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Abstract 

Streaming adaptations of manifold learning based dimensionality reduction methods, 
such as Isomap, are based on the assumption that a small initial batch of observa-
tions is enough for exact learning of the manifold, while remaining streaming data 
instances can be cheaply mapped to this manifold. However, there are no theoreti-
cal results to show that this core assumption is valid. Moreover, such methods typi-
cally assume that the underlying data distribution is stationary and are not equipped 
to detect, or handle, sudden changes or gradual drifts in the distribution that may 
occur when the data is streaming. We present theoretical results to show that the qual-
ity of a manifold asymptotically converges as the size of data increases. We then show 
that a Gaussian Process Regression (GPR) model, that uses a manifold-specific kernel 
function and is trained on an initial batch of sufficient size, can closely approximate 
the state-of-art streaming Isomap algorithms, and the predictive variance obtained 
from the GPR prediction can be employed as an effective detector of changes 
in the underlying data distribution. Results on several synthetic and real data sets show 
that the resulting algorithm can effectively learn lower dimensional representation 
of high dimensional data in a streaming setting, while identifying shifts in the genera-
tive distribution. For instance, key findings on a Gas sensor array data set show that our 
method can detect changes in the underlying data stream, triggered due to real-world 
factors, such as introduction of a new gas in the system, while efficiently mapping data 
on a low-dimensional manifold.

Keywords: Manifold learning, Dimension reduction, Streaming data, Isomap, Gaussian 
process
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Introduction
High-dimensional data is inherently difficult to explore and analyze, owing to the 
“curse of dimensionality” that render many statistical and machine learning tech-
niques inadequate. In this context, non-linear dimensionality reduction (NLDR) has 
proved to be an indispensable tool. Manifold learning based NLDR methods, such 
as Isomap [1], Local Linear Embedding (LLE) [2], etc., assume that the distribu-
tion of the data in the high-dimensional observed space is not uniform. Instead, the 
data is assumed to lie near a non-linear low-dimensional manifold embedded in the 
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high-dimensional space. By exploiting the geometric properties of the manifold, e.g., 
smoothness, such methods infer the low-dimensional representation of the data from 
the high-dimensional observations.

A key shortcoming of NLDR methods is their O(n3) complexity, where n is the size 
of the data [1]. If directly applied on streaming data, where data arrives one point at a 
time, NLDR methods have to recompute the entire manifold at every time step, mak-
ing such a naive adaptation prohibitively expensive. To alleviate the computational 
problem, landmark-based methods [3] or general out-of-sample extension methods 
[4] have been proposed. However, these techniques are still computationally expen-
sive for practical applications. Recently, a streaming adaptation of the Isomap algo-
rithm [1], which is a widely used NLDR method, was proposed [5]. This method, 
called S-Isomap, relies on exact learning from a small initial batch of observations, 
followed by approximate mapping of subsequent stream of observations. An exten-
sion to the case when the observations are sampled from multiple, and possibly inter-
secting, manifolds, called S-Isomap++, was subsequently proposed [6].

Empirical results on benchmark data sets show that these methods can reliably 
learn the manifold with a small initial batch of observations. However two issues still 
remain. First, no theoretical bounds on the quality of the manifold, as a function of 
the initial batch size, exist. Second, these methods assume that the underlying gen-
erative distribution is stationary over the stream, and are unable to detect when the 

Fig. 1 Impact of changes in the data distribution on streaming NLDR. In the top panel, the true data lies on 
a 2D manifold (top-left) and the observed data is in R3 obtained by using the swiss-roll transformation of the 
2D data (top-middle). The streaming algorithm (S-Isomap [5]) uses a batch of samples from a 2D Gaussian 
(black), and maps streaming points sampled from a uniform distribution (gray). The streaming algorithm 
performs well on mapping the batch points to R2 but fails on the streaming points that “drift” away from the 
batch (top-right). In the bottom panel, the streaming algorithm (S-Isomap++ [6]) uses a batch of samples 
from three 2D Gaussians (black). The stream points are sampled from the three Gaussians and a new 
Gaussian (gray). The streaming algorithm performs well on mapping the batch points to R2 but fails on the 
streaming points that are “shifted” from the batch (bottom-right). Both streaming algorithms are discussed in 
Sect. “Problem statement and preliminaries”
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distribution “drifts” or abruptly “shifts” away from the base, resulting in incorrect 
low-dimensional mappings (see Fig. 1).

The focus of this paper is two-fold. We first provide theoretical results that show that 
the quality1 of a manifold, as learnt by Isomap, asymptotically converges as the data size, 
n, increases. This is a necessary result to show the correctness of streaming methods 
such as S-Isomap and S-Isomap++, under the assumption of stationarity. Next, we pro-
pose a methodology to detect changes in the underlying distribution of the stream prop-
erties (drifts and shifts), and inform the streaming methods to update the base manifold.

We employ a Gaussian Process (GP) [7] based adaptation of Isomap to process high-
throughput streams. The use of GP is enabled by a kernel that measures the relationship 
between a pair of observations along the manifold, and not in the original high-dimen-
sional space. We prove that the low-dimensional representations inferred using the GP 
based method – GP-Isomap – are equivalent to the representations obtained using the 
state-of-art streaming Isomap methods [5, 6]. Additionally, we empirically show, on 
synthetic and real data sets, that the predictive variance associated with the GP predic-
tions is an effective indicator of the changes (either gradual drifts or sudden shifts) in the 
underlying generative distribution, and can be employed to inform the algorithm to “re-
learn” the core manifold.

Related works
Processing data streams efficiently using standard approaches is challenging in general, 
given streams require real-time processing and cannot be stored permanently. Any form 
of analysis, including detecting concept drift, requires adequate summarization which 
can deal with the inherent constraints and that can approximate the characteristics of 
the stream well. Sampling based strategies include random sampling [8, 9] as well as 
decision-tree based approaches [10] which have been used in this context. To identify 
concept drift, maintaining statistical summaries on a streaming “window” is a typical 
strategy [11–13]. However, none of these are applicable in the setting of learning a latent 
representation from the data, e.g., manifolds, in the presence of changes in the stream 
distribution.

We discuss limitations of existing incremental and streaming solutions that have been 
specifically developed in the context of manifold learning, specifically in the context of 
the Isomap algorithm in . Coupling Isomap with GP Regression (GPR) has been explored 
in the past [14–17], though not in the context of streaming data. This includes a Mercer 
kernel-based Isomap technique [14] and an emulator pipeline using Isomap to deter-
mine a low-dimensional representation, whose output is fed to a GPR model [15].

The intuition to use GPR for detecting concept drift is novel even though the Bayesian 
non-parametric approach [18], primarily intended for anomaly detection, comes close to 
our work in a single manifold setting. However, their choice of the Euclidean distance (in 
original RD space) based kernel for its covariance matrix, can result in high Procrustes 
error, as shown in Fig. 4. Additionally, their approach does not scale, given it does not 
use any approximation to be able to process the new streaming points “cheaply”.

1 See Sect. “Problem statement and preliminaries” for the definition of manifold quality.
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We also note that a family of GP based non-spectral2 non-linear dimensionality reduc-
tion methods exist, called Gaussian Process Latent Variable Model (GPLVM) [20] and its 
variants [19, 21]. GPLVM assumes that the high-dimensional observations are generated 
from the corresponding low-dimensional representations, using a GP prior. The latent 
low-dimensional representations are then inferred by maximizing the marginalized 
log-likelihood of the observed data, which is an optimization problem with n unknown 
d-dimensional vectors, where d is the length of the low-dimensional representation. In 
contrast, the GP-Isomap algorithm assumes that the low-dimensional representations 
are generated from the corresponding high-dimensional data, using a manifold-specific 
kernel matrix.

There has been a considerable body of literature dealing with dimensionality reduction 
[22, 23], including recent work that uses deep learning based models [24], however, these 
cannot be applied in a streaming setting. While there have been some recent works that 
use PCA in a streaming setting [25], these are inherently linear and hence are not appli-
cable where the manifolds are non-linear.

Problem statement and preliminaries
We first formulate the NLDR problem and provide background on Isomap and discuss 
its out-of-sample and streaming extensions [5, 6, 26, 27]. Additionally, we provide brief 
introduction to Gaussian Process (GP) analysis.

Non‑linear dimensionality reduction

Given high-dimensional data Y = {yi}i=1...n , where yi ∈ R
D , the NLDR problem is con-

cerned with finding its corresponding low-dimensional representation X = {xi}i=1...n , 
such that xi ∈ R

d , where d ≪ D.
NLDR methods assume that the data lies along a low-dimensional manifold embed-

ded in a high-dimensional space, and exploit the global (Isomap [1], Minimum Volume 
Embedding [28]) or local (LLE [2], Laplacian Eigenmaps [29], Hessian Eigenmaps [30]) 
properties of the manifold to map each yi to its corresponding xi.

The Isomap algorithm [1] maps each yi to its low-dimensional representation xi in 
such a way that the geodesic distance along the manifold between any two points, yi 
and yj , is as close to the Euclidean distance between xi and xj as possible. The geo-
desic distance is approximated by computing the shortest path between the two 
points using the k-nearest neighbor graph3 and is stored in the geodesic distance 
matrix G = {gi,j}1≤i,j≤n , where gi,j is the geodesic distance between the points yi and 
yj . G̃ = {g2i,j}1≤i,j≤n contains squared geodesic distance values. The Isomap algorithm 
recovers xi by using the classical Multi Dimensional Scaling (MDS) on G̃ . Let B be 
the inner product matrix between different xi . B can be retrieved as B = −HG̃H/2 
by assuming 

∑n
i=1 xi = 0 , where H = {hi,j}1≤i,j≤n and hi,j = δi,j − 1/n , where δi,j is the 

Kronecker delta. Isomap uncovers X such that XTX is as close to B as possible. This is 

2 An equivalence between GPLVM and Kernel Principal Component Analysis (KPCA) has been shown in the literature 
[19].
3 Actually, there are two variants of Isomap. The former employs a K-rule to define the neighborhood N (y) for each 
point y ∈ Y i.e. it considers the k-nearest neighbors of each point y to be its neighborhood N (y) . The second variant 
employs a ǫ-rule to define the neighborhood N (y) of y i.e. it considers all points which are within a radius of ǫ to be in 
its neighborhood N (y) . We observe that there is a direct one-to-one relationship between the two rules with regards to 
computing the neighborhood N (y) for all y ∈ Y.



Page 5 of 24Mahapatra and Chandola  Journal of Big Data           (2024) 11:42  

achieved by setting X = {
√
�1q1

√
�2q2 . . .

√
�dqd}

T  where �1, �2 . . . �d are the d larg-
est eigenvalues of B and q1,q2 . . .qd are the corresponding eigenvectors.

The Isomap algorithm makes use of G̃ to approximate the pairwise Euclidean dis-
tances on the generated manifold. Isomap demonstrates good performance when the 
computed geodesic distances are close to Euclidean. In this scenario, the matrix B 
behaves like a positive semi-definite (PSD) kernel. The opposite scenario requires a 
modification to be made to G̃ to make it PSD. In MDS literature, this is commonly 
referred to as the Additive Constant Problem (ACP) [14, 31, 32].

To measure error between the true, underlying low-dimensional representation 
to that uncovered by NLDR methods, Procrustes analysis [33] is typically used. Pro-
crustes analysis involves aligning two matrices, A and B , by finding the optimal trans-
lation, t , rotation, R , and scaling factor, s , that minimizes the Frobenius norm between 
the two aligned matrices, i.e.,:

The above optimization problem has a closed-form solution obtained by performing 
Singular Value Decomposition (SVD) of ABT [33]. Consequently, one of the properties of 
Procrustes analysis is that ǫProc(A,B) = 0 when A = sRB+ t i.e. when one of the matri-
ces is a scaled, translated and/or rotated version of the other, which we leverage upon in 
this work.

Streaming Isomap

Given that the Isomap algorithm has a complexity of O(n3) (where n = size of data) 
since it needs to perform Eigen Decomposition on B as described in the previous sec-
tion, recomputing the manifold is computationally impractical to use in a streaming 
setting. Incremental techniques have been proposed in the past [5, 27], which can 
efficiently process the new streaming points, without affecting the quality of the 
embedding significantly.

The S-Isomap algorithm relies on the assumption that a stable manifold can be learnt 
using only a fraction of the stream (denoted as the batch data set B ), and the remain-
ing part of stream (denoted as the stream data set S ) can be mapped to the manifold 
in a significantly less costly manner. A convergence proof that justifies this assumption 
is provided in Sect. “Convergence proofs for S-Isomap and S-Isomap++”. Alternatively, 
this can be justified by considering the convergence of eigenvectors and eigenvalues of 
B , as the number of points in the batch increase [34]. In particular, the bounds on the 
convergence error for a similar NLDR method, i.e., kernel PCA, is shown to be inversely 
proportional to the batch size [34]. Similar arguments can be made for Isomap, by con-
sidering the equivalence between Isomap and Kernel PCA [26, 35]. This relationship has 
also been empirically shown for multiple data sets [5]. The S-Isomap algorithm com-
putes the low-dimensional representation for each new point i.e. xn+1 ∈ R

d by solving 
a least-squares problem formulated by matching the dot product of the new point with 
the low-dimensional embedding of the points in the batch data set X , computed using 

(1)ǫProc(A,B) = min
R,t,s

�sRB+ t − A�F



Page 6 of 24Mahapatra and Chandola  Journal of Big Data           (2024) 11:42 

Isomap, to the normalized squared geodesic distances vector f  . The least-squares prob-
lem has the following form:

where4 

where gi,j refer to the geodesic distance discussed in Sect. “Problem statement and 
preliminaries”.

Handling multiple manifolds

In the ideal case, when manifolds are densely sampled and sufficiently separated, cluster-
ing can be performed before applying NLDR techniques [37, 38], by choosing an appro-
priate local neighborhood size so as not to include points from other manifolds and still 
be able to capture the local geometry of the manifold. However, if the manifolds are close 
or intersecting, such methods typically fail. While methods such as Generalized Princi-
pal Component Analysis (GPCA) [39] have been proposed to generalize linear methods 
such as PCA for a case where the data lies on multiple sub-spaces, such ideas have not 
been explored for non-linear methods.

The S-Isomap++ [6] algorithm overcomes limitations of the S-Isomap algorithm and 
extends it to be able to deal with multiple manifolds. It uses the notion of Multi-scale SVD 
[40] to define tangent manifold planes at each data point, computed at the appropriate 
scale, and computes similarity in a local neighborhood. Additionally, it includes a novel 
manifold tangent clustering algorithm to be able to deal with the above issue of clustering 
manifolds which are close and in certain scenarios, intersecting, using these tangent mani-
fold planes. After initially clustering the high-dimensional batch data set, the algorithm 
applies NLDR on each manifold individually and eventually “stitches” them together in a 
global ambient space by defining transformations which can map points from the indi-
vidual low-dimensional manifolds to the global space. S-Isomap++ does not assume that 
the number of manifolds (p) is specified and automatically infers p using its clustering 
mechanism.5 Given that the data points lie on low-dimensional and potentially intersect-
ing manifolds, it is evident that the standard clustering methods, such as K-Means [42], 
that operate on the observed data in RD , will fail in correctly identifying the clusters.

(2)XTxn+1 = f

(4)f i ≃
1

2

(1
n

∑

j

g2i,j − g2i,n+1

)

4 Note that the Incremental Isomap algorithm [27] has a slightly different formulation where

where gi,j refer to the geodesic distance discussed in Sect. “Problem statement and preliminaries”. The S-Isomap algo-
rithm assumes that the data stream draws from an uniformly sampled, unimodal distribution p(x) and that the stream S 
and the batch B data sets get generated from p(x) . Additionally it assumes that the manifold has stabilized i.e. |B| = n is 
large enough. Using these assumptions in (3) above, we have that 

(
1

n

∑
j

g2j,n+1
− 1

n2

∑
l,m

g2l,m
)
= ǫ ≃ 0 i.e. the expectation 

of squared geodesic distances for points in the batch data set B is close to those for points in the stream data set S . The 
line of reasoning for this follows from [36]. Thus (3) simplifies to (4).

(3)f i ≃
1

2

( 1
n

∑

j

g2i,j −
1

n2

∑

l,m

g2l,m
)
+

1

2

( 1
n

∑

j

g2j,n+1 − g2i,n+1

)

5 In cases of uneven/low density sampling, the clustering strategy discussed might possibly generate many small clus-
ters. In such cases, one can try to merge clusters [41], based on their affinity/closeness to make the clusters’ size reason-
able.
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However, S-Isomap++ can only detect manifolds which it encounters in its batch 
learning phase and not those which it might encounter in the streaming phase. Thus, 
S-Isomap++ ceases to “learn” and evolve to be able to limit the embedding error for 
points in the data stream, even though it has a “stitching” mechanism to embed indi-
vidual low-dimensional manifolds, which might themselves be of different dimensions.

Gaussian process regression

Let us assume that we are learning a probabilistic regression model to obtain the pre-
diction at a given test input, y , using a non-linear and latent function, f (·) . Assuming6 
d = 1 , the observed output, x, is related to the input as:

Given a training set of inputs, Y = {yi}i=1...n and corresponding outputs, X = {xi}i=1...n,7  
the Gaussian Process Regression (GPR) model assumes a GP prior on the latent func-
tion values, i.e., f (y) ∼ GP(m(y), k(y, y′)) , where m(y) is the mean of f (y) and 
k(y, y′) is the covariance between any two evaluations of f (·) , i.e, m(y) = E[f (y)] 
and k(y, y′) = E[(f (y)−m(y))(f (y′)−m(y′))] . Here we use a zero-mean function 
( m(y) = 0 ), though other functions could be used as well. The GP prior states that any 
finite collection of the latent function evaluations are jointly Gaussian, i.e.,

where the ijth entry of the n× n covariance matrix, K, is given by k(yi, yj) . The GPR 
model uses (5) and (6) to obtain the predictive distribution at a new test input, yn+1 , as a 
Gaussian distribution with following mean and variance:

where kn+1 is a n× 1 vector with ith value as k(yn+1, yi).
The kernel function, k(·) , specifies the covariance between function values, f (yi) 

and f (yj) , as a function of the corresponding inputs, yi and yj . A popular choice is the 
squared exponential kernel, which has been used in this work:

where σ 2
s  is the signal variance and ℓ is the length scale. The quantities σ 2

s  , ℓ , and σ 2
n 

from (5) are the hyper-parameters of the model and can be estimated by maximizing the 
marginal log-likelihood of the observed data ( Y and X ) under the GP prior assumption.

(5)x = f (y)+ ε, where, ε ∼ N (0, σ 2
n)

(6)f (y1, y2, . . . , yn) ∼ N (0,K )

(7)E[xn+1] = k⊤n+1(K + σ
2
nI)

−1X

(8)var[xn+1] = k(yn+1, yn+1)− k⊤n+1(K + σ
2
nI)

−1kn+1 + σ
2
n

(9)k(yi, yj) = σ
2
s exp

[
−
�yi − yj�

2

2ℓ2

]

6 For vector-valued outputs, i.e., x ∈ R
d , one can consider d independent models.

7 While the typical notation for GPR models uses X as inputs and Y as outputs [7], we have reversed the notation to 
maintain consistency with rest of the paper.
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One can observe that predictive mean, E[xn+1] in (7) can be written as an inner prod-
uct, i.e.

where β = (K + σ
2
nI)

−1X . We will utilize this form in subsequent proofs.

Convergence proofs for S‑isomap and S‑isomap++
In this section, we demonstrate the convergence of the S-Isomap algorithm for a single 
manifold setting, subsequent to which we extend it to the multi-manifold setting i.e. for 
the S-Isomap++ algorithm described above.

Theorem  1 Given a uniformly sampled, uni-modal distribution from which the ran-
dom batch data set B = {yi ∈ R

D}i=1...n of the S-Isomap algorithm is derived from, there 
exists a threshold n0 , such that when n ≥ n0 , the Procrustes Error ǫProc

(
τB , τ ISO

)
 between 

τB = φ
−1

(
B
)
 , the true underlying representation and τ ISO = φ̂

−1(
B
)
 , the embedding 

uncovered by Isomap is small ( ǫProc ≈ 0 ) i.e. the batch phase of the S-Isomap algorithm 
converges, where φ(·) is the non-linear function which maps data points from the under-
lying low-dimensional ground truth representation U to B ∈ R

D and the ground truth U 
originally resides in a convex Rd Euclidean space.

Proof  Based on the setting described above, the S-Isomap algorithm acts like a gener-
ative model which is trying to learn the inverse mapping φ(·)−1 , where the associated 
embedding error is the Procrustes Error ǫProc

(
τB , τ ISO

)
.

The proof follows from [43] who showed that in a setting, where given �1 , �2 , µ > 0 
and for appropriately chosen ǫ > 0 , as well as a data set Y = {yi}i=1...n sampled from a 
Poisson distribution with density function α which satisfies the δ-sampling condition i.e.

wherein the ǫ-rule is used to construct a graph G on Y , the ratio between the graph based 
distance dG(x, y) and the true Euclidean distance dM(x, y) ∀x , y ∈ Y is bounded. More 
concretely, the following holds with probability at least (1− µ) for ∀x , y ∈ Y:

where V is the volume of the manifold M and

is the volume of the smallest metric ball in M of radius r and δ > 0 is such that

(10)E[xn+1] = β
⊤kn+1

(11)α > log(V/(µṼ(δ/4)))/Ṽ(δ/2)

(12)1− �1 ≤
dG(x, y)

dM(x, y)
≤ 1+ �2

(13)Ṽ(r) = min
x∈M

Vol (Bx(r)) = ηdr
d

(14)δ = �2ǫ/4
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A similar result can be derived in the scenario where n points are sampled independently 
from the fixed probability distribution p(y ; θ) , in which case we have :

where α̃ is the probability of selecting a sample from p(y ; θ).
Using (13), (14) and (15) in (11), we have:

where n0 = (1/α̃)
[
log(V/µηd(�2ǫ/16)

d)
]
/ηd(�2ǫ/8)

d , is the condition which ensures 
that (12) is satisfied.

Thus we have an adequate threshold for the size of the batch data set B which ensures 
(17) is satisfied for the ǫ-rule. We can derive a similar threshold for the K-rule, observ-
ing that there is a direct one-to-one mapping between K and ǫ (See Sect.  “Non-linear 
dimensionality reduction” for more details).

To complete the proof, we observe that  (12) implies that dG(x, y) , the graph based 
distance between points x , y ∈ G is a perturbed version of dM(x, y) , the true Euclidean 
distance between points x and y in Rd . Let D̃M and D̃G represent the squared distance 
matrix corresponding to dM(x, y) and dG(x, y) respectively. Thus we have D̃G = D̃M + 
�D̃M where �D̃M = {�d̃M(i, j)}1≤i,j≤n and �d̃M(i, j) are bounded due to (12).

In the past [44], the robustness of MDS to small perturbations was demonstrated as 
follows. Let F represent the zero-diagonal symmetric matrix which perturbs the true 
squared distance matrix B to B+�B = B+ ǫF . Then the Procrustes Error between the 

embeddings uncovered by MDS for B and for B+�B is given by ǫ
2

4

∑
j,k

eTj Fe
2
k

�j+ �k
 , which is 

very small for small entries {fi,j}1≤i,j≤n ∈ F , {ek(�k)}k=1...n represent the eigenvectors 
(eigenvalues) of B and the double summation is over pairs of (j, k) = 1, 2, . . . (n − 1) but 
excluding those pairs (j, k) wherein both entries of which lie in the range 
(K + 1), (K + 2), . . . (n − 1) , K =

∑n
k=1 I(�k > 0) and I(·) is the indicator function. 

We substitute ǫ = 1 and replace B with D̃M and �B with �D̃M above to complete the 
proof, since the entries of �D̃M are very small i.e. {0 ≤ �dM(i, j) ≤ �

2}1≤i,j≤n where 
� = max(�1, �2) for small �1 , �2 , given the condition n > n0 is satisfied for (12). Thus we 
have that the embedding uncovered by S-Isomap for a batch data set B where 
|B| = n > n0 converges asymptotically to their true embedding upto translation, rota-
tion and scaling factors.  �

Extension to the multi‑manifold setting

The above proof can be extended to show the convergence of the S-Isomap++ [6] 
algorithm, described in Sect. “Handling Multiple Manifolds”  as follows.

(15)nα̃ = α

(16)
nα̃ > log(V/(µṼ(δ/4)))/Ṽ(δ/2)

=
[
log(V/µηd(�2ǫ/16)

d)
]
/ηd(�2ǫ/8)

d

(17)
n > (1/α̃)

[
log(V/µηd(�2ǫ/16)

d)
]
/ηd(�2ǫ/8)

d

= n0
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Corollary 1 The batch phase of the S-Isomap++ algorithm converges under appropri-
ate conditions.

Proof Similar to the proof for the S-Isomap algorithm, we consider a corresponding 
setting for the multi-manifold scenario now, wherein we are attempting to learn the 
inverse mappings φ(·)−1

i=1,...,p for each of the p manifolds. The initial clustering step of the 
S-Isomap++ algorithm separates the samples from the batch data set B into different 
individual clusters Bi , such that each cluster is mutually exclusive of the others and cor-

responds to one of the multiple manifolds present in the data i.e. 
p⋃

i=1

Bi = B and 

Bi
⋂

∀i, j, i �= j

Bj = φ.

The intuition for clustering and subsequently processing each of the clusters sepa-
rately is based on the setting described above that the observed data was generated 
by first sampling points from multiple Ui=1,...,p i.e., convex domains in Rd8 and subse-
quently mapping those points in non-linear fashion, using possibly different φ(·)i=1,...,p 
to B ∈ R

D . Thus, to learn the different inverse mappings effectively, there is a need to be 
able to cluster the data appropriately.

After the initial clustering step, a similar analysis as in Theorem 1 provides thresholds 
ni, ∀i ∈ {1, . . . ,p} for each of the p clusters beyond which when |Bi| = n ≥ ni , the Pro-
crustes Error ǫProc

(
τBi , τ ISOi

)
 between τBi = φ

−1
i

(
Bi

)
 , the true underlying representa-

tion and τ ISOi = φ̂

−1

i

(
Bi

)
 , the embedding uncovered by Isomap is small ( ǫProc ≈ 0 ) i.e. 

the batch phase of the S-Isomap++ algorithm converges provided each of the p clusters 
Bi=1,...,p exceeds the appropriate threshold ni (similar to (17) above).  �

The S-Isomap++ algorithm does not assume that the number of manifolds ( p ) is 
specified. Refer to Sect. “Handling multiple manifolds” for more details.

Methodology
The proposed GP-Isomap algorithm follows a two-phase strategy (similar to the S-Iso-
map and S-Isomap++), where exact manifolds are learnt from an initial batch B , and 
subsequently a computationally inexpensive mapping procedure processes the remain-
der of the stream. To handle multiple manifolds, the batch data B is first clustered via 
manifold tangent clustering or other standard techniques. Exact Isomap is applied 
on each cluster. The resulting low-dimensional data for the clusters is then “stitched” 
together to obtain the low-dimensional representation of the input data. The difference 
from the past methods is the mapping procedure which uses GPR to obtain the predic-
tions for the low-dimensional mapping (see (7)). At the same time, the associated pre-
dictive variance (see (8)) is used to detect changes in the underlying distribution.

8 It is possible that the low-dimensional Euclidean space specific to each manifold is different i.e. Ui is a convex domain 
in Rdi space, where di  = dj . However we can imagine a scenario where we choose a Rd global space, where d =

∑
i di 

from which the different convex Ui were sampled from. Additionally note that convexity is preserved by linear projec-
tions to higher dimensional spaces thus the convex domains Ui=1,...,p remain convex in this new space.
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The overall GP-Isomap algorithm is outlined in 1 and takes a batch data set, B and the 
streaming data, S as inputs, along with other parameters. The processing is split into two 
phases: a batch learning phase (Lines 1–15) and a streaming phase (Lines 16–32), which 
are described later in this section. 

Algorithm 1 GP-Isomap

Kernel function

The key innovation here is to use a manifold-specific kernel matrix in the GPR method. 
The matrix B , which is the inner product matrix between the points in the low-dimen-
sional space (see Sect. “Non-linear dimensionality reduction”), could be a reasonable start-
ing point. However, as past researchers have shown [16], typical kernels, such as squared 
exponential kernel, can only be generalized to a positive definite kernel on a geodesic met-
ric space if the space is flat. Thus B will not necessarily yield a valid positive semi-definite 
kernel matrix. However, a result by [32] shows that a small positive constant, �max , can be 
added to B to guarantee that it will be PSD. This constant can be calculated as the largest 
eigenvalue of the matrix:

where P = −HGH/2 . Here, G is the geodesic distance matrix and H = {hi,j}1≤i,j≤n , 
hi,j = δi,j − 1/n , where δi,j is the Kronecker delta. B̃ can be derived from B as [32]:

where �max is the largest eigenvalue of M.
The proposed GP-Isomap algorithm uses a novel geodesic distance based kernel function 

defined as:

(18)M =

[
0 2B
−I − 4P

]

(19)B̃ = B+ 2�maxP+
1

2
�
2
maxH
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where b̃i,j is the ijth entry of the matrix B̃ , σ 2
s  is the signal variance (whose value we fix as 

1 in this work) and ℓ is the length scale hyper-parameter. Thus the kernel matrix K can 
be written as:

This kernel function plays a key role in using the GPR model for mapping streaming 
points on the learnt manifold, by measuring similarity along the low-dimensional mani-
fold, instead of the original space ( RD ), as is typically done in GPR based solutions.

The matrix B̃ , is positive semi-definite. Consequently, we note that the kernel matrix, 
K , is positive definite (refer (22) below).

Using 1, the novel kernel we propose can be written as

where �� =




�
exp

�
−

�1

2ℓ2

�
− 1

�
0 0

0
. . . 0

0 0
�
exp

�
−

�d

2ℓ2

�
− 1

�


 and {�i,qi}i=1...d are eigenvalue/

eigenvector pairs of B̃ as discussed in Sect. “Non-linear dimensionality reduction”.

Batch learning

The batch learning phase consists of these tasks: 

 i). Clustering: The first step in the batch phase involves clustering of the batch data 
set B into p individual clusters which represent the manifolds (Line 1). In case, B 
contains a single cluster, the algorithm can correctly detect it. Refer to Sect. “Han-
dling multiple manifolds” for more details,

 ii). Dimensionality reduction: Subsequently, full Isomap is executed on each of the p 
individual clusters to get low-dimensional representations LDE i=1,2...p of the data 
points belonging to each individual cluster (Lines 3–5),

 iii). Hyper‑parameter estimation: The geodesic distance matrix for the points in the 
ith manifold Gi and the corresponding low-dimensional representation LDE i , are 
fed to the GP model for each of the p manifolds, to perform hyper-parameter esti-
mation, which outputs {φGP

i }i=1,2...p (Lines 6–8), and,
 iv). Learning mapping to global space: The low-dimensional embedding uncovered 

for each of the manifolds can be of different dimensionalities. Consequently, a 
mapping to a unified global space is needed. To learn this mapping, a support set 
ξ s is formulated, which contains the k pairs of nearest points and l pairs of far-
thest points, between each pair of manifolds. Subsequently, MDS is executed on 

(20)k(yi, yj) = σ
2
s exp

(
−
b̃i,j

2ℓ2

)

(21)K = exp

(
−

B̃

2ℓ2

)

(22)K
(
x, y

)
= I+

d∑

i=1

[
exp

(
−

�i

2ℓ2

)
− 1

]
qiq

T
i = I+Q�̃QT
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this support set ξ s to uncover its low-dimensional representation GE s . Individual 
scaling and translation factors {Ri, ti}i=1,2...p are learnt via solving a least squares 
problem involving ξ s , which map points from each of the individual manifolds to 
the global space (Lines 9–15).

Stream processing

In the streaming phase, each sample s in the stream set S is embedded using each of 
the p GP models to evaluate the prediction µi , along with the variance σ i (Lines 22–24). 
The manifold with the smallest variance get chosen to embed the sample s into, using 
the corresponding scaling Rj and translation factor tj , provided mini|σ i| is within the 
allowed threshold σ t (Lines 25–28), otherwise sample s is added to the unassigned set Su 
(Lines 29–31). When the size of unassigned set Su exceeds certain threshold ns , we add 
them to the batch data set and re-learn the base manifold (Line 18–20). The assimilation 
of the new points in the batch maybe done more efficiently in an incremental manner.

Complexity

The runtime complexity of our proposed algorithm is dominated by the GP regression 
step as well as the Isomap execution step, both of which have O(n3) complexity, where n 
is the size of the batch data set B . This is similar to the S-Isomap and S-Isomap++ algo-
rithms, that also have a runtime complexity of O(n3) . The stream processing step is O(n) 
for each incoming streaming point. The space complexity of GP-Isomap is dominated by 
O(n2) . This is because each of the samples of the stream set S get processed separately. 
Thus, the space requirement as well as runtime complexity does not grow with the size 
of the stream, which makes the algorithm appealing for handling high-volume streams.

Theoretical analysis
We first state the main result for the single manifold case, and prove it using results 
in the Appendix section, and then present proofs for the multi-manifold case.

Theorem 2 For a single manifold setting, the prediction τGP of GP-Isomap is equivalent 
to the prediction τ ISO of S-Isomap, i.e., the Procrustes Error ǫProc

(
τGP , τ ISO

)
 between τGP 

and τ ISO is 0.

Proof   The prediction of GP-Isomap is given by (10). Using Lemma 5, we note that

The term K∗ for GP-Isomap, using the novel kernel function evaluates to:

(23)β =

{
α

√
�1q1

1+ αc1

α

√
�2q2

1+ αc2
. . .

α

√
�dqd

1+ αcd

}
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where G2
∗ represents the vector containing the squared geodesic distances of xn+1 to X 

containing {xi}i=1,2...n.

Considering the above equation element-wise, we note that the ith term of K∗ equates to 

exp

[
−

g2i,n+1

2ℓ2

]
 . Using Taylor’s series expansion we have,

The prediction by the S-Isomap is given by (4) as follows:

where f = {fi} is as defined by (4).
Rewriting (4) we have:

where γ =
(
1
n

∑
j

g2i,j
)
 is a constant with respect to xn+1 , since it depends only on squared 

geodesic distance values associated within the batch data set B and xn+1 is part of the 
stream data set S.
We now consider the 1st dimension of the predictions for GP-Isomap and S-Isomap only 
and demonstrate their equivalence via Procrustes Error. The analysis for the remaining 
dimensions follows a similar line of reasoning.

Thus for the 1st dimension, using (27) the S-Isomap prediction is:

Similarly using Lemma 5, (24) and (25), we have that the 1st dimension for GP-Isomap 
prediction is given by,

We can observe that τGP1 is a scaled and translated version of τ ISO1 . Similarly for each of 
the dimensions ( 1 ≤ i ≤ d ), the prediction for the GP-Isomap τGPi can be shown to be a 
scaled and translated version of the prediction for the S-Isomap τ ISOi . These individual 

(24)K∗ = exp

(
−

G2
∗

2ℓ2

)

(25)exp

[
−
g2i,n+1

2ℓ2

]
≃

(
1−

g2i,n+1

2ℓ2

)
for large ℓ

(26)τ ISO = {
√
�1q

T
1 f

√
�2q

T
2 f . . .

√
�dq

T
d f}

T

(27)fi ≃
1

2

(
γ − g2i,n+1

)

(28)

τ ISO1 =
√
�1q

T
1 f

=
√
�1

n∑

i=1

q1,i
(1
2

(
γ − g2i,n+1

))

=

√
�1

2

n∑

i=1

q1,i
(
γ − g2i,n+1

)

(29)
τGP1 =

α

√
�1q

T
1

1+ αc1
K∗

=
α

√
�1

1+ αc1

n∑

i=1

q1,i
(
1−

g2i,n+1

2ℓ2

)
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scaling si and translation ti factors can be represented together by single collective scal-
ing s and translation t factors. Consequently, the Procrustes Error ǫProc

(
τGP , τ SI

)
 is 0. 

(refer Sect. “Non-linear dimensionality reduction”). �

Results and analysis
In this section, we demonstrate the performance of the proposed algorithm on both 
synthetic and real-world data sets. In Sect. “Results on synthetic data sets”, we present 
results for synthetic data sets, whereas Sect. “Results on sensor data set” contains results 
on benchmark sensor data sets. All experiments were done using Python 3.0 implemen-
tations of the proposed and related methods, and were run on a MacBook Pro (2.8 GHz 
Quad-Core Intel Core i7, 16 GB 1600 MHz DDR3). Our results demonstrate that: (i). 
GP-Isomap is able to perform good quality dimension reduction on a manifold, (ii). the 
reduction produced by GP-Isomap is equivalent to the corresponding output of S-Iso-
map (or S-Isomap++), and (iii). the predictive variance within GP-Isomap is able to 
identify changes in the underlying distribution in the data stream on all data sets consid-
ered in this paper.

In the interest of space, we avoid comparing the quality of the dimensionality reduc-
tion with other methods, and refer readers to S-Isomap and S-Isomap++ where these 
equivalent methods were shown to be better than existing approaches for dimensionality 
reduction.

GP-Isomap has the following hyper-parameters: ǫ , k, l, � , σt , ns . We set k, l, � to have 
values of 16, 1 and 0.005, respectively. We study the effect of σt and ns using the differ-
ent data sets listed in Sects. “Results on synthetic data sets” and “Results on sensor data 
set” respectively.

Results on synthetic data sets

Swiss roll data sets are typically used for evaluating manifold learning algorithms. To 
evaluate our method on concept drift, we use the Euler Isometric Swiss Roll data set [5] 
consisting of four R2 Gaussian patches having n = 2000 points each, chosen at random, 
which are embedded into R3 using a non-linear function ψ(·) . The points for each of the 
Gaussian modes were divided equally into training and test sets randomly. To test incre-
mental concept drift, we use one of the training data sets from the above data set, along 
with a uniform distribution of points for testing (refer to Fig. 1 for details). Figures 2a 
and 3a demonstrate our results on this data set. 

To evaluate our method on sudden concept drift, we trained our GP-Isomap model 
using the first three out of four training sets of the Euler Isometric Swiss Roll data set. 
Subsequently we stream points randomly from the test sets from only the first three 
classes initially and later stream points from the test set of the fourth class, keeping track 
of the predictive variance all the while. Figure 2a demonstrates the sudden increase (see 
red line) in the variance of the stream when streaming points are from the fourth class 
i.e. unknown mode. Thus GP-Isomap is able to detect concept drift correctly, and is able 
to map all of the data points correctly on the lower dimensional manifold, as shown in 
Fig. 3a. The bottom panel of Fig. 1 demonstrates the performance of S-Isomap++ on 
this data set. It fails to map the streaming points of the unknown mode correctly, given it 
had not encountered the unknown mode during the batch training phase.
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In Sect.  “Theoretical analysis”, we proved the equivalence between the prediction of 
S-Isomap with that of GP-Isomap, using our novel kernel. In Fig. 4, we show empirically 
via Procrustes Error (PE) that the prediction of S-Isomap matches that of GP-Isomap, 
irrespective of size of batch used. PE for GP-Isomap with the Euclidean distance based 
kernel remains high irrespective of the size of the batch, which clearly demonstrates the 
unsuitability of this kernel to adequately learn mappings in the low-dimensional space.

Results on sensor data set

In this section, we present results from different benchmark sensor data sets to demon-
strate the efficacy of our algorithm.

Results on gas sensor array drift data set

The Gas Sensor Array Drift [45] data set is a benchmark data set ( n = 13910 ) avail-
able to research communities to develop strategies to dealing with concept drift and 
uses measurements from 16 chemical sensors used to discriminate between 6 gases 

Fig. 2 Using variance to detect concept drift for different data sets. The x-axis represents time and the 
y-axis represents the model’s predictive variance for the stream. Initially, when stream consists of samples 
generated from known modes, variance is low. Later, when samples from an unrecognized mode appear, 
variance drastically shoots up. For the first two data sets, noisy instances in the initial part get assigned 
a large variance, sporadically. The variance is well-behaved for the third data set. The optimal values of 
hyper-parameters, ns and σt , were set to (1000, 0.7), (412, 1.2), (855, 0.5), for the three data sets
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(class labels) at various concentrations. We demonstrate the performance of our 
proposed method on this data set.

We first remove instances which had invalid/empty entries as feature values. Sub-
sequently the data is mean normalized. Data points from the first five classes were 
divided into training and test sets. We train our model using the training data from 
four out of these five classes. While testing, we stream points randomly from the 
test sets of these four classes first and later stream points from the test set of the 
fifth class. Figures 2b and 3b demonstrate our results on this data set. From Fig. 2b, 
we observe that our model can clearly detect concept drift due to the unknown fifth 
class by tracking the variance of the stream, using the running average (red line). 
However, as shown in Fig. 3b, a two-dimensional manifold is not sufficient to cap-
ture the cluster structure in the data set.

Fig. 3 Low dimensional representations uncovered by GP-Isomap for three different data sets. For the Swiss 
roll data, GP-isomap is able to learn the structure in the data using a 2-D reduction, while for the real-world 
census data sets, the structure is not evident in 2-D and possibly a higher dimensional manifold is required
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Results on human activity recognition (HAR) data set

The Human Activity Recognition [46] data set consists of multiple data sets which are 
focused on discriminating between different activities, i.e. to predict which activity was 
performed at a specific point in time. In this work, we focused on the Weight Lifting 
Exercises (WLE) data set ( n = 39242 ) which investigates how well an activity was per-
formed by the wearer of different sensor devices. The WLE data set consists of six young 
health participants who performed one set of 10 repetitions of the Unilateral Dumb-
bell Biceps Curl in five different fashions: exactly according to the specification (Class 
A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class 
C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front 
(Class E). Class A corresponds to the specified execution of the exercise, while the other 
4 classes correspond to common mistakes.

The data set was cleaned i.e. instances with invalid/empty entries were removed. Sub-
sequently the data points from the different classes were mean normalized and divided 
into training and test sets. Figures 2c and 3c demonstrate our results on this data set. 
Figure 2c demonstrates the concept drift phenomenon. Similar to the methodology we 
used earlier to detect concept drift, we initially trained our algorithm using instances 
from the latter four classes only, whereas during the streaming phase we randomly 
selected instances from the streaming set of these four classes first and later streamed 
points from the first class, keeping track of the predictive variance.

Conclusions
We have proposed a streaming Isomap algorithm (GP-Isomap) that can be used to 
learn non-linear low-dimensional representation of high-dimensional data arriving in 
a streaming fashion. This algorithm can have significant applications in areas involving 
analysis of high-dimensional data streams [47], especially in constrained environments, 
such as real-time situational monitoring [48, 49], healthcare monitoring [50], scientific 

Fig. 4 Procrustes error (PE) between the ground truth with a GP-Isomap (blue line) with the geodesic 
distance based kernel, b S-Isomap (dashed blue line with dots) and c GP-Isomap (green line) using the 
Euclidean distance based kernel, for different fractions (f) of data used in the batch B . The behavior of PE for a 
closely matches that for b. However, the PE for GP-Isomap using the Euclidean distance kernel remains high 
irrespective of f demonstrating its unsuitability for manifolds
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data visualization [51], etc. We prove that using a GPR formulation to map incoming 
data instances onto an existing manifold is equivalent to using existing geometric strat-
egies [5, 6]. Moreover, by utilizing a small batch for the initial learning of the mani-
fold, as well as for training the GPR model, the method scales linearly with the size of 
the stream, thereby ensuring its applicability for practical problems. Using the Bayes-
ian inference of the GPR model allows us to estimate the variance associated with the 
mapping of the streaming instances. The variance is shown to be a strong indicator of 
changes in the underlying stream properties on a variety of data sets. By utilizing the 
variance, one can devise re-training strategies that can include expanding the batch data 
set. While in the experiments we have demonstrated the ability of GP-Isomap to detect 
shifts in the underlying distributions, the algorithm can also be used to detect gradual 
shifts, as illustrated in Fig. 1. While we have focused on Isomap algorithm in this paper, 
similar formulations can be applied for other NLDR methods such as LLE [2], Laplacian 
Eigenmaps [29], Hessian Eigenmaps [30], etc., and will be explored as future research.

Appendix
Lemma 1 The matrix exponential for M for rank

(
M
)
= d and symmetric M is given by

where {�i}i=1,2...d are the d largest eigenvalues of M and {qi}i=1,2...d are the corresponding 
eigenvectors such that q⊤

i qj = δi,j.

Proof   Let M be an n× n real matrix. The exponential eM is given by

where I is the identity. Real, symmetric M has real eigenvalues and mutually orthogonal 
eigenvectors i.e. M =

∑n
i=1 �iqiq

⊤
i where {�i}i=1...n are real and q⊤

i qj = δi,j . Given M 

has rank d, we have M =
d∑
i=1

�iqiq
⊤
i .

eM = I+
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(
e�i − 1

)
qiq
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1
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Lemma 2 The inverse of the Gaussian kernel for rank
(
M
)
= 1 and symmetric M is given 

by

where q1 is the first eigenvector of M i.e. q⊤
1 q1 = 1 , �1 is the corresponding eigenvalue and 

α = 1(
1+σn

2
) and c1 =

[
exp

(
−

�1

2ℓ2

)
− 1

]
.

Proof   Using (22) for d = 1 , we have

Representing 1(
1+σn

2
) as α and 

[
exp

(
−

�1

2ℓ2

)
− 1

]
 as c1 and using 

(
1+ σ n

2
)
I as A , c1q1 as 

u and q1 as v in the Sherman-Morrison identity [52], we have

 �

Lemma 3 The inverse of the Gaussian kernel for rank
(
M
)
= d and symmetric M is 

given by
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where {�i}i=1,2...d are the d largest eigenvalues of M and {qi}i=1,2...d are the corresponding 
eigenvectors such that q⊤

i qj = δi,j.

Proof Using the result of previous lemma iteratively, we get the required result

where α = 1(
1+σn

2
) and ci =

[
exp

(
−

�i

2ℓ2

)
− 1

]
 .  �

Lemma 4 The solution for Gaussian Process regression system, for the scenario when 
rank

(
M
)
= 1 and for symmetric M is given by

Proof   Assuming the intrinsic dimensionality of the low-dimensional manifold to be 1 
implies that the inverse of the Gaussian kernel is as defined as in (32). y is 

√
�1q1 in this 

case (refer Sect. “Non-linear dimensionality reduction”). Thus we have

 �

Lemma 5 The solution for Gaussian Process regression system, for the scenario when 
rank

(
M
)
= d and for symmetric M is given by

Proof Assuming the intrinsic dimensionality of the low-dimensional manifold to 
be d implies that the inverse of the Gaussian kernel is as defined as in  (33). y is 
{
√
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√
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�dqd} in this case (refer  Sect.  “Non-linear dimensionality reduc-
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(
K + σ n

2I
)−1

= αI− α
2

d∑

i=1

ciqiq
⊤
i

1+ αci

(33)
(
K + σ n

2I
)−1

= αI− α
2

d∑

i=1

ciqiq
⊤
i

1+ αci

(
K + σ n

2I
)−1

y =
α

√
�1q1

1+ αc1

(34)

(
K + σ n

2I
)−1

y =
(
αI−

α
2c1q1q

⊤
1

1+ αc1

)(√
�1q1

)

= α

√
�1q1 −

α
2
√
�1c1q1

1+ αc1
=

α

√
�1q1

1+ αc1

(
K + σ n

2I
)−1

y = {
α

√
�1q1

1+ αc1

α

√
�2q2

1+ αc2
. . .

α

√
�dqd

1+ αcd
}
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Thus we get the result,
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