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Abstract 

Infrared small target detection is a challenging task. Morphological operators 
with a single structural element size are easily affected by complex background noise, 
and the detection performance is easily affected by multi‑scale background noise 
environments. In order to enhance the detection performance of infrared small targets, 
we propose a dual channel and multi‑scale adaptive morphological method (DMAM), 
which consists of three stages. Stages 1 and 2 are mainly used to suppress background 
noise, while stage 3 is mainly used to enhance the small target area. The multi‑scale 
adaptive morphological operator is used to enhance the algorithm’s adaptability 
to complex background environments, and in order to further eliminate background 
noise, we have set up a dual channel module. The experimental results indicate 
that this method has shown superiority in both quantitative and qualitative aspects 
in comparison methods, and the effectiveness of each stage and module has been 
demonstrated in ablation experiments. The code and data of the paper are placed 
in https:// pan. baidu. com/s/ 19psd wJoh‑ 0MpPD 41g6N_ rw.
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Introduction
With the development of computer vision and infrared imaging technology, infrared 
search and tracking (IRST) systems have a wide range of applications in the fields of 
guidance, early warning and traffic safety, and infrared small target detection plays a vital 
role in the performance of IRST systems, so infrared small target detection algorithms 
have been widely concerned by researchers [1–3]. However, in practical applications, 
there are usually the following problems: first, due to the long shooting distance, weak 
infrared targets show the characteristics of small size, weak signal, and few texture fea-
tures, which are difficult to detect directly [4, 5]; Secondly, the near-Earth background 
is complex, and the target is often submerged in debris and noise, so there are many 
false alarms and false detections [6, 7]; Finally, the module data volume and transmission 
speed are slow, making it difficult to apply in practical applications, the real-time perfor-
mance of the object detection algorithm in practical applications requires high [8–10].
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Infrared weak and small target detection algorithm is mainly divided into sequence-
based and single-frame-based methods, based on sequence detection using the continu-
ity and correlation of moving targets in multi-frame images to achieve infrared small 
target detection, while single-frame detection mainly uses single-frame images, extracts 
the gradient, grayscale and contrast of small targets in infrared images and other char-
acteristics, through target enhancement or background suppression and other ways to 
achieve weak and small target detection, compared with multi-frame detection, it has 
the advantages of low complexity, high execution efficiency, and easy hardware imple-
mentation. The single-frame infrared single-frame weak target detection algorithm is 
mainly divided into three methods: Filter-based [11–13], human visual system [14–23] 
and low-rank sparse matrix recovery [24–27].

In addition, morphological operations show good performance in small target detec-
tion, but the results of the top-hat algorithm are greatly affected by structural elements, 
and traditional structural elements are fixed in size and shape, making it difficult to 
adapt to targets of different shapes and sizes. To solve this problem, Wang et al. recon-
structed the structural elements in four directions based on the ring top hat transfor-
mation and the relationship between target and circularity, and effectively improved the 
application effect of the top-hat algorithm in small target detection [28]; Li et al. pro-
posed a multidirectional improved top hat filter (MITHF) to highlight potential small 
targets and suppress strong structural edge clutter [29]; Bai et al. enhanced the infrared 
small target by using swelling and erosion to enhance the target area and suppress the 
surrounding background [30].

However, according to the above research, the single-frame small target detection 
algorithm still has the problem that it is difficult to balance real-time and detection 
rate at the same time, such as NTHF [12] and ADMD [19] have fast detection speed, 
but poor suppression effect on the background and low detection rate, while WSLCM 
[23] and NRAM [26] have strong robustness to background noise, high detection rate, 
but too low real-time performance, so the actual scene application effect of the above 
algorithm is weak. Inspired by the above algorithms, we fully utilize the information 
differences between images to establish a multi-scale adaptive weighted morphological 
operator, which effectively solves the problem of selecting the size of structural elements 
in morphological operations in small object detection. Subsequently, we designed three 
detection stages and integrated a dual channel module, effectively improving the detec-
tion effect and speed of infrared small object detection.

Our contributions are as follows:

(1) We propose an efficient and robust infrared small target detection algorithm, which 
is reasonably designed to include three stages and fully utilizes image operations 
to improve the detection effect of infrared small targets. The effectiveness of each 
stage has been demonstrated through ablation experiments.

(2) In previous studies, morphological operators have been proven to be effective in 
detecting small infrared targets, but the selection of the size of structural elements 
is often a challenge. Therefore, we set two structural elements by combining the 
information difference weights between images, including adaptive multi-scale 
weighted square structural elements and adaptive multi-scale weighted ring struc-
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tural elements, and draw conclusions through practice, The former is more suitable 
for suppressing background noise, while the latter is more suitable for accurately 
detecting small targets.

(3) Due to the fact that single channel infrared small target detection is prone to resid-
ual background noise, we have designed a dual channel module that effectively 
eliminates background noise and enhances the area of infrared small targets by 
combining this module.

 This article is organized as follows. In  "Related work" section, the related work was 
discussed. In "Method" section, some previous methods were summarized and the algo-
rithm proposed in this paper was proposed. In "Experimental preparation" section, the 
experimental setup and evaluation indicators were discussed. In "Experimental results 
and analysis" section, a large number of experiments were conducted to verify the effec-
tiveness of the proposed method. In "Conclusion" section, a conclusion of the paper is 
provided.

Related work
We divide the related work into three methods: Filter-based, human visual system, and 
low rank sparse matrix recovery.

Filter-based algorithms use pixel grayscale differences to highlight small targets and 
remove surrounding background noise interference. Deshpande et al. used a maximum 
median filter for detecting small targets [11], and subsequently, Bai et al. improved the 
top-hat algorithm for small target detection (NTHF) using a ring structure [12]; Bae 
et  al. proposed an infrared weak target detection method based on bilateral filtering 
(BF) based on edge direction analysis [13]. Although these methods can suppress simple 
backgrounds, small targets are often in complex environments, background grayscale 
changes are large, and there is a lot of noisy noise.

The algorithm based on the Human Visual System (HVS) refers to the principle that 
the human eye distinguishes between the target and the background according to con-
trast to obtain the visual significance area, and highlights small infrared targets by con-
structing a significant difference map between the target and the background. Chen et al. 
proposed local contrast measurement (LCM) using a nested window with eight direc-
tions to capture the maximum gray value of the target block and the average value of the 
surrounding background block [14]; Han et  al. proposed an improved LCM using the 
average grayscale suppression background of the target block [15]; Qin et al. only con-
sidered the largest pixels when calculating the average grayscale, and proposed NLCM 
[16]; Wei et al. combine the local gray differences of the two corresponding directions 
together to improve the performance of the algorithm, and propose MPCM [17]; Han 
et al. proposed RLCM [18] by adopting a relative local contrast measurement method. 
Moradi et al. used absolute directional mean difference for small target detection, and 
proposed ADMD [19] subsequently; Han et al. proposed TLLCM using a three-layer fil-
tering window to compute window center pixels between the enhancement core and the 
surrounding local background [20]. In addition, weighting functions have been used to 
improve the performance of algorithms, such as WLCM [21], RIL [22], and WSLCM 
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[23], which use weighting functions combined with local contrast to achieve more accu-
rate detection results.

The algorithm based on low-rank sparse matrix recovery divides infrared images into 
three components: target composed of sparse matrix fT , background composed of low-
rank matrix fB , and noise matrix fN [24]. Qin et al. separated the original image matrix 
into a sparse matrix and a low-rank matrix, and converted the small target detection into 
a low-rank sparse matrix decomposition for processing, but the processed image is easy 
to leave background residuals [25]; Zhang et al. adopted the structural norm to eliminate 
strong residuals and proposed NRAM [26]; Zhang et al. proposed PSTNN by introduc-
ing non-convex low-rank constraints in detection [27].

Method
Morphological operators

Mathematical morphology is widely used in the field of computer vision. It is based on 
two basic operations: expansion and erosion. If f (x, y) represents grayscale image, and 
b(i, j) represents structure operator, they can be represented by 

(
f ⊕ b

)
 and 

(
f ⊖ b

)
 as 

follows:

Where 
(
x, y

)
 represents the coordinates of pixels in the image, and (m, n) represents the 

offset of pixel coordinates in the structural element relative to x and y.
If the structural unit is a planar structural unit, i.e. b(m, n) = 0 , then expansion and 

erosion are simplified as follows.

In this paper, a new morphological operator is proposed, and expansion and corro-
sion are used many times in this algorithm to weaken background noise while enhancing 
infrared small targets.

Multiscale adaptive morphological operators

Morphological operators show strong performance in infrared small target detection, 
but at present, most of them need to set a single structural element size according to the 
actual situation when performing morphological processing, so as the background and 
target area size change, the performance of morphological operators will be affected. 
We make full use of the difference in background information between images to derive 
weights and set multiscale adaptive weighted morphological operators.

Among them, the adaptive square structure morphology operator is used in stage 2 
to suppress multi-scale background noise, and the adaptive ring structure morphology 
operator is used in stage 3 to further enhance the small target area.
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Adaptive square structure morphological operator

Due to the presence of multi-scale background noise in infrared small target images, using 
a single structural element often results in poor processing performance. Therefore, in an 
adaptive square structure, we use four square row structural operators with sizes 2–5 to 
perform morphological operations on the images, and then subtract the processed image 
from the pre processed image to obtain the difference between the images. The larger the 
difference, the more significant the processing effect, finally, we weighted the difference val-
ues of the processed image to obtain the output image.

We use four square structure operators of size 2–5 to expand the images b0 separately, 
and then subtract the image after each expansion treatment with the image before process-
ing, find the degree of difference between the images, sum the difference image matrix, and 
finally obtain the output image by weighting the sum.

where I1 represents the output image of the process, bn represents the expanded image of 
a square structure operator with size n , wn represents the weight value corresponding to the 
expanded image, which is calculated as follows:

Adaptive ring structure morphological operator

The ring structure proved its effectiveness for small target detection in NTHF [12], but due 
to the fixed size, it is easy to weaken the detection effect of small targets, so we used an 
adaptively weighted ring structure in the third stage, because the size of the target area in 
small target detection is usually 1 × 1, 3 × 3, 5 × 5, 7 × 7 and 9 × 9 pixels, so we use five sizes 
of ring structure, so Bi and Bo set five combinations, which are(1, 2), (1, 4), (2, 7), (3, 10) 
and (4, 13)(hereinafter referred to as combination 1–5 in sequence), among them, Bi and 
Bo represent the radii of inner and outer structural elements, respectively., as the purpose 
of using an adaptive ring structure is to accurately identify small targets while eliminating 
the background residuals present in the images I2

(
x, y

)
 obtained in the stage 2. Therefore, 

it is necessary to set the size of structural elements that are more suitable for infrared small 
targets.

The use of adaptive ring structures increases the selection process of the combination 
range of structural components on top of adaptive square structures, including combina-
tion range 1–3 and combination range 3–5, The former is more suitable for targets with 
smaller scales, while the latter is only suitable for targets with larger scales. We set up a 
method to select the combination range, as shown in Fig. 1.

Firstly, we use three ring structural elements combined with 1,3 and 5 to handle I2
(
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)
 , 

subtract the processed images from I2
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and c5.
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Where, the values of i are 1, 3, 5, and I3
(
x, y

)
 represents the image processed with ring 

structural elements.
Then we calculate the absolute values of the differences between c1 and c3, as well 

as c5 and c3. Since most of the background noise is suppressed in the second stage, 
the larger the absolute value, the greater the change in the enhancement effect of small 
infrared targets in that range, and the more likely there is a structural element size suit-
able for the small infrared targets in the image. After selecting the appropriate combi-
nation range, adaptive weighting is performed, and the weighting method is consistent 
with the adaptive square structure.

Optimized Fourier bilateral filtering

The bilateral filter is a typical nonlinear filtering algorithm, which preserves the edge 
information of the image through the characterization of the change of pixel intensity, 
which can effectively solve the edge blurring problem caused by filtering [31]. The bilat-
eral filtering of the image f  can be expressed as:

 where w is a spatial domain kernel used to reduce the interference of distant pixels on 
the pixels to be updated; φ is a pixel domain kernel used to reduce the interference of 
distant pixels on the pixels to be updated. θ and σ They are Gaussian distance standard 
deviation and Gaussian grayscale standard deviation, respectively. It can be seen from 
Eq. (7) that Bilateral filter not only considers the Euclidean distance between the target 
and surrounding pixels, but also takes into account the gray distance between the target 
and surrounding pixels, so it can well represent and retain image edge information.

Sanjay et al. improved on the traditional bilateral filter, using the Fourier function to 
approximate the truncated Gaussian kernel, and applying the Fourier series approxima-
tion to the range kernel to represent it using fast convolution, and proposed a model 
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Fig. 1 Adaptive multi‑scale ring structure size interval selection
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using the least squares fitting optimization coefficient [32]. where the Fourier series 
approximation can be expressed as:

 where the period is [−T ,T ] , and K  is the number of terms. We compared a variety 
of improved Bilateral filter, such as Fast Adaptive Bilateral Filtering [33] and Gaussian 
Adaptive Bilateral Filtering [34]. However, the optimized Fourier Bilateral Filtering [32] 
uses least square optimization to perform accurate calculation in the processing pro-
cess, and controls the filtering quality by adjusting the kernel error and approximates the 
Gaussian kernel by using Fourier series. Therefore, among these algorithms, the image 
processing effect for infrared small target detection is the best. In the experiment, we 
used this model [32] as the preprocessing stage of our algorithm, which can significantly 
suppress the background area while preserving the target area and image edges.

DMAM

DMAM consists of three stages: stage 1 is through optimized Fourier bilateral filtering, 
which is used to initially remove noise and preserve edges. In stage 2, we design an adap-
tively weighted square structure morphological operator to suppress the background 
and preliminarily identify small targets. In stage 3, we design an adaptively weighted ring 
structure morphological operator to further accurately identify small targets and obtain 
the final target image, as shown in Fig. 2,

Stage 1 Fourier bilateral filtering optimized at this stage is used to smooth the image 
background, preserve the edge of the target area, filter with two standard deviation 
parameters and set to 5 and 30, respectively.

Stage 2 Our main goal in this phase is to suppress background noise and enhance 
small targets in preparation for final recognition. For the purpose of this stage, we use a 
square structure operator in this stage, because the square structure operator can better 
suppress background noise in our practice.

Firstly, since the fixed-size morphological operator is not adaptable enough to the 
image, and the processing effect is easily affected by small target size and complex back-
ground, the adaptive weighted square structure expansion operation is used to process 

(9)φ̂(t) =

K−1∑

k=0

ckcos

(
2πkt

2T + 1

)

Fig. 2 The overall framework of DMAM(with the target marked in a red rectangle, The steps for representing 
the algorithm with numbers inside the circle)
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the image after the first stage of processing, which can effectively enhance the image 
contrast and suppress the background noise.

Then we process the image through a mean filter with a kernel of 9 * 9 to further 
remove noise and edges.

where O1 represents the output image, h(x, y) represents the neighborhood operator, 
and f (x, y) represents the original image.

In order to obtain the difference between the images obtained by these two processes, 
we use subtraction, and finally enhance the image contrast by multiplication.

Stage 3 We first perform adaptive loop structure morphological dilation on the image. 
Then, the expanded image is subjected to an adaptive weighted ring structure corrosion 
operation, which can eliminate or weaken bright details. Through these two steps, back-
ground residuals smaller than structural elements can be removed. In the end, we set up 
two subtraction operations, taking advantage of the differences between the images to 
enhance the area where the small target is located.

Dual channel Due to the small size of the image, some background noise cannot be 
effectively processed during the processing. Therefore, we have set up a dual channel 
module. This module first enlarges the image to twice its original size, and then pro-
cesses it through stages 2 and 3 to obtain the background noise processing results of the 
original image at different scales. The processed image size is then reduced to half of the 
original size, and finally multiplied by the output image of the original channel, it can 
further suppress background noise and enhance small target areas.

Experimental preparation
Data preparation and parameter setting

In our experiment, the test dataset consists of nine infrared image sequences, labeled 
Seq.1–9, each representing a typical scene in infrared small target detection, including 
ground, river, sky and clouds, the data sets are described in Table 1, and Fig. 3 shows 
images of these test sequences, with dim small targets in red rectangle marker.

To verify the performance of the proposed algorithm, we tested it on some real infra-
red images and compared the results with some well-known algorithms, including 

(10)O1(x, y) =
∑

k ,l
f
(
i + k , j + l

)
h(k , l)

Table 1 Details of real image sequences

Sequence Image size Target 
number

Target size Background details

Seq.1 640 × 512 1 3 × 3 Cloud and sky background

Seq.2 640 × 512 1 3 × 3 Ground, clouds and sky background

Seq.3 640 × 512 1 3 × 3 River, ground, clouds and sky background

Seq.4 640 × 512 1 3 × 3 River and ground background

Seq.5 640 × 512 1 3 × 3 Ground, clouds and sky background

Seq.6 640 × 512 1 5 × 5 Cloud and sky background

Seq.7 640 × 512 1 5 × 5 Cloud and sky background

Seq.8 640 × 512 1 3 × 3 Cloud and sky background

Seq.9 640 × 512 1 3 × 3 Cloud and sky background
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PSTNN [27], ADMD [19], NTHF [12], TLLCM [20], WSLCM [23], and NRAM [26]. All 
experiment is simulated on matlab2016. The experimental machine is a 64-bit windows 
11 system, the video card is Nvidia GeForce RTX3060, the memory is 16 GB, and the 
processor frequency is 3.20 GHz.

Evaluation metrics

In order to quantitatively describe the effect of the algorithm on the improvement of 
image signal-to-clutter ratio and the suppression effect of background clutter. Introduce 
the calculation formula of signal-heteroratio SCR [35] and background inhibitor BSF:

 where Gmt represents the grayscale mean of the target area, Gmb and σb represents the 
grayscale mean and grayscale standard deviation of the background area near the tar-
get area, respectively. Generally, the scale of the background area near the target area 
is three times that of the target area [19]. (σc)in is the standard deviation of the original 
image grayscale (σc)out is the grayscale standard deviation of the image processed by the 
algorithm. The larger the SCR value, the higher the signal-to-noise ratio of the image, 
the more obvious the target, and the larger the BSF value, indicating the better the algo-
rithm’s suppression effect on background noise. In addition, we compared the running 
time of these algorithms in the experiment.

Experimental results and analysis
Target detection

In the experiment, we compared the proposed method with six methods in Seq.1–9. 
Figure  4 shows the 3D gray distribution of the detection results of these methods in 
Seq.1–9. In Seq.1, the background is simple, so most algorithms achieve background 
suppression while enhancing the target. In Seq.2, the background noise is complex, 
including ground, cloud, and sky backgrounds. Only the proposed method and WSLCM 
achieve background suppression while enhancing the target, and the proposed method 
has relatively good performance. In Seq.3, the background noise is more complex, 
including river, ground, cloud, and sky backgrounds. Only the proposed method suc-
cessfully suppressed the background. In Seq.4, the target is located in a river with a com-
plex background, and the proposed method demonstrates strong performance. In Seq.5, 
except for the proposed method and NRAM, all other methods retain a large amount of 
clutter, and the results are not satisfactory. In Seq.6–9, the background is simple, with 
only clouds and sky, and the target is not obstructed. Therefore, most algorithms have 

(11)SCR =
Gmt − Gmb

σb
,BSF =

(σc)in

(σc)out

Fig. 3 Test sequence images and their 3D grayscale distribution maps
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shown good background suppression performance, but relatively speaking, the proposed 
method shows more robust performance, showing strong background suppression per-
formance for these images, and the target is significantly enhanced.

The results indicate that ADMD performs weakly in these small target detection 
images and cannot effectively suppress the background. PSTNN, NTHF, and TLLCM 
have good background suppression performance for some images with simple back-
grounds, but are sensitive to noise and cannot completely suppress noise in complex 
backgrounds. WSLCM can effectively enhance targets, but it also cannot effectively 
suppress noise in complex backgrounds. Relatively speaking, NRAM has better per-
formance and effectively suppresses most of the background noise, but there are also 
clutter in the detection of some small target images. Compared with other methods, 
the performance of the proposed method is satisfactory. The target area is signifi-
cantly enhanced, while non target areas are suppressed to low values and almost flat. 
This proves the effectiveness of the adaptive morphological operator and background 

Fig. 4 3D grayscale distribution of Seq.1–9 treatment results by different methods(The first to ninth columns 
are seq.1–9 in sequence)
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subtraction process in the proposed method, resulting in better background and clut-
ter suppression performance and superior target enhancement function.

Quantitative analysis

In order to obtain more convincing results, we quantitatively compared SCR, BSF, and 
runtime. Tables 2 and 3 list the average values of SCR and BSF obtained using different 
methods on Seq.1–9. Among them, Inf represents that the value is infinite. Bold font 
represents best results. For each evaluated value, the highest represents the best result, 
with bold markings representing the best test result for that sequence. From the results 
in the table, it can be seen that our proposed method achieved the highest results, indi-
cating that our method can effectively suppress background while enhancing small.

To illustrate that the proposed methods are equally superior in efficiency, we compare 
the run times of these methods on Seq.1–9, and the results are shown in Table 4. In the 
comparative method, ADMD and NTHF showed superior performance in speed, but 
these two methods did not have satisfactory treatment effect on Seq.1–9 and showed a 
very weak suppression effect on background noise. In addition, TLLCM, WSLCM and 
NRAM have much more running time, showing unsatisfactory effects in terms of speed, 
and cannot be effectively applied in practical scenarios, while PSTNN and the proposed 
method have the same order of magnitude running time, but the proposed method is the 

Table 2 SCR of different IR sequences processed by different methods

The bold data indicates that it achieved the best performance in the comparison of this indicator

Seq. PSTNN ADMD NTHF TLLCM WSLCM NRAM DMAM

1 46.9157 0.0681 64.8087 25.0811 Inf 569.8089 Inf
2 6.3237 0.2515 12.9126 32.5254 23.6108 31.5933 Inf
3 2.2462 0.0575 12.1374 16.8222 22.1835 41.2009 Inf
4 1.7680 0.0490 5.7006 3.5841 1.0473 29.4276 1282.2
5 2.0947 0.0808 5.7750 12.1719 3.5801 74.4617 Inf
6 31.9922 6.0972 10.7441 18.0520 146.7909 69.8665 Inf
7 46.0606 0.0668 57.3342 35.3344 Inf 561.8401 Inf
8 28.7184 0.0029 22.1740 31.3726 360.8918 133.1119 Inf
9 15.7305 0.0380 36.0716 61.3269 153.2467 57.1714 Inf

Table 3 BSF of different IR sequences processed by different methods

The bold data indicates that it achieved the best performance in the comparison of this indicator

Seq. PSTNN ADMD NTHF TLLCM WSLCM NRAM DMAM

1 110.7710 9.2719 153.0919 54.9708 Inf 1345.0813 Inf
2 32.4615 18.8295 59.0676 60.9487 43.7358 161.5278 Inf
3 8.2980 18.5321 32.8489 32.4754 39.7643 188.1140 Inf
4 8.9553 14.5806 17.1458 14.1774 27.3913 89.2147 8847.9
5 11.8980 14.3035 29.3669 34.2446 42.2237 407.6250 Inf
6 37.3642 11.4993 26.5777 20.5957 132.2709 224.1574 Inf
7 111.2778 18.1715 138.5886 52.8643 Inf 1357.0311 Inf
8 74.5338 16.3654 70.4720 55.3693 618.8770 566.0093 Inf
9 65.5491 25.9841 150.2917 127.6625 292.0133 237.9780 Inf
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opposite of PSTNN The inhibition effect on the background and the enhancement func-
tion of the target are much better, so the proposed method has superior comprehensive 
performance, which is conducive to practical small target detection.

Ablation experiment

To verify the effectiveness of each stage and module, we conducted ablation experiments 
on stage1, stage2, stage3, as well as Dual channel and multi-scale morphological opera-
tors. In the following table, Original represents the original image, Stage. 1, Stage. 1&2, 
and Stage. 1&2&3 are all processed in the original channel (in which case a dual chan-
nel module is not added), and Dual channel represents the processing result of only the 
dual channel output image (in which case it is not multiplied with the original channel 
image).

Table 4 Running time(in s) of different methods

The bold data indicates that it achieved the best performance in the comparison of this indicator

Seq. PSTNN ADMD NTHF TLLCM WSLCM NRAM DMAM

1 0.818 0.343 0.195 15.399 54.753 38.145 6.247

2 1.923 0.114 0.109 18.407 60.821 60.525 6.274

3 1.603 0.040 0.115 17.733 64.818 69.926 6.418

4 1.479 0.046 0.112 15.533 55.202 57.732 6.312

5 1.450 0.055 0.122 18.209 64.241 54.721 6.323

6 1.466 0.055 0.190 14.466 49.767 44.550 6.360

7 0.744 0.054 0.121 14.628 54.151 37.207 6.563

8 1.567 0.057 0.121 14.594 52.057 43.88 6.213

9 1.947 0.058 0.113 13.301 53.082 52.996 6.330

Table 5 SCR of each stage and module processing result

The bold data indicates that it achieved the best performance in the comparison of this indicator

Stage Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

Original 0.4030 1.2288 0.4543 0.0675 0.3862 0.8360 0.7127 0.4631 1.2569

Stage 1 0.5974 1.2797 0.4942 0.0339 0.3846 1.4256 0.8478 0.4629 1.3477

Stage 1&2 9080.1 257.6050 78.0825 10.9409 31.6846 320.0315 2701.4 334.9324 659.0995

Stage 1&2&3 Inf 21,522 2664.5 128.1388 Inf Inf Inf Inf Inf

Dual channel Inf 5426.7 Inf 716.3895 Inf Inf Inf Inf Inf

DMAM Inf Inf Inf 1282.2 Inf Inf Inf Inf Inf

Table 6 BSF of each stage and module processing result

The bold data indicates that it achieved the best performance in the comparison of this indicator

Stage Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

Stage 1 0.8579 0.8648 0.9312 0.62897 0.9365 0.72176 0.78756 0.8989 0.7677

Stage 1&2 2054.8 132.1732 36.0205 7.49062 20.5387 105.0886 636.2836 143.6591 266.2959

Stage 1&2&3 Inf 17229.5 2020.5746 98.9368 Inf Inf Inf Inf Inf

Dual channel Inf 29843.21 Inf 4291.9 Inf Inf Inf Inf Inf

DMAM Inf Inf Inf 8847.9 Inf Inf Inf Inf Inf
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Ablation experiments for each stage and dual channel module

Based on the results in Tables 5 and 6, it is easy to see the effectiveness of each stage and 
dual channel module. When the image passes through stage 1, the area of the infrared 
small target is enhanced, resulting in an increase in SCR value. Then, when the image 
passes through stages 2 and 3, the SCR value and BSF value are significantly increased, 
indicating that the infrared small target is effectively detected and background noise is 
greatly suppressed. At the same time, the images output by the Dual channel module 
also have good infrared small target detection performance, further proving the effec-
tiveness of this module. In Table  7, we show the processing time for each stage and 
module.

Ablation experiment of multi‑scale morphological operators

To demonstrate the effectiveness of multi-scale adaptive morphological operators, we 
conducted ablation experiments on square structures with scales of 2–5 and adaptive 
square structures. This experiment only changes the adaptive square structure used in 
stage 2 of DMAM. In Tables 8 and 9, sizes 2–5 represent square structural elements with 
sizes 2–5, and adaptive represents adaptive square structure. According to the results, it 
can be seen that adaptive square structure has advantages in both SCR and BSF, and has 
the best processing effect in most cases, further proving the effectiveness of multi-scale 
adaptive square structure.

To demonstrate the effectiveness of the adaptive ring structure, we selected dif-
ferent combinations of structural elements, including (3,4) ,(3,5) ,(4,5) ,(5,5), among 
them, (3,4) represents the use of ring structure elements with size combination 3 in 
the original channel, ring structure elements with size combination 4 in the Dual 
channel, and so on. In Tables 10 and 11, adaptive represents adaptive ring structure, 
and its effectiveness is further evaluated based on experimental results.

Conclusion
In this paper, we propose an adaptive weighted composite morphological operator in 
view of the problem that traditional morphological algorithms are easily affected by 
complex background noise in small target detection, the detection effect is not good, 
and the choice of structural element size has a great influence on the detection effect. 
The algorithm makes full use of the background information difference between 
images to obtain weights, and sets adaptive weighted morphological operators and 
further suppressing background noise through dual channel modules.

Table 7 Running time(in s) of each stage and module processing

Stage Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

Stage 1 3.288 3.155 3.139 3.174 3.181 3.175 3.158 3.149 3.118

Stage 1&2 4.215 4.238 4.371 4.321 4.225 4.158 4.241 4.202 4.296

Stage 1&2&3 5.085 5.001 5.053 5.102 5.082 4.915 4.922 5.094 5.063

Dual channel 5.279 5.184 5.385 5.184 5.268 5.182 5.372 5.352 5.239

DMAM 6.247 6.274 6.418 6.312 6.323 6.360 6.563 6.213 6.330
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The results showed that compared with other methods, DMAM showed superior 
performance in suppressing complex background noise and enhancing small infrared 
target areas in qualitative analysis; In quantitative analysis, DMAM obtained inf SCR 
and BSF values in sequences other than seq.4, while in complex seq.4, it obtained SCR 
values of 1282.2 and BSF values of 8847.9, demonstrating superior performance.

Table 8 SCR of stage 2 structural element ablation experiment

The bold data indicates that it achieved the best performance in the comparison of this indicator

Size Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

2 Inf Inf 7545 21.5600 479.0435 Inf Inf Inf Inf

3 Inf Inf Inf 14977.0 34.6780 1151.6 Inf Inf Inf

4 Inf Inf 14,977 74.7879 1984 Inf Inf Inf Inf

5 Inf Inf Inf 50.6858 2308.9 2254.8 Inf Inf 2318.2

Adaptive Inf Inf Inf 1282.2 Inf Inf Inf Inf Inf

Table 10 SCR of stage 3 structural element ablation experiment

The bold data indicates that it achieved the best performance in the comparison of this indicator

Size Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

(3,4) Inf Inf Inf 1202.0 Inf Inf Inf Inf Inf

(3,5) Inf Inf Inf 730.0084 Inf Inf Inf Inf Inf

(4,5) Inf Inf Inf 141.3440 Inf Inf Inf Inf Inf

(5,5) Inf Inf Inf 146.2905 Inf Inf Inf Inf Inf

Adaptive Inf Inf Inf 1282.2 Inf Inf Inf Inf Inf

Table 11 BSF of stage 3 structural element ablation experiment

The bold data indicates that it achieved the best performance in the comparison of this indicator

Size Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

(3,4) Inf Inf Inf 5595.9 Inf Inf Inf Inf Inf

(3,5) Inf Inf Inf 1796.8 Inf Inf Inf Inf Inf

(4,5) Inf Inf Inf 170.1552 Inf Inf Inf Inf Inf

(5,5) Inf Inf Inf 176.1069 Inf Inf Inf Inf Inf

Adaptive Inf Inf Inf 8847.9 Inf Inf Inf Inf Inf

Table 9 BSF of stage 2 structural element ablation experiment

The bold data indicates that it achieved the best performance in the comparison of this indicator

Size Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6 Seq.7 Seq.8 Seq.9

Or in 24.0783 52.1331 46.5601 30.9138 55.8324 32.7225 24.6369 45.7511 42.4529

2 Inf Inf 18846.4 68.3027 1437.9 Inf Inf Inf Inf

3 Inf Inf Inf 12513.2 102.7861 1403.9 Inf Inf Inf

4 Inf Inf 18846.4 77.5890 3019.9 Inf Inf Inf Inf

5 Inf Inf Inf 80.6075 4059.1 2255.0 Inf Inf 2925.6

Adaptive Inf Inf Inf 8847.9 Inf Inf Inf Inf Inf
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In summary, this algorithm considers the detection rate and speed of small targets, 
which is helpful for deployment and application in practical scenarios. The effective-
ness of each stage and module has been demonstrated through ablation experiments.

Due to the particularity of infrared small targets, preprocessing them can usually 
improve detection performance. However, preprocessing methods often have the 
problem of slow running speed, which reduces algorithm efficiency. Therefore, we will 
further study preprocessing methods for infrared small targets in the future, such as 
improving filtering performance.
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