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Abstract 

The Möbius function µ(n) is known for containing limited information on the prime 
factorization of n. Its known algorithms, however, are all based on factorization 
and hence are exponentially slow on log n . Consequently, a faster algorithm of µ(n) 
could potentially lead to a fast algorithm of prime factorization which in turn would 
throw doubt upon the security of most public-key cryptosystems. This research intro-
duces novel approaches to compute µ(n) using random forests and neural networks, 
harnessing the additive properties of µ(n) . The machine learning models are trained 
on a substantial dataset with 317,284 observations (80%), comprising five feature vari-
ables, including values of n within the range of 4× 109 . We implement the Random 
Forest with Random Inputs (RFRI) and Feedforward Neural Network (FNN) architectures. 
The RFRI model achieves a predictive accuracy of 0.9493, a recall of 0.5865, and a pre-
cision of 0.6626. On the other hand, the FNN model attains a predictive accuracy 
of 0.7871, a recall of 0.9477, and a precision of 0.2784. These results strongly support 
the effectiveness and validity of the proposed algorithms.

Keywords: The Möbius function, The algorithm of the Möbius function, Machine 
learning, Random forests, Neural networks

Introduction
The era of big data has revolutionized various industries and enabled significant 
advancements in data science, leading to transformative applications in fields such as 
healthcare, finance, and artificial intelligence. However, along with the tremendous 
potential of big data comes the paramount concern for data security during transmission 
and within applications. Despite rapid progress in data science, the theoretical founda-
tion of data security has been somewhat overlooked, leading to a gap between data sci-
ence development and robust security infrastructure. To address this issue, our study 
aims to take the first step in proposing machine learning solutions to bolster our under-
standing of data security in the era of big data.

It is a common belief that the prime factorization of a large integer n cannot be com-
puted in the polynomial time of log n . This belief forms the basis for the security of 
prominent cryptographic systems like the Rivest-Shamir-Adleman (RSA) public-key 
cryptosystem (Rivest et  al. [1]) and now has become the security foundation of much 
of the internet communication and monetary transactions, online commerce, digital 

†Huan Qin and  Yangbo Ye: These 
authors contributed equally to 
this work.

*Correspondence:   
yangbo-ye@uiowa.edu

1 San Diego State University-
Imperial Valley, 720 Heber Ave, 
Calexico 92231, CA, USA
2 Department of Mathematics, 
The University of Iowa, Iowa 
City 52242, IA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00889-7&domain=pdf


Page 2 of 14Qin and Ye  Journal of Big Data           (2024) 11:31 

financial instruments, and an important part of daily life. This so-called “not in class P” 
belief, however, has no theoretic or scientific evidence, while an increasing number of 
number theorists believe that the the opposite is actually true (cf. Sarnak [2]). It is our 
long-term goal to seek scientific evidence to support this disbelief.

The Möbius function is defined as

In other words, µ(n) vanishes if n is not square-free, i.e., if there is a prime p with p2 
dividing n. On the other hand for square-free n’s, µ(n) provides the factorization parity 
of n. Consequently, the Möbius function µ(n) detects two features of n: (1) whether n is 
square-free, and (2) if n is square-free, what its factorization parity is.

Question (1) is well studied with a known algorithm without using factorization of 
n by Booker, Hiary, and Keating [3]. Their algorithm runs in a deterministic subexpo-
nential time on log n . Although its computational speed is not the fastest among known 
algorithms, it is the first non-factorization algorithm of µ(n) when n is not square-free.

This paper attempts to answer Question (2). Since square-free moduli are used in the 
RSA cryptosystem, Question (2) may have a huge potential impact on cyberspace secu-
rity. While µ(n) contains much less information than the prime factorization of n, all 
existing algorithms of µ(n) for square-free n still rely on factorization.

Finding properties, randomness, and/or faster algorithms of µ(n) are seemingly easier 
problems than finding a factoring algorithm in class P. In recent years, much theoreti-
cal efforts on µ(n) for square-free n’s have be focused on the randomness of µ(n) and 
its dynamic behaviors. In this paper, we will take a different approach. While current 
theoretical approaches cannot produce new algorithms of µ(n) for square-free n’s, we 
propose novel algorithms by machine learning.

Training machine learning models for µ(n) and other multiplicative number theoretic 
functions may take a long time and require large datasets, and hence may only be done 
for n’s of a moderate size. We hope the machine learning models obtained in this paper, 
however, are “true” algorithms of µ(n) in the sense that they can be applied to much 
larger n’s of the size currently used in the RSA cryptosystem, say about 10300 . It is in this 
sense that our machine learning models might provide efficient algorithms of µ(n) . This 
is the work in progress of the authors which requires machine learning techniques for 
high precision integers.

The function values of µ(n) constitute an infinite dataset, presenting typical, if not 
more complex, challenges for big data analysis and algorithms. The current study also 
offers an illustrative approach to address the broader challenges posed by big data analy-
sis and algorithms.

Related work
Mathematical research has evolved notably since the 1960s, with the integration of com-
puters aiding in pattern discovery and conjecture development, crucial for establishing 
theorems. A prime example is the Birch and Swinnerton-Dyer conjecture, a Millen-
nium Prize problem, highlighting this blend of mathematics and computational tools. 

µ(n) = (−1)k if n = p1 · · · pk for distinct primes p1, . . . , pk;

=0 otherwise.
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Although publications in this field are few, existing research showcases the innovation in 
this interdisciplinary domain.

Some research in various pure mathematical fields can be categorized as employing 
primitive machine learning models. Davies et al. [4] utilize fully connected feed-forward 
neural networks in Knot Theory to analyze hyperbolic knots, employing various datasets 
with a focus on predicting algebraic invariants. In the field of Algebraic Geometry, He, 
Hirst, and Peterken [5] apply deep neural networks to study dessins d‘enfants, investi-
gating their connections with modular subgroups and Seiberg-Witten curves. Bao et al. 
[6] employ machine learning techniques, such as neural networks and a Random Forest 
Classifier, in Geometry to analyze Hilbert series within the framework of quantum field 
theory, using datasets derived from geometric sources and the Graded Ring Database. 
Additionally, Bao et  al. [7] implement multiplayer perceptions and convolutional neu-
ral networks in their Combinatorial Geometry study to predict the properties of lattice 
polytopes by analyzing data from 2D and 3D polygons. Moreover, He, Lee, and Oliver 
[8] use Bayesian classifiers in Number Theory to study the arithmetic of hyperelliptic 
curves, utilizing datasets comprising elliptic curves and Sato-Tate groups. Finally, Lam-
ple and Charton [9] demonstrate that neural networks, traditionally known for handling 
statistical or approximate problems, can excel in complex mathematical tasks like sym-
bolic integration and solving differential equations, proposing a new syntax for math-
ematical problem representation and dataset generation methods.

Advanced machine learning models, particularly transformers [10], have shown 
impressive capabilities in mathematical applications. Notably, transformers excel in 
tasks like symbolic integration, solving differential equations, and cryptosystem attacks. 
Charton [11] explores the ability of small transformers to calculate the greatest com-
mon divisor of two positive integers, achieving 98% accuracy by optimizing training 
distribution and representation base. Additionally, Wenger, Chen, Charton, and Lauter 
[12] train transformers to perform modular arithmetic and combine them with statisti-
cal cryptanalysis to develop SALSA, a novel machine learning attack on cryptographic 
schemes based on the Learning with Errors problem.

Number theoretic background
The RSA public-key cryptosystem [1] uses two distinct primes p and q as private keys. 
The product n = pq and an exponent k ∈ Z+ are made public. Anyone can encode 
a message a by computing b ≡ ak (mod n) , which can be done by the method of suc-
cessive squaring in polynomial time of log n . To decode b, a decoder needs to use p 
and q to compute the Euler φ-function φ(n) = (p− 1)(q − 1) , solve the congruence 
ku ≡ 1 (mod φ(n)) by the Euclidean algorithm, and compute bu (mod n) by successive 
squaring to recover the original message a ≡ bu (mod n) . All these steps are in polyno-
mial time of log n , except the factorization n = pq if one does not know the private keys 
p and q. The belief that factorization cannot be done in class P makes the RSA crypto 
scheme secure.

Integer factorization is believed to be slow because all known algorithms use trial divi-
sion to detect prime factors of n, or use trial checking to find enough suitable smooth 
numbers. The latter approach is called a sieve method. The most advanced sieve method 
is the general number field sieve (cf. Pomerance [13]) which can factor n in about
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time, for some constant c1 > 0 , which is much slower than a polynomial time 
c2(log n)

c3
= c2exp

(

c3 log log n
)

 for some constants c2, c3 > 0 . For comparison, a factori-
zation method by trial division has a computational time around

for some constant c4 > 0.
The squared Möbius function µ2(n) detects whether n is square free or not. An algo-

rithm of µ2(n) based on factorization requires (1) of time. Booker, Hiary, and Keating 
[3] proposed an algorithm of µ2(n) based on the random matrix theory with a time of 
exp

(

(log n)
2
3+ε

)

 for any ε > 0 . In Luo and Ye [14], additive relationships among values 
of µ2(n) are explored based on work by Carlitz [15], Hall [16], Heath-Brown [17], Tsang 
[18, Theorem 1], etc. These additive relationships suggest the existence of additive and 
hopefully efficient algorithms for µ2(n).

For square-free n’s, additive relationships among values of µ(n) are identified in Luo 
and Ye [14]. More precisely, for finite X and 1 ≤ h ≤ 1, 000 , [14] shows that the condi-
tional expectation of µ(n+ h) on µ(n) = 1 for 1 ≤ n ≤ X is not equal to the conditional 
expectation of µ(n+ h) on µ(n) = −1 for 1 ≤ n ≤ X . Note that Chowla’s conjecture [19, 
(341)] (cf. also Matomäki, Radziwiłł, and Tao [20]) as modified for square-free integers, 
predicts that these two conditional expectations converge to each other when X → ∞ . 
Since for algorithms and computational complexity of µ(n) the integers n are always 
finite, the former case rules and hence serves as a theoretical foundation of the present 
study.

Random forests and neural networks
Decision trees and random forests

General principles

A great variety of random forest methods are currently used in supervised machine-
learning classification problems. For the purpose of this study, we will implement the 
random forest algorithm proposed by Breiman [21]. The underlying principle of random 
forests is to aggregate a collection of random decision trees. First of all, to establish a 
classification model utilizing a decision tree algorithm, the set of all feasible values for 
feature variables is partitioned into distinct and non-overlapping regions. The prediction 
for a given observation can be made by identifying the class that occurs most frequently 
among the training observations in the region where it falls. The objective is to find these 
regions that minimize the error rate of classification regions that correspond to the frac-
tion of the training observations that do not belong to the most commonly occurring 
class in that region. Decision trees can be easily explained, displayed graphically, and 
outperformed on cases assumed non-linear decision boundaries than some commonly 
used linear models like regressions. However, these tree models can be non-robust and 
suffer from high variances. One technique that is applied to overcome these disadvan-
tages is through bootstrap by taking repeated samples from the training set, building a 

(1)c1exp
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log n
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separate prediction model using each sample, recording the class predicted by each tree, 
and taking a majority vote (James et al.  [22]).

By introducing random perturbations to individual decision trees, the forest can 
extensively explore a broader spectrum of potential tree predictors, which, in prac-
tice, yields enhanced predictive performance. Specifically, the supervised classifier 
and random forests can be set up as follows ( [21] and Genuer and Poggi [23]). Let 
Ln = {(X1,Y1), . . . , (Xn,Yn)} be a learning sample composed of n couples of inde-
pendent and identically distributed observations, coming from the same common 
joint unknown distribution (X,Y ) . Assuming X ∈ X  , a space of dimension p and 
Y ∈ Y = {1, 2, . . . ,C} , the classifier ˆh : X → Y is a Borel measurable function which 
associates a prediction ŷ of the response variable Y corresponding to any given input 
observation x ∈ X  . Let ( ˆh(.,�1), · · · , ˆh(, .�q)) be a collection of classification trees, with 
�1,�2, . . . ,�q be q independent and identically distributed random variables inde-
pendent of the learning sample Ln . The random forests predictor ˆhRF in classification is 
obtained by aggregating this collection of classification trees as the majority vote among 
individual trees, i.e.

Random forest with random inputs (RFRI)

We implement RFRI to our target Möbius function, which exhibits two significant char-
acteristics. Firstly, during the construction of each tree, a subset of mtry variables is 
randomly chosen at each node. This random selection is achieved by uniformly draw-
ing mtry variables, without replacement, from the pool of p available input variables. 
Among these selected variables, the optimal split is determined by considering all pos-
sible splits. Secondly, the RFRI trees are not pruned. To summarize, the algorithm for 
random forests classification with RFRI trees can be outlined as follows: 

1. Draw ntree bootstrap samples from the original data.
2. For each of the bootstrap samples, grow an unpruned classification tree in the fol-

lowing manner: at each node, randomly sample mtry of the predictors and choose 
the best split from among those variables.

3. Predict new data by aggregating the predictors of the ntree trees, which is obtaining 
the majority votes for classification.

There are two tuning parameters involved in building the RFRI and predicting values 
of the Möbius function. The first parameter, ntree, represents the number of trees in 
the model. A larger number of trees generally leads to better performance, and thus the 
value of ntree is selected based on the computational cost of the model. It is considered 
sufficiently large when further increases in the number of trees do not result in signifi-
cant improvements in prediction accuracy [23]. The second parameter, mtry, deter-
mines the number of variables chosen at each node. The tuning process of mtry will be 
described in "Implementations and model validations" section. It will be shown that dif-
ferent values of mtry may lead to different prediction results.

ˆhRF (x) = arg max1≤c≤C

q
∑

l=1

1
ˆh(x,�l)=c

.
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Feedforward neural network (FNN)

The non-parametric nature of neural networks makes them attractive choices for 
learning tasks where the underlying functional form is unknown, such as in the case 
of the Möbius function. A typical neural network architecture consists of layers of 
elementary processing units called neurons, interconnected based on the specific 
type and purpose of the network. The first layer, known as the input layer, consists of 
neurons equal to the number of distinct features in the input data. Subsequently, the 
data passes through neurons of custom-sized hidden layers. Finally, the output layer, 
containing one neuron for each predicted feature, completes the network architec-
ture. Upon entering the input layer of a neural network, data is transformed into out-
put by propagating through neurons via connections (edges) between them. In FNNs, 
data propagates strictly towards the output layer, i.e. neurons output exclusively to 
neurons of subsequent layers.

Consider the a-th neuron in the L-th layer of a given neural network, which we 
will denote by nLa . Based on the topology and architecture of the neural network, nLa 
receives signals from m neurons and transmits signals to q other neurons. Then, the 
neuron nLa can be characterized by two parameters: an m-dimensional weight vector 
(w1a,w2a, . . . ,wma)

T  and a bias term ba . When nLa receives signals x1, x2, . . . , xm from 
neurons n1, n2 . . . , nm in the preceding layer, the signal oa transmitted by nLa to each 
of the q output connections is calculated using the following formula (Warner and 
Misra [24]):

where σL is an activation function specified for all neurons of layer L, and 
∑m

i=1 wiaxi − ba 
is referred to as the input signal. This transformation is depicted in Fig. 1.

Application of machine learning to the Möbius function
The goal of this study is to find the Möbius function value µ(n) , for a given large 
square-free number, n.

oa = σL

(

m
∑

i=1

wiaxi − ba

)

,

Fig. 1 Feedforward propagation in a single hidden layer neuron.
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Construction of a database

Let P be the set of some primes ≤ X where X is a fractional power of n. Choose positive 
integers k and ℓ , and pairwise coprime positive integers m1, . . . ,mℓ . The database con-
sists of records of ℓ+ 2 variables. The first variable is m which is either a prime in P, the 
product of two distinct primes in P, or the product of k distinct primes in P. Conse-

quently, the number of records in this database is 
∑

1≤j≤k

(

|P|
j

)

 . The second variable of 

a record is µ(m) = ±1 which is known by the construction of m. The rest ℓ variables are 
remainders of m divided by some chosen integers mν , ν = 1, . . . , ℓ.

Data balancing

The data will be imbalanced with a severe difference between the two classes, Class 1 

which is the set of m with µ(m) = 1 of 
∑

1≤j≤k/2

(

|P|
2j

)

 records and Class − 1 which is 

the set of m with µ(m) = −1 of 
∑

1≤j≤(k+1)/2

(

|P|
2j − 1

)

 records. Synthetic Minority 

Oversampling Technique (SMOTE) is applied to address this imbalance (Chawla, Bow-
yer, Hall, and Kegelmeyer [25]). Instead of simply oversampling the minority class, 
SMOTE first selects examples from the minority class and finds a certain number of the 
nearest neighbors for an example in the (ℓ+ 2)-dimensional feature space. Then, a ran-
domly selected neighbor is chosen and a synthetic example is created at a randomly 
selected point between the two examples in the feature space.

Data splitting

In this study, a random selection of 80% of the data was utilized for training purposes, 
leaving the remaining 20% for testing. Consequently, the training dataset consists of 
317,284 observations, while the test dataset contains 79,322 observations.

Implementations and model validations

RFRI classification

The experiment employs the RFRI classification model, which is implemented using the 
programing language R and the R library caret (Kuhnm [26]) and randomForest (Liaw 
and Wiener [27]). The dataset used in this study consists of 396,606 observations of six 
variables, with the response variable µ(n) generated by the algorithm described in "Con-
struction of a database" section. A list of prime numbers up to 263 is obtained and used 
to compute the products of two, three, and four distinct primes, resulting in integer val-
ues that are included in the “n”column. The maximum value recorded in the “n”column 
is 4,088,647,181, which is the product of prime numbers 241, 251, 257, and 263. The 
choice of other features is based on several considerations, including relevance, compu-
tational efficiency, and training difficulty. The selected features include integer values n 
from the “n”column and the congruent values of n modulo 4, modulo 9, modulo 25, and 
modulo 49.

To prepare the data for analysis, the feature values are pre-processed using the stand-
ardization procedure, which involves subtracting the mean and dividing by the standard 
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deviation. To enhance the robustness and generalization performance of the model, the 
training set is subjected to three rounds of 10-fold cross-validation conducted on the 
training set with SMOTE resampling technique. This approach helps to address the issue 
of class imbalance and improve the model’s ability to generalize to new data.

We use a tuning algorithm to aid in managing the training process and improving 
model outcomes. Recall that mtry refers to the number of variables that are randomly 
selected to be sampled at each split, while ntree pertains to the number of trees in the 
random forest model. In this experiment, ntree is set to be 500 and the highest training 
accuracy is achieved when the mtry is set to 3, see Fig. 2.

Single‑layer FNN classification

To facilitate comparison and validation, we employed a FNN to analyze the identical 
training and test data sets utilized in our random forests experiment. The same SMOTE 
resampling technique and standardization procedures were utilized and three repeated 
10-fold cross-validations were performed.

The FNN was developed using the R package nnet (Venables and Ripley [28]), incor-
porating a single hidden layer. The results from the repeated cross-validation showed 
that the model attained its peak ROC value of 0.92 when configured with a single hidden 
unit, as depicted in Fig. 3. The refined model comprises one hidden layer with a single 
unit, employing the Sigmoid activation function. The optimization process employed the 
Broyden-Fletcher-Goldfarb-Shannon (BFGS)method, coupled with a least-squares loss 
function, a full batch, and only one epoch. The weighted decay is 0.1.

Fig. 2 Model Tuning Results for RFRI Model: Achieving Peak Accuracy of approximately 0.96 with mtry = 2 
after Repeated Cross-Validation.
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Learning ideas
The database will be constructed in a way to avoid factorization. In particular, we will 
not seek to have records to cover an entire neighborhood of n. There will be smaller 
values of m in the database, which we believe is an important feature of the database, 
because these m’s and their Möbius function values may provide easier hints for the 
model to learn.

Residue classes modulo m1, . . . ,mℓ are incorporated in the database because values 
of the Möbius function have hidden additive properties as pointed out in Luo and Ye 
[14]. Values of the Möbius function are deterministic and are not random. For a given 
modulus mi , the distribution of µ(m) on the arithmetic progression m ≡ a (modmi) 
are presumably different from the distribution of µ(m) on m ≡ b (modmi) , when 
a  ≡ b (modmi) . This difference itself manifests an additive property of the Möbius 
function.

The multiplicative properties of µ(m) are easy to understand based on its multiplica-
tive definition. Its additive properties seem to be complicated and beyond human com-
prehension so far. It is our hope that a machine learning model may discover some of 
these additive properties and use them to formulate a fast algorithm.

A central issue for an algorithm of µ(n) is its computational complexity, which has two 
stages, the training time complexity and the run-time complexity. For a random forests 
model, the run-time complexity is simply the depth of the trees. The training time com-
plexity, on the other hand, is estimated to be O(NDT logN ) , where N is the number of 
points in the training set, D is the dimension of the data, and T is the number of decision 
trees (Kumar [29]). These complexity bounds will be used in dataset construction and 
model selection.

On the other hand, it is known (Kearns and Valiant [30]) that for a pseudorandom 
function f(n), even if it is polynomial-time computable, there is no way to learn it from 
examples in polynomial time (cf. Arora and Barak [31, 9.5.5]). It is our surmise that the 
Möbius function is not pseudorandom.

The proposed algorithm is of course a probabilistic algorithm in the sense that its 
accuracy is based on the metrics to be discussed in "Metrics for prediction performance" 
section below. We hope that the accuracy may be improved by adjustments to the data-
base structure and model parameters.

Fig. 3 Model Tuning for the Single-layer FNN: Receiver Operating Characteristic (ROC) Reaches Maximum 
Value with One Hidden Unit after Repeated Cross-Validation and Various Weight Decay Options.



Page 10 of 14Qin and Ye  Journal of Big Data           (2024) 11:31 

Metrics for prediction performance
Performance metrics for the RFRI classifier

To evaluate the performance of our models comprehensively, we considered essential 
metrics, including Accuracy, True Positive Rate (TPR), False Positive Rate (FPR), Preci-
sion, F1-Score, ROC, and Area Under the ROC Curve (AUC).

For the RFRI classifier, Class − 1 was designated as the positive class. The Accuracy 
metric, which indicates the percentage of correct predictions out of the total number 
of predictions made, achieved an overall rate of 0.9493. This implies that 94.93% of 
instances in the test set were correctly classified by the model. However, it is important 
to note that the test set was imbalanced, with significantly more instances in Class 1 
than in Class − 1 (see Table 1). In such cases, relying solely on Accuracy may not pro-
vide a complete picture of prediction performance. Classifiers that constantly predict the 
majority class could still achieve high Accuracy, even if their performance in the minor-
ity class is poor. Therefore, additional metrics like TPR, FPR, Precision, and F1-Score are 
crucial, especially in imbalanced datasets. These metrics take into account the number 
of True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives 
(FN), providing a more nuanced evaluation of the classifier’s performance. The defini-
tions and corresponding results of these metrics for the RFRI model can be found in 
Table 2.

TPR, also known as Sensitivity or Recall, assesses how well a model can identify true 
positives. Specifically, it represents the percentage of actual Class − 1 instances that are 
correctly predicted by the model. In this case, the TPR of the classifier is 0.5865, mean-
ing that 58.65% of the actual Class − 1 instances in the test set are correctly identified by 
the model. The TPR metric is particularly important in this case because correctly classi-
fying Class − 1 instances is more crucial than correctly classifying Class 1 instances due 
to the imbalanced test dataset, where Class − 1 instances are the minority class.

Precision and F1-Score are alternative metrics that can be used to evaluate the per-
formance of a predictive model, especially in the context of class imbalance. Precision 

Table 1 Confusion matrix of the testing dataset

Reference

Predicted Positive (“−1”) Negative (“1”)

Positive (“−1”) TP: 3311 FP: 1686

Negative (“1”) FN: 2334 TN: 71991

Table 2 Prediction performance metrics for two classifiers: RFRI and single-layer FNN

Metric Formula Explanation RFRI FNN

Accuracy TP+TN

TP+TN+FP+FN
Percentage of correct classifications 0.9493 0.7871

TPR/Sensitivity/Recall TP

TP+FN
Rate of correctly classified positives 0.5865 0.9477

FPR FP

FP+TN
Rate of incorrectly classified positives 0.0229 0.2248

Precision TP

TP+FP
Fraction of positive predictions thatwere 
actually positives

0.6626 0.2384

F1-Score 2·Precision·Recall

Precision+Recall
Harmonic mean of the precision and recall 0.6223 0.3809
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measures the proportion of the TP among all positive predictions made by the model. 
In other words, it counts the percentage of positive predictions that are correct. In this 
experiment, when the trained model predicts Class − 1, it is correct 66.26% of the time. 
High Precision is desirable because it means that the model is highly accurate when 
predicting positive instances, even if it may miss some positive cases. For the high TPR 
model, it succeeds well in finding all the positive cases in the test dataset, even though it 
may also wrongly predict some negative cases as positive cases. Both high Precision and 
high TPR are preferred, but in reality, there is often a trade-off between them. Increasing 
one metric often results in a decrease in the other. Therefore, it is crucial to find a bal-
ance between Precision and TPR based on the specific requirements of the problem. The 
F1-Score is computed by taking the harmonic mean of Precision and TPR. High values in 
F1-Score are desirable since they indicate both high Precision and high TPR. In this case, 
the F1-Score is 0.6223 (Fig. 4).

The ROC curve is a probability curve with a horizontal axis from 0 to 1 of the FPR, and 
a vertical axis from 0 to 1 of the TPR. A perfect classifier would have a TPR of 1 and an 
FPR of 0, implying it can correctly classify all positives and negatives. This ideal classifier 
would closely hug the upper left corner of the ROC curve. In contrast, a random clas-
sifier would have a diagonal line from the bottom-left to the top-right corner, indicat-
ing that it performs no better than random guessing (cf. Fawcett [32]). The AUC metric 
measures a binary classifier’s ability to distinguish between positive and negative classes. 
A perfect classifier would have an AUC of 1, signifying complete separation of the two 
classes.

In our case, we observed a near-perfect ROC curve with an AUC very close to 1, 
despite some misclassification cases. The AUC of a classifier is equivalent to the prob-
ability that the classifier will rank a randomly chosen positive instance higher than a ran-
domly chosen negative instance. It is important to note that the AUC only measures the 
ranking of probabilities and not the actual probability values themselves. As such, it is 
possible to have a perfect AUC even if the probabilities are poorly calibrated or biased. 
Additionally, using a decision threshold above 0.5 can result in a zero error rate for a 
perfect AUC score. However, selecting the optimal threshold may vary depending on the 
specific application and the relative costs of FP and FN errors (cf. [32]).

Fig. 4 ROC curve of the RFRI classifier
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Performance metrics for the single‑layer FNN

In terms of performance metrics (as shown in Table 2), the FNN model exhibits an over-
all Accuracy rate of 0.7871, indicating that it accurately classified 78.71% of the instances 
in the test set. The TPR (Sensitivity/Recal)l value is 0.9477, signifying that it correctly 
identified 94.77% of the actual Class − 1 instances in the test set. On the other hand, the 
FPR value is 0.2248 suggests that 22.48% of Class 1 instances were incorrectly classified 
as Class − 1. The Precision score of 0.2384 indicates that when the model predicts Class 
−  1, it is accurate 23.84% of the time. Comparatively, the F1-Score of 0.3809 is much 
lower than that achieved by the RFRI model.

Discussion
Conclusion

The proposed algorithms utilize the neighboring values of the Möbius function to pre-
dict µ(n) based on the additive relationships discovered in Luo and Ye [14]. Instead of 
factorization, the algorithms generate these neighboring values by multiplying a set of 
primes. To encourage the learning process towards additive structures, the algorithms 
select congruent values of the neighboring integers modulo 4, 9, 25, and 49 as features.

The algorithms yield promising results with satisfactory performance metrics, indicat-
ing that the learning model has successfully uncovered hidden additive properties of the 
Möbius function. This outcome also suggests that a similar approach could be applied to 
other multiplicative number-theoretic functions and may pave a way towards developing 
efficient machine learning algorithms for integer factorization.

The novelty of this paper includes (1) application of machine learning technology to 
the study of the Möbius function, (2) machine learning models as algorithms of µ(n) 
with satisfactory performance metrics, (3) a route map towards efficient algorithms of 
µ(n) , and (4) potential application to cyberspace security.

Limitation

The use of the R programing language imposed a constraint on the scale of this study. 
To extend the algorithms’ applicability to larger integers, a different software solution 
may be necessary. Additionally, the choice of programing language limited the number 
of primes that could be used to generate neighboring integers through multiplication. 
Allowing for products of more primes would provide greater flexibility and reduce data 
imbalances.

The current study does not address the computational complexity and speed of the 
algorithms. Since this is the first of its kind, a significant amount of time was dedicated 
to model research and fine-tuning. However, we believe that with further development, 
the learning process can be formalized, and a model could be quickly constructed when 
presented with a large integer n.

Other than the constraints imposed by the programming language R, training of mod-
els for multiplicative number theoretic functions may be inherently complex computa-
tionally in time and memory. The present paper is an attempt to address this difficulty.
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Future work

Our ultimate objective is to develop efficient machine learning algorithms for integer 
factorization. Initially, we experimented with deep learning using feedforward neural 
networks with multiple hidden layers but we did not incorporate the resampling and 
standardization processes. Regrettably, the performance results indicate that the pre-
dictions were essentially random, with a chance of only around 50% being classified as 
either positive or negative, even after fine-tuning. On the other hand, the implementa-
tion of a random forests model and a single-layer neural networks model exhibited sig-
nificantly better predictive performance. In our future studies, we also intend to explore 
the potential of deep learning techniques to get other machine learning algorithms. We 
believe that combining deep learning techniques with approaches such as support vec-
tor machines or gradient boosting might yield better results for integer factorization. 
Additionally, we plan further refine the current algorithms for the Möbius function and 
focus on developing algorithms for other multiplicative number-theoretic functions.

The potential of our machine learning models lies on their possible ability to be applied 
to large integers well beyond the scope of the training datasets. This is work in progress 
of the authors and might have huge impact on cyberspace security.
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