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Introduction
Recently, the effectiveness of Large Language Model pre-training has been demon-
strated in acquiring universal language representations through extensive training 
on unlabeled data. Notably, Pre-trained Language Models (PLMs) like GPT [5], and 
BERT [6] have achieved remarkable success in various Natural Language Process-
ing tasks, including sentiment classification [32], natural language inference [33], 
and question answering [16]. To fine-tune a model like BERT, a sufficient amount 
of data must be collected to train the whole model parameters on the downstream 
tasks. In the era of big data, huge data can exist but in a distributed fashion where 
several mobile and edge devices contain this data. Some domains such as medical 
domains require the data to be private and hence refuse to move their data outside 
their machine or organization to preserve the data privacy. To address this problem, 
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Federated Learning (FL) [22] proposes training several models on each client to 
ensure data privacy and then obtaining a global model from all the trained models as 
if the training is done on the whole data from all clients. To achieve this goal, clients 
and a main server communicate together and mainly the models are transferred from 
clients to the server and vice versa through several communication rounds.

Fine-tuning a Large Language Model like BERT is very challenging in a Federated 
Learning environment due to its huge size. BERT consists of 110 Million parameters 
with a total size of 651 MB. Lately, several approaches discovered BERT in Federated 
Learning. Hilmkil et al. [12] applied the well known FedAvg [22] on BERT, ALBERT 
[17] and DistilBERT [28]. Although this approach is possible, it is not very effective 
due to the massive communication cost needed between the server and clients. Some 
approaches like [19] explored freezing several BERT layers to not exchange these lay-
ers and hence reduce the communication cost. Although this strategy reduced the 
communication cost, the results show that the more layers you freeze, the more per-
formance you lose on the test sets. Very recently, [20] proposed to split BERT into 
two parts: global and local parts. The global part consists of the first c layers of BERT 
and the local part is the rest of the layers. They proposed to only communicate the 
global part between the server and clients and hence reduce the communication cost 
while increasing the whole performance. Although reducing the communication cost, 
FedSplitBERT’s experiments show that on average, the best number of layers to be 
included in the global part is 8; hence, the communication cost is still not reduced by 
a great factor compared to sending and receiving the whole model.

Being focused on text classification and to address the communication cost con-
cern, we propose a new framework, FedFreezeBERT, referred to as Federated Freeze 
BERT. FedFreezeBERT is a novel framework for BERT-based text classification in a 
Federated Learning environment. Ref. [24] showed that BERT’s performance can be 
further boosted while freezing the whole model by using an extra aggregation archi-
tecture on top of BERT such as P-SUM and H-SUM proposed by [13]. FedFreeze-
BERT is mainly inspired by [24] findings such that we mainly propose adding extra 
aggregation architecture on top of BERT and freezing the whole model parameters 
while only training the aggregation architecture. Following this architecture, FedFree-
zeBERT achieves a remarkable reduction in communication costs between the server 
and clients while also boosting the trained model performance. FedFreezeBERT is 
implemented in two versions. The first is a distributed version that we denote D-Fed-
FreezeBERT where the learning can be done using any Federated Learning algorithm 
such as FedAvg to aggregate the aggregation architectures. The second is a centralized 
version where the embeddings extracted by BERT to the local data are sent to the 
server following the analogy of [9] and the server trains the aggregation architecture 
and then sends it to all clients.

Our contributions are summarized as follows:

• We propose FedFreezeBERT, a novel framework that combines BERT-based text 
classification with Federated Learning. To the best of our knowledge, FedFreeze-
BERT represents the most cost-effective approach that integrates BERT within a 
Federated Learning environment.
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• Achieving a new state-of-the-art performance in Arabic sentiment classification, 
surpassing FedSplitBERT by a significant improvement of 1.2%.

• Reducing the communication costs with a remarkable factor of 5 × compared to the 
previous SOTA.

• Enhancing FedSplitBERT’s performance on Arabic sentiment classification with the 
usage of aggregation architectures, achieving an improvement of 0.66%.

The rest of the paper is structured as follows: section "Related work" shows the related 
work. Section  "Methodology" illustrates our methodology. Section  "Experiments" 
describes the dataset, baselines, experimental results, and further analysis. Section "Con-
clusion and future work" includes a conclusion to this work alongside the future work.

Related work
Federated learning

Federated Learning was first proposed by [22] where they pointed out that many mod-
ern mobile devices can have a lot of data to enrich training deep learning models. Ref. 
[22] proposed that the main point behind following a decentralized training approach 
is the privacy of the data such that many of these mobile devices may not want to share 
these data. They proposed Federated Learning as a general algorithm consisting of two 
main steps: local training on clients with their private data and server aggregation to 
the models generated by the mobile devices without any communication to the original 
data. They proposed an aggregation algorithm called FedAvg in which a weighted aver-
aging to the parameters of the models is done and each model is weighted by its percent-
age of data from the total data contained by all clients. Of course, this requires all clients 
to have the same model architecture to be able to do the averaging. Ref. [18] proposed a 
generalized algorithm through reparameterization of FedAvg aggregation. They showed 
that FedAvg does not generalize well on non-IID - or heterogeneous—data due to the 
native averaging done to the model’s weights. To solve this problem, Ref. [18] proposed 
FedProx algorithm that adds an extra regularization term to the local optimizer to force 
its parameters to not drift too much away from the global model. Reddi et al. [26] pro-
posed a more general algorithm analogous to FedAvg and FedProx called FedOpt. They 
proposed the usage of adaptive optimizers on the server side instead of just doing simple 
weighted averaging. To use a general optimizer, the server needs to know not only the 
model parameters from each client but also the gradient. FedOpt proposed to send the 
gradients from clients to the server and hence any optimizer can be used on the server 
side.

Ref. [31] analyzed both FedAvg and FedProx and showed that there is an objective 
inconsistency in both of them. They proposed FedNova, a normalized averaging method 
that takes into account the local number of iterations done by the local solver. They 
showed that it solves the existing problems of FedAvg and FedProx while preserving 
fast error convergence. Ref. [3] proposed FedDyn, an approach that inherits the idea of 
FedProx of adding a regularizer. Instead of being a fixed regularizer, a dynamic regu-
larizer was proposed by FedDyn to be dynamically updated on each client to achieve a 
good alignment of global and device solutions. Ref. [8] proposed FedSmart that proposes 
involving the local clients in the aggregation operation. FedSmart proposes packing all 
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updates sent to the server by clients and then sending them back to all clients. Each cli-
ent has its own validation set that can be used alongside the other clients’ updates to 
update the model locally.

Ref. [9] focused their research on how to reduce the communication cost of large Con-
volutional Neural Networks. The local CNN on each client is split into two parts: feature 
extractor and classifier. Instead of sending the model parameters, the outputs of the fea-
ture extractor are being used firstly to locally train the local classifier and secondly to be 
sent to the server. Not only the features but also the golden labels and the local classifier 
outputs are also sent to the server. At each communication round, the server collects 
nearly all the data from all clients in the form of features and labels and these features 
of course are irreversible and hence keep the data private. The server has a much larger 
model to be trained than compared to other clients. The server sends back its large 
model outputs to all clients so that the clients can use them to enhance their local small 
models through knowledge distillation. The idea of sending the data features instead of 
the model weights is very interesting and inspired us to design C-FedFreezeBERT as we 
send BERT’s output embeddings to the server while still keeping the data secure and 
private.

BERT in federated learning

BERT [6] is proven to be very effective for many NLP tasks. In the context of text classifi-
cation, the original paper of BERT proposed to use the [CLS] embedding while fine-tun-
ing the model as the sentence embedding. Several approaches tried to enhance BERT’s 
performance on text classification by proposing other methods in addition to using 
the [CLS] embedding. Ref. [7] proposed selecting some of the other output contextual 
embeddings and doing max pooling over them to get a fixed-size sentence embedding. 
Sentence-BERT [27] proposed fully pre-training BERT using the Siamese Network 
architecture [23] alongside doing extra pooling operations to the contextual embeddings 
like averaging or maxing. Ref. [24] proposed using different more complex aggregation 
architectures to improve the text classification performance such as self-attention, trans-
former [30], and residual connections [11]

Some research papers tried to use a large model like BERT in a Federated Learn-
ing environment. Hilmkil et al. [12] fine-tuned BERT and two of its variants ALBERT 
[17] and DistilBERT [28] using FedAvg. They did intensive experiments to study BERT 
with FedAvg on three datasets. Ref. [19] benchmarked different federated learning 
approaches such as FedAvg, FedProx, and FedOpt with BERT on different NLP tasks. 
They also proposed a framework for Federated NLP and released their code as a part 
of FedML framework [10]. They also studied the effect of freezing the different layers 
of BERT on both performance and communication costs. FedSplitBERT [20] proposed 
splitting BERT into two parts: local and global parts. The global part takes the first c lay-
ers of BERT as these layers capture the general language features and the local part takes 
the other 12− c layers as these layers capture more problem-dependent features. They 
show that their framework is the most efficient since they don’t send the whole BERT 
model while getting state-of-the-art results in the domain of BERT in Federated Learn-
ing. They also proposed using quantization to reduce the communication costs between 
the server and clients. Our approach FedFreezeBERT is mainly based on freezing BERT 
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using promising aggregation architectures as shown by [24] and also to improve the per-
formance by sending the embedding in the version of C-FedFreezeBERT being inspired 
by [9].

Methodology
This section illustrates the details of FedFreezeBERT and its two versions. It describes 
the used aggregation architectures and also shows a modification proposed to FedSplit-
BERT [20] to enhance its performance for text classification.

FedFreezeBERT

FedFreezeBERT is inspired by [24]’s findings where BERT parameters can be frozen and 
an effective aggregation architecture can be trained on top of BERT to outperform BERT 
fine-tuning results. Since BERT’s main challenge in Federated Learning is its large size, 
FedFreezeBERT doesn’t include BERT parameters in the communication between the 
server and clients as the parameters don’t change. We propose two versions of FedFree-
zeBERT: Distributed-FedFreezeBERT and Centralized-FedFreezeBERT.

Distributed‑FedFreezeBERT

Distributed-FedFreezeBERT—or for short-hand D-FedFreezeBERT—is the distributed 
version of FedFreezeBERT where the training happens on the client side and models 
aggregation on the server side.

Figure 1 shows the general architecture of D-FedFreezeBERT. The server starts by ini-
tializing the weights of the pre-trained language model and then sends it to all clients. 
The server also initializes the weights of the aggregation architecture that is meant to be 
trained on the clients’ sides. The server then starts the Federated Learning process by 
determining the number of required communication rounds T. For each communication 

Fig. 1 The proposed architecture of D‑FedFreezeBERT. All clients share the same set of parameters for BERT. 
In each communication round, contributing clients train locally their aggregation architecture only then send 
it to the server. The server aggregates these aggregation architectures with any federated learning algorithm 
and then sends it back to the contributing clients
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round t ∈ {0, 1, 2, ...,T − 1} , the server randomly picks a sample S(t) of the clients where 
|S(t)| ≤ nc and nc is the total number of clients. The server then sends its current version 
of the aggregation architecture W (t)

s  to clients in S(t) . Each client i ∈ S(t) then replaces its 
local version of the aggregation architecture W (t)

i  by the received global version of the 
aggregation architecture W (t)

s  . Each client uses its local data to train the parameters of 
the aggregation architecture to obtain W (t+1)

s  . In this step, clients can use the preferred 
Optimizer. In our case, we worked with Adam Optimizer [15]. Other optimizers can be 
used like SGD [14] or AdamW [35]. Each client then sends back its new version of the 
aggregation architecture W (t+1)

s  to the server. After the server receives the aggregation 
architectures from all contributing clients in round t, it then aggregates them all with 
any known Federated Learning algorithm like FedAvg [22] or FedProx [18] to obtain the 
updated W (t+1)

s  . D-FedFreezeBERT is illustrated as pseudo-code in Algorithm 1.

Algorithm 1 Our proposed D‑FedFreezeBERT. Xi represents the training tweets of client i. Yi represents the 
tweets’ labels of client i. ServerUpdate (W1, W2, ...) is a Federated Learning aggregation algorithm like FedAvg.

We can calculate the maximum amount of data transfer required for communication 
between clients and the server in D-FedFreezeBERT in GigaBytes as follows:

Equation  1 assumes that all clients are included in all communication rounds to cal-
culate the maximum amount of data transfer in the network. T is the number of com-
munication rounds, nc is the total number of clients, Ws is the aggregation architecture, 
and SizeOf is an operator that retrieves the size in GB. The setup of the whole system 
including sending BERT from the server to all clients in the beginning is ignored as it is a 
required and a standard step between all Federated Learning algorithms that use BERT.

Centralized‑FedFreezeBERT

Centralized-FedFreezeBERT—or for short-hand C-FedFreezeBERT—is the centralized 
version of FedFreezeBERT where the training is executed on the server side. C-FedFree-
zeBERT is based on the fact that having BERT contextual embeddings for a sentence, 

(1)CommCostD−FedFreezeBERT = 2 · T · nc · SizeOf (Ws)
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one cannot get back the original sentence and hence preserving privacy and security if 
these embeddings are sent to the server.

Figure  2 shows the general architecture of C-FedFreezeBERT. The server starts by 
sending to all clients the weights of the Pre-trained Language Model. Each client then 
feeds its local data through BERT to get the contextual embeddings of all tokens of all 
sentences which we denote Embi and i is the client index. All clients then send all these 
embeddings with the sentences’ labels Yi to the server that uses them to do the whole 
training without having any other communication rounds between the server and cli-
ents. After the server finishes all the epochs, it sends the final weights Ws of the aggre-
gation architecture to all clients. C-FedFreezeBERT is illustrated as pseudo-code in 
Algorithm 2

Algorithm 2 Our proposed C‑FedFreezeBERT. Xi and Yi are the training data of client i. ServerTrain is a normal 
training loop over epochs and  batches per epoch.

We can calculate the maximum amount of data transfer required for communication 
between clients and the server in C-FedFreezeBERT in GigaBytes as follows:

Fig. 2 The proposed architecture of C‑FedFreezeBERT. All clients share the same set of parameters for BERT. 
Each client passes its local data through BERT to get the embeddings of these data. Clients then send these 
embeddings to the server that uses these embeddings to fully train the aggregation architecture. After the 
training is done, The server sends the final weights of the aggregation architecture back to all clients
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Where ns is the total number of sentences over all clients, nt is the maximum sequence 
length used by BERT which is 128 in our case, dimemb is BERT embedding dimension 
and it is 768 in our case. The fraction 4

230
 is because each number in the embedding 

is represented by 4 bytes and the total term is divided by 230 to get the size of all the 
embeddings in GigaBytes. nc is the total number of clients, Ws is the aggregation archi-
tecture, and SizeOf is an operator that retrieves the size in GB. The setup of the whole 
system including sending BERT from the server to all the clients in the beginning is 
ignored as it is a required and a standard step between all Federated Learning algorithms 
that use BERT.

BERT aggregation architectures

The purpose of the aggregation architectures is to aggregate BERT’s final contextual 
embeddings and its hidden layers’ embeddings to get a more representative sentence 
embedding in the context of text classification. Omar et al. [24] shows different archi-
tectures to aggregate BERT’s embedding for text classification. They also show that some 
aggregation architectures can be used with BERT parameters kept frozen to outperform 
BERT being fine-tuned. Our research will use four aggregation architectures with BERT 
for text classification. The first two architectures are simple and aggregate BERT’s final 
layer embeddings. The last two architectures are more complex as they aggregate BERT’s 
final and hidden layers’ embeddings. The architectures we use can be summarized as 
follows:

• Ordinaryaggregator: This architecture is the common and standard way where 
BERT’s [CLS] output embedding is used as the sentence embedding. The [CLS] 
embedding is then fed to the classifier which is a simple linear layer in our case.

• Average aggregator: This aggregation architecture is an intuitive and very simple 
one in which BERT’s all final layer contextual embeddings are averaged to get a fixed 
size embedding representing the input sentence. Ref.  [24] shows that although this 
aggregation architecture is very simple, it can achieve high performance when BERT 
parameters are kept frozen. The authors also show that its results are very near to 
using [CLS] embedding with fine-tuning BERT. We decided to include this aggrega-
tion architecture in our experiments as it is very simple and yet effective when BERT 
is frozen.

• P-SUM: This architecture is first proposed by [13] to improve BERT performance 
for aspect-based sentiment analysis. Ref. [24] then proposed that this architecture 
performance can be further improved if BERT parameters are kept frozen. The archi-
tectural details are shown in Fig. 3. An extra four BERT layers are added on top of 
BERT in parallel. The four final BERT layers pass their outputs to the extra BERT 
layers in parallel. Each path from the four parallel paths then acts as a classifier and in 
the training, the four classifiers’ losses are added together. In inference time, the four 
classifiers’ outputs are averaged to get the final predictions. As shown by [13] and 
[24], the best number of last layers to be used is four and hence we decided to follow 
this number in the experiments.

(2)CommCostC−FedFreezeBERT =

4

230
· ns · nt · dimemb + nc · SizeOf (Ws)
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• H-SUM: This architecture is first proposed by [13] to improve BERT performance 
for aspect-based sentiment analysis. Ref. [24] then proposed that this architecture 
performance can be further improved if BERT parameters are kept frozen. The archi-
tectural details are shown in Fig. 4. Extra four BERT layers are added on top of BERT 
in a hierarchical fashion such that each extra BERT layer adds its outputs to the input 
of the extra BERT layer that precedes it. Each path from the four parallel paths then 
acts as a classifier and in the training, the four classifiers’ losses are added together. In 
inference time, the four classifiers’ outputs are averaged to get the final predictions. 
As shown by [13] and [24], the best number of last layers to be used is four and hence 
we decided to follow this number in the experiments.

Modified FedSplitBERT

FedSplitBERT [20] is a Federated Learning framework to fine-tune BERT for general 
NLP tasks. It is based on splitting BERT’s 12 layers into two parts: a global part and a 
local part. The global part is the first c layers and the local part is the last 12− c layers. 
For the local training on clients in each communication round, both global and local 

Fig. 3 P‑SUM aggregation architecture [24]

Fig. 4 H‑SUM aggregation architecture [24]
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layers parameters change based on the local data. The global part only is sent from cli-
ents to the server for aggregation and then the server sends the aggregated global part 
back to all clients at the end of each communication round. For text classification, Fed-
SplitBERT is based on the following settings: 

1. BERT is fine-tuned meaning that all the parameters are changed during the training.
2. BERT’s [CLS] embedding is used as the sentence embedding to be fed to the classi-

fier.
3. The global part is aggregated on the server with FedAvg.

Our modification to FedSplitBERT covers the second point. We propose using Aver-
ageAggregator, P-SUM, and H-SUM to improve FedSplitBERT performance for text 
classification. The first point of course couldn’t be changed because if we don’t fine-tune 
the model, there is no meaning to split the model into global and local parts and then 
aggregate only the global part to the server. For the third point, it is already mentioned 
by FedSplitBERT authors that other Federated Learning algorithms other than FedAvg 
can be used but we decided to follow exactly their approach to be consistent with their 
results. FedSplitBERT’s maximum communication cost can be calculated as follows:

Where T is the number of communication rounds, nc is the total number of clients, and 
c is the critical layer defined by FedSplitBERT or in other words the number of BERT 
layers in the global part. BL is an abbreviation of BERT Layer. BE is an abbreviation of 
BERT’s Embedding Layer. SizeOf(.) is an operator that returns the size of an object in 
GigaBytes.

Experiments
Dataset and evaluation metric

The dataset used in this work is ArSarcasm-v2 published by [2]. The dataset is a bench-
mark for Arabic sentiment analysis and sarcasm detection. The dataset consists of tweets 
collected through Twitter API [21] and manually labeled for sentiment and sarcasm. All 
tweets are Arabic in language but have different dialects and hence are more challeng-
ing for sentiment and sarcasm. This work mainly addresses the problem of sentiment 
analysis through ArSarcasm-v2. The dataset is split into 12k tweets for training and 
3k tweets for testing. Table 1 shows the sentiment distribution over training tweets of 
ArSarcasm-v2.

(3)CommCostFedSplitBERT = 2 · T · nc · (c · SizeOf (BL)+ SizeOf (BE))

Table 1 ArSarcasm‑v2 sentiment distribution over training tweets

Task Class Count

Sentiment Positive 2180

Negative 4621

Neutral 5747

Total 12,548
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To evaluate our experiments on ArSarcasm-v2, the same evaluation metric FPN
1

 
defined in [2] and also followed in [24] is also followed in this work. FPN

1
 is the aver-

age F1-score over the positive and negative classes and can be formulated as follows:

Pre‑trained language model

Working with Arabic sentences, there is a variety of Pre-trained Language Models 
with BERT-base [6] architecture. Following the work done by [1, 2], and [24], we 
decided to use MARBERT [1] since it is the most effective PLM when working with 
the Arabic language, especially with Arabic tweets. MARBERT is pre-trained on 128 
GB of text with about 1 Billion tweets. The pre-trained weights of the model were 
downloaded from Hugging Face [34].

Baseline methods

This work considers three main Federated Learning baseline methods: FedAvg [22], 
FedProx [18], and FedSplitBERT [20] in addition to the central training approach. The 
reason behind considering both FedAvg and FedProx is that nearly all new Federated 
Learning approaches compare their results to both FedAvg and FedProx as they are 
the main and fundamental algorithms in Federated Learning. The implementation of 
FedAvg and FedProx was used from FedML [10]. The communication cost for both 
FedAvg and FedProx with BERT can be calculated as follows:

Where T is the total number of communication rounds, nc is the total number of cli-
ents, and SizeOf(BERT) is the total size in GB of the original BERT model for sequence 
classification.

For FedSplitBERT, we couldn’t find an official implementation to it hence we imple-
mented our version with the same architecture specified by FedSplitBERT. To make 
sure that our implementation is correct and matches the original FedSplitBERT’s 
implementation, We evaluated our implementation on SST-2 [29] with the critical 
layer c = 8 and the same settings defined by [20]. Table 2 shows the performance of 
the original FedSplitBERT with the accuracy of 93.27% reported from their original 
paper. The table shows that our implementation gives almost identical accuracy on 
SST-2 and hence we can continue experimenting with our own implementation.

(4)FPN
1 =

F
positive
1

+ F
negative
1

2

(5)CommCostFedAvg = 2 · T · nc · SizeOf (BERT )

Table 2 Performance of original and our implementation of FedSplitBERT on SST‑2

FedSplitBERT Accuracy

Original [20] (from paper) 93.27

Our implementation 93.29
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Experimental setup

Implementation

All the architectures are implemented in Pytorch [25]. All Federated Learning simula-
tions are done with FedML [10] single process simulation. The experiments were exe-
cuted on Google Colab [4] on Nvidia Tesla T4. MARBERT maximum sequence length 
was set to 128 following both [2] and [24]. The training data was distributed among 5 
clients as described in [19]. The loss function to train the models is chosen to be the 
Cross-Entropy Loss. The network parameters were optimized with Adam Optimizer 
[15]. For D-FedFreezeBERT, the server can use any Federated Learning aggregation 
algorithm and we decided to do the experiments with both FedAvg and FedProx.

Hyperparameters

Training was done with the batch size set to 16. Since we have two main categories 
of training: distributed and centralized, we wanted the training process to be as fair 
as possible. Distributed training approaches such as FedAvg, FedProx, FedSplit-
BERT, and D-FedFreezeBERT require the training to be done on the client side and 
having multiple communication rounds between the server and clients. Centralized 
approaches such as C-FedFreezeBERT have no communication rounds and the full 
training is done on the server side. The maximum number of epochs suggested by [2] 
and [24] was 5 and hence we executed C-FedFreezeBERT experiments with 5 epochs 
and other approaches with 5 communication rounds while each client executes 1 
epoch per round. Following this way, we guarantee that all approaches see each train-
ing tweet the same number of times and hence the results can be fairly compared. 
FedProx � was tuned and finally set to 0.05. FedSplitBERT critical layer c is used 
to be 8 as it gives the best performance as observed by [20]. Learning rates in the 
range from 9e−4 to 1e−6 were explored. The final learning rates used are: 1e−6 with 
FedAvg and FedProx, 1e−5 with FedSplitBERT, and 5e−4 with D-FedFreezeBERT and 
C-FedFreezeBERT.

Results and analysis

Table 3 shows the FPN
1

 metric for baseline methods and our proposed approaches on 
the ArSarcasm-v2 testset. All baseline approaches use the OrdinaryAggregator where 
the [CLS] embedding is used as the sentence embedding. We also experimented with 
FedFreezeBERT with the [CLS] embedding although it is expected to get low per-
formance. It is commonly known that it is very challenging for Federated Learning 
algorithms to get close or higher performance compared to the central approaches 
and hence we included central training to compare the different Federated Learn-
ing algorithms and frameworks to it. Table  3 shows that both FedAvg and FedProx 
get low performance compared to the central training approach. D-FedFreezeBERT 
gets very low FPN

1
 which is expected because freezing BERT is known to degrade 

the performance with the [CLS] embedding being used as a sentence embedding. 
C-FedFreezeBERT has also a low performance compared to other algorithms while 
being used with the OrdinaryAggregator but its performance is much higher than 
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D-FedFreezeBERT because the whole training happens in one place and hence no 
heterogeneity in the data exists. FedSplitBERT is the best baseline approach outper-
forming the central training approach

When AverageAggregator is used, the central training performance degraded a little. 
We expect that both FedAvg and FedProx patterns follow the central approach and hence 
their performance also degraded with AverageAggregator compared to OrdinaryAggre-
gator. Also, FedSplitBERT performance degraded a little and these observations follow 
the findings of [24]. Both D-FedFreezeBERT and C-FedFreezeBERT performance was 
enhanced because of using the AverageAggregator. Although using the AverageAggrega-
tor improved FedFreezeBERT, it is not a very powerful aggregation architecture but it is 
very efficient because of its simplicity.

P-SUM is proven to be a powerful aggregation architecture for text classification by 
[13] and [24]. The central training performance improved to achieve 74.63 FPN

1
 . Both 

FedAvg and FedProx performance also improved compared to their counterparts with 
the OrdinaryAggregator but as expected they cannot exceed the central training perfor-
mance. For FedSplitBERT, the performance was enhanced with P-SUM by a little margin 
but its performance couldn’t exceed the central training performance. D-FedFreeze-
BERT achieved a comparably high FPN

1
 which is very interesting. C-FedFreezeBERT with 

P-SUM achieved 75.26 FPN
1

 which is a new state-of-the-art on ArSarcasm-v2 in a Feder-
ated Learning setting. It is worth noting that C-FedFreezeBERT with P-SUM achieved 
an improvement of 12.9%, 2.4%, and 1.2% over FedAvg/FedProx, baseline central train-
ing, and FedSplitBERT respectively.

When experimenting with the different approaches with H-SUM, it can be shown 
that central training, FedAvg, and FedProx get a performance enhancement compared 
to their baselines counterparts. When they are compared with the P-SUM results, it 

Table 3 Comparison of FedFreezeBERT with other baseline approaches on ArSarcasm‑v2 test set

Bold values indicate the best-performing approach when the aggregation architecture is fixed

Baseline Methods and FedFreezeBERT with OrdinaryAggregator

Method BERT Frozen? F
PN

1

Central Training No 73.48

FedAvg No 66.67

FedProx No 66.36

FedSplitBERT No 74.39
D‑FedFreezeBERT (FedAvg) Yes 49.39

D‑FedFreezeBERT (FedProx) Yes 47.5

C‑FedFreezeBERT Yes 65.1

F
PN

1
  Using Advanced Aggregation Architectures

Method BERT Frozen? AverageAggregator P‑SUM H‑SUM

Central Training No 73.00 74.63 73.93

FedAvg No 63.84 71.71 68.81

FedProx No 63.55 71.56 68.54

FedSplitBERT No 74.08 74.57 74.88

D‑FedFreezeBERT (FedAvg) Yes 54.23 74.18 74.29

D‑FedFreezeBERT (FedProx) Yes 52.09 74.13 74.21

C‑FedFreezeBERT Yes 72.34 75.26 74.94
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can be observed that their performance degrades and this is because H-SUM has a long 
chain of 14 BERT layers to be fine-tuned if the model parameters aren’t frozen and this 
makes the learning process more complex. FedSplitBERT with H-SUM is improved by 
0.66% over the baseline FedSplitBERT which shows that aggregation architectures can 
help improve existing promising approaches. To make sure that the 0.66% is a relevant 
improvement, the standard deviation of the original FedSplitBERT and FedSplitBERT 
with H-SUM are estimated over five runs and we found them to be 0.12% and 0.17% 
respectively. D-FedFreezeBERT’s performance increased a little with H-SUM compared 
to its performance with P-SUM. C-FedFreezeBERT with H-SUM achieved 74.94 FPN

1
 

exceeding also all other approaches - except for C-FedFreezeBERT with P-SUM - with 
an improvement of 12.4%, 2%, and 0.74% over FedAvg/FedProx, baseline central train-
ing, and FedSplitBERT respectively.

To measure the communication cost and hence communication gain, which is defined 
as the ratio of the baseline’s communication cost to the optimized approach’s commu-
nication cost, of the different methods, we measured in the conducted experiments all 
sent and received data between the server and clients and verified their correctness with 
equations 1, 2, 3, and 5. The parameters used in our experiments are as follows:

• nc = 5

• T = 5

• ns = 12548

• nt = 128

• c = 8

• SizeOf (Ws) = 113.44MB

• dimemb = 768

• SizeOf (BL) = 28.35MB

• SizeOf (BE) = 308MB

• SizeOf (BERT ) = 651.37MB

Table 4 shows the communication cost and communication gain of the different Feder-
ated Learning methods under the setting of our experiments on the ArSarcasm-v2 data-
set. The table shows the effectiveness of both D-FedFreezeBERT and C-FedFreezeBERT. 
D-FedFreezeBERT achieves a communication gain of 5.7× and 4.7 × compared to Fed-
Avg and FedSplitBERT respectively. C-FedFreezeBERT achieves a communication gain 
of 6.2× and 5 × compared to FedAvg and FedSplitBERT respectively. It is worth noting 

Table 4 Comparison of different approaches communication cost and communication gain on 
ArSarcasm‑v2

Method Communication cost Communication 
gain

(GB)

FedAvg/FedProx 31.8 1×

FedSplitBERT 26.11 1.2×

D‑FedFreezeBERT (P‑SUM/HSUM) 5.54 5.7×

C‑FedFreezeBERT 5.15 6.2×



Page 15 of 16Galal et al. Journal of Big Data           (2024) 11:28  

that FedSplitBERT achieved state-of-the-art results not only on a performance metric 
such as FPN

1
 but also from the communication cost perspective.

Conclusion and future work
This work proposes a novel framework, FedFreezeBERT, for BERT-based text classifi-
cation in Federated Learning environments. FedFreezeBERT mainly addresses the chal-
lenge of the expensive communication cost of BERT in Federated Learning by freezing 
the model parameters and boosting its performance with aggregation architectures such 
as P-SUM and H-SUM. FedFreezeBERT is evaluated on Arabic sentiment analysis on 
the ArSarcasm-v2 dataset. The experiments show that FedFreezeBERT’s performance 
in sentiment analysis exceeds FedAvg and FedProx performance with a 12.9% improve-
ment and exceeds FedSplitBERT performance with a 1.2% improvement. The experi-
ments also show that FedFreezeBERT is the most cost-effective framework regarding 
communication costs with a communication gain of 6.2× and 5 × compared to FedAvg/
FedProx and FedSplitBERT respectively. FedFreezeBERT is a simple and easy-to-imple-
ment approach. Also, D-FedFreezeBERT is compatible with nearly all Federated Learn-
ing aggregation algorithms such as FedAvg and FedProx. In the future, FedFreezeBERT 
can be explored outside the context of text classification in problems such as question 
answering, semantic similarity, etc.
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