
Federated Freeze BERT for text classification
Omar Galal1*, Ahmed H. Abdel‑Gawad1 and Mona Farouk1

Introduction
Recently, the effectiveness of Large Language Model pre-training has been demon-
strated in acquiring universal language representations through extensive training
on unlabeled data. Notably, Pre-trained Language Models (PLMs) like GPT [5], and
BERT [6] have achieved remarkable success in various Natural Language Process-
ing tasks, including sentiment classification [32], natural language inference [33],
and question answering [16]. To fine-tune a model like BERT, a sufficient amount
of data must be collected to train the whole model parameters on the downstream
tasks. In the era of big data, huge data can exist but in a distributed fashion where
several mobile and edge devices contain this data. Some domains such as medical
domains require the data to be private and hence refuse to move their data outside
their machine or organization to preserve the data privacy. To address this problem,

Abstract

Pre‑trained BERT models have demonstrated exceptional performance in the context
of text classification tasks. Certain problem domains necessitate data distribution with‑
out data sharing. Federated Learning (FL) allows multiple clients to collectively train
a global model by sharing learned models rather than raw data. However, the adoption
of BERT, a large model, within a Federated Learning framework incurs substantial com‑
munication costs. To address this challenge, we propose a novel framework, FedFree‑
zeBERT, for BERT‑based text classification. FedFreezeBERT works by adding an aggrega‑
tion architecture on top of BERT to obtain better sentence embedding for classification
while freezing BERT parameters. Keeping the model parameters frozen, FedFreezeBERT
reduces the communication costs by a large factor compared to other state‑of‑the‑art
methods. FedFreezeBERT is implemented in a distributed version where the aggre‑
gation architecture only is being transferred and aggregated by FL algorithms such
as FedAvg or FedProx. FedFreezeBERT is also implemented in a centralized version
where the data embeddings extracted by BERT are sent to the central server to train
the aggregation architecture. The experiments show that FedFreezeBERT achieves new
state‑of‑the‑art performance on Arabic sentiment analysis on the ArSarcasm‑v2 dataset
with a 12.9% and 1.2% improvement over FedAvg/FedProx and the previous SOTA
respectively. FedFreezeBERT also reduces the communication cost by 5 × compared
to the previous SOTA.

Keywords: Federated Learning (FL), BERT, Text classification, Pre‑trained Language
Models, Natural Language Processing (NLP), Sentiment analysis

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Galal et al. Journal of Big Data (2024) 11:28
https://doi.org/10.1186/s40537-024-00885-x

Journal of Big Data

*Correspondence:
omargalal@eng.cu.edu.eg

1 Computer Engineering
Department, Cairo University,
Gamaa Street, Giza 12613, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00885-x&domain=pdf

Page 2 of 16Galal et al. Journal of Big Data (2024) 11:28

Federated Learning (FL) [22] proposes training several models on each client to
ensure data privacy and then obtaining a global model from all the trained models as
if the training is done on the whole data from all clients. To achieve this goal, clients
and a main server communicate together and mainly the models are transferred from
clients to the server and vice versa through several communication rounds.

Fine-tuning a Large Language Model like BERT is very challenging in a Federated
Learning environment due to its huge size. BERT consists of 110 Million parameters
with a total size of 651 MB. Lately, several approaches discovered BERT in Federated
Learning. Hilmkil et al. [12] applied the well known FedAvg [22] on BERT, ALBERT
[17] and DistilBERT [28]. Although this approach is possible, it is not very effective
due to the massive communication cost needed between the server and clients. Some
approaches like [19] explored freezing several BERT layers to not exchange these lay-
ers and hence reduce the communication cost. Although this strategy reduced the
communication cost, the results show that the more layers you freeze, the more per-
formance you lose on the test sets. Very recently, [20] proposed to split BERT into
two parts: global and local parts. The global part consists of the first c layers of BERT
and the local part is the rest of the layers. They proposed to only communicate the
global part between the server and clients and hence reduce the communication cost
while increasing the whole performance. Although reducing the communication cost,
FedSplitBERT’s experiments show that on average, the best number of layers to be
included in the global part is 8; hence, the communication cost is still not reduced by
a great factor compared to sending and receiving the whole model.

Being focused on text classification and to address the communication cost con-
cern, we propose a new framework, FedFreezeBERT, referred to as Federated Freeze
BERT. FedFreezeBERT is a novel framework for BERT-based text classification in a
Federated Learning environment. Ref. [24] showed that BERT’s performance can be
further boosted while freezing the whole model by using an extra aggregation archi-
tecture on top of BERT such as P-SUM and H-SUM proposed by [13]. FedFreeze-
BERT is mainly inspired by [24] findings such that we mainly propose adding extra
aggregation architecture on top of BERT and freezing the whole model parameters
while only training the aggregation architecture. Following this architecture, FedFree-
zeBERT achieves a remarkable reduction in communication costs between the server
and clients while also boosting the trained model performance. FedFreezeBERT is
implemented in two versions. The first is a distributed version that we denote D-Fed-
FreezeBERT where the learning can be done using any Federated Learning algorithm
such as FedAvg to aggregate the aggregation architectures. The second is a centralized
version where the embeddings extracted by BERT to the local data are sent to the
server following the analogy of [9] and the server trains the aggregation architecture
and then sends it to all clients.

Our contributions are summarized as follows:

• We propose FedFreezeBERT, a novel framework that combines BERT-based text
classification with Federated Learning. To the best of our knowledge, FedFreeze-
BERT represents the most cost-effective approach that integrates BERT within a
Federated Learning environment.

Page 3 of 16Galal et al. Journal of Big Data (2024) 11:28

• Achieving a new state-of-the-art performance in Arabic sentiment classification,
surpassing FedSplitBERT by a significant improvement of 1.2%.

• Reducing the communication costs with a remarkable factor of 5 × compared to the
previous SOTA.

• Enhancing FedSplitBERT’s performance on Arabic sentiment classification with the
usage of aggregation architectures, achieving an improvement of 0.66%.

The rest of the paper is structured as follows: section "Related work" shows the related
work. Section "Methodology" illustrates our methodology. Section "Experiments"
describes the dataset, baselines, experimental results, and further analysis. Section "Con-
clusion and future work" includes a conclusion to this work alongside the future work.

Related work
Federated learning

Federated Learning was first proposed by [22] where they pointed out that many mod-
ern mobile devices can have a lot of data to enrich training deep learning models. Ref.
[22] proposed that the main point behind following a decentralized training approach
is the privacy of the data such that many of these mobile devices may not want to share
these data. They proposed Federated Learning as a general algorithm consisting of two
main steps: local training on clients with their private data and server aggregation to
the models generated by the mobile devices without any communication to the original
data. They proposed an aggregation algorithm called FedAvg in which a weighted aver-
aging to the parameters of the models is done and each model is weighted by its percent-
age of data from the total data contained by all clients. Of course, this requires all clients
to have the same model architecture to be able to do the averaging. Ref. [18] proposed a
generalized algorithm through reparameterization of FedAvg aggregation. They showed
that FedAvg does not generalize well on non-IID - or heterogeneous—data due to the
native averaging done to the model’s weights. To solve this problem, Ref. [18] proposed
FedProx algorithm that adds an extra regularization term to the local optimizer to force
its parameters to not drift too much away from the global model. Reddi et al. [26] pro-
posed a more general algorithm analogous to FedAvg and FedProx called FedOpt. They
proposed the usage of adaptive optimizers on the server side instead of just doing simple
weighted averaging. To use a general optimizer, the server needs to know not only the
model parameters from each client but also the gradient. FedOpt proposed to send the
gradients from clients to the server and hence any optimizer can be used on the server
side.

Ref. [31] analyzed both FedAvg and FedProx and showed that there is an objective
inconsistency in both of them. They proposed FedNova, a normalized averaging method
that takes into account the local number of iterations done by the local solver. They
showed that it solves the existing problems of FedAvg and FedProx while preserving
fast error convergence. Ref. [3] proposed FedDyn, an approach that inherits the idea of
FedProx of adding a regularizer. Instead of being a fixed regularizer, a dynamic regu-
larizer was proposed by FedDyn to be dynamically updated on each client to achieve a
good alignment of global and device solutions. Ref. [8] proposed FedSmart that proposes
involving the local clients in the aggregation operation. FedSmart proposes packing all

Page 4 of 16Galal et al. Journal of Big Data (2024) 11:28

updates sent to the server by clients and then sending them back to all clients. Each cli-
ent has its own validation set that can be used alongside the other clients’ updates to
update the model locally.

Ref. [9] focused their research on how to reduce the communication cost of large Con-
volutional Neural Networks. The local CNN on each client is split into two parts: feature
extractor and classifier. Instead of sending the model parameters, the outputs of the fea-
ture extractor are being used firstly to locally train the local classifier and secondly to be
sent to the server. Not only the features but also the golden labels and the local classifier
outputs are also sent to the server. At each communication round, the server collects
nearly all the data from all clients in the form of features and labels and these features
of course are irreversible and hence keep the data private. The server has a much larger
model to be trained than compared to other clients. The server sends back its large
model outputs to all clients so that the clients can use them to enhance their local small
models through knowledge distillation. The idea of sending the data features instead of
the model weights is very interesting and inspired us to design C-FedFreezeBERT as we
send BERT’s output embeddings to the server while still keeping the data secure and
private.

BERT in federated learning

BERT [6] is proven to be very effective for many NLP tasks. In the context of text classifi-
cation, the original paper of BERT proposed to use the [CLS] embedding while fine-tun-
ing the model as the sentence embedding. Several approaches tried to enhance BERT’s
performance on text classification by proposing other methods in addition to using
the [CLS] embedding. Ref. [7] proposed selecting some of the other output contextual
embeddings and doing max pooling over them to get a fixed-size sentence embedding.
Sentence-BERT [27] proposed fully pre-training BERT using the Siamese Network
architecture [23] alongside doing extra pooling operations to the contextual embeddings
like averaging or maxing. Ref. [24] proposed using different more complex aggregation
architectures to improve the text classification performance such as self-attention, trans-
former [30], and residual connections [11]

Some research papers tried to use a large model like BERT in a Federated Learn-
ing environment. Hilmkil et al. [12] fine-tuned BERT and two of its variants ALBERT
[17] and DistilBERT [28] using FedAvg. They did intensive experiments to study BERT
with FedAvg on three datasets. Ref. [19] benchmarked different federated learning
approaches such as FedAvg, FedProx, and FedOpt with BERT on different NLP tasks.
They also proposed a framework for Federated NLP and released their code as a part
of FedML framework [10]. They also studied the effect of freezing the different layers
of BERT on both performance and communication costs. FedSplitBERT [20] proposed
splitting BERT into two parts: local and global parts. The global part takes the first c lay-
ers of BERT as these layers capture the general language features and the local part takes
the other 12− c layers as these layers capture more problem-dependent features. They
show that their framework is the most efficient since they don’t send the whole BERT
model while getting state-of-the-art results in the domain of BERT in Federated Learn-
ing. They also proposed using quantization to reduce the communication costs between
the server and clients. Our approach FedFreezeBERT is mainly based on freezing BERT

Page 5 of 16Galal et al. Journal of Big Data (2024) 11:28

using promising aggregation architectures as shown by [24] and also to improve the per-
formance by sending the embedding in the version of C-FedFreezeBERT being inspired
by [9].

Methodology
This section illustrates the details of FedFreezeBERT and its two versions. It describes
the used aggregation architectures and also shows a modification proposed to FedSplit-
BERT [20] to enhance its performance for text classification.

FedFreezeBERT

FedFreezeBERT is inspired by [24]’s findings where BERT parameters can be frozen and
an effective aggregation architecture can be trained on top of BERT to outperform BERT
fine-tuning results. Since BERT’s main challenge in Federated Learning is its large size,
FedFreezeBERT doesn’t include BERT parameters in the communication between the
server and clients as the parameters don’t change. We propose two versions of FedFree-
zeBERT: Distributed-FedFreezeBERT and Centralized-FedFreezeBERT.

Distributed‑FedFreezeBERT

Distributed-FedFreezeBERT—or for short-hand D-FedFreezeBERT—is the distributed
version of FedFreezeBERT where the training happens on the client side and models
aggregation on the server side.

Figure 1 shows the general architecture of D-FedFreezeBERT. The server starts by ini-
tializing the weights of the pre-trained language model and then sends it to all clients.
The server also initializes the weights of the aggregation architecture that is meant to be
trained on the clients’ sides. The server then starts the Federated Learning process by
determining the number of required communication rounds T. For each communication

Fig. 1 The proposed architecture of D‑FedFreezeBERT. All clients share the same set of parameters for BERT.
In each communication round, contributing clients train locally their aggregation architecture only then send
it to the server. The server aggregates these aggregation architectures with any federated learning algorithm
and then sends it back to the contributing clients

Page 6 of 16Galal et al. Journal of Big Data (2024) 11:28

round t ∈ {0, 1, 2, ...,T − 1} , the server randomly picks a sample S(t) of the clients where
|S(t)| ≤ nc and nc is the total number of clients. The server then sends its current version
of the aggregation architecture W (t)

s to clients in S(t) . Each client i ∈ S(t) then replaces its
local version of the aggregation architecture W (t)

i by the received global version of the
aggregation architecture W (t)

s . Each client uses its local data to train the parameters of
the aggregation architecture to obtain W (t+1)

s . In this step, clients can use the preferred
Optimizer. In our case, we worked with Adam Optimizer [15]. Other optimizers can be
used like SGD [14] or AdamW [35]. Each client then sends back its new version of the
aggregation architecture W (t+1)

s to the server. After the server receives the aggregation
architectures from all contributing clients in round t, it then aggregates them all with
any known Federated Learning algorithm like FedAvg [22] or FedProx [18] to obtain the
updated W (t+1)

s . D-FedFreezeBERT is illustrated as pseudo-code in Algorithm 1.

Algorithm 1 Our proposed D‑FedFreezeBERT. Xi represents the training tweets of client i. Yi represents the
tweets’ labels of client i. ServerUpdate (W1, W2, ...) is a Federated Learning aggregation algorithm like FedAvg.

We can calculate the maximum amount of data transfer required for communication
between clients and the server in D-FedFreezeBERT in GigaBytes as follows:

Equation 1 assumes that all clients are included in all communication rounds to cal-
culate the maximum amount of data transfer in the network. T is the number of com-
munication rounds, nc is the total number of clients, Ws is the aggregation architecture,
and SizeOf is an operator that retrieves the size in GB. The setup of the whole system
including sending BERT from the server to all clients in the beginning is ignored as it is a
required and a standard step between all Federated Learning algorithms that use BERT.

Centralized‑FedFreezeBERT

Centralized-FedFreezeBERT—or for short-hand C-FedFreezeBERT—is the centralized
version of FedFreezeBERT where the training is executed on the server side. C-FedFree-
zeBERT is based on the fact that having BERT contextual embeddings for a sentence,

(1)CommCostD−FedFreezeBERT = 2 · T · nc · SizeOf (Ws)

Page 7 of 16Galal et al. Journal of Big Data (2024) 11:28

one cannot get back the original sentence and hence preserving privacy and security if
these embeddings are sent to the server.

Figure 2 shows the general architecture of C-FedFreezeBERT. The server starts by
sending to all clients the weights of the Pre-trained Language Model. Each client then
feeds its local data through BERT to get the contextual embeddings of all tokens of all
sentences which we denote Embi and i is the client index. All clients then send all these
embeddings with the sentences’ labels Yi to the server that uses them to do the whole
training without having any other communication rounds between the server and cli-
ents. After the server finishes all the epochs, it sends the final weights Ws of the aggre-
gation architecture to all clients. C-FedFreezeBERT is illustrated as pseudo-code in
Algorithm 2

Algorithm 2 Our proposed C‑FedFreezeBERT. Xi and Yi are the training data of client i. ServerTrain is a normal
training loop over epochs and batches per epoch.

We can calculate the maximum amount of data transfer required for communication
between clients and the server in C-FedFreezeBERT in GigaBytes as follows:

Fig. 2 The proposed architecture of C‑FedFreezeBERT. All clients share the same set of parameters for BERT.
Each client passes its local data through BERT to get the embeddings of these data. Clients then send these
embeddings to the server that uses these embeddings to fully train the aggregation architecture. After the
training is done, The server sends the final weights of the aggregation architecture back to all clients

Page 8 of 16Galal et al. Journal of Big Data (2024) 11:28

Where ns is the total number of sentences over all clients, nt is the maximum sequence
length used by BERT which is 128 in our case, dimemb is BERT embedding dimension
and it is 768 in our case. The fraction 4

230
 is because each number in the embedding

is represented by 4 bytes and the total term is divided by 230 to get the size of all the
embeddings in GigaBytes. nc is the total number of clients, Ws is the aggregation archi-
tecture, and SizeOf is an operator that retrieves the size in GB. The setup of the whole
system including sending BERT from the server to all the clients in the beginning is
ignored as it is a required and a standard step between all Federated Learning algorithms
that use BERT.

BERT aggregation architectures

The purpose of the aggregation architectures is to aggregate BERT’s final contextual
embeddings and its hidden layers’ embeddings to get a more representative sentence
embedding in the context of text classification. Omar et al. [24] shows different archi-
tectures to aggregate BERT’s embedding for text classification. They also show that some
aggregation architectures can be used with BERT parameters kept frozen to outperform
BERT being fine-tuned. Our research will use four aggregation architectures with BERT
for text classification. The first two architectures are simple and aggregate BERT’s final
layer embeddings. The last two architectures are more complex as they aggregate BERT’s
final and hidden layers’ embeddings. The architectures we use can be summarized as
follows:

• Ordinaryaggregator: This architecture is the common and standard way where
BERT’s [CLS] output embedding is used as the sentence embedding. The [CLS]
embedding is then fed to the classifier which is a simple linear layer in our case.

• Average aggregator: This aggregation architecture is an intuitive and very simple
one in which BERT’s all final layer contextual embeddings are averaged to get a fixed
size embedding representing the input sentence. Ref. [24] shows that although this
aggregation architecture is very simple, it can achieve high performance when BERT
parameters are kept frozen. The authors also show that its results are very near to
using [CLS] embedding with fine-tuning BERT. We decided to include this aggrega-
tion architecture in our experiments as it is very simple and yet effective when BERT
is frozen.

• P-SUM: This architecture is first proposed by [13] to improve BERT performance
for aspect-based sentiment analysis. Ref. [24] then proposed that this architecture
performance can be further improved if BERT parameters are kept frozen. The archi-
tectural details are shown in Fig. 3. An extra four BERT layers are added on top of
BERT in parallel. The four final BERT layers pass their outputs to the extra BERT
layers in parallel. Each path from the four parallel paths then acts as a classifier and in
the training, the four classifiers’ losses are added together. In inference time, the four
classifiers’ outputs are averaged to get the final predictions. As shown by [13] and
[24], the best number of last layers to be used is four and hence we decided to follow
this number in the experiments.

(2)CommCostC−FedFreezeBERT =

4

230
· ns · nt · dimemb + nc · SizeOf (Ws)

Page 9 of 16Galal et al. Journal of Big Data (2024) 11:28

• H-SUM: This architecture is first proposed by [13] to improve BERT performance
for aspect-based sentiment analysis. Ref. [24] then proposed that this architecture
performance can be further improved if BERT parameters are kept frozen. The archi-
tectural details are shown in Fig. 4. Extra four BERT layers are added on top of BERT
in a hierarchical fashion such that each extra BERT layer adds its outputs to the input
of the extra BERT layer that precedes it. Each path from the four parallel paths then
acts as a classifier and in the training, the four classifiers’ losses are added together. In
inference time, the four classifiers’ outputs are averaged to get the final predictions.
As shown by [13] and [24], the best number of last layers to be used is four and hence
we decided to follow this number in the experiments.

Modified FedSplitBERT

FedSplitBERT [20] is a Federated Learning framework to fine-tune BERT for general
NLP tasks. It is based on splitting BERT’s 12 layers into two parts: a global part and a
local part. The global part is the first c layers and the local part is the last 12− c layers.
For the local training on clients in each communication round, both global and local

Fig. 3 P‑SUM aggregation architecture [24]

Fig. 4 H‑SUM aggregation architecture [24]

Page 10 of 16Galal et al. Journal of Big Data (2024) 11:28

layers parameters change based on the local data. The global part only is sent from cli-
ents to the server for aggregation and then the server sends the aggregated global part
back to all clients at the end of each communication round. For text classification, Fed-
SplitBERT is based on the following settings:

1. BERT is fine-tuned meaning that all the parameters are changed during the training.
2. BERT’s [CLS] embedding is used as the sentence embedding to be fed to the classi-

fier.
3. The global part is aggregated on the server with FedAvg.

Our modification to FedSplitBERT covers the second point. We propose using Aver-
ageAggregator, P-SUM, and H-SUM to improve FedSplitBERT performance for text
classification. The first point of course couldn’t be changed because if we don’t fine-tune
the model, there is no meaning to split the model into global and local parts and then
aggregate only the global part to the server. For the third point, it is already mentioned
by FedSplitBERT authors that other Federated Learning algorithms other than FedAvg
can be used but we decided to follow exactly their approach to be consistent with their
results. FedSplitBERT’s maximum communication cost can be calculated as follows:

Where T is the number of communication rounds, nc is the total number of clients, and
c is the critical layer defined by FedSplitBERT or in other words the number of BERT
layers in the global part. BL is an abbreviation of BERT Layer. BE is an abbreviation of
BERT’s Embedding Layer. SizeOf(.) is an operator that returns the size of an object in
GigaBytes.

Experiments
Dataset and evaluation metric

The dataset used in this work is ArSarcasm-v2 published by [2]. The dataset is a bench-
mark for Arabic sentiment analysis and sarcasm detection. The dataset consists of tweets
collected through Twitter API [21] and manually labeled for sentiment and sarcasm. All
tweets are Arabic in language but have different dialects and hence are more challeng-
ing for sentiment and sarcasm. This work mainly addresses the problem of sentiment
analysis through ArSarcasm-v2. The dataset is split into 12k tweets for training and
3k tweets for testing. Table 1 shows the sentiment distribution over training tweets of
ArSarcasm-v2.

(3)CommCostFedSplitBERT = 2 · T · nc · (c · SizeOf (BL)+ SizeOf (BE))

Table 1 ArSarcasm‑v2 sentiment distribution over training tweets

Task Class Count

Sentiment Positive 2180

Negative 4621

Neutral 5747

Total 12,548

Page 11 of 16Galal et al. Journal of Big Data (2024) 11:28

To evaluate our experiments on ArSarcasm-v2, the same evaluation metric FPN
1

defined in [2] and also followed in [24] is also followed in this work. FPN

1
 is the aver-

age F1-score over the positive and negative classes and can be formulated as follows:

Pre‑trained language model

Working with Arabic sentences, there is a variety of Pre-trained Language Models
with BERT-base [6] architecture. Following the work done by [1, 2], and [24], we
decided to use MARBERT [1] since it is the most effective PLM when working with
the Arabic language, especially with Arabic tweets. MARBERT is pre-trained on 128
GB of text with about 1 Billion tweets. The pre-trained weights of the model were
downloaded from Hugging Face [34].

Baseline methods

This work considers three main Federated Learning baseline methods: FedAvg [22],
FedProx [18], and FedSplitBERT [20] in addition to the central training approach. The
reason behind considering both FedAvg and FedProx is that nearly all new Federated
Learning approaches compare their results to both FedAvg and FedProx as they are
the main and fundamental algorithms in Federated Learning. The implementation of
FedAvg and FedProx was used from FedML [10]. The communication cost for both
FedAvg and FedProx with BERT can be calculated as follows:

Where T is the total number of communication rounds, nc is the total number of cli-
ents, and SizeOf(BERT) is the total size in GB of the original BERT model for sequence
classification.

For FedSplitBERT, we couldn’t find an official implementation to it hence we imple-
mented our version with the same architecture specified by FedSplitBERT. To make
sure that our implementation is correct and matches the original FedSplitBERT’s
implementation, We evaluated our implementation on SST-2 [29] with the critical
layer c = 8 and the same settings defined by [20]. Table 2 shows the performance of
the original FedSplitBERT with the accuracy of 93.27% reported from their original
paper. The table shows that our implementation gives almost identical accuracy on
SST-2 and hence we can continue experimenting with our own implementation.

(4)FPN
1 =

F
positive
1

+ F
negative
1

2

(5)CommCostFedAvg = 2 · T · nc · SizeOf (BERT)

Table 2 Performance of original and our implementation of FedSplitBERT on SST‑2

FedSplitBERT Accuracy

Original [20] (from paper) 93.27

Our implementation 93.29

Page 12 of 16Galal et al. Journal of Big Data (2024) 11:28

Experimental setup

Implementation

All the architectures are implemented in Pytorch [25]. All Federated Learning simula-
tions are done with FedML [10] single process simulation. The experiments were exe-
cuted on Google Colab [4] on Nvidia Tesla T4. MARBERT maximum sequence length
was set to 128 following both [2] and [24]. The training data was distributed among 5
clients as described in [19]. The loss function to train the models is chosen to be the
Cross-Entropy Loss. The network parameters were optimized with Adam Optimizer
[15]. For D-FedFreezeBERT, the server can use any Federated Learning aggregation
algorithm and we decided to do the experiments with both FedAvg and FedProx.

Hyperparameters

Training was done with the batch size set to 16. Since we have two main categories
of training: distributed and centralized, we wanted the training process to be as fair
as possible. Distributed training approaches such as FedAvg, FedProx, FedSplit-
BERT, and D-FedFreezeBERT require the training to be done on the client side and
having multiple communication rounds between the server and clients. Centralized
approaches such as C-FedFreezeBERT have no communication rounds and the full
training is done on the server side. The maximum number of epochs suggested by [2]
and [24] was 5 and hence we executed C-FedFreezeBERT experiments with 5 epochs
and other approaches with 5 communication rounds while each client executes 1
epoch per round. Following this way, we guarantee that all approaches see each train-
ing tweet the same number of times and hence the results can be fairly compared.
FedProx � was tuned and finally set to 0.05. FedSplitBERT critical layer c is used
to be 8 as it gives the best performance as observed by [20]. Learning rates in the
range from 9e−4 to 1e−6 were explored. The final learning rates used are: 1e−6 with
FedAvg and FedProx, 1e−5 with FedSplitBERT, and 5e−4 with D-FedFreezeBERT and
C-FedFreezeBERT.

Results and analysis

Table 3 shows the FPN
1

 metric for baseline methods and our proposed approaches on
the ArSarcasm-v2 testset. All baseline approaches use the OrdinaryAggregator where
the [CLS] embedding is used as the sentence embedding. We also experimented with
FedFreezeBERT with the [CLS] embedding although it is expected to get low per-
formance. It is commonly known that it is very challenging for Federated Learning
algorithms to get close or higher performance compared to the central approaches
and hence we included central training to compare the different Federated Learn-
ing algorithms and frameworks to it. Table 3 shows that both FedAvg and FedProx
get low performance compared to the central training approach. D-FedFreezeBERT
gets very low FPN

1
 which is expected because freezing BERT is known to degrade

the performance with the [CLS] embedding being used as a sentence embedding.
C-FedFreezeBERT has also a low performance compared to other algorithms while
being used with the OrdinaryAggregator but its performance is much higher than

Page 13 of 16Galal et al. Journal of Big Data (2024) 11:28

D-FedFreezeBERT because the whole training happens in one place and hence no
heterogeneity in the data exists. FedSplitBERT is the best baseline approach outper-
forming the central training approach

When AverageAggregator is used, the central training performance degraded a little.
We expect that both FedAvg and FedProx patterns follow the central approach and hence
their performance also degraded with AverageAggregator compared to OrdinaryAggre-
gator. Also, FedSplitBERT performance degraded a little and these observations follow
the findings of [24]. Both D-FedFreezeBERT and C-FedFreezeBERT performance was
enhanced because of using the AverageAggregator. Although using the AverageAggrega-
tor improved FedFreezeBERT, it is not a very powerful aggregation architecture but it is
very efficient because of its simplicity.

P-SUM is proven to be a powerful aggregation architecture for text classification by
[13] and [24]. The central training performance improved to achieve 74.63 FPN

1
 . Both

FedAvg and FedProx performance also improved compared to their counterparts with
the OrdinaryAggregator but as expected they cannot exceed the central training perfor-
mance. For FedSplitBERT, the performance was enhanced with P-SUM by a little margin
but its performance couldn’t exceed the central training performance. D-FedFreeze-
BERT achieved a comparably high FPN

1
 which is very interesting. C-FedFreezeBERT with

P-SUM achieved 75.26 FPN
1

 which is a new state-of-the-art on ArSarcasm-v2 in a Feder-
ated Learning setting. It is worth noting that C-FedFreezeBERT with P-SUM achieved
an improvement of 12.9%, 2.4%, and 1.2% over FedAvg/FedProx, baseline central train-
ing, and FedSplitBERT respectively.

When experimenting with the different approaches with H-SUM, it can be shown
that central training, FedAvg, and FedProx get a performance enhancement compared
to their baselines counterparts. When they are compared with the P-SUM results, it

Table 3 Comparison of FedFreezeBERT with other baseline approaches on ArSarcasm‑v2 test set

Bold values indicate the best-performing approach when the aggregation architecture is fixed

Baseline Methods and FedFreezeBERT with OrdinaryAggregator

Method BERT Frozen? F
PN

1

Central Training No 73.48

FedAvg No 66.67

FedProx No 66.36

FedSplitBERT No 74.39
D‑FedFreezeBERT (FedAvg) Yes 49.39

D‑FedFreezeBERT (FedProx) Yes 47.5

C‑FedFreezeBERT Yes 65.1

F
PN

1
 Using Advanced Aggregation Architectures

Method BERT Frozen? AverageAggregator P‑SUM H‑SUM

Central Training No 73.00 74.63 73.93

FedAvg No 63.84 71.71 68.81

FedProx No 63.55 71.56 68.54

FedSplitBERT No 74.08 74.57 74.88

D‑FedFreezeBERT (FedAvg) Yes 54.23 74.18 74.29

D‑FedFreezeBERT (FedProx) Yes 52.09 74.13 74.21

C‑FedFreezeBERT Yes 72.34 75.26 74.94

Page 14 of 16Galal et al. Journal of Big Data (2024) 11:28

can be observed that their performance degrades and this is because H-SUM has a long
chain of 14 BERT layers to be fine-tuned if the model parameters aren’t frozen and this
makes the learning process more complex. FedSplitBERT with H-SUM is improved by
0.66% over the baseline FedSplitBERT which shows that aggregation architectures can
help improve existing promising approaches. To make sure that the 0.66% is a relevant
improvement, the standard deviation of the original FedSplitBERT and FedSplitBERT
with H-SUM are estimated over five runs and we found them to be 0.12% and 0.17%
respectively. D-FedFreezeBERT’s performance increased a little with H-SUM compared
to its performance with P-SUM. C-FedFreezeBERT with H-SUM achieved 74.94 FPN

1

exceeding also all other approaches - except for C-FedFreezeBERT with P-SUM - with
an improvement of 12.4%, 2%, and 0.74% over FedAvg/FedProx, baseline central train-
ing, and FedSplitBERT respectively.

To measure the communication cost and hence communication gain, which is defined
as the ratio of the baseline’s communication cost to the optimized approach’s commu-
nication cost, of the different methods, we measured in the conducted experiments all
sent and received data between the server and clients and verified their correctness with
equations 1, 2, 3, and 5. The parameters used in our experiments are as follows:

• nc = 5

• T = 5

• ns = 12548

• nt = 128

• c = 8

• SizeOf (Ws) = 113.44MB

• dimemb = 768

• SizeOf (BL) = 28.35MB

• SizeOf (BE) = 308MB

• SizeOf (BERT) = 651.37MB

Table 4 shows the communication cost and communication gain of the different Feder-
ated Learning methods under the setting of our experiments on the ArSarcasm-v2 data-
set. The table shows the effectiveness of both D-FedFreezeBERT and C-FedFreezeBERT.
D-FedFreezeBERT achieves a communication gain of 5.7× and 4.7 × compared to Fed-
Avg and FedSplitBERT respectively. C-FedFreezeBERT achieves a communication gain
of 6.2× and 5 × compared to FedAvg and FedSplitBERT respectively. It is worth noting

Table 4 Comparison of different approaches communication cost and communication gain on
ArSarcasm‑v2

Method Communication cost Communication
gain

(GB)

FedAvg/FedProx 31.8 1×

FedSplitBERT 26.11 1.2×

D‑FedFreezeBERT (P‑SUM/HSUM) 5.54 5.7×

C‑FedFreezeBERT 5.15 6.2×

Page 15 of 16Galal et al. Journal of Big Data (2024) 11:28

that FedSplitBERT achieved state-of-the-art results not only on a performance metric
such as FPN

1
 but also from the communication cost perspective.

Conclusion and future work
This work proposes a novel framework, FedFreezeBERT, for BERT-based text classifi-
cation in Federated Learning environments. FedFreezeBERT mainly addresses the chal-
lenge of the expensive communication cost of BERT in Federated Learning by freezing
the model parameters and boosting its performance with aggregation architectures such
as P-SUM and H-SUM. FedFreezeBERT is evaluated on Arabic sentiment analysis on
the ArSarcasm-v2 dataset. The experiments show that FedFreezeBERT’s performance
in sentiment analysis exceeds FedAvg and FedProx performance with a 12.9% improve-
ment and exceeds FedSplitBERT performance with a 1.2% improvement. The experi-
ments also show that FedFreezeBERT is the most cost-effective framework regarding
communication costs with a communication gain of 6.2× and 5 × compared to FedAvg/
FedProx and FedSplitBERT respectively. FedFreezeBERT is a simple and easy-to-imple-
ment approach. Also, D-FedFreezeBERT is compatible with nearly all Federated Learn-
ing aggregation algorithms such as FedAvg and FedProx. In the future, FedFreezeBERT
can be explored outside the context of text classification in problems such as question
answering, semantic similarity, etc.
Acknowledgements
Not applicable.

Author contributions
MF provided the initial idea for the research. OG researched the problem to identify the research gap. OG proposed Fed‑
FreezeBERT and the extra enhancements for FedSplitBERT. OG implemented the experiments and analyzed the results.
OG wrote the manuscript. MF did the manuscript revision. Both MF and AA supervised OG during the research.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with
The Egyptian Knowledge Bank (EKB).

Availability of data and materials
All data generated or analyzed during this study are included in this published article. Derived data supporting the find‑
ings of this study are available from the corresponding author on request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Received: 31 August 2023 Accepted: 19 January 2024

References
 1. Abdul‑Mageed M, Elmadany A, Nagoudi EMB. Arbert & marbert: deep bidirectional transformers for arabic. arXiv

preprint. 2020. arXiv: 2101. 01785.
 2. Abu Farha I, Zaghouani W, Magdy W (2021) Overview of the WANLP 2021 shared task on sarcasm and sentiment

detection in Arabic. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop. Association for
Computational Linguistics, Kyiv, Ukraine (Virtual). 2021. pp. 296–305, https://aclanthology.org/2021.wanlp‑1.36.

http://arxiv.org/abs/2101.01785

Page 16 of 16Galal et al. Journal of Big Data (2024) 11:28

 3. Acar DAE, Zhao Y, Navarro RM, et al. Federated learning based on dynamic regularization. arXiv preprint. 2021. arXiv:
2111. 04263.

 4. Bisong E, Bisong E. Google Collaboratory. Building machine learning and deep learning models on google cloud
platform: a comprehensive guide for beginners. 2019. pp. 59–64.

 5. Brown T, Mann B, Ryder N, et al. Language models are few‑shot learners. Adv Neural Inform Process Syst.
2020;33:1877–901.

 6. Devlin J, Chang MW, Lee K, et al. Bert: Pre‑training of deep bidirectional transformers for language understanding.
2018. arXiv preprint arXiv: 1810. 04805.

 7. Gao Z, Feng A, Song X, et al. Target‑dependent sentiment classification with bert. IEEE Access. 2019;7:154290–9.
 8. He A, Wang J, Huang Z, et al. Fedsmart: An auto updating federated learning optimization mechanism. In: Web and

Big Data: 4th International Joint Conference, APWeb‑WAIM 2020, Tianjin, China, September 18‑20, 2020, Proceed‑
ings, Part I 4. Cham: Springer; 2020. pp. 716–724.

 9. He C, Annavaram M, Avestimehr S. Group knowledge transfer: federated learning of large cnns at the edge. Adv
Neural Inform Process Syst. 2020;33:14068–80.

 10. He C, Li S, So J, et al. Fedml: A research library and benchmark for federated machine learning. arXiv preprint. 2020.
arXiv: 2007. 13518.

 11. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE confer‑
ence on computer vision and pattern recognition. 2016. pp. 770–778.

 12. Hilmkil A, Callh S, Barbieri M, et al (2021) Scaling federated learning for fine‑tuning of large language models. In:
Natural Language Processing and Information Systems: 26th International Conference on Applications of Natural
Language to Information Systems, NLDB 2021, Saarbrücken, Germany, June 23–25, 2021, Proceedings, Springer;
2021. pp. 15–23.

 13. Karimi A, Rossi L, Prati A. Improving bert performance for aspect‑based sentiment analysis. arXiv preprint. 2020.
arXiv: 2010. 11731.

 14. Ketkar N, Ketkar N. Stochastic gradient descent. In: Ketkar N, editor. Deep learning with python: a hands‑on intro‑
duction. Berkeley: Apress; 2017. p. 113–32.

 15. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint. 2014. arXiv: 1412. 6980.
 16. Lai G, Xie Q, Liu H, et al. Race: Large‑scale reading comprehension dataset from examinations. arXiv preprint. 2017.

arXiv: 1704. 04683.
 17. Lan Z, Chen M, Goodman S, et al. Albert: A lite bert for self‑supervised learning of language representations. arXiv

preprint. 2019. arXiv: 1909. 11942.
 18. Li T, Sahu AK, Zaheer M, et al. Federated optimization in heterogeneous networks. Proc Mach Learn Syst.

2020;2:429–50.
 19. Lin BY, He C, Zeng Z, et al. Fednlp: a research platform for federated learning in natural language processing. arXiv

preprint. 2021. arXiv: 2104. 08815.
 20. Lit Z, Sit S, Wang J, et al. Federated split bert for heterogeneous text classification. In: 2022 International joint confer‑

ence on neural networks (IJCNN), IEEE; 2022. pp 1–8.
 21. Makice K. Twitter API: up and running: learn how to build applications with the Twitter API. Sebastopol: O’ Reilly

Media Inc; 2009.
 22. McMahan B, Moore E, Ramage D, et al. Communication‑efficient learning of deep networks from decentralized data.

In: Artificial intelligence and statistics, PMLR; 2017. pp. 1273–1282.
 23. Melekhov I, Kannala J, Rahtu E. Siamese network features for image matching. In: 2016 23rd international confer‑

ence on pattern recognition (ICPR), IEEE; 2016. pp. 378–383
 24. Galal O, Abdel‑Gawad AH, Farouk M. Rethinking of bert sentence embedding for text classification. Research Square

preprint. 2024. https:// doi. org/ 10. 21203/ rs.3. rs‑ 39206 65/ v1.
 25. Paszke A, Gross S, Chintala S, et al. Pytorch Computer software Version. 2016;03:1.
 26. Reddi S, Charles Z, Zaheer M, et al. Adaptive federated optimization. arXiv preprint. 2020.arXiv: 2003. 00295.
 27. Reimers N, Gurevych I. Sentence‑bert: Sentence embeddings using siamese bert‑networks. 2019. arXiv preprint

arXiv: 1908. 10084.
 28. Sanh V, Debut L, Chaumond J, et al. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv

preprint. arXiv: 1910. 01108.
 29. Socher R, Perelygin A, Wu J, et al. Recursive deep models for semantic compositionality over a sentiment treebank.

In: Proceedings of the 2013 conference on empirical methods in natural language processing. 2013. pp. 1631–1642.
 30. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Adv Neural Inform Process Syst. 2017; 30.
 31. Wang J, Liu Q, Liang H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization.

In: Larochelle H, Ranzato M, Hadsell R, et al., editors. Advances in neural information processing systems, vol. 33. Red
Hook: Curran Associates Inc; 2020. p. 7611–23.

 32. Wang Y, Huang M, Zhu X, et al. Attention‑based lstm for aspect‑level sentiment classification. In: Proceedings of the
2016 conference on empirical methods in natural language processing. 2016. pp. 606–615.

 33. Williams A, Nangia N, Bowman SR. A broad‑coverage challenge corpus for sentence understanding through infer‑
ence. arXiv preprint. 2017. arXiv: 1704. 05426.

 34. Wolf T, Debut L, Sanh V, et al. Transformers: state‑of‑the‑art natural language processing. In: Liu Q, Schlangen D,
editors., et al., Proceedings of the 2020 conference on empirical methods in natural language processing: system
demonstrations. Stroudsburg: Association for Computational Linguistics; 2020. p. 38–45.

 35. Zhuang Z, Liu M, Cutkosky A, et al. Understanding adamw through proximal methods and scale‑freeness. arXiv
preprint. 2022. arXiv: 2202. 00089.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2111.04263
http://arxiv.org/abs/2111.04263
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2007.13518
http://arxiv.org/abs/2010.11731
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1704.04683
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2104.08815
https://doi.org/10.21203/rs.3.rs-3920665/v1
http://arxiv.org/abs/2003.00295
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/2202.00089

	Federated Freeze BERT for text classification
	Abstract
	Introduction
	Related work
	Federated learning
	BERT in federated learning

	Methodology
	FedFreezeBERT
	Distributed-FedFreezeBERT
	Centralized-FedFreezeBERT

	BERT aggregation architectures
	Modified FedSplitBERT

	Experiments
	Dataset and evaluation metric
	Pre-trained language model
	Baseline methods
	Experimental setup
	Implementation
	Hyperparameters

	Results and analysis

	Conclusion and future work
	Acknowledgements
	References

