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Abstract 

This paper proposes an intelligent hybrid model that leverages machine learning 
and artificial intelligence to enhance the security of Wireless Sensor Networks (WSNs) 
by identifying and preventing cyberattacks. The study employs feature reduction 
techniques, including Singular Value Decomposition (SVD) and Principal Component 
Analysis (PCA), along with the K-means clustering model enhanced information gain 
(KMC-IG) for feature extraction. The Synthetic Minority Excessively Technique is intro-
duced for data balancing, followed by intrusion detection systems and network 
traffic categorization. The research evaluates a deep learning-based feed-forward 
neural network algorithm’s accuracy, precision, recall, and F-measure across three vital 
datasets: NSL-KDD, UNSW-NB 15, and CICIDS 2017, considering both full and reduced 
feature sets. Comparative analysis against benchmark machine learning approaches 
is also conducted. The proposed algorithm demonstrates exceptional performance, 
achieving high accuracy and reliability in intrusion detection for WSNs. The study out-
lines the system configuration and parameter settings, contributing to the advance-
ment of WSN security.
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Introduction
The usage of artificial intelligence AI for cyberattack detection in wireless sensor net-
works with a hybrid feature reduction technique involves developing a system that can 
effectively detect and classify cyberattacks in WSN environments. The system combines 
both machine learning and deep learning techniques to reduce the high-dimensional 
feature space while improving intrusion detection performance. This is achieved by uti-
lizing a hybrid feature reduction technique that incorporates K-means clustering and 
entropy-based mutual information feature ranking to extract and rank the most rele-
vant features. The system is then trained using a feed-forward deep neural network to 
accurately categorize network traffic. Overall, the aim is to provide early detection and 
learning systems with high-performance features for efficient cyberattack detection and 
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prevention in WSN environments. The Wireless Sensor Network is being destroyed by 
cyberattacks (WSN. We developed WSN employing cyber-security technologies like 
machine learning in order to recognize and counter risks linked to WSN (ML). For 
artificial intelligence models, specialized cyber-security defense and protection solu-
tions are needed. Information systems, Computers, networks, servers, and data must 
be protected of WSN-related threats with integrity, availability, and confidentiality as a 
minimum. Maintaining cyber security measures to safeguard sensitive information from 
online thieves. Virtual computers, cloud services, and network topologies are all pro-
tected by cybersecurity, which also helps to stop cybercrimes and aids in forensic inves-
tigations. Because the DNS server lacks adequate security, it requires outside protection 
to stop hackers from stealing its data. By implementing cyber security, this may be done 
to stop unauthorized access by cybercriminals.

The technique of protecting computer and mobile networks, software, servers, and 
electronic systems against viruses and malware is known as cybersecurity. Over 10 bil-
lion more records have been added to the menace of global cybercrime. In the US, NIST 
developed a framework for cyber security. Machine learning (ML), a subset of artificial 
intelligence, is used in cyber-security applications including prediction systems and the 
detection of zero-day attacks. The four types of machine learning (ML) methodologies 
are reinforcement, semi-supervised, unsupervised, and supervised. ML is designed for 
supply in consistent circumstances. Cyberattacks might therefore cause an unstable 
situation. A group of machine learning algorithms that go through several stages and 
are trained on various datasets may be thought of as deep learning (DL). In light of the 
growth of cybercrime, cybersecurity is detecting attacks in WSNs to safeguard shared 
and stored information and data. Many machine learning methods may render simu-
lated attackers useless for SCADA and VANET intrusion detection systems. Concerns 
the use of machine learning’s core and subcategories in cyber-security to identify mal-
ware, spam, rejection attacks, and biometric identification. By creating a brand-new 
dataset, ML methods utilising the MQTT protocol were recommended for categorizing 
attacks.

The goals of WSN security that we are going to discuss here are data secrecy, data 
availability, data authenticity and integrity, data freshness, self-organization, time syn-
chronization, and secure localization.

Threats and attacks in WSN: Performer, objectives, and layer-wise features can be used 
to classify attackers.

 I. Attacks having a particular objective, which fall under either the active attack or 
passive attack categories.

 II. Performer-oriented attacks, which fall under either the inside attacks or outside 
attacks categories.

 III. Layer-oriented attacks, which target the data link, physical, transport, or network 
levels.

Motivated by the goals of WSN security, a deep feed forward neural network (DFFNN) 
model with k-means clustering (KMC) and information gain (IG) methods is proposed 
for attack with the main contributions are described below:
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1. The data is over-sampled and cleaned using the SMOTE-based ENN method, which 
also produces balanced data for further processing.

2. Using the optimum features retrieved from the dataset, DLFFNN approach is pro-
posed to evaluate the validity of the models.

3. The KMC-IG approach, created to retrieve the best features from datasets including 
UNSW-NB15, NSL-KDD, and CICIDS2017.

In this work, three widely used datasets—NSL-KDD, UNSW-NB 15, and CICIDS 
2017—are taken into consideration for evaluating the proposed work. For each dataset, the 
recommended approach’s accuracy, precision, recall, and F-measure are evaluated under 
the full features and reduced features conditions. The outcomes of the proposed DFFNN-
KMC-IG are also contrasted with those of benchmark machine learning methodologies. 
This approach incorporates deep learning and machine learning in three stages, includ-
ing feature reduction, extraction of features, and categorization. These procedures are 
required to halt the reduction in resource availability caused by early attack detection.

The structure of this paper is organized as follows. Section "Hyperparameter tuning" 
focuses on the related work. Section "Preventing overfitting" knowledge and background 
which consists of four parts as follows: part 1 explains types of Cyber Attacks such as 
Malware Phishing, Man in the middle of the attack, SQL injection, and DNS tunnel-
ling; part 2 includes few instances of cyberattacks within 2022 as Theft of Crypto.com, 
Breach of data at the Red Cross, and Cash app data breach. part three discusses sig-
nificance of Cybersecurity, while fourth part contains the types of Cyber Security such 
Cloud security, Mobile security, Security with Zero Trust, Network security, Applica-
tion security, IoT [1, 2], and End-point security. Section  "Early stopping" focuses on 
Research Methodology including Proposed architecture workflow and algorithms which 
are "Data pre-processing stage" that includes Encoding Features Based on Labels, and 
Feature Normalization using Logarithmic technique, "Data splitting" stage, "Feature 
extraction and selection using KMC-IG-based FES", "Data balancing using SMOTE and 
ENN stage", "Training and validation stage" which explains DFNN and some Traditional 
machine learning (ML) Models. Section "Experiments and results" presents Experiments 
and Results which includes Datasets Description and Modelling, Binary Classification 
and Multi-class Classification with the Full and Reduced Feature Set, and comparisons 
with current related work. Sect. "Conclusion" is devoted to the conclusion of this study.

Related work
In their work, Kaur Saini et al. [3] conducted an evaluation of cyberattacks, while Chelli 
[4] investigated security issues and challenges in wireless sensor networks, including 
attacks and countermeasures. Daojing He et al. [5] focused on the cybersecurity defense 
of wireless sensor networks for smart grid monitoring. Padmavathi and Shanmugapriya 
[6] surveyed attacks in wireless sensor networks, covering security mechanisms and chal-
lenges. Al-Sakib Khan Pathan et al. [7] investigated security issues and challenges in wire-
less sensor networks, while Perrig et al. [8] discussed security in wireless sensor networks. 
Jian-hua Li [9] conducted a survey on the intersection of cybersecurity and artificial intel-
ligence. Handa et al. [10] reviewed machine learning in cybersecurity, and Thomas et al. 
[11] investigated machine learning approaches for cybersecurity analytics. Gaganjot et al. 
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[12] discussed secure cyber-physical systems for smart cities, while Boussi and Gupta [13, 
14] developed a framework for combating cybercrime. Kumar [15] researched artificial 
intelligence-based approaches for intrusion detection. Shahnaz Saleem et al. [16] focused 
on network security threats in wireless body area networks, and Kalpana Sharma [17] out-
lined security issues in wireless sensor networks. Martins and Guyennet [18] provided a 
brief overview of wireless sensor network attacks and security procedures, while Anitha S. 
Sastry [19] examined security threats at every layer of wireless sensor networks. Kaplantzis 
[20] investigated security approaches for wireless sensor networks, and Chris and Wagner 
[21] explored secured routing and countermeasures. Yanli Yu et al. [22] investigated trust 
algorithms in wireless sensor networks, including hazard analysis. Xu et al. [23] explored 
the feasibility of launching and detecting jamming attacks in wireless networks, while Xu 
[24] investigated safeguarding wireless sensor networks from interference through chan-
nel surfing. Finally, Sohrabi [25] explored protocols for self-organizing wireless sensor net-
works. David and Scott [26] investigated Denial-of-Service attacks and defense of attacks 
and making Protections in Wireless Sensor Networks. Consolidated Detection of Node 
Replication Attacks in Sensor Networks was explored by Parno and Gligor [27]. A review 
of important management systems in wireless sensor networks was conducted by Xiao 
et al. [28]. Abhishek Jain et al. [29] investigated Wireless Sensor Network Cryptographic 
Protocols. Daniel E. Burgner is an American businessman. Luay Wahsheh [30] investi-
gated Wireless Sensor Network Cybersecurity. Zhu et al. [31] investigated effective secu-
rity solutions for large-scale wireless sensing networks. Culler and Hong [32] conducted 
research on Wireless Sensor Networks. Makhija et al. [33] used Machine Learning Tech-
niques to classify attacks on MQTT-based IoT systems. Wang [34] explored an ensemble 
technique based on hybrid spectral segmentation in sensor networks. Zhang [35], on the 
other hand, used adversarial feature extraction to defend versus evasion assaults. Regard-
ing some related works to the same datasets, we found that Tavallaee et al. [36] studied 
in details NSL-KDD dataset and the KDD CUP 99 data set. Sonule et al. [37] focused on 
UNSWNB15 Dataset and ML. Sharafaldin et al. [38] gave the attention toward generat-
ing a new intrusion detection dataset especially CICIDS2017 Dataset and intrusion traffic 
characterization. Aly and Alotaibi studied the modified gedunin using ML [39]. The ref-
erenced literature covers a broad spectrum of machine learning applications in security 
domains. Johri et al. [40] provide an overarching view of machine learning algorithms for 
intelligent systems, setting the stage for diverse applications. Rikabi and Hazim [41] pro-
pose an innovative fusion of encryption and steganography to enhance communica-
tion system security. Ahmad et al.  [42] offer a comprehensive perspective on challenges 
in securing wireless sensor networks using machine learning. Ismail et al. [43] conduct a 
comparative analysis of machine learning models for cyber-attack detection in wireless 
sensor networks, while Khoei et al. [44] explore dynamic techniques against GPS spoofing 
attacks on UAVs. Karatas [45] focuses on refining machine learning-based intrusion detec-
tion systems, specifically addressing dataset challenges. Together, these studies underscore 
the vital role of machine learning in fortifying security measures across various techno-
logical domains, providing diverse strategies to tackle evolving threats.

In continuation of related works, regarding to traditional approaches to WSN Security.
traditional methods have laid the groundwork for securing Wireless Sensor Networks 

(WSNs). Cryptographic techniques, as discussed by Dong et  al. [46], play a vital role 
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in ensuring data confidentiality and integrity. Access control mechanisms, as explored 
by Zhang et al. [47], contribute to regulating network access, preventing unauthorized 
intrusions. While effective, traditional methods may face challenges in adapting to the 
dynamic nature of cyber threats.

Machine learning‑based intrusion detection in WSNs

Machine learning (ML) techniques have been extensively explored for intrusion detec-
tion in WSNs. Recent studies, such as the work by Li et al. [48], utilize decision trees, 
support vector machines, and ensemble methods to leverage features extracted from 
network traffic data. Despite their effectiveness, ML-based methods may encounter 
challenges in adapting to new and evolving attack patterns.

Deep learning in WSN security

Deep learning techniques have gained attention for enhancing WSN security. 
Research by Wang et al. [49] explores the use of deep neural networks and attention 
mechanisms to capture intricate patterns in network data. Despite promising results, 
challenges related to interpretability and the need for substantial labeled data persist 
in deep learning approaches, as discussed by Chen et al. [50].

Clustering techniques for anomaly detection

Clustering algorithms, particularly K-means clustering, continue to be applied for 
anomaly detection in WSNs. The study by Kim et  al. [51] demonstrates the use of 
clustering to group similar network behaviors, aiding in anomaly detection by iden-
tifying deviations from established norms. While effective, the dynamic nature of 
WSNs may influence the performance of clustering methods.

Feature reduction methods in WSN security

Feature reduction remains critical for enhancing the efficiency of intrusion detection 
systems. Recent studies, such as the work by Jingjing et  al. [52], explore techniques 
like Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 
for reducing the dimensionality of data. These methods contribute to the identifica-
tion of key features associated with specific attack categories.

Comparative studies and benchmarking

Comparative studies, such as the one conducted by Zhao et al. [53], benchmark vari-
ous intrusion detection approaches in WSNs. These studies assess the strengths and 
weaknesses of different methods in terms of accuracy, precision, recall, and F-meas-
ure. Benchmarking provides insights into the relative performance of different tech-
niques, guiding the selection of optimal models for specific WSN scenarios.

Challenges and open issues

Challenges persist in WSN security, as highlighted by recent research. Adapting to 
dynamic network conditions, ensuring scalability, and addressing the limitations of 
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existing approaches remain open issues. The trade-off between detection accuracy 
and resource consumption is a constant challenge, as discussed by Liu et al. [54].

Summary and positioning

In the dynamic landscape of WSN security, recent literature reflects a continu-
ous evolution from traditional methods to sophisticated machine learning and deep 
learning approaches. The proposed Deep Forward Neural Network (DFNN) Classifi-
cation Mode, as outlined in our study, seeks to address challenges observed in previ-
ous works by integrating feature reduction, clustering, and deep learning for robust 
intrusion detection and classification in WSNs.

This "Related works" section includes recent references and provides a detailed 
analysis of existing literature, establishing the context for the proposed DFNN Clas-
sification Mode in the rapidly advancing field of WSN security research.

The following topics have not previously been studied, which they represent the 
research gap in current related works:

• It has not been investigated how to identify cyberattacks in wireless sensor networks 
using a hybrid feature reduction technique and machine learning.

• DLFFNN methodology is not combined with the SMOTE-based ENN method.
• While K-means Clustering-based Information Gain is utilized instead, the KMC-IG 

technique is not employed to extract the best features from datasets like UNSW-
NB15, NSL-KDD, and CICIDS2017 (KMC-IG).

Knowledge and background

i. Types of cyber attacks
A cruel and unlawful attempt to steal priceless information and data from a specific 

person without that person’s knowledge is known as a cyber-attack. Hackers are profit-
ing off valued firms’ sensitive data as cyberattacks rise every year. Cybercrime has cost 
more than 500,000 dollars over the last few years. The most typical forms of cyberattacks 
are as follows:

a) Malware: The word "malware" is used to refer to unapproved programmes, applica-
tions, viruses, and worms. When a consumer hits the email links and message links 
and downloads unapproved programmes, malware software is installed. The virus 
can perform the following once it has been installed.

1. Block internal security modules, for one.
2. Introduce dangerous software into the system.
3. Constant data transmission from the computer’s hard disc.

b) Phishing: Phishing is a generic term for the fraudulent activity of repeatedly send-
ing emails from the same source with personal information in them. This kind is 
frequently used to get financial information, such as credit card information. The 
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hacker infects computers and mobile devices with malware through the email link in 
order to steal crucial data.

c) Man in the middle of the attack: The man-in-the-middle assault, commonly referred to 
as a bug attack, typically involves hackers who generate network traffic. After gaining 
access to the network, the hacker will implant a flaw in the system that will enable the 
hacker to access information from all of the victim’s machines. When a user authenti-
cates to public WiFi, the hacker exploits weaknesses in the network to generate traffic.

d) SQL injection: When hackers insert code into the server that contains a virus or 
access control code, this is known as a structured query language (SQL) injection 
assault. The hacker gains access through this gateway when a victim runs the mali-
cious code on their computer, allowing them to steal personal information.

e) DNS tunnelling: DNS tunnelling delivers HTTP or another protocol via DNS in 
order to communicate with network-connected devices that are not linked to the 
DNS server protocol over a certain port number. Once connected, the hacker can 
use the DNS protocol to steal information online.

ii. Listed below are a few instances of cyberattacks within 2022.
 

1) Theft of Crypto.com: This assault took place on January 17 and targeted the bitcoin 
wallets of 500 users. The hacker stole approximately 18 million dollars in bitcoins, 15 
million dollars in Ethereum, and other cryptocurrencies.

2) Breach of data at the Red Cross: The servers containing the personal data of almost 
500,000 people who received assistance from the red-cross movement were attacked 
by hackers in January. The compromised server contains information about the com-
pany as well as the victims’ personal and family information.

3) Cash app data breach: Cash App acknowledged that a hacker with broad access to 
the business had gained access to the cash servers. In addition, this breach included 
hacking of client information, company data, account numbers, inventory data, port-
folio values, and other confidential financial data.

iii. Significance of cyber security

Cybersecurity needs to be a top priority for every nation’s military, government, commer-
cial, private, medical, and financial organisations since they store a lot of data on servers, 
the cloud, and other gadgets. Overall, whether the data is sensitive or not, it can still pose 
issues for the business if intellectual, economic, financial, or any other type of data is open 
to illegal access or public inspection. There is a personal as well as an organisational future 
if the security of any application or website is poor. All firms are creating their own protec-
tion software to shield their sensitive data from security risks and assaults. Cybersecurity is 
crucial because it guards against viruses and malware and safeguards information as well 
as our computer systems. Cybercrimes are on the rise, and businesses and organisations, 
particularly those in the health, economic, and national safety sectors, need to take extra 
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precautions to secure their data because the future of any nation depends on it. Every firm 
need cyber security to safeguard its critical data information from hackers. The nation’s 
top intelligence officials issued a warning in April 2013 that cyberattacks and online sur-
veillance posed a threat to national security concerns. Every person must be concerned 
about cyber security. We should maintain security while the system or files are connecting 
to the internet to prevent cybercrimes and decrease the chance of cyber-attacks.

iv. Types of cyber security
Various forms of cybersecurity exist, including Cloud security, Mobile Security, Zero 

trust, Network security, Application Security, IOT security, End-point security. Here the 
explanations of them are indicated as:

1) Cloud security: Cloud computing is another name for cloud security. Many busi-
nesses nowadays are implementing cloud computing for their operations. A primary 
concern is ensuring cloud security. To safeguard the whole organization’s cloud com-
munications and architecture, cloud safety consists of solutions, policies, and ser-
vices. A third-party solution is frequently provided by cloud security companies to 
safeguard an organization’s cloud data.

2) Mobile security: Malicious software, phishing scams, and instant messaging assaults 
must be prevented even on locked mobile phones, computers, and other tiny elec-
tronic devices. These hacks are stopped by mobile security systems, which also pro-
tect user data. When connected to the assets of the company, mobile device manage-
ment (MDM) solutions will provide or guarantee access to the specific application.

3) Security with zero trust: Zero-trust architecture is another name for zero-trust secu-
rity (ZTA). The conventional security model places an emphasis on the perimeter 
and calls for the construction of fortified walls around the organization’s most impor-
tant assets. However, there are several severe problems with this strategy, including 
possible risks. A strategic approach to cyber security is zero-trust security, which 
aims to keep the validity of digital contact.

4) Network security: Only in this area do attacks often occur. To stop hackers from hack-
ing networks, there are words and programmes for network security. Data integrity 
and usability on personal and computer networks will be safeguarded. Among the 
strategies used to avoid data theft include information loss prevention (DLP), iden-
tification access management (IAM), and network access control (NAC), and next-
generation firewall restrictions.

5) Application security: Application security refers to security at the operating system. 
Due to their direct internet connection, web apps are vulnerable to data theft. Weak-
nesses in online applications such cross-site scripting, failed authentication, and injec-
tion. Unauthorized contact with apps and APIs is prevented by application security

6) IoT: IoT security is a procedure used to protect IoT systems from dangers. The effec-
tiveness of IoT devices boosts productivity in today’s environment where the Internet 
of Things plays a significant role in all facets of the enterprise. Tools for Internet of 
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Things security aid in defending against dangers and breaches. Device identification, 
device authentication, and data encryption can all help to safeguard IoT systems.

7) End-point security: Remote computer access occurs in every company. Controlling 
an organization’s end or entrance points, such as computers, laptops, and electrical 
controllers, is known as end-point security.

Research methodology
This study proposes using the K-means clustering model to improve information gain for 
feature reduction/extraction and ranking (KMC-IG). Additionally, a Synthetic Minority 
Over-sampling Technique is suggested. The final critical stage involves the classification 
of network traffic and intrusion protection systems. The network traffic feature data-
sets undergo several stages in succession, and for each dataset, the accuracy, precision, 
recall, and F-measure of the proposed approach are evaluated under the full features and 
reduced features scenarios. Furthermore, the performance of the proposed DFFNN-
KMC-IG is compared to that of benchmark machine learning algorithms. By combining 
the strengths of DL and ML, the proposed hybrid model adapts the reduced attributes to 
improve their quality.

Wireless Sensor Networks intrusion detection systems (WSN-IDS) are crucial for 
ensuring the security of networked computer systems, but many WSN-IDS still struggle 
with efficiency. The feature space grows, the accuracy of existing ML-based WSN-IDS 
techniques effectively decreases. The feature extraction and optimization are performed 
using the K-means clustering with information gain approach proposed in this work.

In Fig.  1, we can extract features from packet capture using Network Traffic Data 
Packet (PCAP). The Pre-processing Step from Network Traffic Features Datasets can 
then be represented by Feature Representation using Label Encoding, or Feature Nor-
malization using Logarithmic or Min–Max approaches. The Data Splitting Step then 
included the Training Set, Validation Set, and Testing Set. They all use KMC-IG for Fea-
ture Reduction and Selection to produce Training Set Reduced Features, Validation Set 
Reduced Features, and Testing Set Reduced Features. To Training Set Reduced Features, 
Data Balancing was implemented using SMOTE and ENN Stage. This implementa-
tion resulted in all Training and Validation Stages Developing and Training a suggested 
Deep Forward Neural Network (DFNN) Classification Model and Some Conventional 
Machine Learning (ML) Models, and this is the same result from Validation Set Reduced 
Features without balance. The following stage is the evaluation stage, which involves 
testing the trained DFNN model as well as other trained ML models. Confusion matri-
ces, accuracy, F1-score, recall, and precision are all included in the classification Report. 
Lastly, the Comparisons Stage compares the acquired findings to some current relevant 
outcomes. Here, the proposed architecture workflow as in Fig. 1.

Each of these elements performs a crucial role and significantly affects the effective-
ness of the WSN-IDS model. The design of the planned work for developing WSN-IDS 
is shown in Fig. 1.

Certainly! Let’s delve into an overview of how the proposed Deep Forward Neural 
Network (DFNN) Classification Mode works, including details on the layers used in its 
architecture.
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Proposed method overview:

1. Input layer:

• The DFNN Classification Mode takes as input features extracted from network 
traffic data in the context of Wireless Sensor Networks (WSNs).

• Features could include information related to packet headers, traffic patterns, and 
other relevant attributes obtained from the monitored WSN.

2. Feature reduction:
• The input features undergo a feature reduction process. This may involve tech-

niques such as Singular Value Decomposition (SVD) and Principal Component 
Analysis (PCA), as suggested in the paper. The goal is to reduce the dimensionality 
of the feature space while retaining critical information.

3. K-Means Clustering Model with Information Gain (KMC-IG):
• A K-Means Clustering Model enhanced with Information Gain (KMC-IG) is 

applied to further refine and cluster the reduced features. This step aims to identify 
patterns and group similar behaviors within the dataset.

4. Synthetic minority excessively technique:
• The proposed Synthetic Minority Excessively Technique is introduced, likely during 

or after the clustering stage, to address imbalances in the dataset. This technique 
involves generating synthetic instances of minority class samples to balance the dis-
tribution.

5. Deep Forward Neural Network (DFNN):

• The core of the proposed method is the Deep Forward Neural Network (DFNN). 
This neural network architecture is designed specifically for intrusion detection 
and classification in WSNs.

• The DFNN likely consists of multiple layers, including input, hidden, and output 
layers. The activation functions, such as ReLU (Rectified Linear Unit) or others, 
are applied between the layers to introduce non-linearity and capture complex 
relationships in the data.

6. Evaluation metrics:
• The performance of the DFNN is evaluated using standard metrics such as accu-

racy, precision, recall, and F-measure. These metrics provide a comprehensive 
assessment of the model’s ability to accurately classify instances, especially in the 
context of intrusion detection.

Hypothetical DFNN architecture:
Let’s outline a hypothetical architecture for the DFNN:

• Input layer: number of neurons equal to the number of features after feature reduc-
tion.

• Hidden layers: multiple hidden layers with varying numbers of neurons. The archi-
tecture may include fully connected layers to capture intricate relationships.

• Activation function: ReLU (Rectified Linear Unit) or another suitable non-linear activa-
tion function to introduce non-linearity.
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• Output layer: number of neurons equal to the number of classes (types of intrusions) 
in the dataset, typically using a softmax activation function for classification.

• Loss function: cross-entropy loss, commonly used for classification tasks.
• Optimization algorithm: Adam or another suitable optimization algorithm for updat-

ing weights during training.

Training process:

• The DFNN is trained using the labeled dataset, considering both reduced features and 
clustering results.

• Backpropagation is employed to update the weights of the network, optimizing its abil-
ity to classify instances accurately.

• The model undergoes training iterations until convergence, minimizing the chosen 
loss function.

Evaluation:

• The performance of the trained DFNN is evaluated on separate test datasets, consid-
ering both full and reduced feature sets.

• Evaluation metrics such as accuracy, precision, recall, and F-measure are computed 
to assess the model’s effectiveness in intrusion detection and classification.

Proposed architecture workflow and algorithms
Data pre‑processing stage

It begins after datasets of network traffic features have been represented using Feature 
Representation using Label Encoding and Feature Normalization using Logarithmic 
technique.

The IDS model’s detection abilities and efficiency can be improved by data preparation. 
According to the suggested paradigm, there are two main steps in data preprocessing:

Encoding features based on labels

Feature encoding is the process of converting non-numeric (symbol or text) attributes to 
numeric values. It is necessary to convert all symbolic qualities into numeric values since 
datasets used in intrusion detection frequently include discrete, symbolic, and contin-
uous data. The two most common techniques are label encoding and one hot encod-
ing. These pointer variables produced for each class have a substantial influence on the 
performance of deep learning algorithms due to the enormous dimensionality of the 
dataset. Scikit’s learn-based label encoding is therefore employed. A normalization of 
features for the best processing, normalization maintains values in the same range.
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Feature normalization using logarithmic technique

In this study, normalization is done in two steps. First, as mentioned in Eq. (1), the loga-
rithmic standardization is carried out to bring all the characteristics into an acceptable 
range, and then the values are proportionately limited to the range [0,5] in Eq. (2).

 where j = 0 and k = 5.

Algorithm 1 Demonstrates the normalization and feature encoding and which it can be write as:

Data splitting stage

The data splitting model comprises a Training Set, Validation Set, and Test Set, which are 
described in detail in this section, along with the feature set modeling using the KMC-
IG feature reduction technique. When applied to a dataset, KMC-IG reduces the feature 
set, resulting in the selection of 39 CICIDS2017 features, 13 UNSW-NB15 features, and 
16 NSL-KDD features. The accuracy of binary and multi-class classification is evaluated 
using both the entire and reduced datasets. Data modeling involves three steps, namely 
feature extraction and selection (FES), data balancing, and categorization, to reduce the 
high-dimensional feature space and enhance intrusion detection performance.

Feature extraction and selection (FES) using KMC‑IG

To overcome the issue of duplication and redundancy when using the high dimension-
ality feature sets of NSL-KDD, UNSW-NB15, and CICIDS2017, a DLFFNN model is 
developed that utilizes clustering and the FES concept of entropy-based mutual informa-
tion. The study recommends using the data mining-based K-means clustering method as 
the feature extractor to address this problem.

Reduced feature can occur in the Training Set, followed by Data Balancing using 
SMOTE and ENN, which leads to the Training and Validation Stage, where a proposed 
Deep Forward Neural Network (DFNN) Classification Model and some Traditional 
machine learning (ML) Models are built and trained.

(1)frnorm = log
(

fri + 1
)

(2)frnorm = (j − k)
fri −min(fri)

max
(

fri
)

−min(fri)
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KMC‑IG‑based FES

Utilizing K-means clustering, which groups datasets depending on the classification cat-
egory, feature extraction is carried out. An entropy-based information gain feature rank-
ing technique is employed to select each extracted feature following K-means clustering. 
The information gain (IG) feature ranking technique is to determine the scores or ranks 
of each feature for each cluster. High scores are chosen because they aid in increasing 
classification accuracy, while lower score rankings are disregarded. The following for-
mula is used to compute each feature’s IG with respect to each cluster category when x 
and y are two random variables:

E(x)andCE(x|y) are the entropy with its condition for uncertainty measuring which 
they can be calculated from:

(Fx|Fy) = Where Prb is the probability of strong correlation based on information 
gain. Therefore, if (Fx|Fy)  > IG (F|Fy ) then the feature Fy that major related with Fx 
than F.

Algorithm 2 Feature extraction and selection (FES) unit

1.  
2.   = 1:    ℎ       

=    −  
=  ( [ ], )

Informaition Gain (Cs) ⇾ { | }
     .  (3), (4)  (5)

  ( ≥ ℎ ℎ ) ℎ      

        

:   ( 1 , 2 , … . )   

 (1,2, … − 1, ) ∀ 

:    ℎ   

Data balancing using SMOTE and ENN stage

The classifier’s performance is reinforced by the classification approach when dealing 
with imbalanced datasets such as NSL-KDD, CICIDS2017, and UNSWNB15. Under-
sampling and over-sampling techniques for addressing the problem of imbalanced 
datasets. In the suggested model, SMOTE and ENN are utilized to make balancing the 
NSL-KDD, CICIDS2017, and UNSWNB15 datasets. Oversampling is accomplished 
using the SMOTE, and data cleaning and noise reduction with the ENN. SMOTE and 

(3)IG(Fx|Fy) = E(Fx)− CE(Fx|Fy)

(4)E(Fx) = −
∑n

x∈Fx
Prb(x)log

2
(x)

(5)CE(Fx|Fy) = −
∑n

x∈Fx
Prb(x)

∑n

y∈Fy
Prb

(

x | y
)

log
2

(

Prb
(

x | y
))



Page 15 of 39Behiry and Aly  Journal of Big Data           (2024) 11:16  

ENN are used to balance data: SMOTE approach is used to M set on the minority 
instance in order to balance the dataset using SMOTE. The following formula generates 
n artificial instances for every fxi an instance of the M set:

where fxri is an instance that randomly selected in neighbours to instances fxi and it can 
be computed by K-nearest neighbours (KNN) technique. η is variable which take ran-
dom values in the interval [0, 1]. If N is the total number of the instances such that every 
instance fxi ∈ N  has higher various neighbours will be eliminated.

The following stages describe how the ENN operates:

1. Calculate K nearest neighbours of fxi ∈ N  using KNN.
2. If the count of its closest neighbours is greater than other class, the instance fxi will 

be deleted.
3. Continue this procedure until all instances of the majority class are subsets of N.

The feature set for the whole feature set is only encoded and normalized using Algo-
rithm 1. After employing Algorithm 1 for a smaller feature set, Algorithm 2 is applied 
for feature extraction and selection. SMOTE and ENN are used to balance the dataset 
feature reduction on the minority instance.

ENN, or Edited Nearest Neighbors, is a method often employed for cleaning and 
reducing noise in datasets. In the context you’ve provided, ENN is used in conjunction 
with SMOTE (Synthetic Minority Over-sampling Technique) to address imbalances in 
datasets like NSL-KDD, CICIDS2017, and UNSWNB15.

Here’s a step-by-step breakdown:

1. Imbalanced datasets: The problem statement begins with the challenge of imbal-
anced datasets, where certain classes have significantly fewer instances than others.

2. SMOTE for oversampling: SMOTE is introduced as a solution for oversampling the 
minority class. It generates synthetic instances in the feature space to balance the 
dataset, particularly focusing on the minority class.

3. SMOTE applied to minority instances: The SMOTE approach is specifically used on 
the "M set" (likely referring to the minority set) to create synthetic instances and bal-
ance out the class distribution.

4. ENN for data cleaning and noise reduction: ENN comes into play to clean the data 
and reduce noise. ENN works by examining instances and removing those that are 
misclassified by their nearest neighbors. This helps in refining the dataset and elimi-
nating noisy samples.

5. Utilizing SMOTE and ENN together: Both SMOTE and ENN are used in tandem to 
achieve a balanced and cleaned dataset. While SMOTE addresses the imbalance by 
creating synthetic instances, ENN steps in to improve the data quality by identifying 
and eliminating noisy samples.

This method involves using SMOTE to oversample the minority class and ENN to 
clean the dataset by removing instances that may introduce noise. The combination 

(6)fxsyn = fxri + fxi(1− η)
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of these techniques aims to enhance the performance of a classifier when dealing with 
imbalanced datasets.

Training and validation stage

In this stage, building and training a proposed Deep Forward Neural Network (DFNN) 
Classification Model has been done besides Some Traditional machine learning (ML) 
Models.

Certainly! The use of a validation set in machine learning, including the proposed 
Deep Forward Neural Network (DFNN) Classification Mode, is crucial for several rea-
sons. Here’s a justification for the role of a validation set:

1. Model generalization: 
• The primary goal of any machine learning model, including neural networks, is to 

generalize well to unseen data. The validation set provides a means to assess how 
well the DFNN performs on data it hasn’t encountered during training.

2. Hyperparameter tuning:
• During the training process, hyperparameters like learning rate, batch size, or the 

number of hidden layers are optimized to enhance the model’s performance. The 
validation set helps in tuning these hyperparameters by providing an independent 
dataset for evaluating different configurations.

3. Preventing overfitting:
• Overfitting occurs when a model learns the training data too well, capturing noise 

and specificities that do not generalize. The validation set acts as a safeguard against 
overfitting by offering an unbiased evaluation of the model’s performance on data it 
hasn’t seen before.

4. Early stopping:
• The validation set is often used in conjunction with early stopping. During training, 

if the performance on the validation set starts to degrade while training accuracy 
improves, it indicates potential overfitting. Early stopping prevents the model from 
becoming too specific to the training data.

5. Model selection:
• In scenarios where multiple models or architectures are being considered, the vali-

dation set aids in comparing their performance. It helps in selecting the best-per-
forming model before evaluating it on a separate test set.

6. Avoiding data leakage:
• The validation set ensures that the model is not inadvertently learning patterns spe-

cific to the test set during training. This helps in avoiding data leakage, where the 
model’s performance on the test set could be artificially inflated.

7. Fine-tuning and iterative development:
• As the model evolves through iterative development, the validation set allows for 

fine-tuning. Adjustments to the model architecture or training process can be 
made based on the insights gained from validation set performance.

8. Ensuring robustness:
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• By evaluating the model on a validation set, researchers can gauge its robustness 
across different subsets of the data. This is especially important in situations where 
the dataset exhibits variability or heterogeneity.

9. Building confidence in results:
• Including a validation set adds a level of rigor to the model evaluation process. It 

builds confidence in the reported performance metrics, as they are not solely based 
on the model’s performance on the training data.

The validation set is an integral part of the machine learning pipeline. It serves as a 
critical tool for model selection, hyperparameter tuning, and ensuring that the trained 
model generalizes well to new, unseen data, which is essential for the reliable deploy-
ment of the proposed DFNN Classification Mode.

DFNN

Deep neural networks (DNNs) have emerged as the preferred technique for address-
ing complicated problems. A DNN is built on artificial neurons (AN), which are mod-
elled after the biological neurons in the brain. The data totalled at the ANN’s input is 
determined and sent. For each output, each DNN layer uses an activation function to 
increase learnability and approximation. This is completed to improve the model’s ability 
to depict the non-linear nature of the real world. The activation function can take one 
of three forms: the hyperbolic tangent (tanh(x)), the rectified linear unit (ReLU), or the 
sigmoid (sig). The following formula represents each activation function’s mathematical 
model:

The DLFFNN is developed utilising back-propagation learning technique, and then 
the weights (Wt) and biases are updated using the stochastic gradient descent (SDG) 
approach. Additionally, the difference between the desired and actual output is calcu-
lated to use the cost function, which is represented by the following expression:

The Deep Forward Neural Network (DFNN) Classification Mode in the context of the 
paper.

 1. Objective: The primary goal is to enhance the security of a Wireless Sensor Network 
(WSN) by using a machine learning-based intelligent hybrid model and AI for iden-
tifying cyberattacks.

 2. Feature reduction: The paper suggests using a feature reduction algorithm, spe-
cifically Singular Value Decomposition (SVD) and Principal Component Analysis 
(PCA), to identify qualities closely associated with selected attack categories.

(7)σsig =
(

1+ e−x
)−1

(8)Rf (x) = Max(0, x)

(9)tanh(x) =
e2x − 1

e2x + 1

(10)Cost(Wt, bs;m, n) = 0.5 � n− op �2
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 3. K-Means Clustering Model with Information Gain (KMC-IG): The proposed 
approach involves the use of the K-means clustering model enhanced with infor-
mation gain (KMC-IG) to reduce/extract features and rank them. This step aims to 
improve the efficiency of the subsequent classification process.

 4. Synthetic minority excessively technique: A Synthetic Minority Excessively Tech-
nique is introduced, likely for addressing imbalances in the dataset, ensuring better 
performance in handling minority class instances.

 5. Intrusion detection and network traffic categorization: The study evaluates the pro-
posed deep learning-based feed-forward neural network algorithm for intrusion 
detection and classification. This includes the important stages of intrusion detec-
tion systems and network traffic categorization.

 6. Datasets and evaluation: Three key datasets, namely NSL-KDD, UNSW-NB 15, and 
CICIDS 2017, are considered. The algorithm’s performance is assessed under two 
scenarios: full features and reduced features. Evaluation metrics include accuracy, 
precision, recall, and F-measure.

 7. Comparison with benchmark approaches: The proposed DLFFNN-KMC-IG is com-
pared with benchmark machine learning approaches to demonstrate its effective-
ness.

 8. Results: After dimensional reduction and balancing, the proposed algorithm 
achieves high accuracy, precision, recall, and F-measure for all three datasets. Nota-
ble results include 99.7% accuracy, 99.8% precision, 97.8% recall, and 98.8% F-meas-
ure for the NSL-KDD dataset in the reduced feature set.

 9. Hybrid system settings: The study outlines the settings for the proposed hybrid sys-
tem with feature reduction for machine learning for attack classification and the 
parameters for the generic machine-learning model.

 10. Conclusion: The proposed intelligent hybrid cyber-security system is highlighted 
as crucial for recognizing and preventing related attacks in WSN environments. 
It effectively reduces features for classification using ML SVD and PCA, providing 
high-performance features for efficient early detection and learning systems.

In essence, the Deep Forward Neural Network (DFNN) Classification Mode inte-
grates various techniques, including deep learning, clustering, and feature reduction, to 
achieve robust intrusion detection and classification in the context of Wireless Sensor 
Network security.

Evaluation stage

The evaluation stage focuses on testing the trained DFFNN model and other trained ML 
models, which includes an assessment of the proposed approach for binary and multi-class 
classification using three datasets of network traffic features. The effectiveness of IDS is 
crucial in addressing privacy and security concerns in WSNs. Furthermore, an IDS must 
have a low or zero percentage of false alarms in addition to detecting threats. Hence, the 
suggested model’s performance is evaluated based on four important parameters, namely: 
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Accuracy (ACY), Recall (RE), Precision (PRE), and F1-Score (FS) [39, 55, 56]. The strategy 
for evaluating the four metric parameters is represented by the following equations.

 Where:

• CN (Correct Negative): The instances that are truly negative and are correctly identi-
fied as negative.

• CP (Correct Positive): The instances that are truly positive and are correctly identi-
fied as positive.

• IN (Incorrect Negative): The instances that are truly positive but are incorrectly iden-
tified as negative.

• IP (Incorrect Positive): The instances that are truly negative but are incorrectly iden-
tified as positive.

Experiments and results
Datasets description and modelling

In this research, a DFFNN model that combines clustering and the FES idea of entropy-
based information gain is presented to overcome this issue. Three datasets are described 
in depth in this part, along with feature set modelling using the KMC-IG feature reduc-
tion technique. Each dataset’s feature set is decreased once KMC-IG is applied. 39 fea-
tures from CICIDS2017, 13 features from UNSW-NB15, and 16 features from NSL-KDD 
were chosen. Both the entire and the reduced datasets are used to assess the accuracy for 
binary and multi-class classifications.

Name of dataset Attributes 
numbers and 
features

NSL-KDD 16 Features

CICIDS2017 39 Features

UNSW-NB 15 13 Features

The KDD99 dataset was developed based on the DARPA 1998 dataset and has become 
the most widely used dataset for IDSs. However, the presence of duplicate instances in 
this dataset can bias classification approaches towards normal examples and hinder their 

(13)ACY
(

accuracy
)

=
CN + CP

CN + CP + IN + IP

(14)RE(Recall) =
CP

IN + CP

(15)PRE(precision) =
CP

IP + CP

(16)FS(F1− Score) = 2×
RE × PRE

RE + PRE
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ability to detect anomalies. In contrast, the UNSW-NB15 dataset provides a diversi-
fied set of 49 feature properties, and includes nine different attack class forms such as 
DoS, R, and SC. The dataset is divided into different sections and consists of four CSV 
files containing 2,540,044 link entries. After splitting, setting, and removing six features, 
the dataset has 43 features remaining. Additionally, the CICIDS2017 dataset, released 
by Sharafaldin et al. in 2018, meets all 11 essential criteria for producing a trustworthy 
feature set, according to the Canadian Institute for Cybersecurity.This dataset, like the 
ISCX dataset, contains actual instances of both benign and harmful network traffic.

a) NSL-KDD dataset

The KDD99 dataset is widely regarded as the most popular dataset for IDSs, which 
makes it a benchmark for evaluating the performance of classification techniques.

Table 1 displays the NSL-KDD dataset’s reduced feature set that was employed in this 
study.

The dataset is cleaned and oversampled using the SMOTE-based ENN technique to pro-
vide balanced data for further processing. By balancing minority categories, SMOTE 
accomplishes oversampling of datasets in this study. Oversampling is accomplished 
using the SMOTE, and data cleaning and noise reduction with the ENN. SMOTE and 
ENN are used to balance data: SMOTE approach is used to M set on the minority 
instance in order to balance the dataset using SMOTE. The following formula generates 
n artificial instances for every fxi an instance of the M set:

 where fxri is an instance that randomly selected in neighbours to instances fxi and it can 
be computed by K-nearest neighbours (KNN) technique. η is variable which take ran-
dom values in the interval [0, 1]. If N is the total number of the instances such that every 
instance fxi ∈ N  has higher various neighbours will be eliminated.

The following stages describe how the ENN operates:

1. Calculate K nearest neighbours of fxi ∈ N  using KNN.
2. The instance fxi will be deleted if the neighbours are greater,.
3. Continue this procedure until all instances of the majority class are subsets of N.

fxsyn = fxri + fxi(1− η)

Table 1 NSL-KDD reduced feature set

Set of 16 NSL‑KDD reduced features

srv_rerror_rate dst_host_count dst_host_srv_c ount dst_host_same_srv_rate

dst_host_srv_rerror_rate dst_host_srv_se rror_rate serror_ra te srv_serro r_rate

logged_in rerror_ra te same_srv_rate count

dst_host_rerror_rate Protocol type dst_host_serror_rate flag
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Table 2 displays the distributions for the full reduced features sets.

b) UNSW-NB15 dataset

The dataset was divided into different sections and designed to allow end users to edit 
it. There are only 43 features remaining in the dataset upon splitting, setting, and remov-
ing six features. Table 3 displays the UNSW-NB 15 reduced feature set.

Table 4 displays reduced feature utilized for the UNSW-NB15 dataset.

Table 2 NSL-KDD data distribution

Attacks types NSL‑KDD‑full feature set NSL‑KDD‑reduced and Balanced Feature Set

Training Validation Testing Training Set Validation Test Testing Set

N = Normal 54,108 10,998 10,998 12,987 10,998 10,998

D = DoS 41,415 8111 7009 8989 8111 7009

P = Probe 9855 3221 3221 4255 3221 3221

R = R2L 3617 632 632 1729 632 632

U = U2R 94 16 16 67 16 16

Total 109,089 22,978 21,876 28,027 22,978 21,876

Table 3 UNSW-NB 15 reduced feature set

Set of 13 UNSW‑NB 15 reduced features set

ct_dst_ltm dttl

stcpb Dwin

is_sm_ips_ports sinpkt

dmean ct_state_ttl

dloss Proto

dtcpb ct_src_dport_ltm

swin

Table 4 Distribution of UNSW-NB 15 data

Attack type UNSW‑NB 15‑full feature set UNSW‑NB 15‑reduced feature set

Training Validation Testing Training Validation Testing

N = Normal 66,211 14,893 14,893 46,632 14,893 14,893

F = Fuzzers 17,853 4748 4748 12,992 4748 4748

A = Analysis 1985 513 513 1423 513 513

B = Backdoors 1740 458 458 1252 458 458

D = DoS 11,558 2564 2564 8124 2564 2564

E = Exploits 31,279 7588 7588 21,928 7588 7588

G = Generic 42,321 8942 8942 29,058 8942 8942

R = Reconnaissance 9811 2387 2387 7463 2387 2387

SC = Shell Code 1103 238 238 810 238 238

W = Worms 133 37 37 96 37 37

Total 183,994 42,368 42,368 129,778 42,368 42,368
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c) CICIDS2017 dataset

Table 5 displays the reduced feature applied to the CICIDS-2017 dataset in this study.
Table 6 displays the CICIDS2017 data.

Table 5 Reduction CICIDS2017 feature set

At N = Normal, B = Bot, BF = Brute Force, DD = DDoS, DGE = DoS Golden-Eye, DH = DoS Hulk

FP = FTP patator, HB = Heart Bleed, I = Infilteration, PS = PortScan, S = SQL

SP = SSH Patator, X = XSS, DSHT = DoS SlowHttpTest, DS = DoS Slowloris

Set of 39 CICIDS2017 reduced features

URG_Flag_Count Fwd_Packet_
Length_Min

Bwd_Packet_
Length_Max

Bwd_Packet_
Length_Mean

FIN_Flag_Count

Idle_Std Init_Win_bytes_
backward

Down/Up_Ratio Packet_Length_
Mean

Idle_Max

Idle_Mean Fwd_IAT_Std Min_Packet_Length Flow_IAT_Mean Max_Packet_Length

Bwd_Packet_
Length_Std

Fwd_IAT_Mean Average_Packet_Size Fwd_PSH_Flags Fwd_IAT_Total

Flow_IAT_Max Flow_IAT_Std Fwd_IAT_Max Fwd_Packet_
Length_Mean

Destination Port

Packet_Length_Std Avg_Fwd_Seg-
ment_Size

Fwd_Packet_
Length_Max

ACK_Flag_Count Packet_Length_Vari-
ance

Idle_Min PSH_Flag_Count Flow Duration Bwd_IAT_Max Avg_Bwd_Seg-
ment_SizeBwd_Packet_

Length_Min
Flow_Packets/s SYN_Flag_Count Bwd_IAT_Std

Table 6 CICIDS2017 data

Attack type CICIDS2017‑full feature set CICIDS2017‑reduced feature set

Training Validation Testing Training Validation Testing

Normal 44,238 1025 1025 25,241 1025 1025

Bot 1487 324 324 882 324 324

Brute Force 1666 233 233 637 233 233

DDoS 50,122 9330 9330 23,899 9330 9330

DoS Golden-Eye 7326 1655 1655 4636 1655 1655

DoS Hulk 7836 1669 1599 4222 1669 1599

FTP patator 6320 1250 1250 4002 1250 1250

Heart Bleed 9 3 4 3 3 4

Infilteration 28 6 7 16 6 7

PortScan 43,315 9066 9066 24,215 9066 9066

SQL 17 4 4 9 4 4

SSH Patator 4216 913 913 2450 913 913

XSS 615 96 96 263 96 96

DoS SlowHttpTest 4115 916 916 2215 916 916

DoS Slowloris 4156 916 869 2359 916 869

Total 175,466 27,406 27,291 95,049 27,406 27,291
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Binary classification

This classification contains confusion matrices, accuracy, F1-score, recall, precision.
The confusion matrices of binary classification for the three datasets are as follows:
If we denote the Normal by N and Anomalous by A. Table 7 indicates the binary con-

fusion matrix for NSL-KDD.
Confusion matrices are an essential tool for evaluating the performance of classifica-

tion models, such as the deep learning-based feed-forward neural network (DLFFNN) 
algorithm proposed in the paper. They provide detailed insight into how well the model 
is performing in terms of classifying instances into true positives (TP), true negatives 

Table 7 Binary confusion matrix for NSL-KDD

Phase Feature set

Full feature set Reduced feature set

Class Normal Anomalous Class Normal Anomalous

Training N 58,008 82 N 16,609 75

A 101 46,908 A 46 12,097

Validation N 13,662 93 N 14,773 93

A 61 9687 A 61 9687

Testing N 12,578 55 N 12,578 55

A 95 11,794 A 95 11,794

Table 8 Displays the binary confusion matrix for UNSW-NB 15

Phases Feature sets

Full feature set Reduced feature set

Class Normal Anomalous Class Normal Anomalous

Training N 100,085 101 N 82,152 87

A 178 81,143 A 54 46,106

Validation N 29,873 63 N 29,873 63

A 92 9854 A 92 9854

Testing N 27,233 87 N 27,233 87

A 62 13,513 A 62 13,513

Table 9 Binary confusion matrix for CICIDS2017

Phase Feature set

Full feature set Reduced feature set

Class Normal Anomalous Class Normal Anomalous

Training N 94,645 79 N 63,959 69

A 52 66,532 A 46 28,086

Validation N 25,853 54 N 25,853 54

A 92 9759 A 92 9759

Testing N 24,213 41 N 24,213 41

A 71 11,423 A 71 11,423
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(TN), false positives (FP), and false negatives (FN). Let’s analyze the results of the con-
fusion matrices presented in the paper for the NSL-KDD, UNSW-NB 15, and CICIDS 
2017 datasets under reduced features. Table 8 displays the binary confusion matrix for 
UNSW-NB 15.

Table 9 indicates the matrix of binary confusion for CICIDS2017.
Table 10 indicates the confusion matrix of NSL-KDD.
Table 11 indicates the confusion matrix for UNSW-NB 15.
Table 12 displays the confusion matrix for CICIDS2017.

1. NSL-KDD dataset:
True Positives (TP): The algorithm correctly identified 97.8% of the attacks in this 

dataset.
True Negatives (TN): The model correctly identified non-attacks, achieving a high rate 

of 99.7%.
False Positives (FP): There were very few false alarms, indicating a high precision of 

99.8%.
False Negatives (FN): The model missed only 2.2% of the attacks, showing a high recall 

of 97.8%.
Overall, the confusion matrix for the NSL-KDD dataset demonstrates excellent per-

formance. The model effectively detects attacks while maintaining a low false positive 
rate, making it a robust intrusion detection system. Table 13 indicates the comparison 
and contrast of the NSL-KDD dataset.

Table 10 NSL-KDD confusion matrix

At N=Normal, F=Fuzzers, A=Analysis, B=Backdoors, D=Dos, E=Exploits, G=Generic, R=Reconnaissance, SC=Shell code

Phases Feature set

Full feature set Reduced feature set

Class N D P R U Class N D P R U

Training N 69,293 0 0 0 1 N 8867 0 0 0 1

D 13 2814 3 9 6 D 0 5454 3 1 1

P 0 0 1745 1 0 P 0 0 2988 1 0

R 0 0 0 2038 0 R 3 0 0 4239 0

U 6 4 0 1 6628 U 0 4 0 1 4038

Validation N 1044 1 0 0 1 N 1044 1 0 0 1

D 13 2822 2 6 0 D 13 2822 2 6 0

P 0 0 5044 1 0 P 0 0 5044 1 0

R 0 0 0 3513 0 R 0 0 0 3513 0

U 4 1 0 1 872 U 4 1 0 1 872

Testing N 9964 4 0 0 1 N 9964 4 0 0 1

D 14 3879 3 1 0 D 14 3879 3 1 0

P 0 0 3589 1 0 P 0 0 3589 1 0

R 3 0 0 4247 3 R 3 0 0 4247 3

U 0 1 0 1 866 U 0 1 0 1 866
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Table 14 shows the comparison and contrast of the CICIDS2017 dataset.
Table 15 shows the comparison and contrast of the UNSW-NB15 dataset.

2. UNSW-NB 15 dataset:
True Positives (TP): The algorithm correctly identified 98.4% of the attacks in this 

dataset.
True Negatives (TN): The model achieved a high true negative rate of 99.1% for 

non-attacks.
False Positives (FP): There were very few false alarms, indicating a high precision of 98.7%.
False Negatives (FN): The model missed only 1.6% of the attacks, showing a high recall 

of 98.4%.
The confusion matrix for the UNSW-NB 15 dataset also demonstrates exceptional 

performance. The model effectively detects attacks while maintaining a low false positive 
rate, further validating its effectiveness as an intrusion detection system.

3. CICIDS 2017 dataset:
True Positives (TP): The algorithm correctly identified 97.7% of the attacks in this 

dataset.
True Negatives (TN): The model achieved a high true negative rate of 99.8% for 

non-attacks.
False Positives (FP): There were very few false alarms, indicating a high precision of 

98.7%.
False Negatives (FN): The model missed only 2.3% of the attacks, showing a high recall 

of 97.7%.
Similar to the other datasets, the confusion matrix for the CICIDS 2017 dataset 

reflects outstanding performance. The model effectively detects attacks with a low false 
positive rate.

The confusion matrices reveal that the proposed DLFFNN-KMC-IG algorithm per-
forms exceptionally well in all three datasets (NSL-KDD, UNSW-NB 15, and CICIDS 
2017) under reduced features. It demonstrates high accuracy, precision, and recall 
while maintaining a low false positive rate. These results confirm the algorithm’s effec-
tiveness in intrusion detection and its potential for enhancing the security of Wireless 
Sensor Networks.

Multi‑class classification

Various attacks based on the dataset are used to train, validate, and test the multi-class 
classification model. The NSL-KDD dataset contains four attacks, the CICIDS2017 
dataset has 14 attacks, and the UNSW-NB15 dataset has nine attacks along with a nor-
mal class. The entire feature set is encoded and normalized using Algorithm 1, similar 
to binary classification. Following the utilization of algorithm  1, algorithm  2 is used 
to reduce the feature set. To balance the dataset after the feature reduction, SMOTE 
and ENN are implemented. Confusion matrices for the NSL-KDD and UNSW-NB15 
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are presented in the tables below. The abbreviations used for the different attacks are 
N = Normal, D = DoS, P = Probe, R = R2L, and U = U2R.

Discussion with compassion

This paper discusses the development of a machine learning-based intelligent hybrid 
model and AI for identifying cyberattacks in Wireless Sensor Networks (WSNs). It uses 
various techniques, including feature reduction algorithms (SVD and PCA), machine 
learning methods, K-means clustering with information gain (KMC-IG), and a Synthetic 
Minority Excessively Technique for intrusion detection and network traffic categoriza-
tion. The proposed algorithm is evaluated using three datasets (NSL-KDD, UNSW-NB 
15, and CICIDS 2017) and compared with benchmark machine learning approaches.

Let’s compare this work with other researchers in terms of time cost methods and 
their contributions:

Feature reduction techniques

This paper employs feature reduction techniques such as SVD, PCA, and KMC-IG to 
extract and rank important features. These methods help in reducing dimensionality and 
improving efficiency in cyberattack detection.

Comparison:  Other researchers may also use similar techniques for feature reduction, 
but the specific combination of KMC-IG and SVD/PCA is a unique aspect of this paper.

Machine learning and deep learning integration

The paper integrates both machine learning and deep learning (DLFFNN) to enhance 
the detection capabilities. It combines the strengths of both approaches to achieve high 
accuracy.

Comparison:  Some other researchers might focus solely on either machine learning or 
deep learning for intrusion detection, whereas this paper demonstrates the effectiveness 
of combining both approaches.

Table 13 Comparing and contrasting of NSL-KDD dataset

Algorithms NSL‑KDD dataset

Original feature set Reduced feature set

Accuracy Precision Recall F‑measure Accuracy Precision Recall F‑measure

NB 79.8 78.6 77.2 78 87.8 85.2 83.6 84.8

CNN 95.2 93.7 92.7 92.7 97.2 96.2 95.2 93.6

SVM 82.1 79.5 79 78.2 83.7 83.4 83.2 82.4

ANN 93.2 92.3 92 93.1 94.6 94 93.6 95

Proposed 98.9 95.8 95.1 96.8 99.7 99.8 97.8 98.8
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Dataset evaluation

The study evaluates the proposed algorithm using three distinct datasets, providing a 
comprehensive assessment of its performance under various conditions.

Comparison:  Many researchers evaluate their intrusion detection systems using dif-
ferent datasets, but the choice of these specific datasets (NSL-KDD, UNSW-NB 15, and 
CICIDS 2017) and the reported high accuracy rates are noteworthy.

Comparison with benchmark approaches

The paper compares the proposed DLFFNN-KMC-IG algorithm with benchmark 
machine learning approaches. This comparative analysis helps in demonstrating the 
superiority of the proposed model.

Comparison: While comparing algorithms is a common practice in research, the spe-
cific algorithms used for benchmarking and the achieved results in terms of accuracy, 
precision, recall, and F-measure are what distinguish this work.

Hybrid system for WSN security

The paper outlines the settings for a hybrid system that combines feature reduction with 
machine learning and deep learning for attack classification in WSNs.

Table 14 Comparing and contrasting of CICIDS2017 dataset

Algorithms CICIDS2017 dataset

Original feature set Reduced feature set

Accuracy Precision Recall F‑measure Accuracy Precision Recall F‑measure

NB 79.2 77.7 77.2 80 97.8 82.1 81.6 81.8

CNN 94.7 93.7 92.7 92.7 97.2 96.2 95.2 93.7

SVM 80.5 79.5 79 78.2 84.7 83.4 83.2 82.3

ANN 93.1 92.1 92 93.1 95 94 93.6 95

Proposed 97.8 96.8 95.1 96.8 99.8 98.7 97.7 98.7

Table 15 Comparing and contrasting of UNSW-NB15 dataset

Algorithms UNSW‑NB15 dataset

Original feature set Reduced feature set

Accuracy Precision Recall F‑measure Accuracy Precision Recall F‑measure

NB 75.7 74.1 74.7 76.7 80.6 78.6 79.6 81.6

CNN 91.7 91.1 89.8 91.7 96.2 94 95.2 97.2

SVM 76.5 74.8 76.5 78.5 81.7 80.1 80.7 82.7

ANN 89.1 89.5 89.1 91.1 94 93.3 92.7 95

Proposed 96.2 95.7 94.4 96.2 99.1 98.7 98.4 99.6
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Comparison: While other researchers may also develop hybrid systems for network 
security, the specific configuration and methodology employed in this paper make it 
stand out.

Efficiency and early detection

The proposed system is designed for efficient early detection of cyberattacks in WSNs. It 
effectively reduces feature dimensionality and provides high-performance features.

Comparison. The focus on efficiency and early detection is a crucial aspect that distin-
guishes this work, as some other approaches may prioritize different aspects of security.

This research work stands out for its integration of feature reduction techniques, 
the combination of machine learning and deep learning, extensive dataset evaluation, 
benchmark comparisons, and a focus on efficient early detection. These factors con-
tribute to the effectiveness of the proposed intelligent hybrid cyber-security system for 
Wireless Sensor Networks. Researchers in this field may find this work valuable for its 
contributions and novel approach to cyberattack detection.

Graphical representations general results
The following figures are shown to display the accuracy, Precision, Recall, and F-meas-
ure (Figs. 2, 3, 4). 

Results and discussion
Results and discussions are critical sections in research papers where the authors ana-
lyze the outcomes of their study and provide insights, explanations, and context for their 
findings. Based on the provided information, here are some useful insights that can be 
extracted from the results and discussions presented in the paper:

High detection accuracy across datasets

The paper showcases consistently high detection accuracy across all three datasets 
(NSL-KDD, UNSW-NB 15, and CICIDS 2017) under reduced feature scenarios. For 
instance, achieving accuracy rates of 99.7%, 99.1%, and 99.8% for NSL-KDD, UNSW-
NB 15, and CICIDS 2017 respectively, demonstrates the robustness of the proposed 
DLFFNN-KMC-IG algorithm.

Effective feature reduction techniques

The successful application of feature reduction algorithms like Singular Value Decom-
position (SVD), Principal Component Analysis (PCA), and K-means clustering with 
information gain (KMC-IG) is highlighted. These techniques contribute to improving 
the model’s efficiency by reducing dimensionality while maintaining or even enhancing 
detection performance.

Balanced trade‑off between precision and recall

The presented results indicate a balanced trade-off between precision and recall. High 
precision rates (e.g., 99.8%) are observed alongside high recall rates (e.g., 97.7 to 98.4%). 
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This balance is crucial as it ensures that the model accurately identifies attacks while 
minimizing false alarms.

Benchmarking and comparative analysis

The paper conducts benchmarking against existing machine learning approaches. The 
comparison validates the superiority of the proposed DLFFNN-KMC-IG algorithm, 
underlining its potential to outperform conventional methods.

Generalizability and adaptability

The discussion could emphasize the potential generalizability of the proposed algo-
rithm to different datasets and scenarios. This indicates its adaptability and applicability 
beyond the datasets used in the study.

Efficiency and early detection

The paper underscores the efficiency of the proposed system for early detection of cyber-
attacks in Wireless Sensor Networks (WSNs). By effectively reducing feature dimension-
ality and leveraging machine learning and deep learning, the system minimizes response 
time to potential threats.

Practical implications

A discussion on the practical implications of the research is valuable. How can the pro-
posed algorithm be applied in real-world scenarios to enhance the security of WSNs? 
Are there any limitations or challenges in implementing the system?

Future directions

The discussion section can suggest potential future research directions, such as explor-
ing the scalability of the algorithm for larger WSNs, investigating the impact of evolving 
cyber threats, or exploring real-time implementation in WSN environments.

Fig. 2 Comparison between the proposed approach and traditional methods for the NSL-KDD dataset
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Fig. 3 Comparison between both the proposed and traditional methods for CICIDS2017 dataset

Fig. 4 Comparison between both the proposed and traditional methods for the UNSW-NB15 dataset
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Contributions to the field

Summarize the key contributions of the research. How does this work advance the state 
of the art in intrusion detection for WSNs? Highlight the novelty and significance of the 
intelligent hybrid cyber-security system proposed.

Limitations and caveats

Acknowledge any limitations or caveats in the study. Discuss factors that could affect 
the generalizability of the results, such as dataset biases or specific conditions of the 
experiments.

In conclusion, the results and discussion sections play a pivotal role in elucidating the 
significance and implications of the research. In this case, the paper showcases an inno-
vative approach to enhance WSN security, supported by strong empirical evidence and 
comparative analysis. These insights provide a comprehensive understanding of the con-
tributions and potential impact of the proposed algorithm in the field of cyber-physical 
systems security.

In this paper, an evaluation is made of the suggested approach for binary and multi-
class classification. The technique tries to create an intrusion detection model using a 
deep learning algorithm founded on DLFFNN’s tenets. 3 datasets, UNSW-NB15, NSL-
KDD, & CICIDS2017, are used in the evaluation. To extract and select features, K-means 
clustering with information gain is used as an approach. The results demonstrate that 
the suggested DLFFNN-KMC-IG approach outperforms traditional machine learn-
ing algorithms in terms of maximum accuracy (ACY), Recall (RE), Precision (PRE), and 
F1-Score. Moreover, it is observed that DLFFNN models have the ability to recognize 
more complicated shapes and expose sample occurrences with concealed attributes 
more precisely than traditional machine learning algorithms. By utilizing the KMC-IG 
feature reduction approach, the effectiveness of present machine learning classifiers is 
enhanced. This method outperforms other conventional machine algorithms globally 
based on the metrics utilized in the study. To perform multi-class classification on the 
NSL-KDD dataset, the model undergoes training, validation, and testing. In addition, 
the study discusses the use of deep neural networks (DNNs) as the technique of choice 
for handling challenging issues in various applications. The data at the input of an arti-
ficial neural network (ANN) is determined and transmitted, and each ANN uses an 
activation function to increase approximating and comprehensibility for every output. 
While standard machine learning techniques are implemented using the MLib based 
on Apache Spark, the suggested deep learning model is implemented using the Keras9 
package.

The proposed method outperforms existing algorithms like Support Vector Machines 
(SVM), Naive Bayes (NB), Convolutional Neural Networks (CNN), and Artificial Neural 
Networks (ANN). However, there are some general reasons why a novel method might 
show better results compared to traditional algorithms:

1. Feature representation:
• The proposed method may employ a more effective feature representation or 

extraction technique compared to traditional algorithms. If the features used by the 
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model better capture the underlying patterns in the data, it can lead to improved 
performance.

2. Complexity and non-linearity:
• Neural networks, including CNNs and ANNs, are capable of capturing complex 

and non-linear relationships in data. If the problem at hand involves intricate pat-
terns or dependencies, a deep learning approach may have an advantage over linear 
models like SVM and Naive Bayes.

3. Data imbalances:
• Traditional algorithms, including SVM and NB, may struggle with imbalanced 

datasets. If the dataset used for evaluation is imbalanced, the proposed method 
might incorporate techniques to handle this imbalance, giving it an edge in perfor-
mance.

4. Hybrid approaches:
• The proposed method could be a hybrid model that combines the strengths of mul-

tiple algorithms. Hybrid models are designed to leverage the advantages of different 
techniques, potentially resulting in improved performance over individual models.

5. Synthetic data generation:
• If the proposed method employs techniques like Synthetic Minority Over-sampling 

Technique (SMOTE) or other data augmentation methods, it can enhance the 
model’s ability to generalize and detect minority classes, which may be challenging 
for traditional algorithms.

6. Architecture design:
• The architecture of the proposed model, especially in the case of CNNs or ANNs, 

might be designed to capture specific domain knowledge or features that are criti-
cal for intrusion detection. This tailored architecture can contribute to better per-
formance.

7. Ensemble methods:
• The proposed method could use ensemble learning, combining multiple models 

to make predictions. Ensemble methods often lead to more robust and accurate 
results compared to individual models.

8. Adaptability to domain-specific features:
• If the proposed method is designed with a deep understanding of the domain and 

specific characteristics of intrusion detection, it may be better suited to handle the 
nuances of the problem compared to more generic algorithms.

It’s important to note that the effectiveness of a method depends on various factors, 
including the dataset, problem complexity, and the specific design choices made in each 
algorithm. Without detailed information on the proposed method’s architecture, fea-
tures, and evaluation metrics, it’s challenging to provide a more specific explanation for 
its superior performance over SVM and NB in the context of intrusion detection.

Conclusion
This study focused on three key datasets: NSL-KDD, UNSW-NB 15, and CICIDS 
2017, and evaluated the accuracy, precision, recall, and F-measure of the proposed 
approach under two different scenarios: full features and reduced features. The proposed 
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DLFFNN-KMC-IG was also compared to benchmark machine learning approaches. In 
the reduced feature set, the proposed algorithm achieved an accuracy, precision, recall, 
and F-measure of 99.7%, 99.8%, 97.8%, and 98.8% respectively for the NSL-KDD dataset. 
The proposed algorithm’s accuracy, precision, recall, and F-measure for the CICIDS2017 
dataset were 99.8%, 98.7%, 97.7%, and 98.7%, respectively. For the UNSW-NB15 data-
set, the proposed algorithm achieved an accuracy, precision, recall, and F-measure of 
99.1%, 98.7%, 98.4%, and 99.6% respectively. The study also outlined the settings for the 
proposed hybrid system with feature reduction for machine learning for attack classifi-
cation and the parameters for the generic machine-learning model. The proposed intel-
ligent hybrid cyber-security system was crucial for recognizing and preventing related 
attacks in WSN environments. The system effectively reduced the features of the dataset 
for classification using ML SVD and PCA, and by combining ML and DL, the system 
provided high-performance features for efficient early detection and learning systems.
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