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Abstract 

Distributed deep learning is a promising approach for training and deploying large 
and complex deep learning models. This paper presents a comprehensive workflow 
for deploying and optimizing the YOLACT instance segmentation model as on big 
data clusters. OpenVINO, a toolkit known for its high-speed data processing and ability 
to optimize deep learning models for deployment on a variety of devices, was used 
to optimize the YOLACT model. The model is then run on a big data cluster using 
BigDL, a distributed deep learning library for Apache Spark. BigDL provides a high-
level programming interface for defining and training deep neural networks, making 
it suitable for large-scale deep learning applications. In distributed deep learning, 
input data is divided and distributed across multiple machines for parallel process-
ing. This approach offers several advantages, including the ability to handle very large 
data that can be stored in a distributed manner, scalability to decrease processing 
time by increasing the number of workers, and fault tolerance. The proposed work-
flow was evaluated on virtual machines and Azure Databricks, a cloud-based platform 
for big data analytics. The results indicated that the workflow can scale to large datasets 
and deliver high performance on Azure Databricks. This study explores the benefits 
and challenges of using distributed deep learning on big data clusters for instance 
segmentation. Popular distributed deep learning frameworks are discussed, and BigDL 
is chosen. Overall, this study highlights the practicality of distributed deep learning 
for deploying and scaling sophisticated deep learning models on big data clusters.
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Introduction
In our modern world, a massive amount of data is generated daily. This requires a unique 
approach to process it effectively. Deep Neural Networks (DNNs), despite their state-of-
the-art results on tasks like image classification, object detection, natural language pro-
cessing, and machine translation, face a significant challenge: they require large amounts 
of data to train and achieve high accuracy. This is due to the large number of parameters 
in DNNs that need to be learned from the data. As shown in Fig. 1 the model learns 
from more data, it becomes better at understanding complex patterns and relationships 
within the information [1].  Distributed Deep Learning (DDL) addresses this challenge 
by training and deploying DNNs on multiple machines, distributing the computational 
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workload and data across them for faster, more scalable, and cost-effective training and 
inference. DDL can handle terabytes of data that cannot be stored on a single machine 
by distributing the data and computational workload across multiple machines. Each 
machine stores a portion of the data and computes the gradients for that portion. The 
gradients are then exchanged between machines to update the model parameters. Large 
Language Models (LLMs) like Transformer, which are so large and complex that they 
cannot be stored or trained on a single machine, can be trained and deployed using 
DDL. For instance, GPT-3, a large language model based on the Transformer architec-
ture, has 175 billion parameters and was trained on a dataset of 100 trillion words. Thus, 
DDL is a powerful technique for training LLMs and DNNs on large datasets.

DDL has recently gained a lot of attention because of its effectiveness in various 
applications. DDL is important for building and training large-scale deep-learning 
models. As the size and complexity of these models continue to grow, DDL is likely to 
become an increasingly important tool in the field of artificial intelligence. Deep Neu-
ral Networks can use Distributed Deep Learning to spread out their processing tasks 
over multiple Central Processing Units (CPUs) or Graphics Processing Units (GPUs). 
DDL can be implemented either on-premises or on the cloud, catering to an organiza-
tion’s specific needs and requirements. Moreover, the integration of DDL with cloud 
computing leverages the scalability and flexibility of cloud infrastructure for training 
and deploying DNNs. Cloud computing is a cost-effective method to use a variety of 
computer resources like virtual machines, storage, and networking whenever you need 
them. Combining this with DDL provides a powerful way to handle the needs of large 
deep-learning models [2, 3]. These benefits of employing DDL will be further explored 
in the Motivation section. There are several cloud-based platforms and services, such 
as Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), and 
IBM Cloud, that offer distributed deep learning capabilities. These platforms provide a 
variety of tools and services that enable users to train deep neural networks on a large 
scale. This includes distributed computing infrastructure, pre-configured deep learning 
frameworks, and automated machine learning pipelines [4]. For example, using cloud-
based DDL on Azure Databricks allows companies to avoid the hassle of creating and 
maintaining their own deep learning systems. This lets them focus on their main busi-
ness goals and use the scalability and flexibility of cloud computing to train and deploy 

Fig. 1 The relationship between model performance and the size of the trained data is generally positive, 
with larger amounts of training data leading to improved performance in deep learning models [1]
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Deep Neural Networks (DNNs). This research suggests that DDL on Azure Databricks 
is a promising method for creating and deploying high-performance DNNs on large 
datasets.

In this research, YOLACT, a complex real-time instance segmentation model, was 
chosen to test the effectiveness of DDL on Azure Databricks. Various techniques were 
used to optimize YOLACT, including converting the original PyTorch model to ONNX 
and OpenVINO, to make it lighter and decrease prediction time. The most efficient 
model was then deployed on a distributed big data cluster.

This paper is divided into nine sections, each focusing on a different aspect of Distrib-
uted Deep Learning (DDL). Section A survey of distributed deep learning frameworks 
provides an overview of the main frameworks used in DDL. Section  Motivation and 
addressing challenges in the utilization of distributed deep learning on big data clus-
ters explores the motivations behind the adoption of DDL, with a specific focus on its 
implementation within big data clusters. This section also examines the advantages and 
obstacles associated with the utilization of DDL in such an environment. Section Bigdl 
end-to-end, distributed AI on big data cluster offers a practical guide to implement-
ing BigDL in a distributed AI system, shedding light on its deployment in real-world 
scenarios. Section  Instance segmentation deep learning model introduces instance 
segmentation deep learning models, explaining their importance and various applica-
tions. Sections Optimizing the YOLACT model for improved inference throughput and 
Comparative analysis of Speed and performance across various YOLACT models are 
dedicated to the optimization of the YOLACT model for inference, providing a detailed 
evaluation of the speed and performance of different YOLACT models. The implemen-
tation of YOLACT OpenVINO on a big data cluster is demonstrated in Sections YOL-
ACT OpenVINO distributed inference on big data clusters using virtual machines and 
YOLACT OpenVINO distributed inference on big data clusters on azure databricks: 
experimental results. Section  7 presents experimental results from running BigDL on 
Spark clusters hosted on virtual machines, offering a comprehensive demonstration of 
this implementation in both standalone and YARN cluster modes, along with an over-
view of the results and insights obtained from these experiments. Section  YOLACT 
OpenVINO distributed inference on big data clusters on azure databricks: experimental 
results focuses on the performance of YOLACT OpenVINO on a big data cluster using 
Azure Databricks, providing insights into its efficiency. Finally, Section Conclusions and 
future work concludes the paper by summarizing the insights gained and suggesting 
potential future research directions to further advance the field of DDL.

A survey of distributed deep learning frameworks
Distributed deep learning is a powerful approach to training and deploying large-scale 
deep learning models on distributed clusters of CPUs or GPUs. This allows for the 
training of much larger and more complex models than would be possible on a single 
machine, and can also significantly reduce training time. GPUs are commonly used in 
deep learning because they are highly efficient at performing the matrix multiplication 
operations fundamental to deep learning algorithms. DDL frameworks provide the nec-
essary tools and interfaces for developers to efficiently build, train, and deploy their deep 
learning models in a distributed environment. These frameworks handle the challenges 
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of coordinating the training process across multiple machines, such as data parallelism, 
model parallelism, and distributed communication.

In this study, BigDL [5] was selected as the distributed deep learning framework for 
CPU clusters, providing a cost-effective and scalable solution for running high-scale 
deep learning models on large datasets. BigDL, an open-source distributed deep learning 
library developed by Intel and built on Apache Spark, enables organizations to leverage 
their existing CPU clusters to run deep learning workloads without the need for expen-
sive GPUs. It also simplifies the data loading from big datasets stored in the Hadoop 
cluster. BigDL achieves significant performance gains on Intel CPUs by leveraging Intel’s 
Math Kernel Library (MKL). With its distributed computing capabilities, BigDL can 
accelerate deep learning computations and distribute workloads across multiple CPUs in 
a cluster, delivering high performance and scalability for deep learning inference. BigDL 
is a valuable solution for industries where Intel CPUs are widely used. The following sec-
tion will discuss BigDL in more detail, including its implementation in different environ-
ments, the techniques used in DDL, and the challenges faced during implementation.

In order to expand our understanding of different distributed deep learning frame-
works, let’s explore another widely-used framework known as Horovod. By examining 
different DDL frameworks, this exploration helps in gaining insights into the available 
options and essential considerations for making an informed choice. Horovod is a dis-
tributed deep-learning framework that was originally developed by Uber Technologies 
and is now maintained by the LF AI Foundation. It is a strong contender in the DDL field 
because of its design and capabilities. Horovod provides a simple and easy-to-use inter-
face for distributed training of deep learning models. It supports multiple deep learning 
frameworks such as TensorFlow, PyTorch, and MXNet, and it can be used with various 
types of deep learning models such as Convolutional Neural Networks (CNNs), Recur-
rent Neural Networks (RNNs), and Transformer Networks. Horovod is a powerful and 
efficient distributed deep-learning framework that can help researchers and data scien-
tists scale their models to large clusters of GPUs and CPUs. Its use of Ring-Allreduce 
and MPI helps to reduce communication overhead and improve the scalability of dis-
tributed training, making it a popular choice for large-scale deep-learning workloads [6].

The main difference between BigDL and Horovod is framework architecture: BigDL 
is built on top of Apache Spark, which is a distributed computing framework for large-
scale data processing. In contrast, Horovod is built on top of MPI (Message Passing 
Interface) [7], which is a standard for parallel computing on distributed systems, BigDL 
may be more accessible to users who are already familiar with Apache Spark and dis-
tributed computing, while Horovod may be more appealing to users who are primarily 
focused on GPU acceleration and have experience with MPI. In addition, BigDL’s All-
Reduce algorithm has similar performance characteristics to Horovod’s Ring-AllReduce 
algorithm for aggregating gradients from multiple nodes in a distributed system during 
the back-propagation step of deep learning training [8]. In short, both BigDL and Horo-
vod are robust distributed deep learning frameworks, each with its unique strengths.
BigDL is a good choice for projects that require both large-scale data processing and 
analytics alongside deep learning. BigDL’s design allows it to run directly on top of exist-
ing Spark or Hadoop clusters, which can be a significant advantage for projects that 
need to leverage these resources. BigDL also provides a unified data analytics and AI 
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pipeline, which can simplify the development process and reduce the complexity of the 
system. Horovod is a good choice for projects that need to train and deploy large-scale 
deep-learning models. It is highly efficient and can scale to thousands of GPUs. Horovod 
supports a wide range of deep learning frameworks, including TensorFlow, PyTorch, and 
MXNet, but it does not currently support running OpenVINO models. BigDL was also 
chosen for this study because an optimized OpenVINO model achieves the best infer-
ence throughput performance, and to explore the advantages of deploying deep learning 
models on big data Spark clusters. Another approach extended to Horovod standalone is 
a Horovod on Spark that combines the power of Horovod on CPUs or GPU clusters with 
the distributed computing capabilities of Apache Spark. The main advantage of Horovod 
on Spark over Horovod is its ability to scale deep learning model training across a large 
cluster of computers. This can be especially useful for training large models on massive 
datasets. However, Horovod on Spark also adds some complexity to the training process 
[9]. In terms of fault tolerance if compared Horovod on Spark with BigDL, BigDL has 
a more robust and integrated approach than Horovod on Spark, as it uses Spark’s fault 
tolerance mechanisms directly. However, Horovod on Spark can be used with additional 
tools to add fault tolerance, such as job schedulers or check-pointing when the fault tol-
erance feature is significant for rescheduling the failed task on a different worker node 
instead of restarting the entire job from the beginning [10].

Ray also provides fault tolerance mechanisms to handle worker failures during model 
training. When a worker fails, Ray is a distributed computing framework that provides 
a set of high-level APIs for building scalable and fault-tolerant applications that can 
automatically reschedule the failed task on a different worker node, and it can also use 
check-pointing to save the current state of your model and optimizer to disk periodically 
during training, which can be used to recover from failures. Ray can be used with several 
popular deep learning frameworks, including TensorFlow, PyTorch, and Keras, to scale 
model training across a cluster of machines [11].

In addition, TensorFlow offers various distributed training strategies to cater to dif-
ferent hardware configurations and accelerate machine learning workloads. OneDevice-
Strategy is ideal for single-device setups, placing all variables and computations on a 
single device. For multi-GPU synchronous training on a single device, MirroredStrategy 
creates model replicas on each GPU, mirroring variables across all replicas. Multi-Work-
erMirroredStrategy extends this synchronous approach to multiple devices, each with 
one or more GPUs. TPUStrategy leverages Google’s specialized Tensor Processing Units 
(TPUs) to significantly boost training speed compared to traditional CPUs and GPUs, 
although it currently exclusively supports TensorFlow. TPUStrategy aligns with the dis-
tributed training methodology of MirroredStrategy, enabling synchronous distributed 
training across multiple TPU cores [12].

Also, PyTorch Distributed is an integral library in PyTorch designed for building dis-
tributed training applications, allowing for efficient model training across multiple GPUs 
or distributed machines. Its key components, including Distributed Data-Parallel Train-
ing (DDP), RPC-Based Distributed Model Parallel, and the Collective Communication 
Library (c10d), work together to synchronize model training, enable parallel processing, 
and facilitate seamless communication between processes, ultimately reducing training 
time and enhancing performance for large-scale deep learning models [13–15].
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In conclusion, the best distributed deep learning framework depends on your specific 
needs. If you’re already using Apache Spark, BigDL is a good choice. If you want a user-
friendly library that supports multiple deep-learning frameworks, Horovod is a good 
choice. If you need a distributed computing framework for machine learning applica-
tions, including distributed deep learning, Ray is a good choice.

Motivation and addressing challenges in the utilization of distributed deep 
learning on big data clusters
Distributed deep learning is motivated by the increasing volume and complexity of 
data in real-world applications, and the need to train and deploy large and complex 
deep learning models. DDL efficiently processes and learns from this data by distrib-
uting computational tasks across multiple machines [16]. DDL is better than single-
machine deep learning, DDL offers several advantages over traditional single-machine 
deep learning, especially when deploying large and complex deep learning models on 
big data clusters these advantages include Scalability, DDL can scale to train and deploy 
models on very large datasets and more complex models, which is essential for many 
deep learning applications;Fault tolerance, Big data clusters are typically designed to be 
fault-tolerant, meaning that they can continue to operate even if some of the nodes fail. 
This makes them a good choice for deploying DDL applications, as it can help to reduce 
the risk of training failures [17]; Speeding Up Training Time, By distributing the com-
putational workload across multiple machines, DDL can significantly reduce the time 
required to train models and inference of deep learning models, which can be critical 
for time-sensitive applications; Cost-effectiveness, DDL can help to reduce the cost of 
training and deploying deep learning models by using distributed computing resources. 
DDL reduces the cost of training and deploying deep learning models by distributing the 
workload across commodity machines in a cluster, which improves utilization of avail-
able resources; and Resource sharing, By sharing resources among multiple applica-
tions, organizations can make better use of their existing resources and avoid the need 
for additional hardware investments [18]. DDL on Big Data clusters provides a scalable, 
efficient, and robust solution for training deep learning models on large datasets As the 
demand for deep learning continues to grow, DDL is expected to become even more 
widely adopted in the future. DDL offers significant benefits for training machine and 
deep learning models, including faster training times, improved accuracy, and increased 
scalability. DDL works by distributing computational tasks across multiple machines in a 
big data cluster. This allows DDL applications to scale to very large datasets and complex 
models, such as VGG networks [19] or Inception Resnet network [20]. DLL significantly 
reduces the training time and improves the accuracy of very large models on very large 
datasets. While GPUs are preferred for training due to their high performance, CPUs 
are sufficient and more attractive for data preprocessing and inference, which are less 
resource-intensive. There is a growing interest in developing CPU-optimized deep learn-
ing frameworks and algorithms, as CPUs are more widely available and less expensive.

Moreover, techniques like hyperparameter tuning and neural architecture search 
can substantially impact model accuracy and complexity, but training in neural archi-
tecture search can be time-consuming. taking many computing hours [21]. By applying 
distributed hyperparameter tuning (DHPT) provides several advantages in optimizing 
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deep learning models. One of the key benefits is faster convergence. By evaluating mul-
tiple hyperparameter combinations in parallel, DHPT accelerates the training process, 
leading to quicker model convergence and more efficient utilization of computational 
resources. DHPT proves particularly beneficial for large deep-learning models with 
numerous hyperparameters. It optimizes these models more effectively and efficiently, 
making it a powerful tool in the field of deep learning. as shown in Fig. 2

Distributed deep learning takes advantage of both data and model parallelism. When 
the dataset or model is too large to fit on a single machine, distributing them across 
multiple machines becomes a necessity. In data parallelism, the training data is split 
and distributed across several machines, with each machine training the same model. 
On the other hand, model parallelism involves dividing the model itself across multiple 
machines, where each machine is responsible for training different parts of the model. 
Overall, the motivation behind DDL lies in its ability to handle large datasets and com-
plex models efficiently, making it a key player in the future of deep learning applications. 
in the case of Data Parallelism where data is distributed across multiple machines. This 
can be used to speed up training or in cases where the amount of data is too large to fit 
on a single machine by assigning each part of the data set to one GPU/CPU. each node 
independently computes the gradients for its assigned part of the data and sends the 
gradients to a master node. The master node aggregates the gradients from all the GPUs/
CPUs and updates the model parameters accordingly. as shown in Fig. 3

Model parallelism,  on the other hand, allows the model to be split across multiple 
machines if that model is too large or complex that would not fit on a single machine 
so that a single layer can be fit into the memory of a single node in the cluster whereas 
forward and backward propagation involves the communication between the outputs 
from one node to another in a serial fashion [22] The division of the model in model par-
allelism requires careful consideration to ensure that the computational load is evenly 

Fig. 2 Hyper-parameter tuning in a distributed deep learning setting, where each node can evaluate 
a subset of the hyper-parameter combinations, and the results are aggregated to select the best set of 
hyper-parameters, can offer several benefits for accelerating the search for the best set of hyper-parameters 
in large-scale machine learning models. By distributing the search among multiple nodes, it is possible to 
reduce the search time and explore a wider range of hyperparameter combinations
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distributed among the different machines or devices during forward propagation, each 
machine or device computes the forward pass for its assigned segment or layer of the 
model by processing the input data and computing intermediate results or activations. 
These intermediate results or activations are then passed to the next machine or device 
for further computation. This process continues until the final output of the model is 
obtained.

Similarly, during backward propagation, each machine or device computes the gra-
dients of the loss function with respect to the locally assigned segment or layer of the 
model. This involves computing the gradients based on the local activations and local 
model parameters. The computed gradients are then passed to the previous machine or 
device, which computes the gradients for the previous segment or layer of the model. 
This process continues until the gradients for all segments or layers of the model are 
computed as shown in Fig. 4 Proper load balancing and coordination between machines 
or devices are critical in model parallelism to ensure that the computational workload is 
distributed evenly and that the intermediate results and gradients are passed accurately 
between machines or devices. Careful consideration of the model architecture and the 
distribution of computational tasks among different machines or devices is essential to 
achieve efficient and effective model parallelism in distributed deep learning. as shown 
in Fig. 4

However, model parallelism can help reduce the memory requirements and improve 
the training time of very large models. But it does have some serious technical limita-
tions concerning model splitting. For instance, there can be difficulty in load balanc-
ing when dividing a large model into smaller sub-models, and it can be challenging to 
balance the workload evenly across all the devices or processors. This can lead to some 
sub-models being overburdened while others are underutilized, resulting in sub-opti-
mal performance It is difficult for the convolution neural network algorithm to select 

Fig. 3 In Data Parallelism, the training data may be stored in distributed storage systems such as HDFS 
(Hadoop Distributed File System) or other cloud-based storage solutions. By distributing the data across 
multiple nodes, each node can work on a subset of the data in parallel, allowing for faster training times



Page 9 of 37Elhmadany et al. Journal of Big Data            (2024) 11:6  

the appropriate optimization method and the optimal time also challenges required in 
implementing especially when implemented in a heterogeneous system, which means 
it cannot leverage existing the advantages of the heterogeneous system’s comput-
ing resources. Furthermore, when the hardware condition changes, the training algo-
rithm cannot dynamically adapt to the computing resources, resulting in low training 
efficiency.

Data parallelism and Model parallelism can both be categorized as either synchro-
nous or asynchronous parallelism, depending on how the computation is organized 
and coordinated across the parallel workers [23]. In synchronous parallelism training, 
multiple machines work together on the same model at the same time. They all update 
their model parameters simultaneously after each iteration, using the same informa-
tion requires the use of a synchronization barrier to force all nodes to update model 
parameters. This method requires strong communication and coordination between the 
machines one limitation of this parallel method is that the faster nodes wait for the other 
slower nodes for each iteration, which greatly affects the model training speed so the 
converge time for synchronous parallel training can also be longer than asynchronous 
parallel training, especially when the dataset is large and the number of worker nodes 
is high. as shown in Fig.  5 in Synchronous parallel training, the master node is often 
used as a parameter server. The master node is responsible for aggregating the gradients 
from each worker node, computing the overall gradient, and updating the model param-
eters. The worker nodes are responsible for computing the gradients for their portion of 

Fig. 4 In Model parallelism, different parts of the large model are assigned to different nodes or machines. 
The intermediate results or activations need to be exchanged between machines or devices during forward 
propagation, and the gradients need to be passed backward between machines or devices during backward 
propagation
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the data and sending them to the master node for aggregation. This approach helps to 
ensure that all worker nodes are updating the same model parameters at each iteration, 
leading to better model convergence. In Fig. 5 describes the steps involved in the syn-
chronous parallel training process: (1) The master node initializes the model parameters 
and distributes copies of the model to all worker nodes. (2) Each worker node receives a 
batch of training data and calculates the gradients for that batch using the current model 
parameters. (3) The gradients from all worker nodes are aggregated and averaged at the 
master node to obtain a single set of gradients. (4) The master node updates the model 
parameters using the averaged gradients and distributes the updated model copies to all 
worker nodes. (5) Steps 2–4 are repeated for multiple epochs until the model converges. 
One of the benefits of using synchronous parallel training is the synchronization bar-
rier, which ensures that all worker nodes update their model copies using the same set 
of gradients. This helps to keep the models synchronized and improves the quality of the 
trained model. Additionally, synchronous parallel training can reduce the training time 
as all worker nodes can work in parallel and share the computational load.

Fig. 5 Synchronous parallelism is a widely used method in distributed deep learning using stochastic 
gradient descent (SGD) optimization. In this method, multiple worker nodes compute the gradients on 
different subsets of the data and send them to a parameter server. The parameter server aggregates the 
gradients and updates the model weights synchronously, which means all workers update their weights 
simultaneously. This process is repeated for a number of epochs until the model converges
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Here is the pseudo-code for a synchronous update method in Algorithm 1:

Algorithm 1  Synchronous SGD with Parameter Server Pseudocode for Distributed Training

On the other hand, Asynchronous parallel does not need strong coordination 
between the machines, each node trains a portion of the model independently, this 
results in each machine working on a different part of the model simultaneously, leading 
to more efficient use of computational resources as shown in figure 6

This method in N nodes can get almost N times the speed up [24]. The asynchronous 
parallel method has several disadvantages compared to other parallel training meth-
ods, such as synchronous parallel training like variability in convergence the rate of 

Fig. 6 Training a deep learning model using the asynchronous parallel method with stochastic gradient 
descent. The method involves multiple worker nodes independently training different subsets of the data 
and updating the model parameters asynchronously without coordination. The training process can suffer 
from slower convergence and increased variability due to the asynchronous updates. However, it can also 
make more efficient use of computational resources compared to synchronous parallel methods
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convergence can vary between machines, making it more difficult to determine when 
training is complete also the training process easy to falls into the local optimal solution, 
resulting in poor network training convergence Additionally, this method may suffer 
from the “stale gradients” problem, where the parameter server receives outdated gradi-
ent updates from some nodes, leading to slower convergence and less accurate results. 
In this algorithm, each worker node trains the model using a random subset of the train-
ing data. The gradients computed by each node are then used to update the global model 
parameters asynchronously. The learning rate determines the size of the update to the 
global model parameters. The algorithm continues for a fixed number of iterations or 
until the convergence criterion is met. Here is the pseudo-code for an Asynchronous 
update method in Algorithm 2:

Algorithm 2  Asynchronous Parallel SGD for Distributed Training

This algorithm follows the asynchronous parallel method and trains the model by 
updating the global model parameters θ using mini-batches of data computed by each 
worker node. Each worker computes the gradients of its mini-batch concerning the 
current model parameters θ , updates its local copy of the model parameters, and then 
updates the global model parameters by sending its updated parameters to the server. 
This process repeats until the maximum number of iterations is reached. Some chal-
lenges required in Implementing asynchronous parallel training that can be more com-
plex compared to other parallel training methods it require the machines to exchange 
information periodically to ensure that the model parameters are consistent across 
all machines. This can be done either by exchanging the updated model parameters 
between the machines or by exchanging gradient information that can be used to update 
the model parameters. So, in practice, the asynchronous parallel method is not recom-
mended to be used in model training [25]. Furthermore, achieving peak performance 
with big data requires building an efficient input pipeline that can deliver data to the 
next step before the previous step is finished, while also considering throughput, latency, 
ease of implementation, and maintenance. Big data has more powerful tools for read-
ing and loading data from distributed environments, making it easier to achieve peak 
performance. So, when using TensorFlow or any deep learning framework with Apache 
Spark to be used in read the data from distributed file system frameworks like Hadoop, 
there is a need to do all ETL processes Extraction involves the process of extracting 
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the data from various sources, including databases, files, and web services. this data can 
be structured or unstructured and can come from a variety of sources. Transformation 
refers to data cleansing and manipulation to convert them into a proper format this may 
include cleaning the data, removing duplicates, and merging data from multiple sources. 
Loading The transformed data is loaded into a centralized repository or data ware-
house, where it can be easily accessed and analyzed that would be intermediate storage 
then that data needs to be loaded into the deep learning cluster to do the actual train-
ing where the deep learning applications run directly on where the data are stored this 
makes the user maintain two different clusters one for ETL and one for distributed train-
ing of deep learning cluster. running and maintaining multiple separate clusters is tedi-
ous. But this is going to change from Apache Spark 3.0 supports working in both GPU 
and CPU clusters. Spark can now schedule GPU-accelerated ML and DL applications on 
Spark clusters with GPUs [26]. despite there being a limitation in fault tolerance because 
Spark 3.x implements a new execution mode called barrier execution mode which is dif-
ferent from the standard Map/Reduce mode. this kind of execution mode is useful for 
implementing distributed deep learning in Spark. In Map/Reduce, all tasks in a stage 
are independent of each other and they don’t communicate with each other. If one of 
the tasks fails, only that task will be retried. But in Barrier execution mode, all tasks in a 
stage will be started together, and if one of the tasks fails the whole stage will be retried 
again all those tasks can communicate with each other [27] Where spark 2.x supports 
(Resilient Distributed Datasets) RDDs architecture that helps to achieve fault tolerance 
which is compatible to run on CPUs cluster only. While big data tasks are embarrass-
ingly parallel and independent of each other, deep learning tasks need to coordinate with 
and depend on others. Therefore, it is highly inefficient to run these workloads on sepa-
rate big data and deep learning systems (e.g., processing data on a Spark cluster, and then 
exporting the processed data to a separate deep learning cluster for training/inference) 
in terms of not only data extraction or transformation but also development, debugging, 
deployment, and operation productivity. There are efforts to address the previous chal-
lenges as the Connector approach where the data transfer between the CPUs and GPUs 
cluster is slow GPUs are typically connected to the CPU via a PCIe (Peripheral Compo-
nent Interconnect Express)interface [28] which can limit the speed at which data can 
be transferred between the two. If the data transfer between the CPU and GPU is slow, 
then it may be slower to read data into a GPU cluster than a CPU cluster (e.g., TFX [29], 
CaffeOnSpark [30], TensorFlowOnSpark [31], etc.) which develops proper interfaces to 
connect different data processing and deep learning components using an integrated 
workflow (and possibly on a shared cluster). But this approach suffers from impedance 
mismatches [32] that arise from crossing boundaries between heterogeneous compo-
nents in two clusters. BigDL can solve this challenge by providing a unified framework 
for distributed deep learning on both CPUs and GPUs when utilized with Apache Spark 
3.x. As mentioned before, BigDL was chosen as the framework for assessing optimized 
deep-learning models on large-scale CPU clusters. This study presents the experimen-
tal results obtained under various conditions and discusses the challenges faced during 
implementation and the strategies employed to overcome them. The next section will 
discuss the BigDL architecture in more detail.
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Bigdl end‑to‑end, distributed AI on big data cluster
BigDL is a distributed deep-learning library for Apache Spark. It was developed by Intel 
and contributed to the open-source community. BigDL solves the challenges of distrib-
uted deep learning in Spark by using a coarse-grained synchronization technique. This 
means that BigDL only synchronizes the gradients between worker nodes at certain 
intervals, rather than after every step of the training process. This reduces communica-
tion overhead and improves the performance of distributed training jobs. BigDL uses 
a peer-to-peer AllReduce operation to communicate gradients between worker nodes. 
This operation allows all the worker nodes to exchange their gradients with each other 
in a single step. This is similar to how a parameter server architecture works but with-
out the need for a central parameter server. On the other hand, traditional distributed 
deep learning frameworks like TensorFlow and PyTorch use a parameter server archi-
tecture. This means that there is a central server that stores the model parameters and 
communicates with the worker nodes that train the model. The worker nodes pull the 
latest parameters from the server and push their gradients back to the server as shown 
in Fig.  7. This approach can be efficient for certain types of workloads, but it is more 
complex to set up and manage. It also can become a bottleneck for very large-scale dis-
tributed systems [33].

BigDL distributes the training data to worker nodes, which process it in parallel. Each 
worker node loads a copy of the model and computes the gradients for its portion of 
the data. The gradients are then combined from all worker nodes and used to update 
the model. The updated model is then sent back to all worker nodes, and the process is 
repeated until the model is trained. BigDL uses Spark RDDs to distribute the data and 
model across the worker nodes in the Spark cluster. This enables scalable and distributed 
deep learning. RDDs containing the training data and the model are zipped together 
and distributed across the worker nodes. Each worker node processes its assigned parti-
tion of the RDD, computing the forward and backward passes on the data and model, 
respectively. The gradients computed by each worker node are then aggregated across 

Fig. 7 Parameter servers with data parallelism is to coordinate the updates of model gradients across 
multiple worker nodes
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all the worker nodes, typically using an AllReduce operation. This aggregated gradient is 
then used to update the model’s weights, and the process repeats for subsequent itera-
tions until the model converges. During this training process, BigDL takes advantage of 
Spark’s fault tolerance capabilities to ensure that the computation can recover from node 
failures. This means that if any worker node fails during the training process, the com-
putation can be restarted from the point of failure without losing progress as shown in 
Fig. 8.

Training and inference in BigDL are both distributed and scalable, thanks to the use 
of Apache Spark RDDs. During training, the RDDs containing the training data and the 
model are distributed across the worker nodes in the Spark cluster. Each worker node 
then performs the forward and backward passes on the data and model, respectively. 
The gradients computed by each worker node are then aggregated across all the worker 
nodes and used to update the model’s weights. This process repeats for subsequent itera-
tions until the model converges. During inference, the input data is partitioned into mul-
tiple RDDs and distributed across the worker nodes. Each worker node then applies the 
pre-trained model to its assigned partition of the input data to generate predictions. The 
predictions from each worker node are then combined to form the final output. By dis-
tributing the data and model across the worker nodes, BigDL can achieve efficient and 
scalable training and inference, even for large datasets and complex models.

BigDL It allows deep learning applications to run on the Apache YARN/Spark 
cluster to directly process the production data, and as a part of the end-to-end data 
analysis pipeline for deployment and management has taken a completely differ-
ent approach that directly implements an efficient AllReduce operation using exist-
ing primitives in Spark (e.g., shuffle, broadcast, in-memory cache, etc.), to mimic the 
functionality of a parameter server architecture. In particular, existing deep learning 
frameworks usually implement the all-reduce operation using MPI-like primitives; as 

Fig. 8 Each worker node typically operates on one or more (data, model) RDDs, where each (data, model) 
RDD contains a subset of the input data and a replica of the model parameters. The number of (data, 
model) RDDs assigned to each worker node depends on the available resources in the Spark cluster and the 
configuration settings in BigDL
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a result, they often create long-running task replicas that coordinate among them-
selves with no central control. On the other hand, BigDL has adopted a logically 
centralized control for distributed training [34] BigDL’s Parameter Manager uses 
a parameter server architecture with AllReduce to distribute gradients and update 
model weights in a distributed training setting. This architecture is more efficient than 
traditional parameter server architectures because it reduces communication over-
head by avoiding the need for all workers to communicate with a central parameter 
server. To synchronize gradients, each worker first aggregates the gradients from its 
assigned partitions locally using all-reduce. Then, the aggregated gradients are sliced 
into chunks and exchanged between all the nodes in the cluster using all-reduce. Each 
node is responsible for a specific chunk. Next, each node retrieves gradients for the 
slice of the model that it is responsible for from all the other nodes and aggregates 
them in multiple threads using all-reduce. Finally, the updated weights are exchanged 
between all the nodes using all-reduce. At the end of this procedure, each node will 
have a copy of the updated weights. This architecture allows for efficient and scalable 
distributed training of deep learning models [35] as shown in Fig. 9.

BigDL 2.0 is a comprehensive AI toolkit for Apache Spark, combining the original 
BigDL and Analytics Zoo projects. It provides features for distributed deep learning 
(DLlib), Node scale-out Model and dependent packages (Orca), Ray on Spark (RayOn-
Spark), time series analysis (Chronos), privacy-preserving machine learning (PPML), 
and model serving (Serving). Some of these features will be used in our implementa-
tion process [36]. As a scalable end-to-end AI pipeline tool for distributed big data, 
BigDL is based on Apache Spark and supports a variety of deep learning frameworks, 
including TensorFlow, PyTorch, and OpenVINO. BigDL 2.0 enables users to scale 
their AI applications from a single laptop to large clusters, allowing them to process 
production-scale big data. Furthermore, BigDL 2.0 provides a high-level Spark ML 
pipeline for BigDL, simplifying the development and deployment of AI models on 
Spark clusters for users. BigDL has been utilized in a variety of real-world applica-
tions, such as object detection and image feature extraction at JD.com, product defect 

Fig. 9 Parameter synchronization is the process of aggregating the gradients computed by each worker 
node during the “model forward-backward” job and using them to update the model weights. This process 
occurs during the “parameter synchronization” job
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detection at Midea, an NLP-based customer service chatbot for Microsoft Azure, 
image similarity-based house recommendation for MLS listings, LSTM-based time 
series anomaly detection for Baosight, and fraud detection for payment transactions 
for UnionPay [37].

Instance segmentation deep learning model
Instance segmentation is a complex computer vision task that assigns distinct labels 
to separate instances of objects belonging to the same class, providing pixel-specific 
object instance masks. Unlike semantic segmentation which classifies pixels based 
on classes, instance segmentation models classify pixels based on “instances”. These 
algorithms can distinguish overlapping or very similar object regions based on their 
boundaries, regardless of the class a classified region belongs to. In semantic segmen-
tation, smaller objects (with fewer pixels) are less significant. However, in instance 
segmentation, all objects, regardless of size, are equally important. This distinction 
makes instance segmentation applicable in various real-world scenarios. For example, 
in self-driving car technology, a vehicle navigating complex street scenarios such as 
crowded pedestrian areas or construction sites needs a detailed understanding of its 
surroundings. Instance segmentation plays a crucial role in this context. In the medi-
cal domain, instance segmentation has a wide range of applications. For instance, his-
topathologic images usually contain numerous nuclei of various shapes surrounded 
by cytoplasm. Recognizing and segmenting these nuclei using instance segmentation 
can aid in detecting severe diseases like cancer. It’s also used for detecting tumors 
in MRI brain scans. Satellite imagery is another area where instance segmentation 
is highly useful. Major applications include identifying and counting cars, detecting 
ships for maritime security, preventing oil spills monitoring marine pollution, and 
segmenting buildings for geospatial analysis. Given that objects in satellite imagery 
are typically small and closely spaced concerning the image’s resolution, pixel-wise 
methods are not very effective. Therefore, an instance segmentation network archi-
tecture can provide better separation between objects by understanding each object 
as a separate instance.

YOLACT  [38] is an instance segmentation model It is used for instance segmentation 
in real-time and was the fastest real-time instance segmentation technique when it was 
introduced. it achieved a segmentation score of 29.8 Mask mAP on the COCO dataset at 
33 frames per second when one Titan XP GPU was used as shown in Fig. 10.

YOLACT tackles the challenge of instance segmentation by dividing the task into two 
parallel subtasks: generating a dictionary of prototype masks and predicting a set of lin-
ear combination coefficients for each instance. This method implicitly learns to localize 
instance masks, thereby eliminating the need for the common localization step found in 
many instance segmentation methods. For example, other methods like Mask R-CNN 
have an explicit localization step such as ROIAlign.

The optimization inferences of the YOLACT model will be discussed in the following 
section. This will be beneficial for making the model more lightweight before deploy-
ment in a big data cluster, particularly in terms of inference or prediction time.
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Optimizing the YOLACT model for improved inference throughput
Optimizing model inference is vital for real-time deep learning applications like 
autonomous driving, focusing on throughput, memory, and energy. The process 
starts with converting the YOLACT PyTorch model to the ONNX format, a uni-
versal format for deep learning models that enhances interoperability between vari-
ous AI frameworks. ONNX, an open-source project co-developed by Microsoft, 
Amazon, and Facebook, facilitates model conversion between any framework and 
the ONNX format. It supports faster inference using the ONNX model on the sup-
ported ONNX Runtime and is compatible with numerous machine learning frame-
works like TensorFlow, PyTorch, and Scikit-learn. ONNX Runtime is designed for 
high performance and supports both CPU and GPU hardware. It also supports dis-
tributed training and inference across multiple devices and machines for improved 
performance and scalability [39]. The conversion of the YOLACT PyTorch model 
to ONNX format faced challenges due to unsupported layers in YOLACT, such as 
those in the Feature Pyramid Networks (FPN) class. The FPN class, which is opti-
mized using torch script mode, allows for parallel multi-threading through the 
torch.jit.script module. This Just-In-Time (JIT) compiler improves the efficiency of 
PyTorch models in production. The FPN class extracts multi-level features for top-
down up-sampling and fusion, creating multi-scale depth image features. However, 
this class inherits from the torch.jit.ScriptModule class, which often lacks tensor 
shape information, leading to potential size mismatch errors between ONNX and 
TorchScript definitions. PyTorch operates in two modes: eager mode for immedi-
ate operation execution and intuitive programming, and script mode, which com-
piles PyTorch code into an optimized TorchScript format for efficient execution 
in repeated prediction scenarios. PyTorch’s JIT compilation optimizes TorchScript 
modules using runtime information, capturing the structure of a PyTorch model and 
saving it in a serialized format for use in different environments or devices. This is 
done without unifying the input dimensions of tensors in the FPN. When converting 

Fig. 10 Speed-performance trade-off for various instance segmentation methods on COCO [38]
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a TorchScript-saved PyTorch model to ONNX, issues such as unsupported opera-
tions can occur. However, all YOLACT layers are supported in ONNX OpsetVersion 
11. Another issue is related to tensor shapes - while PyTorch allows dynamic ten-
sor shapes, ONNX requires static shapes. To address this issue in the detect trans-
formation part used in the Backbone Network, Ma-Dan’s suggestion was followed 
[40]. The input and output shapes were set before converting the model to ONNX 
in five FPN layers dimension sizes as [(69, 69), (35, 35), (18,18), (9,9), (5,5)]. This 
made it compatible with the ONNX format. Modifications were made to the YOL-
ACT model to return prediction outputs directly from the forward method before 
post-processing. The Just-In-Time (JIT) compiler was disabled and the model was 
exported in ONNX format using OpsetVersion=11. The model was then visualized 
using the Netron App. The exported ONNX model was simplified using ONNX 
Simplifier [41], which removes redundant operators. The simplified model was then 
converted into OpenVINO format using the OpenVINO toolkit [42]. Developed 
by Intel, OpenVINO optimizes deep learning models for deployment on various 
devices, including CPUs, GPUs, and FPGAs. It supports ONNX format as an input, 
allowing models in ONNX format to be optimized and deployed on a variety of 
devices. Before conversion, the ONNX model was modified by separating the spar-
sity and locality prior tensor. These priors, which are learned during training and 
used as fixed components during inference, are used to generate object masks from 
the network’s output feature maps. The sparsity prior thresholds the feature maps 
to generate binary masks, while the locality prior performs non-maximum suppres-
sion to remove overlapping masks. To make the ONNX model more lightweight, the 
model was decoded into a text format using the onnx.proto library. This allowed for 
modifications to be made, which were then encoded back into ONNX format. The 
prior tensor, generated based on input image size, feature map sizes, and predefined 
aspect ratios and scales, is used to create anchor boxes for object detection. This 
tensor remains constant during the prediction phase and serves as a reference for 
defining the location and size of the anchor boxes used in predicting the class and 
location of objects in an image. this prior tensor is only used during the post-pro-
cessing stage, specifically in the Detect function for decoding location predictions, 
applying non-maximum suppression based on confidence scores, and thresholding 
to obtain a top k number of output predictions for both confidence scores and loca-
tions, including the predicted masks. It was used as a separate ONNX module with 
a size of 301 KB and integrated with the OpenVINO model prediction output result 
for post-processing purposes.

After experimenting with various versions of OpenVINO on different Ubuntu sys-
tems, the model optimizer dependencies were successfully installed on Ubuntu 18.04, 
using OpenVINO 2021.1.110. The model was converted into three files (.xml,.bin, and.
mapping) for floating-point precision FP16/32. Using FP16 offers advantages such 
as improved speed and reduced memory usage of a neural network [43]. The Infer-
ence Engine was used to load these files, created by the model optimizer. The predic-
tion results from the original YOLACT PyTorch model with Resnet50-FPN Backbone, 
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ONNX, and OpenVINO FP16 models were evaluated on the same images respectively in 
Fig. 11. The accuracy of instance masks and detection scores remained consistent across 

Fig. 11 Comparative Evaluation of Image Predictions: A Original YOLACT PyTorch Model, B Optimized ONNX 
Model, and C Optimized OpenVINO-FP16 Model demonstrates that the accuracy of instance masks and 
detection scores remained consistent across a variety of images. This consistency is crucial in ensuring the 
reliable performance of the models across different scenarios and datasets
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a variety of images, demonstrating the effectiveness of the optimized ONNX and Open-
VINO models.

Another result has been obtained through the annotation mask of the ground truth 
image from the COCO dataset [44] making it a valuable resource for evaluating the opti-
mized models as following Figs. 12 and 13 for further details.

The binary boundary Intersection-over-Union (IoU) values are used to evaluate the 
accuracy of the segmentation masks where The ground truth mask coefficients, dem-
onstrated in Fig. 12, were used as a reference to compare with the output from the three 
models., have shown to remain stable with only minor deviations across all three models 
as demonstrated in Fig. 13: the original YOLACT PyTorch model, the optimized ONNX 
model, and the optimized OpenVINO-FP16 model. These minor deviations can be con-
sidered negligible. This consistency holds even when various dilation ratios are applied, 

Fig. 12 Ground truth mask coefficients for reference to mask coefficient predictions from YOLACT PyTorch, 
ONNX, and OpenVINO-FP16 in Fig. 13
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further demonstrating the robustness of these models in generating accurate instance 
masks.

Comparative analysis of speed and performance across various YOLACT 
models
As demonstrated in the referenced Table  1, several experiments were conducted to 
measure the inference time taken for videos from three models (YOLACT original 
model with Resnet50-FPN Backbone, ONNX, OpenVINO) under different conditions 
using an 11th Gen Intel Core TM i7-11,370 H @3.30GHz processor.

In the first experiment, a 15-s video with 60 frames/second was tested. The ONNX 
model outperformed the others, reducing the processing time for one frame by 26.5 
percent compared to the Torch Model.

The second experiment was conducted on a Virtual Machine with a 15-s video at 60 
frames/second. Here, the OpenVINO FP16/32 models performed better than the Torch 
model, reducing the processing time for one frame by 28.8 percent.

In the third experiment, a 15-s video at 60 frames/second was used. The OpenVINO 
FP16 model performed better than the rest, reducing the processing time for one frame 
by 18 percent compared to the Torch Model.

Finally, in the fourth experiment  with a 78-s video at 60 frames/second, the Opti-
mized OpenVINO FP16 model outperformed the rest, reducing the processing time for 
one frame by 17 percent compared to the Torch Model.

As shown in Table 1, the YOLACT model with OpenVINO-FP16 optimization dem-
onstrates superior efficiency in terms of one-frame processing time compared to other 
conditions.

Fig. 13 The mask coefficient predictions from the YOLACT PyTorch Model (A), Optimized ONNX Model (B), 
and Optimized OpenVINO-FP16 Model are closely related to the ground truth images shown in the previous 
Fig. 12. This demonstrates the accuracy and consistency of these models in generating instance masks across 
a variety of images
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This suggests that this optimized model could be a promising candidate for inference 
tasks on a big data cluster. Further investigations could include performance evaluation 
of this optimized model on larger datasets, scalability assessment across multiple nodes 
in the cluster, and analysis of its resource utilization and cost-effectiveness. The insights 
gained from these analyses could provide valuable guidance for future deployment of the 
optimized YOLACT model in a distributed deep learning environment.

Table 1 Shows the execution time taken for the process

Model name Total time taken OneFrame--Video Length 
time (s)

 Machine configuration details

YOLACT Original 45 min 4s 3.00–15 (Video Length) Python version 3.6

ONNX Model 26 min 9 s 1.74–15 Anaconda windows 10

OpenVINO-FP16 29 min 50 s 1.98–15 With 16 GB RAM

OpenVINO-FP32 29 min 38 s 1.97–15 Torch V 1.10.2+cpu

YOLACT Original 54 min 43 s 3.64–15 (Video Length) Ubuntu 20.04 VM

ONNX Model 32 min 48 s 2.18–15 Torch V 1.8.1+cu102

OpenVINO-FP16 30 min 10 s 2.01–15 4 GB RAM-python 3.6

OpenVINO-FP32 30 min 9 s 2.01–15 Total cores = 4

YOLACT Original 35 min 47 s 2.30–15 (Video Length) Ubuntu 20.04 VM

ONNX Model 32 min 48 s 2.10–15 Torch version 1.2.0

OpenVINO-FP16 24 min 22 s 1.60–15 6 GB RAM-python 3.7

OpenVINO-FP32 30 min 12 s 2.01–15 Total cores = 6

YOLACT Original 1 h 33 min 2s 2.30–78 (Video Length) Ubuntu 20.04 VM

ONNX Model 1 h 21 min 34 s 2.09–78 Torch version 1.2.0

OpenVINO-FP16 1 h 3 min 35 s 1.63–78 6 GB RAM-python 3.7

OpenVINO-FP32 1 h 8 min 31 s 1.76–78 Total cores = 6

Table 2 Table shows the execution time taken on spark stand-alone local mode

Experiment (1) Machine Configura-
tion: Ubuntu 20.04 VM with 7 GB RAM, 
Number processors = 2, Number cores 
each processor = 3, Python Version=3.7 
Anaconda, Java Version = 1.8.0–201, 
PySpark Version = 2.4.6, spark.driver.
memory = 4 GB, The number of cores 
= 2

Local mode spark stand-up time 17 s

Total execution time for 18 images as 
one patch task job

The total time was 43 s, with 
2.3 s allocated to process a 
single image (one frame).

Experiment (2) Machine Configura-
tion: Ubuntu 20.04 VM with 7 GB RAM, 
Number processors = 2, Number cores 
each processor = 3, Python Version=3.7 
Anaconda, Java Version=1.8.0-201, PyS-
park Version=2.4.6, spark.driver.memory 
= 4 GB, The number of cores = 4

Local mode spark stand-up time 14 s

Total execution time for 26 images as 
one patch task job

The total time was 48 s, with 
1.8 s dedicated to process-
ing a single image (one 
frame).
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YOLACT OpenVINO distributed inference on big data clusters using virtual 
machines
BigDL on apache spark in standalone local mode (single node)

The inference times from the two experiments are presented in Table 2. These experi-
ments were conducted on a Ubuntu virtual machine, hosted on a machine equipped 
with an 11th Gen Intel Core TM i7-11370H processor.

The two experiments presented in Table  2 varied the number of cores used for the 
executor. In the first experiment, 2 cores were used, while in the second experiment, the 
number of cores was increased to 4. This increase led to a reduction in processing time 
for one frame, resulting in a 12 percent decrease in inference time. These results suggest 
that increasing the number of executor cores can positively impact the performance and 
efficiency of the distributed deep-learning tasks, leading to faster processing times.

BigDL on apache spark in standalone cluster mode

In a Spark cluster, the Spark driver is responsible for running the application’s code and 
storing its logic. Data is distributed across all the worker nodes in the cluster. When 
the application is running, the driver sends the code to the worker nodes, where it is 
executed and the results are returned to the driver. In practice, the authors have imple-
mented a process that involves installing all the necessary dependencies, including the 
BigDL library, on all worker machines.

Table 3 Execution time for the first experiment on a standalone spark cluster with 2-VM workers

Cluster Configuration: - Master VM in 
specs (7 GB RAM, Total processor cores = 
6, HD = 130 GB)—Slave1 VM in specs (4.5 
GB RAM, Total processor cores = 4, HD = 
130 GB) And Spark cluster configured by 
the driver- memory = 2 GB, num-execu-
tors = 2, executor-cores = 2, driver-cores 
= 2, executor-memory = 3 GB

Spark cluster stand-alone stand-up time 
with 2 Executors

14 s

Total sum execution time for 21 images as 
one patch task job in 2 Executors

1.28 min

Work Executors in Master VM processing 
time

42 s

Work Executors in slave1 VM processing 
time

35 s

One Frame/image Processing time 42/21 = 2 s it calculated 
by the long executor 
time

WIFI speed on the local network 130 Mbps

Table 4 Execution time for the second experiment on a standalone spark cluster with 2-VM workers

Cluster Configuration: - Master VM in 
specs (7 GB RAM, Total processor cores 
= 8, HD = 130 GB)—Slave1 VM in specs 
(4.5 GB RAM, Total processor cores = 
6, HD = 130 GB) And Spark cluster 
configured by driver-memory =3 GB, 
num-executors = 2, executor-cores = 
4, driver-cores = 2, executor-memory 
= 3 GB

Spark cluster stand-alone stand-up time 
with 2 Executors

14 s

Total sum execution time for 26 images 
as one patch task job in 2 Executors

1.28 min

Work Executors in Master VM processing 
time

35.7 s

Work Executors in slave1 VM processing 
time

36.7 s

One Frame/image Processing time 36.7/26 =1.4 s it calculated 
by the long executor time

WIFI speed on the local network 130 Mbps
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This is required because Spark standalone mode requires each application to manu-
ally run an executor worker on every node in the cluster. Once the dependencies are 
installed, the master node runs a container as an Executor on each worker node based 
on the input configuration. The results obtained under various conditions will be dis-
cussed in the context of the following cluster architecture.

First experiment with a 2‑VM spark cluster (configuration details in Table 3)

Second experiment with a 2‑VM spark cluster (configuration details in Table 4)

In the two experiments detailed in Tables 3 and 4, the number of Executor Cores was 
adjusted. The first experiment used 2 cores per worker, while the second experiment 
increased this to 4 cores per worker. This adjustment resulted in a decrease in process-
ing time for one frame by 18 percent, indicating that increasing the number of Executor 
Cores can enhance performance and reduce processing time in distributed deep learn-
ing systems. However, to achieve optimal results, it’s crucial to fine-tune the number of 
Executor Cores based on the specific hardware and workload characteristics.

Third experiment with a heterogeneous 3‑VM spark cluster across two machines (configuration 

details in Table 5)

In this experiment, as shown in Table 5, the executor in the Slave 2 VM workers took 
the most time to execute compared to the other workers. This is because the Slave 2 
VM workers had an older version of the Intel processor (3rd Generation), while the 
other workers had newer processors (11th Generation). As a result, this experiment took 
longer to generate the outputs because the faster nodes had to wait for the slower node 
(Slave 2) to finish its task. This is an example of Synchronous Parallel Execution, a con-
cept discussed earlier, where all nodes in a distributed system must wait for each other 
to finish before moving forward. This highlights the importance of hardware specifica-
tions, such as processor generation, in distributed deep learning systems.

Table 5 Execution time for the third experiment on a heterogeneous standalone spark cluster with 
3-VM workers across two machines

Cluster Configuration: - Master VM in 
specs (7 GB RAM, Total processor cores 
= 8, HD = 130 GB)—Slave1 VM in specs 
(4.5 GB RAM, Total processor cores = 
6, HD = 130 GB)—Master and Slave1 
Processor: - 11th Gen Intel (R) Core 
(TM) i7-11370H @ 3.30 GHz—Slave2 
VM in specs (6 GB RAM, Total processor 
cores=6, HD=130 GB)—Slave2 Proces-
sor: Intel (R) Core (TM) i7-3630QM CPU @ 
2.40 GHz. And Spark cluster configured 
by driver-memory = 3 GB, num-execu-
tors = 3, executor-cores = 3, driver-
cores = 3, executor-memory = 3GB

Spark cluster stand-alone stand-up time 
with 3 Executors

63 s

Total sum execution time for 35 images 
as one patch task job in 3 Executors

4.43 min

Work executors in master VM process-
ing time

27 s

Work executors in slave2 VM processing 
time

3.37 min

One Frame/image Processing time 3.37*60 /35 = 5.77 s it 
calculated by the long 
executor time

WIFI speed on the local network 130 Mbps
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BigDL on apache spark with YARN

The YARN cluster experiment used the conda-pack feature from BigDL Orca to scale 
out the master node by distributing Python dependencies across the cluster worker 
nodes. The packed environment size was about 2 GB, and YARN started containers with 
configured values without the need for installation on other worker nodes, unlike the 
standalone Spark cluster as mentioned before. However, the results of the execution 
time did not show better performance compared to the standalone Spark cluster. This 
could be due to various factors such as the small cluster size and limited resources in 
the experiment setup. Additionally, it was observed that the startup time to initiate the 
configured containers and make them ready for executing the task job was about 1  h 
in this experiment. However, each time YARN initiates the containers on all machines, 
this time decreases to about 10 min after clearing the cache on all VM machines. This 
measurement was done on VMs with Intel (R) Core (TM) i7-3630QM CPU @ 2.40 GHz 
processor. The results obtained under various conditions will be discussed in the context 
of the following YARN cluster architecture.

Table 6 YARN client mode cluster configuration with 3 executors

Machine type Specifications

Master VM - 6 GB RAM
- 6 processor cores
- 130 GB HD

Slave1 VM - 5 GB RAM
- 4 processor cores
- 130 GB HD

Slave2 VM - 5 GB RAM
- 4 processor cores
- 130 GB HD

YARN node manager memory - Master node: 5 GB
- Slave1 and Slave2 nodes: 4 GB

Executor/Driver - Number of nodes: 3
- Worker cores: 2
- Worker memory: 3 GB
- Driver memory: 2 GB
- Driver cores: 2

Table 7 YARN client mode cluster configuration with 2 executors

Machine type Specifications

Master VM - 6 GB RAM
- 6 processor cores
- 130 GB HD

Slave1 VM - 5 GB RAM
- 4 processor cores
- 130 GB HD

YARN node manager memory - Master node: 5 GB
- Slave1 node: 5 GB

Executor/Driver - Number of nodes: 2
- Worker cores: 2
- Worker memory: 3 GB
- Driver memory: 2 GB
- Driver cores: 2
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First experiment with a 3‑VM spark on YARN cluster in client mode (configuration details 

in Table 6)

The master VM serves as the driver and data node, while the Slave1 VM functions as an 
executor node. Slave2 VM operates similarly to Slave1 VM. The detailed YARN cluster 
configuration is available in Table 6. Under these conditions, One Frame/Image Execu-
tion time was observed to be 4.3 s at this condition, YARN initiates 1 container executor 
on the slave1 and slave2 VM data node and also one container for the driver and one for 
the executor on the master VM which has the both Name Node and Data Node.

Second experiment with a 2‑VM spark on YARN cluster in client mode (configuration details 

in Table 7)

The master VM serves as the driver and data node, the Slave1 VM functions as an 
executor node. The detailed YARN cluster configuration is available in Table 7. Under 
these conditions, One Frame/Image Execution time was observed to be 2.8 s. at this 
condition, YARN initiates 1 container executor on the slave1 VM data node and also 
one container for the driver and one for the executor on the master VM which has the 
Name Node and Data Node.

In the comparison of two tests on a Spark on YARN Cluster in Client Mode, an 
interesting observation was made. Reducing the number of Virtual Machines (VMs) 
from three to two actually decreased the execution time for one frame/image from 
4.3 s to 2.8 s. This suggests that sometimes, using fewer resources can lead to better 
performance and efficiency. This could be due to factors like lower network latency 
and more effective workload distribution. However, further investigation is needed as 
future work to fully understand why this is happening and how to best optimize the 
configuration of the Spark on the YARN Cluster.

Table 8 YARN client mode cluster configuration with 2 executors in heterogeneous system with 
2-VM workers across two machines

Machine type Specifications

Master VM - 6 GB RAM
- Total processor cores: 8
- 130 GB HD
- Processor: 11th Gen Intel (R) 
Core (TM) i7-11370H @ 3.30GHz

Slave VM - 6 GB RAM
- Total processor cores: 4
- 130 GB HD
- Processor: Intel (R) Core (TM) 
i7-3630QM CPU @ 2.40GHz

Network - Connection: WIFI Local Network
- Network Speed: 26 Mbps

Executor/Driver - Number of nodes: 2
- Worker cores: 2
- Worker memory: 3 GB
- Driver memory: 2 GB
- Driver cores: 2
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Third experiment with a 2‑VM spark on YARN cluster in client mode on a heterogeneous system 

(configuration details in Table 8

The master VM operates as both the driver and data node, equipped with a processor 
from the 11th Gen Intel (R) Core (TM) i7-11370H family, running at 3.30 GHz. The slave 
1 VM, connected to the master VM on a separate machine, utilizes a processor from 
the Intel (R) Core (TM) i7-3630QM CPU family, with a clock speed of 2.40 GHz. Under 
these conditions, the time taken to process one frame/image was recorded as 2.2 min.

In this setup, YARN initiated one container executor on the slave1 VM’s data node, 
which was on a separate machine. Additionally, it created one container for the driver 
and another for the executor on the master VM, which also hosted the Name Node 
and Data Node. These two VMs were connected via a WiFi local network with a band-
width of 26 Mbps. The detailed YARN cluster configuration is available in Table 8.

Under these conditions, the time taken to process one frame/image was recorded 
as 2.2 min. YARN initiated one container executor on the slave VM’s data node and 
created two containers on the master VM for the driver and executor. These two VMs 
were connected via a WiFi local network with a bandwidth of 26 Mbps.

This experiment highlights the impact of hardware specifications on execution time 
in a distributed system. Despite having fewer resources, the execution time was signifi-
cantly longer compared to previous experiments. This could be attributed to the older 
generation processor in the slave VM, which could not perform tasks as quickly as the 
newer processor in the master VM.

This is an example of synchronous parallel execution, where all nodes in a distrib-
uted system must wait for each other to finish before moving forward. In this case, the 
faster node (master VM) had to wait for the slower node (slave VM) to complete its task, 
resulting in a longer overall execution time. This highlights the crucial role of hardware 
characteristics, such as the generation of the processor and its clock speed, in the perfor-
mance of distributed deep learning systems.

YOLACT OpenVINO distributed inference on big data clusters on azure 
databricks: experimental results
Azure Databricks is a cloud-based platform that merges the capabilities of Apache Spark 
and the robust cloud infrastructure of Microsoft Azure. It offers an interactive work-
space that enables data scientists, data engineers, and business analysts to collaborate on 
big data and machine learning projects.

To manage the storage and access of image data and models, Azure Cloud computing 
was utilized. A new resource was created, which included a Container Data Lake stor-
age class and resources specifically for Databricks. The integration of Azure Storage with 
Azure Databricks was achieved through the use of Azure Key Vault. This allowed for 
efficient loading of models and images, and the storage of resulting output in designated 
directories within the container. This method facilitated streamlined and effective man-
agement of data throughout the deep learning pipeline. BigDl provides a user guide for 
running a BigDL program on a Databricks cluster [45]. New resources were allocated for 
Databricks and Container Data Lake storage, which allowed for the creation of separate 
directories for storing image data and models. Azure Storage was then integrated with 
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Azure Databricks using Azure Key Vault, streamlining the process of loading the model 
and images, and writing the results to the designated container.

Azure Databricks offers the latest versions of Apache Spark and facilitates seamless 
integration with open-source libraries. The configured cluster Databricks Runtime Ver-
sion is 9.1 LTS, which includes Apache Spark 3.1.2 and Scala 2.12. The pipeline was con-
structed in three stages: reading the images as a Spark data frame, applying a chain of 
preprocessing, and finally loading the model and applying inference on preprocessed 
feature images. In the first stage, the NNImageReader class from BigDL was utilized. 
This class provides a variety of methods to read image data from different sources, 
including local file systems, Hadoop Distributed File System (HDFS), and Amazon S3. 
It supports a wide range of image file formats, including JPEG, PNG, BMP, and GIF. 
Despite attempts to read the images as a Spark DataFrame from Azure Data Lake Stor-
age, the job was not distributed across all nodes, achieving full parallelism or utilizing all 
cluster cores. Instead, only one task was active, utilizing just a single core and resulting 
in increased processing time. Various configurations were experimented with, including 
increasing the number of tasks per stage, in an effort to resolve this challenge [46]. How-
ever, the issue was only resolved when using the original Spark library to read the images 
as a Spark DataFrame. This highlights the importance of library selection in achieving 
optimal performance and resource utilization in distributed computing environments.

A pipeline job was developed to perform instance segmentation using the OpenVINO 
model on top of BigDL on Azure Databricks. The pipeline consists of four stages: Stage-
1 The first stage of the pipeline job is to read the images as a Spark DataFrame. This 
typically takes around 7 s in all experiments, but this value is excluded from the subse-
quent Table 10 of results for clarity; Stage-2, This stage is dedicated to preprocessing the 
DataFrame on the cluster. All necessary transformations are implemented in a distrib-
uted manner, following the approach of the original YOLACT model that uses PyTorch 
transformation functions. A BigDL identity model is constructed using the ChainedPre-
processing class to execute these transformations. The transformations involve convert-
ing Row to ImageFeature, applying Image Resize, implementing specific normalization 
and standardization, and finally converting ImageFeature to Tensor. This stage is vital 
for preparing the data for further processing and analysis. In this preprocessing stage, 
the NNModel class from BigDL-DLlib is used to incorporate a simple BigDL model or 
an identity model. An identity model is a neural network architecture that passes input 
directly to the output without any nonlinear transformations. This allows for the crea-
tion of transformation prediction columns as preprocessed images. To facilitate this pro-
cess, a PySpark UDF (User Defined Function) is defined that converts the preprocessed 
one-dimensional array into a three-dimensional array. This conversion is necessary as 
the model expects input in this format for prediction purposes; Stage-3, In this stage, 
the Estimator class from BigDL-Orca is used to load the OpenVINO model on the clus-
ter. BigDL-Orca is responsible for broadcasting the model and caching it on each worker 
in the cluster, enabling distributed prediction. This allows for performing instance seg-
mentation using the OpenVINO pipeline on top of BigDL on Azure Databricks; Finally 
in Stage-4, In this final stage, the pre-configured post-processing method available in 
YOLACT Original is applied to the results obtained from the prediction stage. The 
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resulting output is stored in a designated directory within the Azure Storage container. 
This entire process is illustrated in Fig. 14.

Here is the pseudocode for implementing an instance segmentation pipeline using 
Optimized OpenVINO-FP16 and OpenVINO Estimator on BigDL within Azure Data-
bricks, as shown in Table 9.

In the third stage of the pipeline, as detailed in Table 10, the prediction duration was 
recorded. In Experiment 23, a cluster of six workers was utilized with 288 partitions. 
During the process of reading images as a Spark data frame, the data frame, referred to 
as “R”, was repartitioned from its original 170 partitions to 288. This was done to reduce 
the number of images per partition and optimize resource utilization.

In the third stage of the pipeline, as detailed in Table 10, the prediction duration was 
recorded. In Experiment 23, a cluster of six workers was utilized with 288 partitions. 
During the process of reading images as a Spark data frame, the data frame, referred to 
as “R”, was repartitioned from its original 170 partitions to 288. This was done to reduce 

Fig. 14 Distributed instance segmentation pipeline using OpenVINO-FP16 and OpenVINO Estimator on 
BigDL in Azure Databricks

Table 9 Pseudocode for image processing pipeline using OpenVINO estimator on top of BigDL on 
Azure Databricks
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the number of images per partition and optimize resource utilization. Interestingly, in 
Experiment 24, where the data frame was not repartitioned and the number of partitions 
remained at 170, a decrease in prediction time was observed compared to Experiment 
23. This implies that each partition of the data frame contained a patch of images, as 
indicated in the “Patch size images” column in Table 10, for example, in Experiment 2, 
the term “7 / 9” for patch size images indicates that some of the 8 partitions contain 7 
images, while others contain 9 images. The total number of images should be equal to 
the number of partitions multiplied by the patch or partition size of images. Data parti-
tioning has a significant impact on prediction time in distributed systems. Therefore, it 
is crucial to choose the optimal number of partitions when configuring distributed sys-
tems. The successful completion of Experiment 17, despite having 96 failed tasks, dem-
onstrates the fault tolerance of distributed Big Data clusters. This resilience is a crucial 
feature of Big Data systems, allowing them to recover from task failures without restart-
ing the entire job. In addition, experiments 3, 18, 19, and 21, executed on the Databricks 

Fig. 15 Trade-offs between Number of Workers and Processing Time for a Single Image

Fig. 16 Scalability of image processing: impact of number of workers on average processing time
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cluster with varying architecture configurations, provide additional illustration of this 
concept through the automated restart of certain failed tasks.The results of these experi-
ments are presented in Table  10. These experiments highlight the importance of fault 
tolerance in big data systems. Even when tasks fail, the system is designed to recover 
and continue processing. This ensures that the overall performance of the system is 
not significantly affected by individual task failures. In conclusion, Distributed systems 
are designed to be robust and reliable, despite failures. This is important because com-
plex computational tasks can often be divided into smaller tasks that can be executed 
in parallel on different nodes of the system. If one node fails, the other nodes can con-
tinue executing the failed tasks, and the overall system can still complete the task. Some 
distributed systems, such as Apache Spark, support a fault tolerance feature that only 
restarts failed tasks, rather than the entire job. This can be a more efficient approach, as 
it can reduce the amount of time and resources required to recover from a failure.

The visual representations of the insights obtained from the experiments, as outlined 
in Table 10, can be found in Figs. 15, 16, and 17. Figure 15 specifically demonstrates the 
correlation between the processing time for one image per second and the number of 
workers. It reveals that processing time decreases significantly as the number of work-
ers increases. For example, processing one image on a single worker takes 5 s, but this 
is reduced to about 0.15 s when using 6 workers. This shows that increasing the worker 
count significantly improves processing speed.

Moreover, Fig. 16 also shows that the average time per worker in seconds decreased 
as the worker count increased, suggesting that a higher number of workers improves 
efficiency. Figure 17 further highlights that reducing the input image size and increas-
ing the number of workers can lead to faster image processing times. This suggests an 
inverse relationship between image size and processing time, where smaller image sizes 
and a higher number of workers can result in significantly faster processing times.These 
results can be used as helpful tips for making image processing tasks quicker and more 
efficient.

Fig. 17 Exploring the relationship between worker count, image count, and total processing time with 100% 
stacked area charts
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Figure  18 illustrates a comprehensive workflow for implementing Deep Learning 
Model Optimization and Inference on a big data cluster, The workflow begins by cloning 
the original model repository from GitHub and modifying the model to run on a CPU. 
The model is then optimized for inference by converting it from PyTorch to ONNX and 
OpenVINO formats.

The inference prediction time and accuracy results for PyTorch, ONNX, and Open-
VINO models are measured and evaluated. Next, a survey of the available distributed 
deep learning frameworks was performed. BigDL was then applied to a Spark standalone 
and YARN cluster, both on-premises and on Azure Cloud Databricks. Finally, the infer-
ence processing time for varying numbers of images using different configurations on a 
big data cluster, both on-premises and on Azure Cloud Databricks, was measured.

Conclusions and future work
This paper proposes a distributed system to run the optimized YOLACT instance 
segmentation model, a complex and large deep learning model, on-premises and in 
the cloud. The paper describes the end-to-end data loading and preprocessing pipe-
line and evaluates the inference time on different frameworks, including PyTorch, 
ONNX, and OpenVINO. The experimental results showed that increasing the num-
ber of executors across the cluster significantly sped up inference time, which could 
lead to cost savings for server resources. However, the authors observed some exces-
sive memory usage issues that need to be addressed in future work. Additionally, 

Fig. 18 This is our workflow summary outlines the key steps involved in completing a task
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exploring the possibility of running BigDL on a distributed GPU cluster using Spark 
3.x is a potential direction for further investigation.

Overall, this study demonstrates the feasibility of DDL for deploying and scal-
ing sophisticated deep learning models, such as YOLACT, on big data clusters for 
instance segmentation tasks. It also addresses the challenges of deploying optimized 
complex deep learning models on DDL big data clusters and explains the choice of 
BigDL as the DDL framework for this study.
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