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Abstract 

Deep learning has seen significant growth recently and is now applied to a wide range 
of conventional use cases, including graphs. Graph data provides relational informa-
tion between elements and is a standard data format for various machine learning 
and deep learning tasks. Models that can learn from such inputs are essential for work-
ing with graph data effectively. This paper identifies nodes and edges within specific 
applications, such as text, entities, and relations, to create graph structures. Different 
applications may require various graph neural network (GNN) models. GNNs facilitate 
the exchange of information between nodes in a graph, enabling them to understand 
dependencies within the nodes and edges. The paper delves into specific GNN models 
like graph convolution networks (GCNs), GraphSAGE, and graph attention networks 
(GATs), which are widely used in various applications today. It also discusses the mes-
sage-passing mechanism employed by GNN models and examines the strengths 
and limitations of these models in different domains. Furthermore, the paper 
explores the diverse applications of GNNs, the datasets commonly used with them, 
and the Python libraries that support GNN models. It offers an extensive overview 
of the landscape of GNN research and its practical implementations.

Keywords: Graph Neural Network (GNN), Graph Convolution Network (GCN), 
GraphSAGE, Graph Attention Networks (GAT), Message Passing Mechanism, Natural 
Language Processing (NLP)

Introduction
Graph Neural Networks (GNNs) have emerged as a transformative paradigm in machine 
learning and artificial intelligence. The ubiquitous presence of interconnected data in 
various domains, from social networks and biology to recommendation systems and 
cybersecurity, has fueled the rapid evolution of GNNs. These networks have displayed 
remarkable capabilities in modeling and understanding complex relationships, making 
them pivotal in solving real-world problems that traditional machine-learning models 
struggle to address. GNNs’ unique ability to capture intricate structural information 
inherent in graph-structured data is significant. This information often manifests as 
dependencies, connections, and contextual relationships essential for making informed 
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predictions and decisions. Consequently, GNNs have been adopted and extended across 
various applications, redefining what is possible in machine learning.

In this comprehensive review, we embark on a journey through the multifaceted land-
scape of Graph Neural Networks, encompassing an array of critical aspects. Our study 
is motivated by the ever-increasing literature and diverse perspectives within the field. 
We aim to provide researchers, practitioners, and students with a holistic understanding 
of GNNs, serving as an invaluable resource to navigate the intricacies of this dynamic 
field. The scope of this review is extensive, covering fundamental concepts that under-
lie GNNs, various architectural designs, techniques for training and inference, prevalent 
challenges and limitations, the diversity of datasets utilized, and practical applications 
spanning a myriad of domains. Furthermore, we delve into the intriguing future direc-
tions that GNN research will likely explore, shedding light on the exciting possibilities.

In recent years, deep learning (DL) has been called the gold standard in machine learn-
ing (ML). It has also steadily evolved into the most widely used computational technique 
in ML, producing excellent results on various challenging cognitive tasks, sometimes 
even matching or outperforming human ability. One benefit of DL is its capacity to learn 
enormous amounts of data [1]. GNN variations such as graph convolutional networks 
(GCNs), graph attention networks (GATs), and GraphSAGE have shown groundbreak-
ing performance on various deep learning tasks in recent years [2].

A graph is a data structure that consists of nodes (also called vertices) and edges. 
Mathematically, it is defined as G = (V, E), where V denotes the nodes and E denotes 
the edges. Edges in a graph can be directed or undirected based on whether directional 
dependencies exist between nodes. A graph can represent various data structures, 
such as social networks, knowledge graphs, and protein–protein interaction networks. 
Graphs are non-Euclidean spaces, meaning that the distance between two nodes in a 
graph is not necessarily equal to the distance between their coordinates in an Euclidean 
space. This makes applying traditional neural networks to graph data difficult, as they 
are typically designed for Euclidean data.

Graph neural networks (GNNs) are a type of deep learning model that can be used 
to learn from graph data. GNNs use a message-passing mechanism to aggregate infor-
mation from neighboring nodes, allowing them to capture the complex relationships in 
graphs. GNNs are effective for various tasks, including node classification, link predic-
tion, and clustering.

Organization of paper

The paper is organized as follows:

1) The primary focus of this research is to comprehensively examine Concepts, Archi-
tectures, Techniques, Challenges, Datasets, Applications, and Future Directions 
within the realm of Graph Neural Networks.

2) The paper delves into the Evolution and Motivation behind the development of 
Graph Neural Networks, including an analysis of the growth of publication counts 
over the years.

3) It provides an in-depth exploration of the Message Passing Mechanism used in 
Graph Neural Networks.
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4) The study presents a concise summary of GNN learning styles and GNN models, 
complemented by an extensive literature review.

5) The paper thoroughly analyzes the Advantages and Limitations of GNN models 
when applied to various domains.

6) It offers a comprehensive overview of GNN applications, the datasets commonly 
used with GNNs, and the array of Python libraries that support GNN models.

7) In addition, the research identifies and addresses specific research gaps, outlining 
potential future directions in the field.

"Introduction" section describes the Introduction to GNN. "Background study" 
section provides background details in terms of the Evolution of GNN. "Research 
motivation" section describes the research motivation behind GNN. Section IV 
describes the GNN message-passing mechanism and the detailed description of 
GNN with its Structure, Learning Styles, and Types of tasks. "GNN Models and 
Comparative Analysis of GNN Models" section describes the GNN models with their 
literature review details and comparative study of different GNN models. "Graph 
Neural Network Applications" section describes the application of GNN. And finally, 
future direction and conclusions are defined in "Future Directions of Graph Neural 
Network" and "Conclusions" sections, respectively. Figure 1 gives the overall struc-
ture of the paper.

Background study
As shown in Fig. 2 below, the evolution of GNNs started in 2005. For the past 5 years, 
research in this area has been going into great detail. Neural graph networks are being 
used by practically all researchers in fields such as NLP, computer vision, and healthcare.

Graph neural network research evolution

Graph neural networks (GNNs) were first proposed in 2005, but only recently have they 
begun to gain traction. GNNs were first introduced by Gori [2005] and Scarselli [2004, 
2009]. A node’s attributes and connected nodes in the graph serve as its natural defi-
nitions. A GNN aims to learn a state embedding  hv ε  Rs that encapsulates each node’s 
neighborhood data. The distribution of the expected node label is one example of the 
output. An s-dimension vector of node v, the state embedding  hv, can be utilized to gen-
erate an output  Ov, such as the anticipated distribution node name. The predicted node 
label  (Ov) distribution is created using the state embedding  hv [30]. Thomas Kipf and 
Max Welling introduced the convolutional graph network (GCN) in 2017. A GCN layer 
defines a localized spectral filter’s first-order approximation on graphs. GCNs can be 
thought of as convolutional neural networks that have been expanded to handle graph-
structured data.

Graph neural network evolution

As shown in Fig. 3 below, research on graph neural networks (GNNs) began in 2005 
and is still ongoing. GNNs can define a broader class of graphs that can be used for 
node-focused tasks, edge-focused tasks, graph-focused tasks, and many other appli-
cations. In 2005, Marco Gori introduced the concept of GNNs and defined recursive 
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neural networks extended by GNNs [4]. Franco Scarselli also explained the concepts 
for ranking web pages with the help of GNNs in 2005 [5]. In 2006, Swapnil Gandhi 
and Anand Padmanabha Iyer of Microsoft Research introduced distributed deep 

Fig. 1 The overall structure of the paper
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graph learning at scale, which defines a deep graph neural network [6]. They explained 
new concepts such as GCN, GAT, etc. [1]. Pucci and Gori used GNN concepts in the 
recommendation system.

2007 Chun Guang Li, Jun Guo, and Hong-gang Zhang used a semi-supervised 
learning concept with GNNs [7]. They proposed a pruning method to enhance the 
basic GNN to resolve the problem of choosing the neighborhood scale parameter. In 
2008, Ziwei Zhang introduced a new concept of Eigen-GNN [8], which works well 
with several GNN models. In 2009, Abhijeet V introduced the GNN concept in fuzzy 
networks [9], proposing a granular reflex fuzzy min–max neural network for classi-
fication. In 2010, DK Chaturvedi explained the concept of GNN for soft computing 
techniques [10]. Also, in 2010, GNNs were widely used in many applications. In 2010, 
Tanzima Hashem discussed privacy-preserving group nearest neighbor queries [11]. 
The first initiative to use GNNs for knowledge graph embedding is R-GCN, which 
suggests a relation-specific transformation in the message-passing phases to deal with 
various relations.

Similarly, from 2011 to 2017, all authors surveyed a new concept of GNNs, and the 
survey linearly increased from 2018 onwards. Our paper shows that GNN models such 
as GCN, GAT, RGCN, and so on are helpful [12].

Literature review

In the Table  1 describe the literature survey on graph neural networks, including the 
application area, the data set used, the model applied, and performance evaluation. The 
literature is from the years 2018 to 2023.

Fig. 3 Graph Neural Network Evolution
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Research motivation
We employ grid data structures for normalization of image inputs, typically using an 
n*n-sized filter. The result is computed by applying an aggregation or maximum func-
tion. This process works effectively due to the inherent fixed structure of images. We 
position the grid over the image, move the filter across it, and derive the output vec-
tor as depicted on the left side of Fig. 4. In contrast, this approach is unsuitable when 
working with graphs. Graphs lack a predefined structure for data storage, and there is 
no inherent knowledge of node-to-neighbor relationships, as illustrated on the right 
side of Fig. 4. To overcome this limitation, we focus on graph convolution.

In the context of GCNs, convolutional operations are adapted to handle graphs’ 
irregular and non-grid-like structures. These operations typically involve aggregating 
information from neighboring nodes to update the features of a central node. CNNs 
are primarily used for grid-like data structures, such as images. They are well-suited 
for tasks where spatial relationships between neighboring elements are crucial, as in 
image processing. CNNs use convolutional layers to scan small local receptive fields 
and learn hierarchical representations. GNNs are designed for graph-structured data, 
where edges connect entities (nodes). Graphs can represent various relationships, 
such as social networks, citation networks, or molecular structures. GNNs perform 
operations that aggregate information from neighboring nodes to update the features 
of a central node. CNNs excel in processing grid-like data with spatial dependencies; 
GNNs are designed to handle graph-structured data with complex relationships and 
dependencies between entities.

Limitation of CNN over GNN

Graph Neural Networks (GNNs) draw inspiration from Convolutional Neural Net-
works (CNNs). Before delving into the intricacies of GNNs, it is essential to under-
stand why Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs) may not suffice for effectively handling data structured as graphs. As illus-
trated in Fig.  5, Convolutional Neural Networks (CNNs) are designed for data that 
exhibits a grid structure, such as images. Conversely, Recurrent Neural Networks 
(RNNs) are tailored to sequences, like text.

Typically, we use arrays for storage when working with text data. Likewise, for 
image data, matrices are the preferred choice. However, as depicted in Fig. 5, arrays 
and matrices fall short when dealing with graph data. In the case of graphs, we require 

Fig. 4 CNN In Euclidean Space (Left), GNN In Euclidean Space (Right)
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a specialized technique known as Graph Convolution. This approach enables deep 
neural networks to handle graph-structured data directly, leading to a graph neural 
network.

Fig. 5 illustrates that we can employ masking techniques and apply filtering operations 
to transform the data into vector form when we have images. Conversely, traditional 

Table 2 Summary of Graph Convolution Network with the technique used, datasets used, and 
performance measure (accuracy)

Refs. Application area Method applied Dataset A model with 
several layers 
and an activation 
Function

Accuracy

[33]
(2016)

Node Classification Graph Convolution 
Network

CORA GCN model with 2 
layers
ReLU function

82.98

[33]
(2017)

Semi-Supervised 
Node Classification

Graph Convolution 
Network

Zachary’s Karate 
Club

GCN model with 2 
layers
ReLU function

90%

[33]
(2016)

Semi-Supervised 
Node Classification

Graph Convolution 
Network

CORA GCN model with 2 
layers
ReLU function

81.5%

[39]
(2019)

Text Classification GCN for Text Clas-
sification

20NG
Ohsumed
R52
R8
MR

2 Layer GCN
ReLU function

0.8634 ± 0.0009 
0.9707 ± 0.0010 
0.9356 ± 0.0018 
0.6836 ± 0.0056 
0.7674 ± 0.0020

[31]
(2019)

Node Classification Node Classification Cora,
Citeseer,
Pubmed
Reddit

4-layer GCN
ReLU function

74.60%
61.40%
86.20%
50.51%

[40]
(2018)

Quiz Question Answer-
ing by Reasoning

WIKIHOP Two layers MLP 65.3% to 68.7%

[41]
(2018)

Node Classification Node Classification Cora,
Citeseer, Pubmed

2 Layer GCN
ReLU function

70.3%
81.5%
79.0%

[42]
(2019)

Node Classification Hierarchical graph 
convolutional 
networks for semi-
supervised node 
classification

Cora,
Citeseer,
Pubmed
NELL

2 Layer GCN
ReLU function

70.3%
81.5%
79.0%
73.0%

[43]
(2020)

Traffic prediction Traffic prediction Real-time dataset Message passing 
technique + Graph 
Convolution 
Network

70–75%

[44]
(2023)

Motion Capture for 
Sporting Events

Graph Convo-
lutional Neural 
Networks and 
Single Target Pose 
Estimation

COCO dataset Graph Neural 
Network Com-
bined With High 
Resolution Network 
(HRNET)

79.3

[45]
(2023)

Defect Recognition Deep Graph Con-
volutional Neural 
Network

9 different dataset Graph Convo-
lutional Neural 
Network (GCNN)

Around 90%

[46]
(2023)

Flow Prediction Graph Convolu-
tional Long Short-
Term Memory 
Neural Network 
Model

Société de trans-
port de Laval (STL)

MLP,
CNN,
LSTM,
BNG-ConvL-
STM = bus network 
graph convolu-
tional long short-
term memory

73.3
70.0
80.2
85.3
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masking methods are not applicable when dealing with graph data as input, as shown in 
the right image.

Graph neural network
Graph Neural Networks, or GNNs, are a class of neural networks tailored for handling 
data organized in graph structures. Graphs are mathematical representations of nodes 
connected by edges, making them ideal for modeling relationships and dependencies in 
complex systems. GNNs have the inherent ability to learn and reason about graph-struc-
tured data, enabling diverse applications. In this section, we first explained the passing 
mechanism of GNN ("Message Passing Mechanism in Graph Neural Network Section"), 
then described graphs related to the structure of graphs, graph types, and graph learning 
styles ("Description of GNN Taxonomy" Section).

Message passing mechanism in graph neural network

Graph symmetries are maintained using a GNN, an optimizable transformation on all 
graph properties (nodes, edges, and global context) (permutation invariances). Because 

Table 3 Summary of Graph Attention Network with Application area, technique, datasets used, and 
performance measure (accuracy)

Refs. Application area Method applied Dataset Layer size and 
activation 
function

Performance 
evaluation

[47]
(2017)

Node Classification Graph Attention 
Network (GAT)

CORA GAT Method with 
3 layers
ReLU function

76.5%

[48]
(2017)

Traffic prediction Gated Residual 
Recurrent Graph 
Neural Networks

Citation  × 77.8%

[49]
(2021)

Edge Detection Sparse Graph 
Attention Network 
(GAT)

CORA GAT Method with 
1 layer
ReLU function

82.5%

[50]
(2021)

Fault Diagnosis KNN + GAT hardware-in-the-
loop (HIL)

 × 87.7%

[47]
(2017)

Citation Network
Node Classification

GAT Cora Citeseer 
PubMed

GAT 
64 hidden features 
(using ReLU)

F1- score
83.0 ± 0.7% 
72.5 ± 0.7% 
79.0 ± 0.3%

[51]
(2021)

Node-Prediction GAT 
GAT- v2

OGB LeakyReLU activa-
tion function

GAT 78.1 ± 0.59 
GATv2 78.5 ± 0.38

[52]
(2019)

Node Embeddings Signed Graph 
Attention Network 
(Si-GAT)

Epinions LeakyReLU 0.9293

[53]
(2019)

Node Classification 
Task

Heterogeneous 
Graph Attention 
Network

IMDB
DBLP
ACM

Random walk-
based methods

10.01
84.76
64.39

[54]
(2021)

Node Classification 
Task

Hyperbolic Graph 
Attention Network

Cora Citeseer 
PubMed Amazon 
Photo

8, 16, 32, 64 (i.e., the 
number of hidden 
units in GNN

0.567
0.427
0.359
0.667

[55]
(2023)

Rumor Detection GAT and GRU Weibo and Pheme 
dataset

Two-layer GAT 
having 4 attention-
head to each layer

97.2%

[56]
(2022)

Disease Prediction Knowledge Graph 
Attention Network

Own dataset fivefold cross vali-
dation with KGAT 

84.76
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a GNN does not alter the connectivity of the input graph, the output may be character-
ized using the same adjacency list and feature vector count as the input graph. However, 
the output graph has updated embeddings because the GNN modified each node, edge, 
and global-context representation.

In Fig. 6, circles are nodes, and empty boxes show aggregation of neighbor/adjacent 
nodes. The model aggregates messages from A’s local graph neighbors (i.e., B, C, and D). 
In turn, the messages coming from neighbors are based on information aggregated from 
their respective neighborhoods, and so on. This visualization shows a two-layer version 
of a message-passing model. Notice that the computation graph of the GNN forms a 
tree structure by unfolding the neighborhood around the target node [17]. Graph neural 
networks (GNNs) are neural models that capture the dependence of graphs via message 
passing between the nodes of graphs [30].

Fig. 5 Convolution can be performed if the input is an image using an n*n mask (Left). Convolution can’t be 
achieved if the input is a graph using an n*n mask. (Right)

Table 4 Summary of GraphSAGE Network with Application area, technique, datasets used, and 
performance measure (accuracy)

Refs. Application Area Method Applied Dataset Accuracy

[48]
(2017)

Citation Network GraphSAGE
Mean- aggregator

Citation 77.8%

GraphSAGE-LSTM aggregator Citation 78.8%

GraphSAGE-pool aggregator Citation 79.8%

[31]
(2019)

Node Classification 4-layer GCN Cora,
Citeseer, PubMed
Reddit

32.20%
53.60%
47.90%
96.47

[57]
(2019)

Social Network Analysis Based 
on Graph SAGE

GraphSAGE (GCN) microblogs 53.87%

[58]
(2021)

Intrusion Detection E-GraphSAGE
E-ResGAT 

UNSW-NB15
CIC-DarkNet
CSE-CIC-IDS
ToN-IoT

0.9868
0.8093
0.8774
0.9384

[59]
(2019)

Data-Driven Node Sampling GraphSAGE PPI
Reddit PubMed

0.813
0.954
0.898

[60]
(2023)

Underwater Moving Object 
Detection

GraphSAGE + 
Aggregator( Mean, Max and 
LSTM)

Fish4Knowledge dataset Mean: 98.51%
Max: 94.46%
LSTM: 98.50%
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The message-passing mechanism of Graph Neural Networks is shown in Fig. 7. In this, 
we take an input graph with a set of node features X ε  Rd⇥|V| and Use this knowledge to 
produce node embeddings  zu. However, we will also review how the GNN framework may 
embed subgraphs and whole graphs.

At each iteration, each node collects information from the neighborhood around it. Each 
node embedding has more data from distant reaches of the graph as these iterations pro-
gress. After the first iteration (k = 1), each node embedding expressly retains information 
from its 1-hop neighborhood, which may be accessed via a path in the length graph 1. [31]. 
After the second iteration (k = 2), each node embedding contains data from its 2-hop neigh-
borhood; generally, after k iterations, each node embedding includes data from its k-hop 
setting. The kind of “information” this message passes consists of two main parts: structural 
information about the graph (i.e., degree of nodes, etc.), and the other is feature-based.

In the message-passing mechanism of a neural network, each node has its message stored 
in the form of feature vectors, and each time, the neighbor updates the information in the 
form of the feature vector [1]. This process aggregates the information, which means the 
grey node is connected to the blue node. Both features are aggregated and form new feature 
vectors by updating the values to include the new message.

(4.1)h(k+1)
u = UPDATE(k)

(

h(k)u ,AGGREGATE(k)
({

h(k)v , ∀v ∈ N (u)
}))

(4.2)= UPDATE(k)
(

h(k)u ,m
(k)
N (u)

)

Fig. 6 How a single node aggregates messages from its adjacent neighbor nodes

Fig. 7 Message passing mechanism in GNN
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Equations 4.1 and 4.2 shows that h denotes the message, u represents the node num-
ber, and k indicates the iteration number. Where AGGREGATE and UPDATE are arbi-
trarily differentiable functions (i.e., neural networks), and mN(u) is the “message,” which 
is aggregated from u’s graph neighborhood N(u). We employ superscripts to identify the 
embeddings and functions at various message-passing iterations. The AGGREGATE 
function receives as input the set of embeddings of the nodes in the u’s graph neighbor-
hood N (u) at each iteration k of the GNN and generates a message. mk

N (u) . Based on this 
aggregated neighborhood information. The update function first UPDATES the message 
and then combines the message.mk

N (u) with the previous message h(k−1)
u  of node, u to 

generate the updated message hku.

Description of GNN taxonomy

We can see from Fig. 8 below shows that we have divided our GNN taxonomy into 3 
parts [30].

1. Graph Structures 2. Graph Types 3. Graph Learning Tasks

Graph structure

The two scenarios shown in Fig.  9 typically present are structural and non-structural. 
Applications involving molecular and physical systems, knowledge graphs, and other 
objects explicitly state the graph structure in structural contexts.

Graphs are implicit in non-structural situations. As a result, we must first construct 
the graph from the current task. For text, we must build a fully connected “a word” graph 
and a scene graph for images.

Graph types

There may be more information about nodes and links in complex graph types. Graphs 
are typically divided into 5 categories, as shown in Fig. 10.

Directed/undirected graphs A directed graph is characterized by edges with a specific 
direction, indicating the flow from one node to another. Conversely, in an undirected 
graph, the edges lack a designated direction, allowing nodes to interact bidirectionally. As 
illustrated in Fig. 11 (left side), the directed graph exhibits directed edges, while in Fig. 11 
(right side), the undirected graph conspicuously lacks directional edges. In undirected 
graphs, it’s important to note that each edge can be considered to comprise two directed 
edges, allowing for mutual interaction between connected nodes.

Static/dynamic graphs The term “dynamic graph” pertains to a graph in which the prop-
erties or structure of the graph change with time. In dynamic graphs shown in Fig. 12, it 
is essential to account for the temporal dimension appropriately. These dynamic graphs 
represent time-dependent events, such as the addition and removal of nodes and edges, 
typically presented as an ordered sequence or an asynchronous stream.

A noteworthy example of a dynamic graph can be observed in social networks like 
Twitter. In such networks, a new node is created each time a new user joins, and 
when a user follows another individual, a following edge is established. Furthermore, 
when users update their profiles, the respective nodes are also modified, reflecting the 
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evolving nature of the graph. It’s worth noting that different deep-learning libraries 
handle graph dynamics differently. TensorFlow, for instance, employs a static graph, 
while PyTorch utilizes a dynamic graph.

Homogeneous/heterogeneous graphs Homogeneous graphs have only one type of node 
and one type of edge shown in Fig. 13 (Left). A homogeneous graph is one with the same 
type of nodes and edges, such as an online social network with friendship as edges and 
nodes representing people. In homogeneous networks, nodes and edges have the same 
types.

Fig. 8 Graph Neural Network Taxonomy
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Fig. 9 Graph Structure

Fig. 10 Types of Graphs

Fig. 11 Directed/Undirected Graph
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Heterogeneous graphs shown in Fig. 13 (Right) , however, have two or more different 
kinds of nodes and edges. A heterogeneous network is an online social network with var-
ious edges between nodes of the ‘person’ type, such as ‘friendship’ and ‘co-worker.’ Nodes 
and edges in heterogeneous graphs come in several varieties. Types of nodes and edges 
play critical functions in heterogeneous networks that require further consideration.

Knowledge graphs An array of triples in the form of (h, r, t) or (s, r, o) can be repre-
sented as a Knowledge Graph (KG), which is a network of entity nodes and relation-
ship edges, with each triple (h, r, t) representing a single entity node. The relationship 
between an entity’s head (h) and tail (t) is denoted by the r. Knowledge Graph can be 
considered a heterogeneous graph from this perspective. The Knowledge Graph visu-
ally depicts several real-world objects and their relationships [32]. It can be used for 
many new aspects, including information retrieval, knowledge-guided innovation, and 
answering questions [30]. Entities are objects or things that exist in the real world, 
including individuals, organizations, places, music tracks, movies, and people. Each 
relation type describes a particular relationship between various elements similarly. 
We can see from Fig. 14 the Knowledge graph for Mr. Sundar Pichai.

Transductive/inductive graphs In a transductive scenario shown in Fig. 15 (up), the 
entire graph is input, the label of the valid data is hidden, and finally, the label for the 
correct data is predicted. However, with an inductive graph shown in Fig. 15 (down), we 

Fig. 12 Static/Dynamic Graph

Fig. 13 Homogeneous (Left), Heterogeneous (Right) Graph
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also input the entire graph (but only sample to batch), mask the valid data’s label, and 
forecast the valuable data’s label. The model must forecast the labels of the given unla-
beled nodes in a transductive context. In the inductive situation, it is possible to infer 
new unlabeled nodes from the same distribution.

Transductive Graph:

• In the transductive approach, the entire graph is provided as input.
• This method involves concealing the labels of the valid data.

Fig. 14 Knowledge graph

Fig. 15 Transductive/Inductive Graphs
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• The primary objective is to predict the labels for the valid data.

Inductive Graph:

• The inductive approach still uses the complete graph, but only a sample within a 
batch is considered.

• A crucial step in this process is masking the labels of the valid data.
• The key aim here is to make predictions for the labels of the valid data.

Graph learning tasks

We perform three tasks with graphs: node classification, link prediction, and Graph 
Classification shown in Fig. 16.

Fig. 16 Node Level Prediction (e.g., social network) (LEFT), Edge Level Prediction (e.g., Next YouTube Video?) 
(MIDDLE), Graph Level Prediction (e.g., molecule) (Right)

Fig. 17 Graph Learning Tasks Summary
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Node‑level task Node-level tasks are primarily concerned with determining the identity 
or function of each node within a graph. The core objective of a node-level task is to pre-
dict specific properties associated with individual nodes. For example, a node-level task 
in social networks could involve predicting which social group a new member is likely 
to join based on their connections and the characteristics of their friends’ memberships. 
Node-level tasks are typically used when working with unlabeled data, such as identifying 
whether a particular individual is a smoker.

Edge‑level task (link prediction) Edge-level tasks revolve around analyzing relationships 
between pairs of nodes in a graph. An illustrative application of an edge-level task is 
assessing the compatibility or likelihood of a connection between two entities, as seen 
in matchmaking or dating apps. Another instance of an edge-level task is evident when 
using platforms like Netflix, where the task involves predicting the following video to be 
recommended based on viewing history and user preferences.

Graph‑level In graph-level tasks, the objective is to make predictions about a charac-
teristic or property that encompasses the entire graph. For example, using a graph-based 
representation, one might aim to predict attributes like the olfactory quality of a mol-
ecule or its potential to bind with a disease-associated receptor. The essence of a graph-
level task is to provide predictions that pertain to the graph as a whole. For instance, 
when assessing a newly synthesized chemical compound, a graph-level task might seek to 
determine whether the molecule has the potential to be an effective drug. The summary 
of all three learning tasks are shown in Fig. 17.

GNN models and comparative analysis of GNN models
Graph Neural Network (GNN) models represent a category of neural networks spe-
cially crafted to process data organized in graph structures. They’ve garnered substantial 
acclaim across various domains, primarily due to their exceptional capability to grasp 
intricate relationships and patterns within graph data. As illustrated in Fig. 18, we’ve out-
lined three distinct GNN models. A comprehensive description of these GNN models, 
specifically Graph Convolutional Networks (GCN), Graph Attention Networks (GAT/
GAN), and GraphSAGE models can be found in the reference [33]. In Sect. "GNN mod-
els", we delve into these GNN models’ intricacies; in "Comparative Study of GNN Mod-
els" section, we provide an in-depth analysis that explores their theoretical and practical 
aspects.

Fig. 18 GNN Models
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GNN models

Graph convolution neural network (GCN)

GCN is one of the basic graph neural network variants. Thomas Kipf and Max Welling 
developed GCN networks. Convolution layers in Convolutional Neural Networks are 
essentially the same process as ’convolution’ in GCNs. The input neurons are multiplied 
by weights called filters or kernels. The filters act as a sliding window across the image, 
allowing CNN to learn information from nearby cells. Weight sharing uses the same fil-
ter within the same layer throughout the image; when CNN is used to identify photos 
of cats vs. non-cats, the same filter is employed in the same layer to detect the cat’s nose 
and ears. Throughout the image, the same weight (or kernel or filter in CNNs) is applied 
[33]. GCNs were first introduced in “Spectral Networks and Deep Locally Connected 
Networks on Graphs” [34].

GCNs, which learn features by analyzing neighboring nodes, carry out similar behav-
iors. The primary difference between CNNs and GNNs is that CNNs are made to oper-
ate on regular (Euclidean) ordered data. GNNs, on the other hand, are a generalized 
version of CNNs with different numbers of node connections and unordered nodes 
(irregular on non-Euclidean structured data). GCNs have been applied to solve many 
problems, for example, image classification  [35], traffic forecasting  [36], recommenda-
tion systems [17], scene graph generation [37], and visual question answering [38].

GCNs are particularly well-suited for tasks that involve data represented as graphs, 
such as social networks, citation networks, recommendation systems, and more. These 
networks are an extension of traditional CNNs, widely used for tasks involving grid-like 
data, such as images. The key idea behind GCNs is to perform convolution operations 
on the graph data. This enables them to capture and propagate information through 
the nodes in a graph by considering both a node’s features and those of its neighboring 
nodes. GCNs typically consist of several layers, each performing convolution and aggre-
gation steps to refine the node representations in the graph. By applying these layers 
iteratively, GCNs can capture complex patterns and dependencies within the graph data.

Working of graph convolutional network A Graph Convolutional Network (GCN) is a 
type of neural network architecture designed for processing and analyzing graph-struc-
tured data. GCNs work by aggregating and propagating information through the nodes 
in a graph. GCN works with the following steps shown in Fig. 19:

1) Initialization:

Each node in the graph is associated with a feature vector. Depending on the appli-
cation, these feature vectors can represent various attributes or characteristics of the 
nodes. For example, in a social network, each node might represent a user, and the fea-
tures could include user profile information.

2) Convolution Operation:

The core of a GCN is the convolution operation, which is adapted from convolutional 
neural networks (CNNs). It aims to aggregate information from neighboring nodes. 
This is done by taking a weighted sum of the feature vectors of neighboring nodes. The 
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graph’s adjacency matrix determines the weights. The resulting aggregated information 
is a new feature vector for each node.

3) Weighted Aggregation:

The graph’s adjacency matrix, typically after normalization, provides weights for the 
aggregation process. In this context, for a given node, the features of its neighboring 
nodes are scaled by the corresponding values within the adjacency matrix, and the out-
comes are then accumulated. A precise mathematical elucidation of this aggregation 
step is described in "Equation of GCN" section.

4) Activation function and learning weights:

The aggregated features are typically passed through an activation function (e.g., 
ReLU) to introduce non-linearity. The weight matrix W used in the aggregation step is 
learned during training. This learning process allows the GCN to adapt to the specific 
graph and task it is designed for.

Fig. 19 Working of GCN
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5) Stacking Layers:

GCNs are often used in multiple layers. This allows the network to capture more com-
plex relationships and higher-level features in the graph. The output of one GCN layer 
becomes the input for the next, and this process is repeated for a predefined number of 
layers.

6) Task-Specific Output:

The final output of the GCN can be used for various graph-based tasks, such as 
node classification, link prediction, or graph classification, depending on the specific 
application.

Fig. 20 Working of GAT 
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Equation of GCN The Graph Convolutional Network (GCN) is based on a message-
passing mechanism that can be described using mathematical equations. The core 
equation of a superficial, first-order GCN layer can be expressed as follows: For a graph 
with N nodes, let’s define the following terms:

Equation 5.1 depicts a GCN layer’s design. The normalized graph adjacency matrix 
A’ and the nodes feature matrix F serve as the layer’s inputs. The bias vector b and the 
weight matrix W are trainable parameters for the layer.

When used with the design matrix, the normalized adjacency matrix effectively 
smoothes a node’s feature vector based on the feature vectors of its close graph neigh-
bors. This matrix captures the graph structure. A’ is normalized to make each neigh-
boring node’s contribution proportional to the network’s connectivity.

The layer definition is finished by applying A’FW + b to an element-wise non-linear 
function, such as ReLU. The downstream node classification task requires deep neural 
architectures to learn a complicated hierarchy of node attributes. This layer’s output 
matrix Z can be routed into another GCN layer or any other neural network layer to 
do this.

Summary of graph convolution neural network (GCN) is shown in Table 2. Graph attention 

network (GAT/GAN)

Graph Attention Network (GAT/GAN) is a new neural network that works with 
graph-structured data. It uses masked self-attentional layers to address the shortcom-
ings of past methods that depended on graph convolutions or their approximations. 
By stacking layers, the process makes it possible (implicitly) to assign various nodes 
in a neighborhood different weights, allowing nodes to focus on the characteristics 
of their neighborhoods without having to perform an expensive matrix operation 
(like inversion) or rely on prior knowledge of the graph’s structure. GAT concurrently 
tackles numerous significant limitations of spectral-based graph neural networks, 
making the model suitable for both inductive and transductive applications.

Working of GAT  The Graph Attention Network (GAT) is a neural network architec-
ture designed for processing and analyzing graph-structured data  shown in Fig.  20. 
GATs are a variation of Graph Convolutional Networks (GCNs) that incorporate the 
concept of attention mechanisms. GAT/GAN works with the following steps shown 
in Fig. 21.

1) Initialization:

As with other graph-based models, GAT starts with nodes in the graph, each asso-
ciated with a feature vector. These features can represent various characteristics of 
the nodes.

(5.1)Z = σ(A
′

FW + b)
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Fig. 21 How attention Coefficients updates

2) Self-Attention Mechanism and Attention Computation:

GAT introduces an attention mechanism similar to what is used in sequence-to-
sequence models in natural language processing. The attention mechanism allows 
each node to focus on different neighbors when aggregating information. It assigns 
different attention coefficients to the neighboring nodes, making the process more 
flexible. For each node in the graph, GAT computes attention scores for its neighbor-
ing nodes. These attention scores are based on the features of the central node and its 
neighbors. The attention scores are calculated using a weighted sum of the features of 
the central node and its neighbors.

3) Weighted Aggregation:

The attention scores determine how much each neighbor’s feature contributes to the 
aggregation for the central node. This weighted aggregation is carried out for all neigh-
boring nodes, resulting in a new feature vector for the central node.

Fig. 22 Working of Graph SAGE Method
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4) Multiple Attention Heads and Output Combination:

GAT often employs multiple attention heads in parallel. Each attention head computes 
its attention scores and aggregation results. These multiple attention heads capture dif-
ferent aspects of the relationships in the graph. The outputs from the multiple attention 
heads are combined, typically by concatenation or averaging, to create a final feature 
vector for each node.

5) Learning Weights and Stacking Layers:

Similar to GCNs, GATs learn weight parameters during training. These weights are 
learned to optimize the attention mechanisms and adapt to the specific graph and task. 
GATs can be used in multiple layers to capture higher-level features and complex relation-
ships in the graph. The output of one GAT layer becomes the input for the next layer.

The learning weights capture the importance of node relationships and contribute to 
information aggregation during the neighborhood aggregation process. The learning pro-
cess in GNNs also relies on backpropagation and optimization algorithms. The stacking of 
GNN layers enables the model to capture higher-level abstractions and dependencies in the 
graph. Each layer refines the node representations based on information from the previous 
layer.

6) Task-Specific Output:

The final output of the GAT can be used for various graph-based tasks, such as node clas-
sification, link prediction, or graph classification, depending on the application.

Equation for  GAT  GAT’s main distinctive feature is gathering data from the one-hop 
neighborhood [30]. A graph convolution operation in GCN produces the normalized sum of 
node properties of neighbors. Equation 5.2 shows the Graph attention network, which h(l+1)

i  
defines the current node output, σ denotes the non-linearity ReLU function, jεN (i) one hop 
neighbor, ∁i,j normalized vector, W (l) weight matrix, and h(l)j  denotes the previous node.

Fig. 23 Equations of GNN Models
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Why is GAT better than GCN? We learned from the Graph Convolutional Network 
(GCN) that integrating local graph structure and node-level features results in good 
node classification performance. The way GCN aggregates messages, on the other 
hand, is structure-dependent, which may limit its use.

How attention coefficients update: the attention layer has 4 parts: [47] 

1) A linear transformation: A shared linear transformation is applied to each node in the 
following Equation.

where h is a set of node features. W is the weight matrix. Z is the output layer node.

2) Attention Coefficients: In the GAT paradigm, it is crucial because every node can 
now attend to every other node, discarding any structural information. The pair-wise 
un-normalized attention score between two neighbors is computed in the next step. 
It combines the ’z’ embeddings of the two nodes. Where || stands for concatenation, 
a learnable weight vector a(l) is put through a dot product, and a LeakyReLU is used 
[1]. Contrary to the dot-product attention utilized in the Transformer model, this 
kind of attention is called additive attention. The nodes are subsequently subjected to 
self-attention.

 

3) Softmax: We utilize the softmax function to normalize the coefficients over all j val-
ues, improving their comparability across nodes.

 

4) Aggregation: This process is comparable to GCN. The neighborhood embeddings 
are combined and scaled based on the attention scores.
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Summary of graph attention network (GAT) is shown in Table 3. GraphSAGE

GraphSAGE represents a tangible realization of an inductive learning framework  shown 
in Fig. 22. It exclusively considers training samples linked to the training set’s edges dur-
ing training. This process consists of two main steps: “Sampling” and “Aggregation.” Sub-
sequently, the node representation vector is paired with the vector from the aggregated 
model and passed through a fully connected layer with a non-linear activation function. It’s 
important to note that each network layer shares a standard aggregator and weight matrix. 
Thus, the consideration should be on the number of layers or weight matrices rather than 
the number of aggregators. Finally, a normalization step is applied to the layer’s output.

Two major steps:

1. Sample It describes how to sample a large number of neighbors.
2. Aggregator refers to obtaining the neighbor node embedding and then determining 

how to collect these embeddings and change your embedding information.

Working of graphSAGE model: 

1. First, initializes the eigenvectors of all nodes in the input graph
2. For each node, get its sampled neighbor nodes
3. The aggregation function is used to aggregate the information of neighbor nodes
4. And combined with embedding, Update the same by a non-linear transformation 

embedding Express.

Types of aggregators In the GraphSAGE method, 4 types of Aggregators are used.

1) Simple neighborhood aggregator: 

2) Mean aggregator

 

(5.6)h
(l+1)
i = σ
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3) LSTM Aggregator: Applies LSTM to a random permutation of neighbors.
4) Pooling Aggregator: It applies a symmetric vector function and converts adjacent 

vectors.

Equation of graphSAGE 

Here,
Wk,  Bk : is learnable weight matrices.
WkBk = is learnable wight matrices.
h0v = xv : initial0− the layer embeddings are equal to node features.
hk−1
u = Generalized Aggregation.

zv = hkvn : embedding after k layers of neighborhood aggregation.
σ – non linearity (ReLU).

Summary of graphSAGE is shown in Table 4. Comparative study of GNN models

Comparison based on practical implementation of GNN models

Table  5 describes the dataset statistics for different datasets used in literature for 
graph type of input. The datasets are CORA, Citeseer, and Pubmed. These statistics 
provide information about the kind of dataset, the number of nodes and edges, the 
number of classes, the number of features, and the label rate for each dataset. These 
details are essential for understanding the characteristics and scale of the datasets 
used in the context of citation networks. Comparison of the GNN model with equa-
tion in shown in Fig. 23.

Table 6 shows the performance results of different Graph Neural Network (GNN) 
models on various datasets. Table 6 provides accuracy scores for other GNN models 
on different datasets. Additionally, the time taken for some models to compute results 
is indicated in seconds. This information is crucial for evaluating the performance of 
these models on specific datasets.

(5.9)AGGREGATE
pool
k = max

({

σ

(

Wpoolh
k
ui + b

)

, ∀ui ∈ N(v)
})

(5.10)h
k
v = σ

([

Wk · AGG

({

h
k−1
u , ∀u ∈ N (v)

})

,Bkh
k−1
v

])

Table 5 Different Dataset Statistics of Citation Network [33]

Dataset Statistics

Datasets CORA Citeseer Pubmed

Type Citation network Citation network Citation network

Nodes 2708 3327 19717

Edges 5429 4732 44338

Classes 7 6 3

Features 1433 3703 500

Label rate 0.052 0.036 0.003
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Table 6 Performance metrics of different models with different datasets [33, 47, 48]

Dataset Model

GCN GAT GraphSAGE

GraphSAGE-
Simple

GraphSAGE—
Mean

GraphSAGE—
LSTM

GraphSAGE—
Pooling

CORA 81.5 (4 s) 83 76.8 78.7 79.7 80.7

Citeseer 70.3 (7 s) 72.5 74.2 77.8 78.8 79.8

Pubmed 79.0 (38 s) 79

Comparison based on theoretical concepts of GNN models are described in Table 7.

Graph neural network applications
Graph construction

Graph Neural Networks (GNNs) have a wide range of applications spanning diverse 
domains, which encompass modern recommender systems, computer vision, natural 
language processing, program analysis, software mining, bioinformatics, anomaly detec-
tion, and urban intelligence, among others. The fundamental prerequisite for GNN uti-
lization is the transformation or representation of input data into a graph-like structure. 
In the realm of graph representation learning, GNNs excel in acquiring essential node or 
graph embeddings that serve as a crucial foundation for subsequent tasks [61].

The construction of a graph involves a two-fold process:

1) Graph creation and
2) Learning about graph representations
3) Graph Creation: The generation of graphs is essential for depicting the intricate rela-

tionships embedded within diverse incoming data. With the varied nature of input 
data, various applications adopt techniques to create meaningful graphs. This pro-
cess is indispensable for effectively communicating the structural nuances of the 
data, ensuring the nodes and edges convey their semantic significance, particularly 
tailored to the specific task at hand.

4) Learning about graph representations: The subsequent phase involves utilizing the 
graph expression acquired from the input data. In GNN-based Learning for graph 
representations, some studies employ well-established GNN models like Graph-
SAGE, GCN, GAT, and GGNN, which offer versatility for various application tasks. 
However, when faced with specific tasks, it may be necessary to customize the GNN 
architecture to address particular challenges more effectively.

The different application which is considered a graph

1) Molecular Graphs: Atoms and electrons serve as the basic building blocks of mat-
ter and molecules, organized in three-dimensional structures. While all particles 
interact, we primarily acknowledge a covalent connection between two stable atoms 
when they are sufficiently spaced apart. Various atom-to-atom bond configurations 
exist, including single and double bonds. This three-dimensional arrangement is con-
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veniently and commonly represented as a graph, with atoms representing nodes and 
covalent bonds representing edges [62].

2) Graphs of social networks: These networks are helpful research tools for identifying 
trends in the collective behavior of individuals, groups, and organizations. We may 
create a graph that represents groupings of people by visualizing individuals as nodes 
and their connections as edges [63].

3) Citation networks as graphs: When they publish papers, scientists regularly refer-
ence the work of other scientists. Each manuscript can be visualized as a node in a 
graph of these citation networks, with each directed edge denoting a citation from 
one publication to another. Additionally, we can include details about each docu-
ment in each node, such as an abstract’s word embedding [64].

4) Within computer vision: We may want to tag certain things in visual scenes. Then, 
we can construct graphs by treating these things as nodes and their connections as 
edges.

GNNs are used to model data as graphs, allowing for the capture of complex rela-
tionships and dependencies that traditional machine learning models may struggle 
to represent. This makes GNNs a valuable tool for tasks where data has an inherent 
graph structure or where modeling relationships is crucial for accurate predictions and 
analysis.

Graph neural networks (GNNs) applications in different fields

NLP (natural language processing)

a) Document Classification: GNNs can be used to model the relationships between 
words or sentences in documents, allowing for improved document classification 
and information retrieval.

b) Text Generation: GNNs can assist in generating coherent and contextually relevant 
text by capturing dependencies between words or phrases.

c) Question Answering: GNNs can help in question-answering tasks by representing 
the relationships between question words and candidate answers within a knowledge 
graph.

d) Sentiment Analysis: GNNs can capture contextual information and sentiment 
dependencies in text, improving sentiment analysis tasks.

Computer vision

a) Image Segmentation: GNNs can be employed for pixel-level image segmentation 
tasks by modeling relationships between adjacent pixels as a graph.

b) Object Detection: GNNs can assist in object detection by capturing contextual infor-
mation and relationships between objects in images.

c) Scene Understanding: GNNs are used for understanding complex scenes and mod-
eling spatial relationships between objects in an image.
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Bioinformatics

a) Protein-Protein Interaction Prediction: GNNs can be applied to predict interactions 
between proteins in biological networks, aiding in drug discovery and understanding 
disease mechanisms.

b) Genomic Sequence Analysis: GNNs can model relationships between genes or 
genetic sequences, helping in gene expression prediction and sequence classification 
tasks.

c) Drug Discovery: GNNs can be used for drug-target interaction prediction and 
molecular property prediction, which is vital in pharmaceutical research.

Table 8 offers a concise overview of various research papers that utilize Graph Neural 
Networks (GNNs) in diverse domains, showcasing the applications and contributions of 
GNNs in each study.

Table 8 Different application areas with their proposed methodology of Graph Neural Networks

Ref Application Area Proposed Methodology GNN Model applied

[58] (2022), [59] (2020) Recommender Systems User/item representations
Recommendation sys-
tem based on heterogene-
ous features

GCN, GAT, GraphSAGE

[67–69]
(2021)

Natural Language Process-
ing

Text graph transformer for 
document classification
Text-Based Relational 
Reasoning
Semantic parsing

graph2seq, graph2tree, 
graph2graph

[63], (2021)
[64] (2022)

HealthCare Data Analysis-Based Agricul-
tural Products Management
Immunization and vaccine 
injury

GCN

[72] (2017)
[73] (2020)

Natural Language Process-
ing

Knowledge Base Comple-
tion of text
Knowledge Graph Align-
ment of text

GNN-LSTM

[67], (2021)
[68] (2020)

Computer Vision Image and video under-
standing
3D object detection in a 
point cloud

GCN, GAT 

[76]
(2021)

Anomaly Detection Industrial Internet of Things GCN, GAN, and GraphSAGE

[29]
(2023)

Traffic Forecasting Hybrid GCN and branch-
and-bound optimization for 
traffic flow forecasting

GCN

[77]
(2023)

HealthCare The configuration of fMRI-
derived networks deter-
mines the effectiveness of 
a graph neural network in 
discerning patients with 
major depressive disorder 
through classification

GNN (Text based)

[28]
(2023)

Traffic Prediction A study focusing on the 
prediction of multi-port 
ship traffic through the 
application of Spatiotempo-
ral Graph Neural Networks

GNN
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Table  9 highlights various applications of GNNs in Natural Language Processing, 
Computer Vision, and Bioinformatics domains, showcasing how GNN models are 
adapted and used for specific tasks within each field.

Future directions of graph neural network
The contribution of the existing literature to GNN principles, models, datasets, applica-
tions, etc., was the main emphasis of this survey. In this section, several potential future 
study directions are suggested. Significant challenges have been noted, including unbal-
anced datasets, the effectiveness of current methods, text classification, etc. We have 
also looked at the remedies to address these problems. We have suggested future and 
advanced directions to address these difficulties regarding domain adaptation, data aug-
mentation, and improved classification. Table 10 displays future directions.

1) Imbalanced Datasets—Limited labeled data, domain-dependent data, and imbal-
anced data are currently issues with available datasets. Transfer learning and domain 
adaptation are solutions to these issues.

2) Accuracy of Existing Systems/Models—can utilize deep learning models such as 
GCN, GAT, and GraphSAGE approaches to increase the efficiency and precision of 
current systems. Additionally, training models on sizable, domain-specific datasets 
can enhance performance.

3) Enhancing Text Classification: Text classification poses another significant challenge, 
which is effectively addressed by leveraging advanced deep learning methodologies 
like graph neural networks, contributing to the improvement of text classification 
accuracy and performance.

The above Table 10 describes the research gaps and future directions presented in the 
above literature. These research gaps and future directions highlight the challenges and 
proposed solutions in the field of text classification and structural analysis.

Table  11 provides an overview of different research papers, their publication years, 
the applications they address, the graph structures they use, the graph types, the graph 
tasks, and the specific Graph Neural Network (GNN) models utilized in each study.

Conclusions
Graph Neural Networks (GNNs) have witnessed rapid advancements in addressing the 
unique challenges presented by data structured as graphs, a domain where conventional 
deep learning techniques, originally designed for images and text, often struggle to 
provide meaningful insights. GNNs offer a powerful and intuitive approach that finds 
broad utility in applications relying on graph structures. This comprehensive survey on 
GNNs offers an in-depth analysis covering critical aspects such as GNN fundamentals, 
the interplay with convolutional neural networks, GNN message-passing mechanisms, 
diverse GNN models, practical use cases, and a forward-looking perspective. Our cen-
tral focus is on elucidating the foundational characteristics of GNNs, a field teeming 
with contemporary applications that continually enhance our comprehension and utili-
zation of this technology.
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Table 9 Different Domains with their Tasks in Graph Neural Networks

Refs. Technology domain Task Details GNN Model applied

[78]
(2021)

Natural Language 
Processing

Text Sentiment 
Analysis

Their innovation 
involved introducing a 
multi-level graph neu-
ral network (MLGNN) 
tailored for text senti-
ment analysis. Their 
approach effectively 
incorporated both 
local and global 
features, utilizing node 
connection windows 
of varying sizes 
across different levels. 
Additionally, they 
seamlessly integrated 
a scaled dot-product 
attention mechanism 
as a means of message 
passing within their 
method, allowing for 
the integration of fea-
tures from individual 
word nodes in the 
graph

MLGNN
GAT 

[79]
(2022)

Natural Language 
Processing

Text Classification GNNs were chosen 
for their aptness in 
handling 2D vectors, 
which aligns with 
the two-dimensional 
nature of text data. 
In their approach, 
Self-Organizing Maps 
(SOM) was employed 
to determine the clos-
est neighbors within 
the graphs, facilitat-
ing the computation 
of actual distances 
between these neigh-
boring elements

GNN
Self-Organizing 
Maps (For calculating 
distance)

[80]
(2023)

Natural Language 
Processing

Question Generation They created a graph 
from the input text, 
where nodes represent 
words or phrases, 
and edges show their 
relationships. An 
auto-encoder model 
compresses the graph, 
capturing key informa-
tion. This compressed 
representation helps 
generate context-
relevant questions by 
selecting nodes and 
edges dynamically

Context-Aware Auto-
Encoded Graph Neural 
Model
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Table 9 (continued)

Refs. Technology domain Task Details GNN Model applied

[81]–[83]
(2022)

Computer Vision Graph Construction There are three 
methods for graph 
construction
1. Segmenting the 
image or video frame 
into uniform grid 
sections, with each 
grid section serving 
as an individual vertex 
within the visual graph
2. Utilizing preproc-
essed structures, like 
scene graphs, for 
direct vertex represen-
tation
3. Incorporating 
semantic information 
to group visually simi-
lar pixel features into 
the same vertex

GNN

[67], (2021)
[68] (2020)

Computer Vision 3D object detection Image and video 
understanding. 3D 
object detection in a 
point cloud

GCN, GAT 

[84]
(2021)

Bioinformatics Multispecies Protein 
Function Prediction

DeepGraph Go has 3 
Features:
1. InterPro for repre-
sentation vector
2. Multiple graph 
convolutional neural 
(GCN) layers
3. Multispecies 
strategy

DeepGraphGO: A semi-
supervised deep learn-
ing approach that har-
nesses the strengths of 
both protein sequence 
and network data by 
utilizing a graph neural 
network (GNN)

[85]
(2022)

Bioinformatics Link Prediction in Bio-
medical Networks

1. Leveraging GCN to 
extract node-specific 
features from both 
sequence and struc-
tural data
2. Employing a GCN-
based encoder to 
enhance the node 
features by capturing 
inter-node depend-
encies within the 
network effectively
3. Pre-training the 
node features using 
graph reconstruction 
tasks as a foundational 
step

Pre-Training Graph 
Neural Networks- (PT-
GNN)
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The continuous evolution of GNN-based research has underscored the grow-
ing need to address issues related to graph analysis, which we aptly refer to as the 
frontiers of GNNs. In our exploration, we delve into several crucial recent research 
domains within the realm of GNNs, encompassing areas like link prediction, graph 
generation, and graph categorization, among others.

Table 9 (continued)

Refs. Technology domain Task Details GNN Model applied

[86]
(2022)

Bioinformatics Predicting Drug–Pro-
tein Interactions

The network under-
goes optimization 
through supervised 
signals derived from 
the downstream task, 
specifically the DPI 
prediction. By engag-
ing in information 
propagation within the 
drug-protein associa-
tion network, a Graph 
Neural Network can 
grasp network-level 
insights encompassing 
a variety of drugs and 
proteins. This approach 
amalgamates network-
level information 
with learning-based 
techniques

Bridge Drug–Protein 
Interactions
(Bridge-DPI)

[87]
(2022)

Bioinformatics Predicting Molecular LR-GNN utilizes a 
graph convolutional 
network (GCN) 
encoder to acquire 
node embeddings. To 
depict the relation-
ships between mol-
ecules, a propagation 
rule has been crafted 
to encapsulate the 
node embeddings at 
each GCN-encoder 
layer, forming the LR 
representation

Link Representation 
(LR-GNN)

Table 10 A list of research gaps and future research directions

Sr. no. Research gaps Future directions

1 Lack of ready datasets
Inconsistent Datasets

Domain Adaptation

2 Inefficient and time-consuming 
feature extraction task
Improving Text Classification

Here combining, deep learning and machine learning 
methods like GNNs to increase classification accuracy

3 Accuracy of Existing Systems/
Models
Identification of Type of structure, 
i.e., homogenous heterogeneous

Deep Learning models such as GCN, GAT, and GraphSAGE
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Appendix
See Tables 12 and 13

Table 11 Summary of Graph Neural Networks with application area, graph structure, type, task, and 
model used

Refs. Application Graph 
structure

Graph type Graph task GNN model used

[88]
(2020)

1. Recurrent 
Graph Neural 
Networks for 
Text Classifica-
tion

Structural data Static Graph Node Classifica-
tion

Text GCN
RGNN

[68]
(2021)

1. Machine 
translation
2. Natural 
language gen-
eration
3. Information 
extraction
4. Semantic 
parsing

Structural data Static Graph Node & Edge 
Level task

Graph2seq
Graph2tree
Graph2graph

[16]
(2019)

1. Multi-hop 
Reading Com-
prehension

Structural data Heterogeneous 
Graphs

Edge Level task GCN

[89]
(2020)

1. Edge masking Structural data Undirected 
Graph

Edge Level task LSTM + GNN

[90]
(2020)

1. Multi-hop 
reading com-
prehension on 
hotpot a Fact 
verification on 
FEVER

Structural data Directed Graph Node level task GCN

Table 13 Python Libraries for Graph Computing

Sr. No Python library GitHub Link

1 PyTorch Geometric https:// github. com/ pyg- team/ pytor ch_ geome tric

2 Deep Graph Library https:// www. dgl. ai

3 GraphVite https:// graph vite. io

4 Plato https:// github. com/ baske rville/ plato

5 Paddle graph learning https:// github. com/ Paddl ePadd le/ PGL

Table 12 Commonly Used Datasets in this Survey (Related to Graph)

Application Area Datasets Refs.

Citation Networks 1) Pubmed
2) Cora
3) Citeseer
4) NELL

[22, 31, 47, 48]

Social Networks 1) Reddit
2) Ciao
3) Epinions
4) Microblogs

[17, 31, 52, 57, 59]

https://github.com/pyg-team/pytorch_geometric
https://www.dgl.ai
https://graphvite.io
https://github.com/baskerville/plato
https://github.com/PaddlePaddle/PGL
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Abbreviations
GNN  Graph Neural Network
GCN  Graph Convolution Network
GAT   Graph Attention Networks
NLP  Natural Language Processing
GNN  Graph Neural Network
CNN  Convolution Neural Networks
RNN  Recurrent Neural Networks
ML  Machine Learning
DL  Deep Learning
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