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Abstract 

Rapid development in data science enables machine learning and artificial intelligence 
to be the most popular research tools across various disciplines. While numerous 
articles have shown decent predictive ability, little research has examined the impact 
of complex correlated data. We aim to develop a more accurate model under repeated 
measures or hierarchical data structures. Therefore, this study proposes a novel algo‑
rithm, the Generalized Estimating Equations Boosting (GEEB) machine, to integrate 
the gradient boosting technique into the benchmark statistical approach that deals 
with the correlated data, the generalized Estimating Equations (GEE). Unlike the pre‑
vious gradient boosting utilizing all input features, we randomly select some input 
features when building the model to reduce predictive errors. The simulation study 
evaluates the predictive performance of the GEEB, GEE, eXtreme Gradient Boosting 
(XGBoost), and Support Vector Machine (SVM) across several hierarchical structures 
with different sample sizes. Results suggest that the new strategy GEEB outperforms 
the GEE and demonstrates superior predictive accuracy than the SVM and XGBoost 
in most situations. An application to a real‑world dataset, the Forest Fire Data, 
also revealed that the GEEB reduced mean squared errors by 4.5% to 25% compared 
to GEE, XGBoost, and SVM. This research also provides a freely available R function 
that could implement the GEEB machine effortlessly for longitudinal or hierarchical 
data.

Keywords: Correlated data, Hierarchical data, Generalized Estimating Equations, 
Machine learning, Gradient boosting

Introduction
Correlated data measure the dependent variable repeatedly across multiple dimensions, 
such as longitudinal, clustered, spatial, or multilevel data [17]. Correlated data frequently 
occur in medicine, public health, and other research fields, requiring specialized statisti-
cal approaches to handle the complex correlation structure, avoid potential estimation 
biases, and ensure the accuracy of estimations.

Generalized Estimating Equations, also known as GEE [6, 12, 13], is a statistical 
method initially proposed by Liang and Zeger [11]. It extends the framework of Gener-
alized Linear Models (GLMs) and overcomes the assumption of independence among 
observations, making it particularly useful for handling correlated data. One of the 
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strengths of GEE is that it only assumes a "working correlation matrix" to describe the 
correlation structure among observations. This characteristic reduces the need for such 
restricted distribution assumptions and keeps parameter estimation consistent even 
when the working correlation matrix is misspecified under mild regularity conditions 
[7]. The Mixed-effects model is another standard statistical method for correlated data 
[10, 15]. The difference between GEE and the mixed-effects model is that GEE estimates 
the population average effects, and the mixed-effects model estimates individual ran-
dom effects.

The widespread adoption of modern technology and digitization has created vast 
amounts of data in recent decades. Coupled with the general availability of digital ser-
vices and advancements in storage technologies, a massive accumulation of data has 
occurred. This phenomenon has driven the necessity for big data analysis, which has 
fueled the flourishing development of machine learning (ML). ML aims to construct 
computer models that could automatically optimize algorithms based on past experi-
ences to predict future outcomes. Conceptually, one can think of ML as having numer-
ous settings of candidate models and using a large amount of past experiential data to 
guide the computer in finding the model setting that optimizes performance indicators 
[9].

Currently, some popular supervised ML models include eXtreme Gradient Boosting 
(XGBoost) [3], Random Forest [8], and Support Vector Machine (SVM) [4]. As one of 
the fastest-growing technologies, data scientists applied ML in various fields such as 
finance, marketing, computer vision, aerospace, biomedicine, etc. Every discipline is 
increasingly utilizing ML for prediction and decision support. Over the past two dec-
ades, ML has made significant progress and achievements, from academic research to 
the most popular commercial applications [16].

Thus, in the era of big data, in addition to traditional statistical methods, ML has pro-
vided advanced choices for data analysis. Numerous studies have compared statistical 
methods to ML, with some articles indicating that ML outperforms statistical methods 
[2, 14, 19]. However, limited research discusses more complex data structures, such as 
correlated or hierarchical ones. Therefore, we propose a novel algorithm, the General-
ized Estimating Equations Boosting (GEEB) machine, to integrate the gradient boosting 
technique from ML algorithms into the GEE. Under such hybrid algorithms, we aim to 
create a new ML model to deal with correlated data, avoid biased estimates, and provide 
a more accurate prediction.

Materials and methods
Generalized Estimating Equations Boosting Machine

GEE

The core of the new machine is the GEE. Here, we briefly introduce the fundamentals 
of the GEE. Assume that yij , i = 1tok and j = 1toni represent the jth response of the ith 
subject, which has a vector of covariates xij . There are ni measurements on subject i, and 
the maximum number of measurements per subject is T. Let the responses of the ith 
subject be yi = [yi1, . . . , yini]′ with corresponding meansµi = [µi1, . . . ,µini]′.
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The marginal mean µij of the response yij is related to a linear predictor through a link 
function g(µij) = xij′β , and the variance of yij depends on the mean through a variance 
function ν(µij) for generalized linear models (GLM).

Solving the generalized estimating equations, we could obtain the estimate of the 
parameter:

where Vi is the working covariance matrix of Yi

We only require the mean and the covariance of Yi in the GEE method, we do not 
need the full specification of the joint distribution of the correlated responses. This fea-
ture of the GEE is desirable and leads to a convenient way of analysis since the joint 
distribution for noncontinuous outcome variables involves high-order associations and 
is complicated to specify. In addition, the regression parameter estimates are consistent 
even when the working covariance is incorrectly specified. However, the GEE approach 
can lead to biased estimates when missing responses depend on previous responses. The 
"Weighted Generalized Estimating Equations under the MAR Assumption" can provide 
an unbiased estimate.

Working correlation matrix Suppose Ri(α) is an ni × ni "working" correlation matrix 
specified by the vector of parameters. The covariance matrix of Yi is modeled as:

where Ai is a diagonal matrix ( ni × ni ) whose jth diagonal element is ν(µij) and Wi is a 
diagonal matrix ( ni × ni ) whose jth diagonal is wij , where wij is a variable indicating the 
weight. If not weighted, wij = 1 for all i and j. If Ri(α) is the true correlation matrix of Yi , 
then Vi is the true covariance matrix of Yi.

In practice, the working correlation matrix is usually unknown, which must be esti-
mated in the iterative fitting process by using the current value of the parameter vector β 
to compute appropriate functions of the Pearson residual: eij =

yij−µij√
v(µij)/wij

.

If the working correlation matrix is the identity matrix (I), the GEE reduces to the 
independence estimating equations. The table from SAS [20] demonstrates the working 
correlation structure [21].

GEEB

GEEB has a hybrid design with GEE and gradient boosting. The strength of the GEEB 
algorithm lies in its ability to handle complex relationships in correlated data while opti-
mizing the algorithm further through the gradient-boosting technique.

Gradient Boosting is a prevailing ML algorithm that applies the idea of gradient descent 
to ensemble learners. In the gradient boosting framework, each iteration builds a new 
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learner based on the prediction errors calculated by the learner in the previous itera-
tion. When the iterations meet the stopping rule, all the predictions from the iterations 
are weighted and summed to obtain the final prediction. More specifically, because the 
loss function is the difference between the predicted and actual values, the goal of gradi-
ent boosting is to progressively move towards the minimum value of the loss function by 
minimizing the prediction errors in each iteration. Negative gradients of the loss function 
computed at the previous iteration and learning rate determine the direction and range of 
progressive movement in the current iteration. In other words, the algorithm minimizes the 
loss function and improves the overall prediction accuracy by updating the model based on 
the negative gradients.

The GEEB algorithm has four components: an initial setting and three computa-
tional steps. The initial stage defines the input dataset and the loss function. The input 
dataset contains n samples with some input features ( xi ) and a continuous output fea-
ture ( yi ), represented as

{

(xi, yi)
}n

i=1
 . When the dependent variable ( y ) is continu-

ous, the algorithm defines the loss function as a modified version of the mean squared 
error:L

(

yi, F(xi)
)

= 1
2
(yi − F(xi))

2 . Here, L(, ) represents the loss function, yi denotes the 
actual outcome of the ith data point, and F(xi) represents the model’s predicted outcome 
for the ith data point. Modifying the loss function is crucial as it facilitates more straightfor-
ward computation of gradients in subsequent steps.

After defining the input dataset and the loss function, the first step is to compute the ini-
tial prediction values of the model. The initial prediction value is a constant number chosen 
to start the iterations at the most efficient point. In this case, the initial prediction value, 
denoted as F0(x) , is defined as F0(x) = argmin

F(xi)

∑n
i=1L(yi, F(xi)) . Thus, when the loss func-

tion is defined as L
(

yi, F(xi)
)

= 1
2
(yi − F(xi))

2 , the initial prediction value is set to the 

mean of the feature values 
(

F0(x) =
∑n

i=1yi
n

)

.

The second step of the algorithm involves the iterative model updates for M times. 
Each iteration consists of five parts: (A), (B), (C), (D), and (E). The iterations continue 
until the Mth iteration converges. Unlike the conventional gradient boosting machines 
that incorporate all input features, the GEEB randomly selects some input features when 
building the model to reduce predictive errors. In part (A), a subset of the data is created 
from the dataset by randomly selecting some features to generate the model. This subset 
is denoted as

{(

xi′, yi
)}n

i=1
 , where xi′ represents the selected features and yi represents 

the target feature. Part (B) involves calculating the residuals between the true and 
 predicted outcomes of the subset (A). The residuals are computed as 
ri,m = −

[

∂
∂F(xi′)L

(

yi, F(xi′)
)

]

F(xi′)=Fm−1(xi′)
= yi − F(xi′), i = 1 . . . n . In part (C), the 

residuals calculated in (B) are used to fit the generalized estimating equations, obtaining 
the coefficients for this iteration. Part (D) uses the coefficients obtained in (C) to predict 
the residuals for the entire dataset in this iteration. Finally, in part (E), the progress of 
this iteration’s prediction for the model is updated. The predicted values of the residuals 
for this iteration, denoted aspi,m , are multiplied by the learning rate ( ν ) and added to the 
previous overall predicted valueFm−1(xi) . The resulting computation represents the pre-
diction for this iteration,Fm(xi).
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After M iterations, the third step is to output the overall prediction results of the model, 
denoted as FM(xi).

The following presents the GEEB algorithm.

Algorithm: Generalized Estimating Equations Boosting Machine

Materials

This chapter describes the data source, the detailed background of simulation studies, 
and the application to a real-world dataset, the Forest Fire Data.

Data source

The Institute of Digital Research and Education (IDRE) at the University of Califor-
nia, Los Angeles, published the HDP simulated data in July 2012 [1]. The HDP data is 
based on a large-scale lung cancer-related study. The correlations exist in its hierarchical 
structure, which consists of three nested levels: Doctors are nested within hospitals, and 
patients are nested within doctors. Researchers could adjust the number of hospitals, 
doctors, and patients according to their research requirements.

The simulated data includes nine different outcomes. For this research, we select 
tumor size, which follows a Gaussian distribution, as the target output feature. The 
patient-related features include age (Age), marital status (Married), family history (Fami-
lyHx), smoking history (SmokingHX), sex (Sex), cancer stage (CancerStage), length 
of stay in hospital (LengthofStay), white blood cell count (WBC), red blood cell count 
(RBC), body mass index (BMI), interleukin-6 (IL6), and C-reactive protein (CRP). At the 
doctor level, there is doctor ID (DID), the experience of the doctor (Experience), the 
quality of the school doctors trained  (School), and the number of lawsuits (Lawsuits). 
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Note that the variable "School" is divided into two categories (top vs. average). Due to 
the highly imbalanced distribution, the "school" variable may have only one group that 
introduces errors in estimating the GEE function with the R package. Therefore, we did 
not include the "school" variable in simulation studies. The hospital-related features 
include hospital ID (HID) and Medicaid at the given hospital (Medicaid). Consequently, 
there are 17 predictors in the simulation study. Note that not all 17 features are related to 
the target response, and these features are noises to the predictive models.

Real‑world data

Cortez and Morais [5] published the Forest Fire Data. This dataset covers the period 
from January 2000 to December 2003 and includes records of forest fires in the Montes-
inho Natural Park in northeastern Portugal. Multiple institutions collected the data and 
encompassed numerous variables, such as the Fire Weather Index (FWI) [22], spatial, 
temporal, and weather-related information.

We generated a new feature for "season" to construct the third-level hierarchical struc-
ture. In this way, the day is nested within the month, and the month is nested within 
season. Note that "season" was derived from the "month" variable. The four seasons are 
(1) Spring, from March to May; (2) Summer, from June to August; (3) Autumn, from 
September to November; and (4) Winter, from December to February. As a result, there 
are 14 variables (refer to Table 1), and the sample size is 517.

Experiment

We examine the consistency and accuracy of (1) the new machine GEEB, (2) the sta-
tistical method GEE, (3) the SVM, and (4) XGBoost under different hierarchical struc-
tures and sample sizes. Regarding the hyperparameter of SVM, the kernel is a radial 
basis function (RBF). Hyperparameters of XGB are objective = ’reg:squarederror’, 
nrounds = 50, and verbose = 0. Other settings of hyperparameters yielded similar 

Table 1 The preprocessed Forest Fire Data attributes

Attribute Description Value

X x‑axis coordinate [1,9]

Y y‑axis coordinate [2,9]

Season Season of the year 1: spring, 2: summer, 3: fall, 4: winter

Month Month of the year jan, feb, mar, apr, may, jun, jul, aug, 
sep, oct, nov, dec

Day Day of the week mon, tue, wed, thu, fri, sat, sun

FFMC Fine Fuel Moisture Code [18.7, 96.2]

DMC Duff Moisture Code [1.1, 291.3]

DC Drought Code [7.9, 860.6]

ISI Initial Spread Index [0.0, 56.1]

temp Temperature (in ◦C) [2.2, 33.3]

RH Relative humidity (in %) [15, 100]

wind Wind speed (in km/h) [0.4, 9.4]

rain The accumulated precipitation within the previ‑
ous 30 min (in mm/m2)

[0.0, 6.4]

area Total burned area (in ha) [0.00, 1090.84]



Page 7 of 19Wang et al. Journal of Big Data           (2024) 11:20  

results. When developing simulation studies, we tuned the SVM and XGB with different 
parameter settings, such as the max_depth and learning_rate for the XGB. The results 
could be better or worse. In each scenario, there are 1000 repetitions. Each repetition 
could find its best parameter setting, but the comparisons are similar. Therefore, we used 
the most common settings for SVM and XGB.

Simulation studies

The core concept of the GEEB machine involves the random selection of features. Note 
that validation sets in the training data could find the optimal proportion. However, we 
randomly select eight proportions (30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) of 
features in GEEB denoted as Model 1 to Model 8. The new approach is more promising 
if the GEEB outperforms other methods without an optimal proportion obtained by ten-
fold cross-validation. Table 2 presents detailed model settings.

Next, we examine the impact of sample size on the predictions. Therefore, three sam-
ple sizes were defined: (A) small, (B) medium, and (C) large. Due to the random vari-
ation ±1 set for the number of doctors and patients, the sample size is approximately 
estimated as the mean value. The three estimated sizes with the minimum and maxi-
mum in the brackets are (A) small sample: 200 [72, 405], (B) medium sample: 500 [200, 
720], (C) large sample: 1000 [650, 1500]. Because the results are consistent from 72 to 
1,500 patients, we did not increase the sample size after 1,500. Since a small sample size 
introduces more statistical issues than big data, the simulation study suggests that a 
minimum of 72 subjects is sufficient to implement the GEEB.

Additionally, we explore the impact of different hierarchical data structures and con-
sider five scenarios in three different sample sizes: (1) a structure with a small number 
of hospitals, followed by some doctors, and then more patients in a ratio of 1:3:5. (2) A 
structure with a small number of hospitals, followed by more doctors and then a more 
significant number of patients, in a more disparate ratio of 1:5:9. (3) An equal number of 
hospitals, doctors, and patients in a balanced ratio 1:1:1. (4) A structure with many hos-
pitals, followed by some doctors, and then a small number of patients in a ratio of 5:3:1. 
(5) A structure with even more hospitals, followed by some doctors and a few patients, 
with a more extreme ratio of 9:5:1. Tables 3, 4, 5 show a detailed summary of the hierar-
chical structures.

Finally, the research framework diagram in Fig. 1 indicates the study flow. In the begin-
ning, the input datasets undergo data preprocessing, and then the dataset is split into an 

Table 2 Settings of Model 1–Model 8

Model Content

Model 1 GEEB with randomly selected 30% features

Model 2 GEEB with randomly selected 40% features

Model 3 GEEB with randomly selected 50% features

Model 4 GEEB with randomly selected 60% features

Model 5 GEEB with randomly selected 70% features

Model 6 GEEB with randomly selected 80% features

Model 7 GEEB with randomly selected 90% features

Model 8 GEEB with all features
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80% training set to build the models. The remaining 20% of the data is the testing set that 
evaluates the predictive performance. Lastly, we record the predictive performance in 
every scenario.

Regarding other hyperparameters, the learning rate for the GEEB model is set to 0.1. 
The number of iterations for the GEEB model is set to 100 since the convergence takes 
many iterations. Lastly, the simulation of the HDP dataset repeats 1000 times for each 
parameter setting.

The correlation matrix varies in every repetition in each scenario. Take scenario A1, 
for example, 11–13 patients are nested within 6 to 8 doctors, who are nested within two 
hospitals. At the doctor level, the dimension of the correlation matrix could be 11× 11 , 
12× 12 , or 13× 13 . At the hospital level, the size is 6× 6 , 7× 7 , or 8× 8 . Because there 
are 1000 repetitions, A1 yields 6000 correlation matrixes. The simulation study gener-
ates 6000*15 = 9000 correlation matrixes (15 Scenarios: A1-A5, B1-B5, C1-C5). In the 
Additional file 1: Table S1, we display one correlation matrix of scenario A1 at the doc-
tors level. Additional file 1: Table S2 shows an example data in scenario C1.

Table 3 Parameter settings of a small sample size

(A) 200 [72, 405]

Scenario Ratio N of hospitals N of doctors N of patients

Scenario A1 1:3:5 2 6:8 11:13

Scenario A2 1:5:9 2 7:9 14:16

Scenario A3 1:1:1 6 5:7 5:7

Scenario A4 5:3:1 12 6:8 1:3

Scenario A5 9:5:1 15 7:9 1:3

Table 4 Parameter settings of a medium sample size

(B) 500 [200, 720]

Scenario Ratio N of hospitals N of doctors N of patients

Scenario B1 1:3:5 3 9:11 15:17

Scenario B2 1:5:9 2 10:12 19:21

Scenario B3 1:1:1 8 7:9 7:9

Scenario B4 5:3:1 16 9:11 2:4

Scenario B5 9:5:1 20 10:12 1:3

Table 5 Parameter settings of a large sample size

(C) 1000 [650, 1500]

Scenario Ratio N of hospitals N of doctors N of patients

Scenario C1 1:3:5 4 11:13 19:21

Scenario C2 1:5:9 3 13:15 24:26

Scenario C3 1:1:1 10 9:11 9:11

Scenario C4 5:3:1 20 11:13 3:5

Scenario C5 9:5:1 25 13:15 2:4
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Fig. 1 Research framework diagram

Fig. 2 Visualization of feature importance of the Forest Fire Data (single run)
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Application to a real‑world data

In the Forest Fire Data, the preprocessing step standardized all input features. We split 
the data into 80% training and 20% testing to evaluate the performance. Due to the sto-
chastic nature of data splitting and feature selection, we will repeat the analysis one or 
100 times. Tables 13, 14 and Fig. 2 reveal the analysis results and Feature Importance.

Evaluation metric

The Mean Square Error (MSE) measures the performance since the output feature is 
Gaussian. The MSE is defined as:

The formula represents the expected value of the squared difference between the true 
values ( yi ) and the predicted values ( F(xi) ) for each subject in a dataset of size n. There-
fore, a smaller MSE indicates that the model’s overall predicted results are closer to the 
actual values, meaning better performance, and vice versa.

Results
Computer simulations and applications to the Forest Fire Data are implemented by R 
version 4.2.1 R Core Team [18]. R: A language and environment for statistical computing. 
R Foundation for Statistical Computing). A computer with 11th Gen Intel(R) Core(TM) 
i7-11700 @ 2.50 GHz and 16 GB of RAM in a 64-bit platform is used to implement all 
the experiments.

Simulation results

The new model GEEB performed well according to simulation results. The GEEB, with 
the selection of all features, is consistently superior to the benchmark GEE in Tables 6, 
7, 8. With a suitable random feature selection proportion, the GEEB has a further 
improvement.

We discovered that three factors, the proportion of random feature selection, sam-
ple size, and hierarchical structure, impact model performance. The GEEB and GEE 

MSE =
1

n

∑n

i=1
(yi − F(xi))

2

Table 6 Simulation results of GEEB and GEE with a small sample size

A1 A2 A3 A4 A5

GEEB Model 1 99.01835516 95.70521460 101.94608001 107.97686232 102.39713434

Model 2 99.48542540 95.80135649 102.09502575 108.60056002 102.65618209

Model 3 100.08083977 96.03755343 102.45040297 109.33152319 103.01510905

Model 4 100.29922203 96.13009608 102.55449120 109.53844516 103.11828510

Model 5 100.48693837 96.21545902 102.67153983 109.73710182 103.22835607

Model 6 100.51547112 96.22897508 102.68758588 109.76956898 103.24548101

Model 7 100.53191486 96.23657640 102.69762296 109.78681880 103.25546115

Model 8 100.53314727 96.23727716 102.69849263 109.78816782 103.25626760

GEE 100.53386987 96.23774067 102.69909140 109.78894802 103.25681055
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Table 7 Simulation results of GEEB and GEE with a medium sample size

B1 B2 B3 B4 B5

GEEB Model 1 94.65760827 93.53285239 96.41856104 99.08916344 98.34733859

Model 2 94.59880891 93.35856425 96.29459362 98.93853969 98.26241921

Model 3 94.62586832 93.37919664 96.32194755 98.90918803 98.29750455

Model 4 94.67019540 93.40186582 96.35473784 98.92699583 98.33037117

Model 5 94.70640839 93.43028503 96.38531918 98.94879956 98.36590894

Model 6 94.71352895 93.43571434 96.39169739 98.95170612 98.37284096

Model 7 94.71741330 93.43884560 96.39519533 98.95420109 98.37652539

Model 8 94.71776080 93.43916545 96.39550407 98.95448441 98.37686670

GEE 94.71798990 93.43940338 96.39570954 98.95471693 98.37712698

Table 8 Simulation results of GEEB and GEE with a large sample size

C1 C2 C3 C4 C5

GEEB Model 1 94.02394485 93.74645504 95.17534831 96.28861670 95.84736003

Model 2 93.81084305 93.56541182 94.98002746 96.09494579 95.61835417

Model 3 93.71743381 93.48196280 94.90869049 96.02364853 95.51996369

Model 4 93.71736127 93.48402925 94.90935079 96.03299968 95.51834122

Model 5 93.72468587 93.49760871 94.92597152 96.04065702 95.52506366

Model 6 93.72760097 93.50035054 94.92810249 96.04305602 95.52754263

Model 7 93.72897819 93.50179523 94.92965753 96.04428952 95.52844997

Model 8 93.72912492 93.50193532 94.92981440 96.04445820 95.52858655

GEE 93.72922513 93.50204072 94.92992517 96.04458325 95.52869609

Table 9 Simulation results of GEEB with Model 3, GEE, XGBoost, and SVM concerning the 
hierarchical structure

GEEB with Model 3 GEE SVM XGBoost

Mean SD Mean SD Mean SD Mean SD

A1 100.08083977 26.95404996 100.53386987 27.01249069 112.12767754 28.54215119 112.45269936 29.44731637

B1 94.62586832 15.18795180 94.71798990 15.19590222 97.14783528 14.83062427 97.25146238 14.91062380

C1 93.71743381 10.99309471 93.72922513 11.00408210 90.40457748 9.85050686 89.93082567 9.61089664

A2 96.03755343 22.65889734 96.23774067 22.72473623 104.40697571 22.75368670 104.88445968 23.75001617

B2 93.37919664 16.73492992 93.43940338 16.74627032 95.02183905 15.85076210 96.11347731 15.67838128

C2 93.48196280 11.11303043 93.50204072 11.11896335 86.94844371 9.21310427 88.78844514 9.10177358

A3 102.45040297 24.35281831 102.69909140 24.41306419 118.07327362 27.03897431 114.26875449 26.96785652

B3 96.32194755 14.34927426 96.39570954 14.33870888 106.81904823 15.78853772 100.11787803 14.83848559

C3 94.90869049 10.16099839 94.92992517 10.15832247 101.35317458 10.98376852 92.15629237 9.65414782

A4 109.33152319 27.73652633 109.78894802 27.96769900 133.14030348 34.12907936 128.82575872 34.37172626

B4 98.90918803 14.57846063 98.95471693 14.59775801 121.15671344 18.36387217 110.17394078 17.18216334

C4 96.02364853 10.37016019 96.04458325 10.37370905 114.01629456 12.36584604 99.61407890 10.44030172

A5 103.01510905 21.90171557 103.25681055 21.95059436 127.62577943 26.34114910 120.12543242 25.97924278

B5 98.29750455 14.52335686 98.37712698 14.54756006 124.33607693 18.58431286 112.72063341 17.06058754

C5 95.51996369 9.40236520 95.52869609 9.41868433 116.96334753 11.41679679 100.50386001 9.88936982
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perform better in A1–A2, B1–B2, and C1–C2 in Tables  6, 7, 8. These scenarios have 
fewer hospitals, a moderate number of doctors, and more patients.

Models within the same hierarchical structure perform better as the dataset increases 
(B1 vs. A1, C1 vs. B1, …, etc.). Although the optimal feature selection proportion varies 
with different sample sizes and hierarchical structures, we suggest that Model 3 (with a 
50% random feature selection) demonstrates consistent and satisfying predictive results 
(Tables  6, 7, 8). Therefore, without tenfold cross-validation searching for the optimal 
ratio, we adopted Model 3 in Tables 9, 10, 11, 12 for the GEEB. The GEEB with Model 3 
shows a superior MSE than the SVM and XGBoost (Tables 9, 10, 11, 12).

In addition to the main results mentioned above, the subsequent sections have details 
in three aspects. First, we explore the impact of different random feature selection pro-
portions in the GEEB. Secondly, we examine the influence of sample size. Lastly, we see 
how the predictive ability differs among the GEEB, GEE, XGBoost, and SVM.

Table 10 Simulation results of GEEB with Model 3, GEE, SVM, and XGBoost with a small sample size

N of 
clusters

GEEB with Model 3 GEE SVM XGBoost

Mean SD Mean SD Mean SD Mean SD

A1 [12, 16] 100.08083977 26.95404996 100.53386987 27.01249069 112.12767754 28.54215119 112.45269936 29.44731637

A2 [14, 18] 96.03755343 22.65889734 96.23774067 22.72473623 104.40697571 22.75368670 104.88445968 23.75001617

A3 [30, 42] 102.45040297 24.35281831 102.69909140 24.41306419 118.07327362 27.03897431 114.26875449 26.96785652

A4 [72, 96] 109.33152319 27.73652633 109.78894802 27.96769900 133.14030348 34.12907936 128.82575872 34.37172626

A5 [105, 135] 103.01510905 21.90171557 103.25681055 21.95059436 127.62577943 26.34114910 120.12543242 25.97924278

Table 11 Simulation results of GEEB with Model 3, GEE, SVM, and XGBoost with a medium sample 
size

N of 
clusters

GEEB Model 3 GEE SVM XGBoost

Mean SD Mean SD Mean SD Mean SD

B1 [27, 33] 94.62586832 15.18795180 94.71798990 15.19590222 97.14783528 14.83062427 97.25146238 14.91062380

B2 [20, 24] 93.37919664 16.73492992 93.43940338 16.74627032 95.02183905 15.85076210 96.11347731 15.67838128

B3 [56, 72] 96.32194755 14.34927426 96.39570954 14.33870888 106.81904823 15.78853772 100.11787803 14.83848559

B4 [144, 176] 98.90918803 14.57846063 98.95471693 14.59775801 121.15671344 18.36387217 110.17394078 17.18216334

B5 [200, 240] 98.29750455 14.52335686 98.37712698 14.54756006 124.33607693 18.58431286 112.72063341 17.06058754

Table 12 Simulation results of GEEB with Model 3, GEE, SVM, and XGBoost with a large sample size

N of  
clusters

GEEB Model 3 GEE SVM XGBoost

Mean SD Mean SD Mean SD Mean SD

C1 [44, 52] 93.71743381 10.99309471 93.72922513 11.00408210 90.40457748 9.85050686 89.93082567 9.61089664

C2 [39, 45] 93.48196280 11.11303043 93.50204072 11.11896335 86.94844371 9.21310427 88.78844514 9.10177358

C3 [90, 110] 94.90869049 10.16099839 94.92992517 10.15832247 101.35317458 10.98376852 92.15629237 9.65414782

C4 [220, 260] 96.02364853 10.37016019 96.04458325 10.37370905 114.01629456 12.36584604 99.61407890 10.44030172

C5 [325, 375] 95.51996369 9.40236520 95.52869609 9.41868433 116.96334753 11.41679679 100.50386001 9.88936982
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The proportion of random feature selection

In the small sample scenarios (A1 to A5), Table 6 shows that the GEEB consistently out-
performs the GEE even when all features are included (Model 8). Therefore, the boosting 
technique improved the accuracy compared to the conventional statistical approach. The 
optimal model is identified as Model 1, with a random feature selection proportion of 
30% ( MSEM1,A1 = 99.01835516,MSEM1,A2 = 95.70521460,MSEM1,A3 = 101.94608001,

MSEM1,A4 = 107.97686232,MSEM1,A5 = 102.39713434).
Moving on to the medium sample scenarios (B1 to B5) in Table 7, Model 2 (40%) and Model 

3 (50%) exhibit the most favorable results of GEEB ( MSEM2,B1 = 94.59880891,MSEM2,B2

= 93.35856425,MSEM2,B3 = 96.29459362,MSEM3,B4 = 98.90918803,MSEM2,B5

= 98.26241921 ). In Table  8, large sample scenarios (C1 to C5) indicate that the optimal  
models of GEEB are Model 3 (50%) and Model 4 (60%), ( MSEM4,C1 = 93.71736127,

MSEM3,C2 = 93.48196280,MSEM3,C3 = 94.90869049,MSEM3,C4 = 96.02364853,MSEM4,C5

= 95.51834122 ). These results demonstrate the impact of the proportion of random feature 
selection on the GEEB across various sample sizes.

In Tables 6, 7, 8, Model 8 (GEEB with all features) outperforms GEE even without ran-
dom feature selection, showing better predictive results than the GEE model. Further-
more, in the small sample scenarios (Table 6), the MSE in Models 1 to 7 is smaller than 
the numbers in Model 8. The comparisons demonstrate the improved GEEB through 
random feature selection. Depending on the sample size, the optimal random feature 
selection proportion falls between 30 to 60%. Table  7 (B2–B4) and 8 (C1-C5) show a 
curved pattern when the percentage is too small. Models 1 or 2 may encounter a higher 
MSE compared to Model 8 of the GEEB. For example, in B2, the best scenario is Model 2 
(40% features, MSEM2,B2 = 93.35856425 ), whereas a lower selection proportion Model 1 
(30% features, MSEM1,B2 = 93.53285239 ) performs worse than Model 2 and even under-
performs the GEE ( MSEGEE,B2 = 93.43940338 ). Similarly, in C1, the best situation is 
Model 4 (60% features, MSEM4,C1 = 93.71736127 ), whereas a lower selection proportion 
Model 1 (30% features, MSEM1,C1 = 94.02394485 ) performs worse than Model 4 and 
even underperforms the GEE ( MSEGEE,C1 = 93.72922513 ). We think that the informa-
tion content of 30% or 40% of the features is insufficient to provide accurate predictions.

In conclusion, although each sample size has its optimal range of random feature 
selection proportions, we recommend the following: (1) random feature selection is a 
hyperparameter for the proposed GEEB machine. The optimal selection proportion falls 
between 30 to 60% through simulation studies. Hence, one can find the optimal hyper-
parameter through techniques such as a validation set or k-fold cross-validation. (2) A 
50% selection proportion consistently demonstrates stable and excellent performance 
across all scenarios. In cases where it is impossible to employ any validation technique, 
this research suggests setting the random feature selection proportion to 50%. Thus, the 
GEEB function in the R language has a default random feature selection proportion set 
to 50%.

The following two sections (Tables 9, 10, 11, 12) will explore the impact of sample size 
and hierarchical structure using the GEEB with Model 3.
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Sample size

In Table  9, all models, including the GEEB, GEE, SVM, and XGBoost, per-
form better as the sample size increases. The GEEB with Model 3 in the 
small sample A1 has MSEM3,A1 = 100.08083977 . In the medium sample sce-
nario B1, it is MSEM3,B1 = 94.62586832 . In the large sample scenario C1, it is 
MSEM3,C1 = 93.71743381 . The pattern indicates an improvement in reduced errors 
as the sample size increases. For GEE, the MSE in A1 is MSEGEE,A1 = 100.53386987 , 
in B1, it is MSEGEE,B1 = 94.71798990 , and in C1, it is MSEGEE,C1 = 93.72922513 . For 
SVM, in A1, it has MSESVM,A1 = 112.12767754 , in B1, it has MSESVM,B1 = 97.14783528 , 
and in C1, it has MSESVM,C1 = 90.40457748 . For XGBoost, in A1, it has 
MSEXGBoostA1 = 112.45269936 , in B1, it has MSEXGBoost ,B1 = 97.25146238 , and in C1, it 
has MSEXGBoost ,C1 = 89.93082567 . In summary, under the same hierarchical structure, 
increasing the sample size leads to a decreasing trend in MSE, indicating improved pre-
dictive ability. Besides, SVM and XGBoost are more sensitive to sample size variations 
than the GEEB and GEE.

Hierarchical structure

Five types of hierarchical structures show the impact on the MSE. In Tables 10, 11, 12, 
there is a significant contrast between the first (ratio = 1:3:5) and fourth (ratio = 5:3:1), as 
well as the second (ratio = 1:5:9) and fifth (ratio = 9:5:1) hierarchical structures across all 
scenarios with the same dataset size. All models perform better in the first and second 
hierarchical structures, where the setting presents fewer hospitals, a moderate number 
of doctors, and the highest number of patients. In contrast, they do not perform well 
in the fourth and fifth hierarchical structures, when the data have more hospitals and 
minimal patients. Regarding the third hierarchical structure, where the data involves an 
equal number of hospitals, doctors, and patients, the predictive capability lies between 
all models.

Note that the second and fifth hierarchical structures demonstrate more extreme 
ratios, implying a more significant disparity in the size of hospitals, doctors, and 
patients. These situations investigate whether the models would exhibit more extreme 
MSEs. However, only in the small sample scenario A could we observe relatively notable 
differences. We did not see significant differences in the medium and large sample sce-
narios. The XGBoost and SVM are more sensitive hierarchical structures than the GEEB 
and GEE.

In the small sample size under the first and fourth structure, the GEEB with Model 3 
yields MSEM3,A1 = 100.08083977 and MSEM3,A4 = 109.33152319 ; in the medium sam-
ple, it shows MSEM3,B1 = 94.62586832 and MSEM3,B4 = 98.90918803 ; in the large sam-
ple, it achieves MSEM3,C1 = 93.71743381 and MSEM3,C4 = 96.02364853 . Similarly, GEE 
demonstrates similar behavior ( MSEGEE,A1 = 100.53386987,MSEGEE,A4 = 109.78894802,

MSEGEE,B1 = 94.71798990,MSEGEE,B4 = 98.95471693,MSEGEE,C1 = 93.72922513,

MSEGEE,C4 = 96.04458325 ). However, the SVM and XGBoost show more differences 
with changes in hierarchical structures. For instance, in the first and fourth scenarios, 
the SVM yields MSESVM,A1 = 112.12767754 and MSESVM,A4 = 133.14030348 in the 
small sample, MSESVM,B1 = 97.14783528 and MSESVM,B4 = 121.15671344 in the 
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medium sample, and MSESVM,C1 = 90.40457748 and MSESVMC4 = 114.01629456 in the 
large sample. The trend is similar for XGBoost ( MSEXGBoost,A1 = 112.45269936,

MSEXGBoost,A4 = 128.82575872,MSEXGBoost,B1 = 97.25146238,MSEXGBoost,B4 = 110.17394078,

MSEXGBoost,C1 = 89.93082567,MSEXGBoost,C4 = 99.61407890 ). Thus, we observe signif-
icant differences between the first and fourth scenarios when using the SVM and 
XGBoost. It may be because the two ML models are not well-suited to handle hierarchi-
cal data, leading to their inferior performance in the fourth hierarchical structure, which 
has relatively enormous clusters.

Furthermore, according to the increasing number of clusters, we observed that SVM 
and XGBoost show a clear inverse relationship in both medium and large samples. 
Besides, as the number of clusters increases, the predictive performance of SVM and 
XGBoost decreases, indicating worse performance with more clusters and more pro-
nounced inter-cluster correlations. In contrast, the GEEB and GEE demonstrate consist-
ent and satisfying predictions.

The SVM and XGBoost can outperform the GEEB in scenarios C1 and C2 for larger 
sample sizes (Table 12). The reason may be with fewer clusters and relatively large data 
sizes, SVM and XGBoost can overlook the inter-cluster correlation structure and treat 
the data as independent.

Results of the Forest Fire Data

According to the simulation study, the GEEB model with 50% random feature selection 
demonstrates consistent and improved predictive performance. Therefore, we adopt the 
GEEB with Model 3 as the default model in real-world data analysis.

The Forest Fire Data analyses for each method are shown in Table 13, indicating that 
the GEEB with Model 3 exhibits the minimum MSE compared to the GEE, SVM, and 
XGBoost. The MSE of GEE is approximately 4.5% higher than the GEEB. The XGBoost 
is about 25.2% higher than the GEEB. Therefore, the GEEB has a decent improvement 
compared to the most famous statistical model for correlated data and the most promis-
ing ML approaches, SVM and XGBoost. Feature Importance of the GEEB with Model 3 
is in Table 14, and the visualization is in Fig. 2.

Discussions
In this study, we propose a new ML strategy named the Generalized Estimating Equa-
tions Boosting (GEEB) machine. This method integrates the gradient boosting technique 
with the gold standard model for correlated data, the GEE. Computer simulations con-
firmed that the GEEB outperforms the GEE. In most situations, GEEB performs better 
than the famous SVM and XGBoost. Besides, the GEEB demonstrates the best predic-
tion for the Forest Fire Data. Therefore, our findings suggest: (1) the gradient boosting 
technique enables the GEEB to outperform the GEE model. (2) Although the XGBoost 
and SVM are known for their excellent predictive ability, they may not perform well 

Table 13 Applications to the Forest Fire Data

GEEB Model 3 GEE SVM XGBoost

Mean SD Mean SD Mean SD Mean SD

2.02196796 0.26742275 2.11245426 0.40181580 2.25342487 0.40144105 2.58312353 0.33828778



Page 16 of 19Wang et al. Journal of Big Data           (2024) 11:20 

with hierarchical data. Treating subjects as independent failed to capture the correlation 
structure.

This research also provides the code that computes all research results. The geebm() is 
an R function that implements the GEEB machine. This function has seven arguments: 
formula, id, iteration, feature_rate, lrate, standardize, and data. Note that formula must 
be specified in the format "response ~ predictors" to list the predictors (input features) 
and response variable (output feature) in the dataset. id is a vector that identifies the 
clusters and can support multiple levels arranged in the order of multilayer structure. 
iteration is an integer representing the number of iterations, set to default at 100 itera-
tions. feature_rate represents the proportion of random feature selection. When set to 1, 
it uses all features; by default, it is set to 0.5, using half of the features. lrate is a hyperpa-
rameter for the learning rate, with a default value of 0.1. standardize determines whether 
features are standardized, and the default does not perform standardization. data is 
used to input the training dataset. For example, when training the model with the Forest 
Fire Data in this study, the function would be: geebm(area ~ X + Y + FFMC + DMC + DC 
+ ISI + temp + RH + wind + rain + day, id = c("season","month"), iteration = 100, feature_
rate = 0.5, lrate = 0.1, standardize = T, data = Dataset).

The GEEB is also inspired by the Random Forest that incorporates Bootstrap while 
randomly selecting features. However, the results were not satisfying. Our research aims 
to compare the GEEB with other benchmark ML and statistical models in correlated 
data. When deciding which ML models to include, we primarily considered models that 
are widely discussed and used in academia and industry and frequently win in various 

Table 14 Feature importance of the Forest Fire Data (single run/averaged 100 runs)

Feature importance (single run) Averaged feature importance (100 runs)

Mean SD

(Intercept) −1.84015877× 10
−17 −9.44600470× 10

−19
7.34268206× 10

−18

daymon 0.00783564 0.00964657 0.00640527

daysat 0.03137851 0.01906195 0.00788899

daysun 0.02750425 0.01370748 0.00790682

daythu 0.01424024 0.00145060 0.00662915

daytue 0.02618028 0.01721314 0.00760060

daywed 0.00548812 0.00884680 0.00685072

DC 0.01169941 0.01493954 0.00856180

DMC 0.01763062 0.01490499 0.00925210

FFMC 0.01624885 0.00877412 0.00541663

ISI − 0.02200907 − 0.02049532 0.00602142

rain 0.00847838 0.00169441 0.00866076

RH − 0.03097815 − 0.01785837 0.00823336

temp − 0.00883744 0.00113329 0.01025085

wind 0.02119821 0.02607868 0.00648451

X 0.01978786 0.01864735 0.00676956

Y 0.01116722 0.00258028 0.00731071
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data science competitions. Therefore, we included the XGBoost, SVM, and Random For-
est. However, when conducting the simulation studies, we discovered that the random-
Forest package in R cannot handle datasets with more than 53 categories. Since each 
doctor within each hospital is treated as a separate category and there are other cat-
egorical features such as gender and cancer stage, this number exceeds the limitation. 
Therefore, we must exclude Random Forest in the comparison as it does not apply to the 
hierarchical dataset.

Integrating the concept of gradient boosting and using the statistical model GEE as the 
base learner, combined with a random feature selection, the proposed novel approach 
GEEB has several advantages. Compared to the ML model XGBoost, which also utilizes 
Gradient Boosting, GEEB performs better in most scenarios. GEEB can handle such 
data more effectively, resulting in improved predictive performance. Furthermore, com-
pared to using the GEE model alone, after conducting 1000 simulations, we observed 
that GEEB achieves more accurate predictions.

Limitations

There are some limitations in this study. Firstly, the simulated data used in this study is 
based on the publicly available HDP dataset from UCLA, and the investigation of the 
impact of the level of variable correlations, such as weak to high correlations, has not 
been further explored.

Secondly, in this study, we investigate the predictions of tumor size. The underlining 
techniques of GEEB are GEE and gradient boosting, both of which support classification 
tasks. However, this research focused on regression tasks only. The performance of the 
GEEB under other types of output features is unknown.

Here, we only roughly categorized the structures into three types: (1) fewer hospitals, 
followed by some doctors and more patients; (2) more hospitals, followed by some doctors 
and fewer patients; and (3) an equal number of hospitals, doctors, and patients. The study 
also considered varying sample sizes, including more extreme cases. Consequently, we 
examined five hierarchical structures: 1:3:5, 1:5:9, 1:1:1, 5:3:1, and 9:5:1. While this design 
provides initial insights, we could explore more detailed hierarchical structures in future 
works.

Future research topics

The corresponding theoretical work and simulation studies are great topics for future 
research with dichotomous, ordinal, or categorical nominal correlated datasets.
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learning rate, with a default value of 0.1. standardize determines whether features are standardized, and the default 
does not perform standardization. data is used to input the training dataset. For example, when training the model 
with the Forest Fire Data in this study, the function would be: geebm(area~X+Y+FFMC+DMC+DC+ISI+temp+RH+
wind+rain+day, id=c("season","month"), iteration=100, feature_rate=0.5, lrate=0.1, standardize=T, data=Dataset).
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