts data of 686 users over 30 consecutive days, 

Fig. 4 Performance of forecast models on hourly synthesized physical activity data. MAE of all models 
increases with the increase of the disturbance level, and this indicates that the prediction error can serve as a 
reliable proxy for regularity
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collected through a smartphone application called SJTU Health with the consent of 
users. It includes 205 male users and 481 female users, and the median age of all users 
is 42. (2) Fitbit dataset. This dataset is generated from thirty eligible Fitbit users who 
consented to submit approximately one month of personal tracker data, including min-
ute-level step counts, calorie expenditures, and exercise intensities. The values of inten-
sity range from 0 to 3, representing sedentary, lightly active, moderately active, and very 
active respectively. The intensity classification is determined by proprietary algorithms 
from Fitbit. (3) Lifesnaps Fitbit dataset. This data set collected hourly calorie expendi-
tures from 71 participants over 4 months, including 42 male users and 29 female users. 
We only use the data of first month in order to be consistent in data length with other 
datasets. In Table 2, we present the mean and standard deviations of all three datasets 
at different time periods (morning: 6 am–10 am, noon: 10 am–14 pm, afternoon: 14 
pm–18 pm, evening: 18 pm–22 pm, night: 22 pm–6 am). Such statistical information 
can tell us the distribution of user activities and help us understand the subsequent pre-
diction results.

We historically forecast these real-world samples from different users after scaling 
them to hourly data, just as we forecast synthesized samples. The results, as presented 
in Table 3, demonstrate the mean and standard deviation (Std) of the MAE of each fore-
casting model on real-world datasets. Among all models, RNN exhibits the lowest aver-
age prediction error on all datasets. The second-best performance is achieved by the 
N-BESTS. These deep learning-based models perform better than traditional models, 
like ES and Prophet.

Before calculating entropy rate, approximate entropy, and sample entropy for these 
real-world samples, the noise filter r needs to be assigned. The value of r should be cho-
sen carefully, as a small r can result in a high sensitivity to noise, leading to the masking 
of real regularities by tiny fluctuations. On the other hand, if r is set too large, it will 
reduce the ability to distinguish noise and result in all entropy values being the same in 
an extreme scenario where r approaches infinity. Here, we did not make r proportional 
to the standard deviation of each series as suggested in [43], since it leads to different 
noise filter for different individuals and the entropy values of different individuals will 
loss comparability. Therefore, we choose a unified noise filter r for all users, which is 
equal to the standard deviation of all data points. And we also test different values of r 
in subsequent analysis. For approximate entropy and sample entropy, the length of tem-
plate m is 2, as [43] suggested.

After obtaining prediction errors and three kinds of entropy for all real-world sam-
ples, we calculate the Spearman correlation coefficient between prediction error and 
entropy to determine the best regularity measurement. The Spearman correlation coef-
ficient is a statistical measure of the strength of a monotonic relationship between paired 
data. Since regular data can be predicted better, samples with smaller prediction errors 
should have smaller entropy. Among three kinds of entropy, the entropy with the highest 
Spearman correlation coefficient is considered as the best regularity measurement. We 
also test some rhythm-based and stability-based metrics mentioned in related work, the 
detailed results are presented in Supplementary Information (Additional file 1).

In Fig.  5, we display the scatter plots of prediction error versus three kinds of 
entropy for four forecasting models in the SJTU dataset. Each subplot is titled with 
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the Spearman correlation coefficient between prediction error and entropy. The 
results show that for all forecasting models, the correlation between entropy rate and 
prediction error is stronger compared to that of approximate entropy and sample 
entropy. For all kinds of entropy, the correlation coefficient between prediction error 
of the best-performing RNN model and entropy is greater than other models. The 
correlation coefficient between entropy rate and error of RNN is the highest, which 
is 0.8951. Figure 6 presents correlation coefficients between entropy and prediction 
error on Fitbit dataset and Lifesnaps Fitbit dataset. It is observed that the correlation 

Fig. 5 Scatter plot of MAE and entropy values on SJTU dataset. Each subplot is titled with the Spearman 
correlation coefficient between prediction error and entropy values. For all forecasting models, the 
correlation between entropy rate and prediction error is stronger compared to that of approximate entropy 
and sample entropy
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coefficients between sample entropy and prediction error are notably lower than 
those between entropy rate and approximate entropy. The performance of approxi-
mate entropy is found to be comparable to that of entropy rate on Fitbit (calorie) and 
Fitbit (intensity). On Fitbit (step counts) and Lifesnaps Fitbit(calorie), mean values of 
correlation coefficients between prediction errors and entropy rates for different fore-
casting models are slightly higher than that of approximate entropy. And the majority 
of their correlation coefficients are above 0.9.

We also perform a sensitivity analysis to investigate the impact of different noise filters 
r on the performance of three entropy models. Figure 7 presents the mean of correlation 
coefficients between prediction errors from different models and entropy under vary-
ing r in the SJTU dataset. The results reveal that the average correlation coefficients of 
all three entropy types initially increase and then decrease as r increases. This phenom-
enon is consistent with our previous analysis that entropy value calculated from both 
too small and too large r can not reflect the real regularity. Additionally, entropy rate 
displays a higher correlation coefficient than approximate entropy and sample entropy 
across a wide range of parameters. Especially when r is small, the advantage of entropy 
rate is more obvious. Moreover, with the increase of r, the correlation coefficient of 

Fig. 6 Correlation coefficients between prediction error and entropy on Fitbit dataset and Lifesnapes Fitbit 
dataset. The correlation coefficients of entropy rate and approximate entropy are significantly higher than the 
sample entropy. Meanwhile, entropy rate is slightly better than approximate entropy
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entropy rate does not decline significantly. These indicate that the entropy rate is more 
robust to the choice of parameter r.

In conclusion, entropy rate is more relevant to the prediction error of real-world physi-
cal activity samples than approximate entropy and sample entropy. Combining their per-
formance on synthesized data, entropy rate is more suitable than approximate entropy 
and sample entropy to measure the regularity of human physical activity.

Human physical activity regularity
Interpersonal variation of physical activity regularity

Based on entropy rate, we quantify the regularity of physical activity for different indi-
viduals. As shown in Fig. 8, we present the distribution of entropy rate of minute-level 

Fig. 7 Average correlation coefficient between prediction errors and entropy under varying noise filters in 
the SJTU dataset. Entropy rate displays a higher correlation coefficient than approximate entropy and sample 
entropy across a wide range of parameters. These indicate that the entropy rate is more robust to the choice 
of parameter r 

Fig. 8 Distribution of entropy rate across users in the SJTU dataset
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data for all users in the SJTU dataset. The average entropy rate of all users is 0.066 bits. 
In this context, entropy rate refers to the average amount of newly generated informa-
tion for each update of the user’s physical activity state. A entropy rate of 0.066 bit can 
be interpreted as the user’s physical activity state of next minute could be found on aver-
age in any of 20.066 ≈ 1.046 states, which also means the user’s physical activity state is 
determinable most of the time. These results can be explained by the fact that sedentary 
and restful activities typically occupy a significant portion of the day for most individu-
als. The SJTU dataset reveals that users on average have 1280 min per day with 0 step 
counts. Additionally, the ordered structure of the data, such as prolonged periods of a 
single state or regular alternations between states, further reduces the number of poten-
tial states for the next moment. Figure 8 also indicates distinct variations exist among 
individuals’ regularity. Such interpersonal variability on regularity reflects different life-
style preferences of people.

Figure 9 visualizes step counts data for two specific users with different entropy rates 
over the month-long observation period. User 1 displays a clear exercise pattern, char-
acterized by consistent daily walks at set times in the morning, noon, and evening. 
Conversely, the data for user 2 exhibits a more unpredictable and chaotic pattern, with 

Fig. 9 Case study of two specific users with different entropy rate over the 30 days. User 1 displays a clear 
exercise pattern, and is more regular than user 2 who exhibits a more unpredictable and chaotic pattern
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various fluctuating activities that occur at irregular times. As a result, the entropy rate 
for user 2 (0.1015 bit) is significantly higher than that for user 1 (0.0411 bit).

We also explore factors that may contribute to variations in regularity among individu-
als. To this end, we derive two features from the original physical activity data for all 
users. The first feature is the daily step counts, which serves as a measure of the total 
amount of physical activity. The second feature is the daily duration of trivial activities, 
which can be used as a proxy for the composition of physical activity. The trivial activity 
is determined based on duration and intensity. Physical activities that last less than 10 
minutes or 1000 step counts are classified as trivial activity, because activities with more 
than 1000 step counts in 10 minutes are generally regarded as effective exercise [51]. 
Figure 10 displays the relationship between entropy rate and these two features for all 
users in SJTU dataset. When daily step counts is low, the entropy rate tends to be low as 
well, as there is limited physical activity. However, as the daily step count increases, the 
entropy rate exhibits a wider range of regularity. In general, daily step counts is weakly 
correlated with entropy rate, and the correlation coefficient is 0.4403. On the other hand, 
the average duration spent on trivial activities per day shows a great positive correla-
tion with entropy rate, and the correlation coefficient is 0.7290. Trivial activities tend 
to exhibit more randomness in both the occurrence time and intensity compared to 
exercise, which leads to a decrease in regularity as the time spent on trivial activities 
increases. Overall, the results suggest that the regularity of human physical activity is 
not determined by the amount of activity, but rather by the composition of activities.

Intrapersonal variation of physical activity regularity

Intrapersonal variation of regularity describes temporal variability of the same individ-
ual’s physical activity habits. For each user in SJTU dataset, we recursively slide through 
the entire sequence in a 14-day window (e.g. day1–day14, day2–day15, ..., day17–day30). 
In this way, we divide user’s original time series of 30 days into 17 two-week time peri-
ods. The entropy rate of consecutive time periods forms an entropy rate sequence, 
which indicates how an individual’s regularity changes over time. Figure  11 illustrates 
entropy rate sequences from three users with different degrees of variability. We utilize 

Fig. 10 Scatter plot of regularity and characteristics of physical activities across all users in SJTU dataset
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Coefficient of Variation (CV) to quantify the degree of variation, which is the ratio of 
the standard deviation to the mean. The entropy rate sequence of user 1 has the smallest 
CV value, 0.04, among these three users, and it fluctuates around the blue dashed line, 
which is the mean of entropy rate sequence. This indicates the physical activity regular-
ity of user1 is almost constant. The entropy rate sequence of user 2 decreases slightly 

Fig. 11 Illustration of entropy rate sequences from three users. The dotted line represents the mean value of 
sequence

Fig. 12 Cumulative distribution function of the coefficient of variation for all users in the SJTU dataset. 40% 
of users have CV values less than 0.05, and more than 80% of the users have CV values less than 0.1. This 
indicates the majority of people have stable physical activity habit

Table 1 An example illustrating the estimation of entropy rate
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in the last several time periods, and it has a CV value of 0.10. For user 3, the entropy 
rate increases significantly over time in the second half. Therefore, it has the highest CV 
value of 0.20.

We also calculated the coefficient of variation o entropy rate sequence for all users, and 
plot its cumulative distribution function (CDF) in Fig. 12. We can find that about 40% of 
users have CV values less than 0.05, and more than 80% of the users have CV values less 
than 0.1. This indicates the majority of people have stable physical activity habits.

Discussions
With fine granular data collected over an extended period of time, we are offered the 
opportunity to study the regularity of human activities at a granularity much finer than 
that in conventional studies, such as the ones in [6, 33–35]. Entropy models, and in 
particular, entropy rate, with the ability of exploring short and prior unknown subse-
quences, are thus natural tools to consider. As our results with the synthesized and real-
world data reveal, entropy models can provide a unique picture of regularity, in both 
interpersonal and intrapersonal situations. The simplicity of this regularity measure also 
allows for different uses. For example, it may be used as a reliable component in a com-
plex user activity profile, or, it can be an easy to use indicator in population level health 
interventions. Our study enriches the applications of entropy models and thus well com-
plements existing studies in which entropy models are used in human mobility [11], 
physiology [17], medicine [18] and climatology [23] etc.

The complexity in human physical activities, as demonstrated in the fine granular data, 
makes it very difficult to interpret the entropy models that are highly abstract, and thus 
the effectiveness of these models is difficult to evaluate. The synthesized data, and the 
experiments based on them, serve as a first crucial link between the tools and the physi-
cal world. The behavior of the entropy models can be well observed by controlling the 

Table 2 Statistical information (mean ± standard deviation) of all datasets at different time periods

Datasets SJTU (step counts) Fitbit (step counts) Fitbit (calorie) Fitbit (intensity) Lifesnaps 
Fitbit 
(calorie)

Morning 446± 929 334± 722 98± 59 12± 22 91± 50

Noon 655± 951 492± 761 113± 66 18± 23 116± 73

Afternoon 563± 962 506± 855 116± 74 19± 24 117± 74

Evening 649± 1185 461± 815 112± 68 17± 24 128± 83

Night 49± 387 66± 291 75± 39 3± 12 79± 37

All day 402± 895 320± 690 98± 62 12± 21 102± 65

Table 3 MAE (mean ± Std) of forecasting models on real-world datasets

Models SJTU (step counts) Fitbit (step counts) Fitbit (calorie) Fitbit (intensity) Lifesnaps 
Fitbit 
(calorie)

ES 428± 148 298± 137 24.4± 12.6 9.61± 3.82 29.4± 11.9

Prophet 466± 160 323± 146 28.1± 13.1 10.87± 3.89 39.0± 16.7

RNN 346± 124 266± 134 23.1± 11.9 9.05± 3.69 26.7± 11.7

N-BEATS 353± 123 294± 144 24.8± 12.2 9.52± 3.62 28.4± 12.0
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easy to interpret randomness in the synthesized physical activities. Our study show that 
entropy rate can identify not only the magnitude and the amount of noise, but also mac-
roscopic variations of physical activities, such as differences on duration and occurrence 
time, which can not be recognized by approximate entropy and sample entropy. To fur-
ther validate the effectiveness of these models, they must be tested on real-world data. 
However, with no prior knowledge of the “regularity” about the real-world dataset, any-
thing calculated on the data samples are out of context. By correlating the entropy values 
of the real-world samples with their respective predictive performance, which, in prac-
tice, is considered as one proxy of regularity [45], the second crucial link is established. 
On several real-world datasets, entropy rate also exhibits stronger correlation with pred-
ication errors compared to approximate entropy and sample entropy. We then conclude 
that entropy rate is a reliable measurement of human physical activity regularity.

Our study on the interpersonal and intrapersonal variations of regularity with entropy 
rate demonstrates some interesting facts. Despite the seemingly complex data, their 
entropy values are generally low. This well agrees with the fact that sedentary and restful 
activities typically occupy a significant portion of the day for most individuals. An aver-
age entropy rate of 0.066 may also suggest that in theory, the number of bits needed to 
record the physical activity of an ordinary person may be small.

One limitation of this study, however, is that the data recorded by wearable or other 
smart devices have their inherent limits. Some activities may fail to be recorded when 
the device is not carried along by its owner. Furthermore, the data recorded by wearable 
sensors may also have some deviation from the actual situation [52]. Although entropy 
rate can tolerate a portion of the recording deviation by noise filter r, when the deviation 
exceeds r, it leads to an inconsistency between the computed regularity and the true reg-
ularity. And, it is worth noting that in our experiments, we used a fixed r for all persons 
to ensure a fair comparison of regularity across them. In a scenario where the associa-
tion between physical activity regularity and individual health outcomes is investigated, 
personalized noise filter would be more appropriate.

Conclusions
In this study, we explore the feasibility of using entropy models to measure the regularity 
of human physical activities. Through experiments on both synthesized and real-world 
dataset, we found that entropy rate can be regarded as a more reliable measurement for 
regularity of human physical activities than approximate entropy and sample entropy. 
On synthesized physical activity data with controlled randomness, entropy rate exhibits 
the ability to identify not only the magnitude and amount of noise but also macroscopic 
variations of physical activities. On real-world physical activity datasets, entropy rate 
is closely tied to the predictability of samples. The strong correlations between entropy 
rate and prediction errors from various forecasting models demonstrate its applicability 
in measuring human physical activity regularity. In future work, it would be of interest 
to develop a multifaceted approach to assessing the regularity of human activities, lev-
eraging diverse data sources such as activity data, weather data, and external incentives. 
Such an integrated approach could provide a more comprehensive and nuanced under-
standing of the factors shaping physical activity patterns and inform the development of 
targeted interventions to promote regular physical activity engagement.
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Abbreviations
ApEn  Approximate entropy
SampEn  Sample entropy
ES  Exponential smoothing
RNN  Recurrent neural network
LSTM  Long short term memory
GRU   Gated recurrent unit
Std  Standard deviation
CV  Coefficient of variation
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