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Abstract 

In the domain of Medicare insurance fraud detection, handling imbalanced Big 
Data and high dimensionality remains a significant challenge. This study assesses 
the combined efficacy of two data reduction techniques: Random Undersampling 
(RUS), and a novel ensemble supervised feature selection method. The techniques are 
applied to optimize Machine Learning models for fraud identification in the classifica-
tion of highly imbalanced Big Medicare Data. Utilizing two datasets from The Centers 
for Medicare & Medicaid Services (CMS) labeled by the List of Excluded Individuals/
Entities (LEIE), our principal contribution lies in empirically demonstrating that data 
reduction techniques applied to these datasets significantly improves classification 
performance. The study employs a systematic experimental design to investigate 
various scenarios, ranging from using each technique in isolation to employing them 
in combination. The results indicate that a synergistic application of both techniques 
outperforms models that utilize all available features and data. Moreover, reduction 
in the number of features leads to more explainable models. Given the enormous 
financial implications of Medicare fraud, our findings not only offer computational 
advantages but also significantly enhance the effectiveness of fraud detection systems, 
thereby having the potential to improve healthcare services.

Keywords: Random undersampling, Ensemble supervised feature selection, Big Data, 
Medicare fraud detection

Introduction
Data reduction techniques for the classification of highly imbalanced Big Data are 
desirable since they may improve performance, and smaller data sizes generally lead 
to faster model training times and therefore accelerate research. We systemically 
investigate the application of Random Undersampling (RUS) and our novel ensemble 
supervised feature selection technique to the Machine Learning task of Medicare 
insurance fraud detection. Both feature selection and RUS are data reduction 
techniques. We perform experiments on two imbalanced Big Medicare Datasets. In 
the experiments, the data reduction techniques are applied alone, and in combination. 
The statistical analysis of the experimental outcomes indicates that the data reduction 
techniques, in combination, yield the best performance in terms of Area Under the 
Precision Recall Curve (AUPRC) [1]. Furthermore, that performance is significantly 
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better than using all features. We prefer to report results in terms of AUPRC since it 
is threshold agnostic, and the only other widely used, threshold-agnostic metric, Area 
Under the Receiver Operating Characteristic Curve (AUC) [2], is shown in previous 
research to be misleading for evaluating classification of imbalanced Big Data [3, 4]. 
Our contribution is to show that intelligent data reduction techniques improve the 
classification of highly imbalanced Big Medicare data.

Medicare is the United States’ public health insurance program. Its mission is to 
provide insurance for people aged 65 and over. It is important to note that Medicare is 
sporadically compromised by fraudulent insurance claims. These illicit activities often 
go undetected, allowing unscrupulous healthcare providers to exploit weaknesses in the 
system. The Department of Justice managed to reclaim approximately $3 billion dollars 
from such fraudulent activities in 2019, as cited in their recovery report [5]. However, it 
is essential to recognize that this figure only represents a fraction of the total monetary 
loss, the full extent of which remains indeterminate. In 2019, the Centers for Medicare 
& Medicaid Services (CMS) estimated that improper payments, a category that 
includes both fraudulent and erroneous payments, amounted to roughly $100 billion 
[6]. Therefore, automated Medicare fraud detection has the potential to discover more 
fraudulent activity.

In the application domain of fraud detection, Machine Learning aids in pinpointing 
the small percentage data related to fraudulent activity in a vast sea of Big Medicare data. 
Since identification of fraud is the first step in stopping it, Machine Learning techniques 
may conserve substantial resources for the Medicare system by preventing fraud. In our 
study, we compile Medicare insurance claims datasets from several sources. The sources 
originate with the CMS. Furthermore, we label the datasets with the List of Excluded 
Individuals and Entities (LEIE). The LEIE is provided by of the United States Office of 
the Inspector General [7].

The performance of a classifier can be swayed by multiple effects. Two factors that 
can make data more difficult to classify are dimensionality, and class imbalance. Class 
imbalance in labeled data happens when the overwhelming majority of instances in the 
dataset have one particular label. This imbalance presents obstacles, as since it is possible 
for a classifier, optimized for a metric such as accuracy, will mislabel fraudulent activities 
as non-fraudulent to boost overall scores in terms of the metric. Yet, data reduction 
techniques provide promising avenues for addressing these challenges in Big Data. 
These methods, if properly applied to detect and stop Medicare insurance fraud, could 
substantially elevate the standard of healthcare service. This would be made possible by 
reducing costs related to fraud.

To address the challenges of imbalanced Big Data and high dimensionality, feature 
selection and data sampling are often utilized as initial data preparation steps. On one 
hand, data sampling is adopted to tackle the issue of class imbalance. It entails adjusting 
the training dataset by adding or subtracting examples to ensure a more even balance 
between fraudulent and non-fraudulent entries. On the other hand, feature selection, 
which addresses high dimensionality, focuses on choosing a specific group of attributes 
from the training data, and only these chosen attributes are used to construct the final 
model. This not only streamlines the learning process but can also enhance classification 
accuracy by discarding less relevant attributes.
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The data sampling technique we use is RUS. RUS is a straightforward yet potent 
data sampling technique. It also has the added benefit of data reduction. RUS works by 
randomly removing samples from the majority class until a specific balance between the 
minority and majority classes is met. A crucial point to emphasize is that we applied RUS 
solely to the training datasets. In one set of experiments, we employ RUS to generate 
datasets with several minority to majority class proportions, such as 1:1, 1:3, 1:9, 1:27, 
and 1:81. It is also worth mentioning that we conduct experiments where the training 
datasets are left at their original class ratios. Following this approach, we developed six 
classification models from the datasets used in this study. This research enabled us to 
delve deeper into the influence of RUS on the efficiency of models, with an emphasis on 
how class ratios affect experimental outcomes.

For feature selection, we incorporated a supervised feature selection method based 
on feature ranking lists. Subsequently, through the implementation of an innovative 
approach, these lists are combined to yield a conclusive feature ranking. Upon the 
derivation of this consolidated ranking, features are selected based on their position in 
the list. Specifically, we select subsets comprising a top number of features, as dictated 
by their rank. Using these subsets, we build additional classification models. To furnish 
a benchmark, models were also built utilizing all features of the datasets. This systematic 
approach granted us a deeper comprehension regarding the interplay between feature 
selection and model robustness within the context of multiple learning algorithms.

In further experiments, we move on to combine data sampling and feature selection. 
The order of data sampling and feature selection is important, and different techniques 
are implemented in order to investigate the effect of applying the data reduction 
techniques in different orders. Therefore, an additional contribution of this study is a 
detailed explanation of how the techniques are applied in four distinct scenarios: RUS 
only, feature selection only, feature selection followed by RUS, and RUS followed by 
feature selection. There is an additional fifth scenario incorporated in experiments, 
where we do not apply data reduction techniques as a control. The remainder of our 
study is organized in the following sections: Related Work, Datasets, Classifiers, 
Methodology, Results, Statistical Analysis, and Conclusions. Following the conclusions, 
we include an appendix with a statistical analysis of additional experiments.

Related work
In the context of health insurance fraud detection, this section reviews existing litera-
ture that explores the classification of data with high dimensionality which is also highly 
imbalanced. Techniques such as data sampling and feature selection are commonly 
employed to mitigate the challenges associated with this specialized type of data. In our 
review of existing literature, we found an opportunity to contribute a study on the effect 
of RUS and feature selection. Since our supervised feature selection technique is novel, 
previous work does not cover it. Moreover, we did not find a study that provides the com-
prehensive analysis of the impact of feature selection techniques and sampling techniques 
on the performance of insurance fraud detection with Machine Learning models.

Sateesh et al. present a supervised learning framework for fraud detection in Big Medi-
care Data [8]. In their study, they use publicly available Medicare claims data from 2012 
through 2015. We use data spanning a larger number of years, from 2013 through 2019. 
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Sateesh et al. utilize the same LEIE dataset for labeling their dataset that we use here. 
They compile a highly imbalanced dataset with over 37 million records. They employ 
RUS to induce multiple class ratios. Sateesh et  al. use only three classifiers: Decision 
Tree, Logistic Regression and Support Vector Machine, whereas we use six. Further-
more, they employ multiple performance metrics including AUC, false positive rate 
(FPR) and false negative rate (FNR) to assess experimental outcomes. However, as stated 
previously, we find AUC to be a misleading metric for evaluating the performance of 
classifiers on highly imbalanced, Big Data. We prefer not to publish results in terms of 
FPR and FNR since these are threshold-dependent metrics. Sateesh et al. find that the 
Decision Tree and Logistic Regression classifiers perform the best overall. Particularly 
they found that with the 1:4 class ratio, Decision Tree has the lowest FNR, which they 
deem critical for detecting fraud. We maintain that threshold-agnostic metrics, such as 
AUPRC, give a more informative picture of overall classifier performance. While Sateesh 
et al.’s findings are in alignment with ours as far as data reduction techniques improv-
ing performance, our study is far more extensive, since we use five ensemble classifi-
ers, whereas they employ three single-learner classifiers. Another key element we found 
missing from Sateesh et al. is that they do not report results for experiments conducted 
at the original class ratio, so it is unclear whether their application of RUS yields better 
results than leaving the data at the original class ratio. More importantly, we consider 
an additional data reduction technique, feature selection, and we demonstrate a precise 
methodology for applying the data reduction techniques in a manner that is not covered 
by Sateesh et al. Our study extends beyond the work done by Sateesh et al. because we 
also investigate the combination of RUS and feature selection, and we provide a detailed 
exposition of our experimental methodology for combining data reduction techniques.

Focusing on the task of identifying Medicare fraud, Hancock et  al. [4] employed 
datasets from the CMS, which varied considerably in size, ranging from approximately 
12 million to 175 million instances. All the datasets exhibited a pronounced class 
imbalance, prompting the use of RUS to induce the minority-to-majority class ratios 
1:1, 1:3, 1:9, 1:27, and 1:81. In their methodology, five ensemble classifiers were used, 
and their performance was assessed using both AUC and AUPRC metrics. The study 
revealed that irrespective of the degree of RUS applied, the classifiers produced high 
AUC but low AUPRC scores. Hancock et al. emphasized the superiority of the AUPRC 
metric over AUC for gauging the efficacy of classifiers on imbalanced datasets. However, 
their findings also indicated that RUS had an adverse impact on AUPRC scores. We 
believe the improvement in AUPRC scores we find when applying RUS to our data is the 
result of our data preprocessing step of aggregation, which Hancock et al. do not employ. 
Another significant difference between our studies is that Hancock et al.’s study did not 
involve any feature selection methodology. Not only do we cover feature selection, but 
also we cover RUS, and we explain the various ways RUS and feature selection can be 
combined. Furthermore, we provide a statistical analysis on the impact of the variations 
of the techniques on experimental outcomes.

In a study that introduces a novel deep learning architecture for Big Medicare Data 
fraud detection, Mayaki and Riveill [9] propose MINN-AE. MINN-AE is a specialized 
Medicare fraud detection model featuring a multiple-input deep neural network 
supplemented by a Long-short Term Memory autoencoder component. The model’s 
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efficacy was evaluated against nine baseline models, which included traditional 
Machine Learning algorithms like Logistic Regression and Random Forest, as well as 
various forms of artificial neural networks. Evaluation metrics employed in the study 
included geometric mean, precision, AUC, and AUPRC. The authors underscored the 
significance of the AUPRC metric over the AUC metric, particularly when dealing 
with highly imbalanced datasets. We were unable to locate discussion of feature 
selection in Mayaki and Riveill’s study. Hence, Mayaki and Riveill’s study is another 
example of a study that does not combine feature selection and sampling techniques 
in the Machine Learning task of fraud detection. In our study, we portray four distinct 
scenarios for applying data reduction techniques, and two of the scenarios involve 
multiple data reduction techniques.

Similar to our study, Herland et al. use publicly available data from the CMS, in a 
study on Medicare fraud detection [10]. Their study employs a diverse set of Medicare 
data, including Part B data spanning 2012 to 2015, Part D data covering 2013 to 2015, 
and Medicare Durable Medical Equipment, Devices & Supplies (DMEPOS) [11] data 
from the same years. In addition to these three datasets, they create a fourth, dubbed 
the Combined dataset, by merging the aforementioned datasets. Their methodology 
involves comparing the performance of three classification models. These are Logistic 
Regression, Random Forest, and Gradient Boosted Trees. The Combined dataset, 
when paired with a Logistic Regression model, delivers the best performance in 
fraud detection, according to their results. However, they do not use any of the data 
reduction techniques we use in this study. Unlike Herland et al., we introduce a novel 
feature selection technique. Furthermore, their results are exclusively reported in 
terms of the Area Under the Curve (AUC) metric, a measure we find unsatisfactory 
for evaluating classifiers on imbalanced Big Data sets. This serves as a key point of 
departure between our research and that conducted by Herland et  al. Finally, our 
study also expands the range of classifiers used, since we include results from six 
classifiers, two of which are representatives of the Bagging Family, and three of which 
are Gradient Boosted Decision Tree implementations.

Lopo and Hartomo [12] compare multiple sampling techniques: RUS, Random 
Oversampling (ROS), Synthetic Minority Over-sampling Technique (SMOTE) [13], 
and Instance Hardness Threshold (IHT), for addressing class imbalance in healthcare 
insurance fraud detection. Using a real-world Indonesian healthcare dataset with 
over 2 million records and a 6:94 class imbalance ratio, sampling methods are 
applied to induce 1:1, 3:7 and 1:9 class ratios. Lopo and Hartomo use one classifier, 
XGBoost, in conjunction with the sampling techniques. Multiple evaluation metrics 
including AUC, AUPRC are used to evaluate experimental outcomes. Results indicate 
RUS and ROS perform best with 1:1 distribution, while SMOTE and IHT are more 
effective at the 3:7 and 1:9 class ratios, respectively. SMOTE at the 3:7 distribution 
level demonstrates consistently high scores across all metrics. Longer computation 
times are a trade-off of SMOTE and IHT. Key predictive features identified include 
costs, diagnoses codes, healthcare service types, gender and disease severity. While 
providing insights on sampling techniques for imbalanced healthcare data, limitations 
of a single dataset and classifier indicate opportunities for the research we document 
here. We use multiple data sources and additional algorithms. In this study we use 
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two datasets, and six learners. Moreover, we investigate the combination of RUS, 
and feature selection, whereas Lopo and Hartomo only perform experiments with 
sampling techniques.

In their investigation into the classification of imbalanced Medicare Big Data, Johnson 
and Khoshgoftaar apply Deep Learning algorithms and evaluate performance using 
Geometric Mean and Area Under the Curve (AUC) metrics [14]. Employing a dataset 
of approximately five million instances and increasing levels of RUS, their study finds 
that performance metrics deteriorate when the minority class exceeds one percent of 
the training data. Our research diverges from Johnson and Khoshgoftaar’s in several 
significant ways. Firstly, we use AUPRC for evaluation of experimental outcomes, in 
contrast to their use of Geometric Mean And AUC. Secondly, Johnson and Khoshgoftaar 
do not employ feature selection techniques as we do here. Hence, their study does not 
include a detailed exposition of the methodologies available for combining feature 
selection and RUS. A third major difference in our studies is the learners we employ. 
Johnson and Khoshgoftaar employ neural networks, one type of Bagging classifier, 
Random Forest, and one type of Gradient Boosting Decision Tree classifier. Here, we use 
three instances of Gradient Boosting Decision Tree classifiers, and two types of Bagging 
classifiers. These methodological choices create a distinct difference between our study 
and the research conducted by Johnson and Khoshgoftaar.

Hasanin et al. investigate RUS and feature selection for addressing class imbalance in 
bioinformatics Big Data [15]. The Evolutionary Computation for Big Data and Learning 
2014 (ECBDL’14) competition dataset with approximately 32 million records is used in 
their study. The dataset is imbalanced, and has numerous features. Feature selection, 
based on feature importance with a single learner, Random Forest, is used to do feature 
selection. Here, we use a more sophisticated feature selection technique that involves six 
learners. Hasanin et al. employ RUS to address class imbalance. Random Forest, Logistic 
Regression and Gradient Boosted Trees are evaluated using true positive rate (TPR), 
true negative rate (TNR) and their product. Their study demonstrates RUS with feature 
selection can effectively address class imbalance and high dimensionality in Big Data, 
outperforming prior methods on the ECBDL’14 dataset while lowering computational 
costs. Our study reaches beyond the work of Hasanin et  al. not only because of our 
more sophisticated feature selection technique, but also because of our evaluation of 
more classifiers from the Bagging and Boosting families of classifiers, as well as our use 
of two highly imbalanced, Big Medicare Data datasets. A significant difference between 
our studies is in their application domains. Our study is in the healthcare insurance 
fraud detection domain, whereas Hasanin et  al.’s use data from the protein structure 
prediction application domain. A more important difference between our studies is 
the methodologies used. Hasanin et al. employ only one scenario of applying RUS and 
feature selection. Therefore, it seems more preliminary, and not comprehensive. We 
investigate four data reduction scenarios, two of which involve RUS and feature selection 
combined, and we provide results that indicate which scenario yields the best results.

“Explainable machine learning models for Medicare fraud detection” by Hancock et al. 
[16] is a study which focuses on the use of feature selection to build more explainable 
models. Feature selection engenders simpler Machine Learning models, which are 
thus easier to explain. While this study employs feature selection, and is in the same 
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application domain as Hancock et al.’s, this study has a different focus, and provides a 
different contribution. First, this study is focused on data reduction. Hence, we employ 
sampling techniques as well as feature selection. Second, we cover the options one faces 
when designing experiments with multiple data reduction techniques. The study by 
Hancock et al. does not involve the different methodologies practitioners may use when 
designing experiments that involve multiple data reduction techniques. We provide a 
detailed explanation of the methodologies one may employ to use more than one data 
reduction technique. The statistical analysis we provide is an example of how to compare 
experimental outcomes involving multiple data reduction techniques. Such an analysis 
is not provided by Hancock et al. For these reasons, this study is vastly different from 
Hancock et al.

Our literature review reveals an opportunity to extend the field of research in the 
application of Machine Learning to the task of Medicare insurance fraud detection. 
Of the related studies we surveyed, we did not find a study that provides the in-depth 
coverage of the application of an ensemble feature selection technique. Moreover, we 
found some studies did not contain results of experiments combining feature selection 
and RUS. Of the studies that use a combination of RUS and Feature Selection, they do 
not contain an investigation of the different scenarios of RUS and Feature selection, the 
effects of applying them singly or combined, and the order of combination. Other studies 
only made use of one dataset. Many of the studies failed to provide the extensive array 
of classifiers that we use here. In summary, our review of literature exposed the need for 
a comprehensive study into the effects of feature selection and sampling techniques in 
the classification of multiple highly imbalanced Big Data datasets where experimental 
outcomes are documented in terms of AUPRC, and backed by the statistical analyses to 
prove the efficacy of the data reduction techniques.

Datasets
In our research, we employ datasets synthesized from two US government agencies, spe-
cifically the CMS and the United States Office of Inspector General (OIG). Data from 
the CMS is constituted by Medicare Health insurance plans, known as Part B Part D. 
To prepare these data for supervised Machine Learning applications, data aggregation is 
employed for both Part B and Part D datasets. Our datasets derive from publicly acces-
sible Medicare information for the years 2013 to 2019. These datasets are procured in a 
comma-separated format from the CMS website. Within the sphere of health insurance, 
a plan delineates the coverage agreement between the insurer and the insured, specifying 
the range of treatments and medications that the insurance provider will pay for. Part 
B is oriented towards covering treatments and procedures, whereas Part D is tailored 
to cover prescription medications. After this preprocessing phase, the datasets are com-
pleted through a labeling process. This additional information is sourced from the OIG’s 
LEIE [7].

The methodologies for compiling and preprocessing these datasets have been previ-
ously detailed in [17]. Before elaborating on the data aggregation and labeling processes, 
we discuss the Medicare Parts B and D datasets in detail. To bolster our understanding 
of the attributes present within these datasets, we consult data dictionaries supplied by 
CMS, which are available in the public domain [18–20], and [21].



Page 8 of 41Hancock et al. Journal of Big Data            (2024) 11:8 

For our study’s focus on Medicare Part D data, we leverage two distinct datasets. We 
refer to the first dataset as the “provider-drug-level Part D data”. The CMS has designated 
this dataset as the Medicare Part D Prescribers – by Provider and Drug dataset [22]. 
This source offers granular data that captures each unique combination of healthcare 
provider, prescribed medication, and the year when the medications were prescribed. 
Contrastingly, the second source, which we call the “provider-level Part D data”, is 
collected from the Medicare Part D Prescribers – by Provider dataset [23]. This latter 
dataset provides a broader view, furnishing only one record for each healthcare provider 
per year. Thus, difference between the provider-drug-level Part D data and the provider-
level Part D data lies in their respective degrees of specificity, with the former offering a 
more detailed account of prescription practices than the latter.

The provider-drug-level Part D data has 22 attributes. A subset of these attributes, 
specifically those pertaining to provider names and addresses, are excluded from 
Machine Learning processes to circumvent model memorization that would 
compromise generalization. However, we retain the National Provider Identifier (NPI) 
as an exception for future labeling tasks. The dataset contains two specific categorical 
features that denote the class of medication being prescribed. These features are 
eliminated during the data aggregation phase. Descriptive statistics are introduced that 
serve as proxies for the information removed when discarding the medication identifier 
features. Furthermore, while the attribute indicating the year of the claim is instrumental 
for aggregation, it is not used as an independent variable in the supervised Machine 
Learning process. Several numeric features in the dataset are directly pertinent to our 
Machine Learning application. These comprise metrics on the frequency and volume 
of prescription claims, the total associated costs, and the number of patients involved. 
Additional granular features are also available, focusing specifically on patients aged 65 
and above. The provider-drug-level Part D records encompass approximately 174 million 
entries. It is worth noting that upon aggregation, we maintain a categorical feature that 
identifies the type of healthcare provider, which is essential for subsequent analyses. The 
final provider-drug-level Part D features we use are listed in Table 1. This concludes our 
summary of the provider-drug-level Part D data.

Now we move on to describe the provider-level Part D data. Records in this dataset 
have 46 fields. These attributes are based on insurance claims submitted by providers 
across all medications prescribed within a given year. A detailed listing of these features 
is provided in Table 3. The descriptions of the features are taken from the data dictionary 
[21]. Among these features, ten are summary statistics that characterize the beneficiaries 
for whom claims are submitted by the provider. Additionally, an average beneficiary risk 

Table 1 Provider-drug-level part D base features, descriptions from [20]

Feature Description

Prscrbr_Type The Medicare specialty code, describes the type of practice

Tot_Clms The number of Medicare Part D claims this includes original prescriptions and refills.

Tot_30day_Fills The aggregate number of Medicare Part D standardized 30-day fills

Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed

Tot_Drug_Cst The aggregate drug cost paid for all associated claims

Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one claim for the drug
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score is included using a risk-adjustment model based on Hierarchical Condition Cat-
egories (HCC). According to CMS guidelines, an HCC score exceeding the mean value 
of 1.08 is indicative of projected Medicare expenditures that surpass the average.

The provider-level Part D data also furnishes attributes capturing subtotals for 
a myriad of claim categories, such as Low-Income Subsidy (LIS) claims, Medicare 
Advantage Prescription Drug Plan (MAPD) coverage claims, and Medicare Prescription 
Drug Plan (PDP) claims. These subtotals are enumerated in various forms: the overall 
number of claims, the aggregate 30-day prescription orders, cumulative drug costs, the 
total day’s supply dispensed, and the grand total of beneficiaries involved. Furthermore, 
this dataset is also segmented by drug type categories, offering statistics specifically 
for claims related to opiate drugs, long-acting (LA) opiate drugs, antibiotics, and anti-
psychotic medications.

In addition to the datasets focused on Medicare Part D, our research also incorporates 
two distinct datasets pertaining to Medicare Part B. Similar to the Part D datasets, these 
Part B datasets also vary in their level of granularity. The first dataset, which we refer 
to as the “provider-service-level Part B data,” emanates from the Medicare Physician & 
Other Practitioners – by Provider and Service dataset [25]. This dataset offers a granular 
perspective, featuring an individual record for each distinct treatment or procedure 
submitted as a claim to Medicare by a provider for a given year. Conversely, the second 
dataset, which we refer to as “provider-level Part B data” originates from the Medicare 
Physician & Other Practitioners – by Provider [19] dataset. This dataset provides an 
aggregate view, containing records that summarize a provider’s entire claim activity 
for all treatments and procedures over the course of a year. Thus, the main distinction 
between these two datasets lies in the scope of claim-related activities they encapsulate, 
with the former offering specific treatment or procedure information and the latter 
delivering a comprehensive annual summary.

The provider-service-level Part B data contains a total of 29 attributes. Similar to the 
Part D data, a portion of these attributes are related to provider demographics, which 
we intentionally exclude from Machine Learning models to avoid overfitting. Attributes 
denoting specific treatments or procedures are also present but are not included in the 
final aggregated dataset, which is tailored to focus on provider-level characteristics. 
However, we do retain several categorical attributes, specifically those related to the 
provider’s location type, gender, and provider type. In terms of numerical features, 
this dataset is rich in data about submitted claims related to specific treatments and 
procedures. These numerical attributes cover a variety of metrics, including the total 
frequency of the rendered service, the aggregate number of patients benefiting from 
the service, the average daily beneficiary count, and statistical data concerning both 
the provider’s average charges and Medicare’s average payments for the service. The 
provider-service-level Part B dataset has a volume of approximately 68 million records. 
The features used in generating the final Part B dataset are documented in Table 2.

The provider-level Part B data is detailed in Table 4. It has a total of 47 attributes. 
Within this dataset, one subset of features focuses on the demographic distribution 
of treated patients, categorized by age brackets: under 65, 65–75, 75–84, and 85 or 
above. An additional attribute calculates the average number of patients across these 
age groups. The dataset includes seven core features related to annual claims for 
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treatments and procedures sent by providers to Medicare. These features encompass 
variables such as the total types of distinct procedures conducted, the overall patient 
count, the annual amount billed to Medicare by the provider, the allowable Medicare 
payment, and the actual payment disbursed by Medicare. A distinct attribute stand-
ardizes these payment amounts by adjusting for regional cost differences, facilitating 
cross-regional financial comparisons.

Furthermore, 14 attributes of the provider-level part B data are derived by 
segmenting these seven core features into two distinct classifications: medication-
related services and all other services. Additionally, the dataset contains features 
that enumerate the gender distribution among patients. The dataset also includes 
18 attributes that quantify the prevalence of specified chronic conditions, such as 
Alzheimer’s, kidney disease, and asthma, among the provider’s patient population. 
Moreover, an HCC risk score feature, analogous to that found in the provider-level 
Part D data, is also incorporated. To summarize, the provider-level Part B dataset 
contains attributes incorporating both demographic and financial attributes of the 
provider’s patient population along with information about their chronic conditions.

In our methodology for both Part B and Part D datasets, we aggregate information 
at the level of individual drugs or services from the initial source. Subsequently, 
this aggregated data is augmented with attributes from the second source, which is 
organized at the provider level. As stated previously, for the provider-service-level 
Part B data we retain attributes such as provider type, service location, and provider 
gender, given that they pertain to the provider level. Features specific to individual 
services, like the Healthcare Common Procedure Coding System (HCPCS) code, are 
excluded from our final dataset.

Here we transition to a discussion of how we combine the Part B and Part D data-
sets provided by the CMS into the finalized datasets. To further distill the datasets, 
we generate a set of summary statistics–namely sum, mean, median, minimum, max-
imum, and standard deviation–for each remaining numerical attribute. These sum-
mary statistics are calculated for each provider for the entire year. In the final Part D 
dataset, all attributes listed in Table 1, barring Prscbr_Type, have six corresponding 
summary statistics. A similar set of base features for the Part B data is illustrated in 
Table 2. Excepting Rndrng_Prvdr_Gndr, in the final Part B dataset, each feature listed 
in Table 2, is also accompanied by the six summary statistics. The aggregated Part D 

Table 2 Provider-service-level part B base features, descriptions from [24]

Rndrng_Prvdr_Type Derived from the provider specialty code reported on the claim

Place_Of_Srvc Identifies whether the place of service submitted on the claims is a facility

Rndrng_Prvdr_Gndr The provider’s gender

Tot_Srvcs Number of services provided; note that the metrics used to count the 
number provided can vary from service to service

Tot_Benes Number of distinct Medicare beneficiaries receiving the service

Tot_Bene_Day_Srvcs Number of distinct Medicare beneficiary/per day services

Avg_Sbmtd_Chrg Average of the charges that the provider submitted for the service

Avg_Mdcr_Pymt_Amt Average amount that Medicare paid after deductible and coinsurance 
amounts have been deducted for the line item service
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Table 3 Provider-level part D features, descriptions copied from [21]

Feature Description

GE65_Tot_Clms The number of Medicare Part D claims for beneficiaries age 65 and older

GE65_Tot_30day_Fills The number of Medicare Part D standardized 30-day fills for beneficiaries 
age 65 and older

GE65_Tot_Drug_Cst The aggregate total drug cost paid for all associated claims for beneficiaries 
age 65 and older

GE65_Tot_Day_Suply The aggregate number of day’s supply for which this drug was dispensed, 
for beneficiaries age 65 and older

GE65_Tot_Benes The total number of unique Medicare Part D beneficiaries age 65 and older 
with at least one claim for the drug

Brnd_Tot_Clms Total claims of brand-name drugs, including refills

Brnd_Tot_Drug_Cst Aggregate drug cost paid for brand-name drugs

Gnrc_Tot_Clms Total claims of generic drugs, including refills

Gnrc_Tot_Drug_Cst Aggregate cost paid for generic drugs

Othr_Tot_Clms Total claims of other drugs, including refills. A drug is classified as “other” 
using any FDA approval categories not included in the brand or generic 
definitions

Othr_Tot_Drug_Cst Aggregate cost paid for all other drugs not classified as brand or generic

MAPD_Tot_Clms The number of claims for beneficiaries covered by (Medicare Advantage 
plan that includes Medicare Part (MDAPD)

MAPD_Tot_Drug_Cst Aggregate cost paid for claims filled by beneficiaries in MAPD plans

PDP_Tot_Clms The number of claims for beneficiaries covered by standalone Prescription 
Drug Plans (PDPs)

PDP_Tot_Drug_Cst Aggregate drug cost paid for claims filled by beneficiaries in standalone 
PDPs

LIS_Tot_Clms Total number of claims from this prescriber, including refills, for beneficiaries 
with a Part D low-income subsidy (LIS)

LIS_Drug_Cst Aggregate drug cost paid for claims for beneficiaries with a Part D low-
income subsidy

NonLIS_Tot_Clms Total number of claims from this prescriber, including refills, for beneficiaries 
without a Part D low-income subsidy

NonLIS_Drug_Cst Aggregate drug cost paid for claims for beneficiaries without a Part D low-
income subsidy

Opioid_Tot_Clms Total claims of opioid drugs, including refills

Opioid_Tot_Drug_Cst Aggregate cost paid for opioid drugs

Opioid_Tot_Suply The aggregate number of day’s supply for opioid drugs

Opioid_Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one 
opioid claim

Opioid_Prscrbr_Rate The percent of the Tot_Clms represented by the Opioid_Tot_Clms

Opioid_LA_Tot_Clms The aggregate number of day’s supply for long-acting (LA) opioid drugs

Opioid_LA_Tot_Drug_Cst Aggregate cost paid for long-acting opioid drugs

Opioid_LA_Tot_Suply The aggregate number of day’s supply for long-acting opioid drugs

Opioid_LA_Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one 
long-acting opioid claim

Opioid_LA_Prscrbr_Rate The percent of the Opioid_Tot_Clms represented by the Opioid_LA_Tot_
Clms

Antbtc_Tot_Clms Total claims of antibiotic drugs, including refills

Antbtc_Tot_Drug_Cst Aggregate cost paid for antibiotic drugs

Antbtc_Tot_Benes The total number of unique Medicare Part D beneficiaries with at least one 
antibiotic claim

Antpsyct_GE65_Tot_Clms Total claims of antipsychotic drugs, including refills, for beneficiaries age 65 
and older

Antpsyct_GE65_Tot_Drug_Cst Aggregate cost paid for antipsychotic drugs for beneficiaries age 65 and 
older

Antpsyct_GE65_Bene_Suprsn_Flag A flag indicating the reason the Antpsyct_GE65_Tot_Benes variable is 
suppressed
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dataset comprises roughly 6.3 million instances, while the aggregated Part B dataset 
contains approximately 8.7 million instances.

Following the aggregation of both Part D and Part B data at the respective service 
and drug levels, we proceed to integrate these datasets with their corresponding 
provider-level data. Specifically, the National Provider Identifier (NPI) serves as 
the linkage criterion for merging the aggregated Part D data with its provider-level 
counterpart. The NPI plays a similar role for the Part B data. This merging process 
culminates in the creation of unlabeled datasets. Put another way, we join the 
aggregated provider-drug-level Part D data with the provider-level Part D data, and 
we join the aggregated provider-treatment-level Part B data with the provider-level 
part B data.

In the case of Part B data, the size of the unlabeled dataset remains consistent with 
the previously aggregated dataset. Conversely, the unlabeled Part D dataset is reduced 
by approximately one million records, attributable to the absence of corresponding 
provider-level records for certain NPIs and specific years. As a result of this data 
integration, the attribute count stands at 82 for the unlabeled Part B dataset and 80 
for the unlabeled Part D dataset.

In the final stage of dataset preparation for both Part B and Part D data, we incor-
porate labels sourced from the LEIE. Administered on a monthly basis by the Office 
of Inspector General (OIG), the LEIE serves as an authoritative source for healthcare 
providers disallowed from submitting Medicare insurance claims due to legal convic-
tions. We use the same methodology for labeling both the Part D and Part B datasets. 
We align with the fraud indicators utilized by Bauder and Khoshgoftaar, as described 
in their 2016 publication, to categorize types of exclusions that trigger a fraud label 
[26]. Notably, the National Provider Identifier (NPI) is the key for joining the LEIE to 
the Part B or Part D datasets. Whenever a healthcare provider appears on the LEIE 
under the exclusion types for Medicare Fraud, all records affiliated with that pro-
vider, and dated prior to the conclusion of the exclusion time frame, are classified as 
fraudulent.

Table 3 (continued)

Feature Description

Antpsyct_GE65_Tot_Benes The total number of unique Medicare Part D beneficiaries age 65 and older 
with at least one antipsychotic claim

Bene_Avg_Age Average age of beneficiaries

Bene_Age_LT_65_Cnt Number of beneficiaries under the age of 65

Bene_Age_65_74_Cnt Number of beneficiaries between the ages of 65 and 74

Bene_Age_75_84_Cnt Number of beneficiaries between the ages of 75 and 84

Bene_Age_GT_84_Cnt Number of beneficiaries over the age of 84

Bene_Feml_Cnt Number of female beneficiaries

Bene_Male_Cnt Number of male beneficiaries

Bene_Dual_Cnt Number of Medicare beneficiaries qualified to receive Medicare and 
Medicaid benefits

Bene_Ndual_Cnt Number of Medicare beneficiaries qualified to receive Medicare only 
benefits

Bene_Avg_Risk_Scre Average Hierarchical Condition Category (HCC) risk score of beneficiaries
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Table 4 Provider level part B features, descriptions copied from [18]

Tot_HCPCS_Cds Total number of unique HCPCS codes

Tot_Benes Total Medicare beneficiaries receiving services from the provider

Tot_Srvcs Total provider services

Tot_Sbmtd_Chrg The total charges that the provider submitted for all services

Tot_Mdcr_Alowd_Amt The Medicare allowed amount for all provider services

Tot_Mdcr_Pymt_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for all the provider’s line item service

Tot_Mdcr_Stdzd_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for the line item service and after standardization of the Medicare 
payment has been applied

Drug_Tot_HCPCS_Cds Total number of HCPCS codes for drug services

Drug_Tot_Benes Total Medicare beneficiaries receiving drug services

Drug_Tot_Srvcs Total drug services

Drug_Sbmtd_Chrg The total charges that the provider submitted for drug services

Drug_Mdcr_Alowd_Amt The Medicare allowed amount for drug services

Drug_Mdcr_Pymt_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for all the provider’s line item drug services

Drug_Mdcr_Stdzd_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for the line item drug service

Med_Tot_HCPCS_Cds Total number of HCPCS codes associated with medical services

Med_Tot_Benes Total Medicare beneficiaries receiving medical services

Med_Tot_Srvcs Total medical services

Med_Sbmtd_Chrg The total charges that the provider submitted for medical services

Med_Mdcr_Alowd_Amt The Medicare allowed amount for medical services

Med_Mdcr_Pymt_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for all of the provider’s line item medical services

Med_Mdcr_Stdzd_Amt Total amount that Medicare paid after deductible and coinsurance amounts have 
been deducted for the line item medical service

Bene_Avg_Age Average age of beneficiaries. Beneficiary age is calculated at the end of the calendar 
year or at the time of death

Bene_Age_LT_65_Cnt Number of beneficiaries under the age of 65. Beneficiary age is calculated at the end 
of the calendar year or at the time of death

Bene_Age_65_74_Cnt Number of beneficiaries between the ages of 65 and 74. Beneficiary age is calculated 
at the end of the calendar year or at the time of death

Bene_Age_75_84_Cnt Number of beneficiaries between the ages of 75 and 84

Bene_Age_GT_84_Cnt Number of beneficiaries over the age of 84. Beneficiary age is calculated at the end of 
the calendar year or at the time of death

Bene_Feml_Cnt Number of female beneficiaries

Bene_Male_Cnt Number of male beneficiaries

Bene_Dual_Cnt Number of Medicare beneficiaries qualified to receive Medicare and Medicaid 
benefits

Bene_Ndual_Cnt Number of Medicare beneficiaries qualified to receive Medicare only benefits

Bene_CC_AF_Pct Percent of beneficiaries meeting the Chronic Conditions Data Warehouse chronic 
condition algorithm for atrial fibrillation

Bene_CC_Alzhmr_Pct Percent of beneficiaries meeting the Chronic Conditions Data Warehouse (CCW) 
chronic condition algorithm for Alzheimer’s, related disorders, or dementia

Bene_CC_Asthma_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for Asthma

Bene_CC_Cncr_Pct Percent of beneficiaries meeting the CCW chronic condition algorithms for cancer

Bene_CC_CHF_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for heart 
failure

Bene_CC_CKD_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for chronic 
kidney disease

Bene_CC_COPD_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for chronic 
obstructive pulmonary disease

Bene_CC_Dprssn_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for depression
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The datasets for Part B and Part D span complete calendar years, whereas exclusion 
periods in the LEIE terminate at specific months. To reconcile this disparity, we round 
the conclusion of an exclusion period to the nearest year-end. Following the lapse of an 
exclusion term, healthcare providers are consequently removed from the LEIE, making 
them eligible to submit Medicare claims anew. All subsequent claim data for these pro-
viders are, therefore, deemed non-fraudulent.

It is worth noting that the present version of the LEIE will not incorporate records 
of providers who were once listed but are no longer excluded. Therefore, for a 
comprehensive dataset spanning multiple years, one may need to resort to archival 
services, such as the Internet Archive Tool, to consult previous LEIE editions for 
accurately labeling older CMS data. A summary of this labeling undertaking for the Part 
B and Part D datasets is provided in Table 5.

Classifiers
To ensure the repeatability of our findings, we have employed a combination of both 
ensemble and linear learning algorithms for our classification experiments. The 
algorithms are open-source, and widely available via the Internet. Specifically, our 
ensemble methods comprise XGBoost [27], LightGBM [28], Extremely Randomized 
Trees (ET) [29], Random Forest [30], and CatBoost [31]. For linear classification, we 
utilized Logistic Regression [32]. Additionally, for the feature selection process, we 
incorporated the aforementioned ensemble methods along with the Decision Tree 
algorithm [33]. Here, we provide an in-depth overview of the fundamental characteristics 
of each Machine Learning method employed in our research.

Table 4 (continued)

Bene_CC_Dbts_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for diabetes

Bene_CC_Hyplpdma_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for 
hyperlipidemia

Bene_CC_Hyprtnsn_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for 
hypertension

Bene_CC_IHD_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for ischemic 
heart disease

Bene_CC_Opo_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for 
osteoporosis

Bene_CC_RAOA_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for 
rheumatoid arthritis/osteoarthritis

Bene_CC_Sz_Pct Percent of beneficiaries meeting the CCW chronic condition algorithm for 
schizophrenia and other psychotic disorders

Bene_cc_strok_pct Percent of beneficiaries meeting the CCW chronic condition algorithm for stroke

Bene_Avg_Risk_Scre Average Hierarchical Condition Category (HCC) risk score of beneficiaries

Table 5 Summary of part B and part D datasets

Dataset Instance count Fraudulent Ratio fraudulent Number 
of 
features

Part D 5,344,106 3,700 0.0693% 80

Part B 8,669,497 3,954 0.0456% 82
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Given its inherent simplicity relative to other classifiers, Logistic Regression, [32] 
serves as an apt starting point. At its core, Logistic Regression revolves around tailoring 
a sigmoid function to a dataset. This is accomplished by setting the sigmoid function’s 
parameters to the maximum likelihood estimate of their value, given the training data. 
A Logistic Regression model is characterized by one parameter for each independent 
variable. This attribute renders it considerably simpler than many ensemble methods 
which have a larger number of parameters due to their being composed of instances 
of other models. Our rationale behind employing Logistic Regression in our study is 
to ensure we check for the potential efficacy of a simpler model before recommending 
more sophisticated algorithms that consume far more computing resources.

In this research, we employ an array of ensemble algorithms that can be broadly 
classified into Bagging techniques and Gradient Boosted Decision Tree (GBDT) 
techniques. Within these categorizations, ET and Random Forest are examples of the 
Bagging paradigm. CatBoost, XGBoost, and LightGBM exemplify the GBDT framework. 
Our selection is underpinned by a desire to bolster the robustness of our findings 
across diverse algorithmic methodologies. Bagging and GBDT techniques take distinct 
approaches as ensemble techniques for harnessing the power of multiple learners in 
classification scenarios.

The landscape of Machine Learning changed with the introduction of the Bagging 
concept by Breiman in 1996 [34]. Breiman’s work illuminated the applicability of 
Bagging in classification and regression scenarios. Given that our investigative efforts are 
channeled towards binary classification, we delve deeper into Breiman’s explanation of 
Bagging’s for binary classification. At its core, Bagging entails the training of multiple 
instances of a Machine Learning algorithm to an array of bootstrap samples procured 
from the training dataset, thus building an ensemble of learners. Bootstrap samples 
are instances sampled, with replacement, from the training data, as defined in [35]. 
An intriguing facet of the Bagging technique is the allowance for the instances of the 
algorithms to be weak learners. A weak learner is a Machine Learning algorithm that 
would yield suboptimal performance in isolation. However, in an ensemble setting, 
the aggregate results of the weak learners can be much better than their individual 
performance. The underlying logic for Bagging’s proficiency in bolstering classification 
performance is probabilistic in nature. Suppose it is the case that there is a better than 
50% chance a weak learner makes an accurate classification. Then, as we augment the 
count of such weak learners in an ensemble, the likelihood of a majority leaning towards 
accurate classification amplifies. Therefore, with a larger ensemble size, Bagging exhibits 
an increased propensity to render correct classification results. The culmination of the 
Bagging process is a classification output, which is determined by the consensus–or the 
class identified by the majority–among the ensemble learners.

In our study, one of the Bagging techniques we employ is Random Forest, an algo-
rithm conceived by Breiman [30]. The foundational architecture of Random Forest is 
deeply rooted in the Bagging principle but is distinguished by an innovative enhance-
ment. To fully appreciate this enhancement, it is imperative to first elucidate the con-
cept of a “split” in the context of Decision Trees. Within a Decision Tree structure, the 
non-leaf nodes encapsulate rules. These rules specify which subsequent node should be 
navigated to, based on the comparison of an attribute of the data to a value which was 
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optimally determined during the model’s training phase. The value used in the com-
parison is referred to as a split. Consequently, the essence of training a Decision Tree 
model is contingent upon astutely determining the optimal values for these splits. Since 
it is an instance of the Bagging paradigm, the weak learners in Random Forest are Deci-
sion Trees. Therefore, split calculation is important for Random Forest. Random Forest 
amplifies the traditional Decision Tree algorithm with a novel twist. In lieu of relying 
on the entire feature set, when calculating the optimal value for a split, Random For-
est adopts a strategy of considering only a randomly chosen subset of features. This 
approach differentiates Random Forest from a plain Bagging approach applied to Deci-
sion Trees.

In a further exploration of the Bagging technique, we added the Extremely 
Randomized Trees (ET) classifier [29] to the collection of algorithms used in this study. 
The ET classifier, while emerging from the same lineage as Random Forest, manifests 
a distinct methodological approach, especially in its strategy for Decision Tree splits. 
For comparison, Random Forest adopts deterministic logic to calculate splits in 
its constituent Decision Trees. Therefore, the process is driven by an algorithm for 
identifying the optimal split values for Decision Trees. In contrast, ET introduces a 
change by forgoing this deterministic methodology. Instead, it embarks on a route of 
randomly selecting split values. While this deviation might appear counter-intuitive at 
first glance, our empirical research offers intriguing insights. Specifically, in the domain 
of Medicare fraud detection, especially when handling highly imbalanced Big Data 
sets, ET’s random split selection strategy frequently exhibits competitive classification 
performance.

GBDT classifiers emerge from the foundational work of Friedman on the Gradient 
Boosted Machine algorithm [36]. Central to Friedman’s ensemble approach is its 
iterative nature. Beginning with a preliminary learner, an initial prediction set ŷ for the 
dependent variable y is generated. Discrepancies arising between this predicted set ŷ and 
the genuine values y are used to calculate the residual vector y − ŷ . This residual is then 
treated as a dependent variable, estimated using a subsequent learner. The sum of the 
outputs of the two models, an ensemble, has improved accuracy in predicting y . As this 
iterative model-building extends, every subsequent learner is attuned to the residuals of 
the preceding ensemble, thus refining the estimation at each juncture. Contemporary 
algorithms such as XGBoost, LightGBM, and CatBoost refine Friedman’s original 
concept. Their shared reliance on Decision Trees warrants their collective designation as 
Gradient Boosted Decision Trees (GBDTs).

In our study, we employ CatBoost, a novel GBDT framework proposed by 
Prokhorenkova et al. in 2018 [31]. Central to CatBoost’s research ethos, as articulated 
in its foundational paper, is the challenge of overfitting. Addressing this concern, 
Prokhorenkova et  al. advanced two distinct strategies. Ordered Boosting, the 
primary strategy, emphasizes the judicious selection of training instances for fitting 
Decision Trees within the CatBoost ensemble. The entire process of incorporating 
a Decision Tree into the GBDT ensemble is bifurcated into two phases. Initially, 
prospective Decision Trees are fit to the dependent variable present in the training 
dataset. Subsequently, these candidate trees undergo an evaluation process, with the 
prime objective being the identification and selection of a tree that best amplifies the 
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ensemble’s cumulative efficacy. Crucially, within the Ordered Boosting paradigm, 
there is a stringent guideline ensuring that instances utilized for fitting a particular 
Decision Tree are excluded from its evaluation phase. Such a meticulous approach 
acts as a bulwark against the ensemble’s propensity to overfit to the training dataset.

The designers of CatBoost took another pivotal measure to curtail overfitting. This 
is the Ordered Target Statistics method, designed for the encoding of categorical 
features. This approach is underpinned by the foundational concept of target 
encoding. At the heart of target encoding is the process wherein the encoded value 
for a specific categorical feature is ascertained based on the mean value of the 
dependent variable it correlates with. Notably, such a straightforward encoding 
mechanism is fraught with potential pitfalls, a prominent one being “target leakage”, 
as delineated by Prokhorenkova et  al. We define target leakage with an illustrative 
scenario. Imagine a circumstance where an encoded feature’s value associates with 
one dependent variable value in the training and a completely different value in the 
test data. Under conventional target encoding, this feature’s encoded value conveys 
information regarding the target value it co-occurs with in the training data, but not 
the test data. Therefore, the target encoding undermines the feature’s efficacy as a 
predictor for the dependent variable. To safeguard against such pitfalls, the Ordered 
Target Statistics method is engineered to ensure that the encoding of a categorical 
feature for a particular instance is predicated solely on data from other instances. 
This intrinsic design criterion eliminates the potential for an instance’s encoded 
feature value to be intrinsically linked to its corresponding dependent variable value. 
In summary, the Ordered Target Statistics method, with its approach to categorical 
feature encoding, fortifies CatBoost’s defense mechanisms against overfitting.

In recent studies, the Gradient Boosting Decision Tree (GBDT) method has seen sig-
nificant advancements with the introduction of the LightGBM framework. Established 
by Ke et al. in their 2017 paper [28], LightGBM was conceived to rival the performance 
of XGBoost, yet with an emphasis on reducing resource demands. Central to Light-
GBM’s efficacy are two novel advancements pioneered by Ke et  al.: Exclusive Feature 
Bundling (EFB) and Gradient-based One-Side Sampling (GOSS). EFB provides a mecha-
nism to diminish the dataset’s dimensions by combining pairs of attributes. The crux 
of this method hinges on the observation that certain attributes in a dataset, especially 
those exhibiting sparsity, can occasionally demonstrate mutually exclusive occurrences 
in their infrequent values. Sparse data is characterized by predominantly static values 
punctuated by infrequent variations. In datasets with multiple sparse features, these 
attributes can be combined into a singular feature, ensuring minimal information loss. 
EFB’s application, especially pertinent to sparse data, leads to a reduction in the dataset’s 
dimensions, translating to expedited training. Conversely, GOSS offers an approach to 
optimize the number of training instances during LightGBM’s training phase. The prin-
ciple behind GOSS is to prioritize instances based on their contribution to the aggre-
gate loss function, which is integral to fitting the GBDT ensemble to the training dataset. 
This procedure ensures that instances contributing beyond a modifiable threshold to 
the model’s overall loss are retained for ensuing iterations. Conversely, instances fall-
ing below this threshold find themselves excluded. Collectively, through the combined 
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capabilities of GOSS and EFB, Ke et al. delivered a GBDT framework in LightGBM that 
demonstrates an appreciable reduction in computational overhead.

In 2016, Chen and Guestrin unveiled XGBoost, marking it as the pioneering GBDT 
among the three we employ in this study. Beyond the conventional GBDT framework, 
XGBoost introduces several enhancements. Notably, during its training phase, an 
advanced loss function is added that integrates an additional regularization term, acting 
as a countermeasure against overfitting. This enhancement is further complemented by 
XGBoost’s refined approach to determining splits within its Decision Tree ensemble. 
Chen and Guestrin’s innovative “approximate algorithm” is another enhancement to 
Friedman’s original approach. It facilitates the estimation of optimal split values, proving 
useful when the full dataset surpasses the constraints of available memory and exhibiting 
benefits in distributed computing scenarios. Additionally, XGBoost addresses challenges 
posed by sparse data. With its “sparsity aware split finding” mechanism, XGBoost can fit 
more efficiently to sparse data.

The next algorithm we discuss is Decision Tree. This algorithm holds paramount 
significance in our study given its foundational role in the ensemble techniques we 
employ, as well as its utilization in our ensemble feature selection method. Hence, we 
expand on our comments regarding Decision Trees above. Decision tree algorithms 
iteratively construct a hierarchical structure that captures a decision process. Here 
we refer to the Decision Tree structure, as well as the algorithm that builds it both as 
“Decision Tree.” Initially, Decision Tree establishes a rule based on an attribute value 
compared to a threshold, or split. This rule is visualized as a node from which two 
edges emerge, leading to nodes representing either outcome of the binary classification. 
These end nodes, denoting specific class assignments, are referred to as leaf nodes. 
The decision rule divides a dataset in two classes. Decision Tree will choose the value 
for the split that optimizes the change in the value of a metric evaluated on the full 
sample, as well as the two subsamples that the decision rule divides the data into. Two 
such metrics are Shannon Entropy and Gini Impurity. Intuitively, both of these metrics 
measure the homogeneity of elements in a set. A well-chosen value for a split increases 
the homogeneity of the elements in the subsets, meaning the split is the best value for 
dividing the dataset into two distinct classes. During the Decision Tree construction 
process, the paths to leaf nodes undergo further subdivisions by incorporating additional 
decision rules, which further increase the homogeneity of the subsets of classes that the 
Decision Tree divides the dataset into. This iterative enhancement is represented by 
the introduction of intermediary nodes, effectively increasing the number leaf nodes 
in the decision tree. Please see Table 6 for the hyperparameters used for all algorithms 
described here. If an algorithm is not mentioned, we used default values for all 
hyperparameters.

This concludes our discussion of the classifiers used in our study. Now we move on to 
discuss the methodology of our experiments.

Methodology
Here we describe our experimental methodology. We conduct experiments with the Part 
B and Part D data by following five scenarios. One element in common to each scenario 
is ten iterations of five-fold cross validation, so we explain that first.
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Five-fold cross validation is a process of five iterations. In five-fold cross-validation, 
we systematically divide the data into five parts with an approximately equal size and 
distribution of class membership. In each iteration, we shuffle the data. Then we use 
four fifths, or 80% of the data, to train the model. We use the remaining 20% to evalu-
ate the performance of the trained model. Performance evaluation begins with feeding 
the trained model the test data. The model then assigns class membership probabilities 
to each instance of the test data. We refer to this assignment of probabilities as a clas-
sification. To complete evaluation of performance, we compute the AUPRC score of the 
classification. In every scenario, we perform ten iterations of five-fold cross validation, 
which results in 50 AUPRC scores, all of which are recorded for later analysis. Ten itera-
tions are performed to mitigate the effects of random chance impacting experimental 
outcomes. Please see Fig. 1 for a flow chart of the ten iterations of five-fold cross valida-
tion process.

Calculation of the AUPRC score is also something in common to each scenario, since 
it is performed in each iteration of five-fold cross validation. The precision-recall curve 
represents the trade-off between precision and recall. Precision is defined as

Table 6 Hyperparameter settings used in experiments

*Setting selects Graphics Processing Unit (GPU) implementation of the classifier

Classifier Parameter name Parameter setting

CatBoost task_type ‘GPU’*

max_ctr_complexity 1

max_depth 5

ET max_depth 8

XGBoost max_depth 3

tree_method ‘gpu_hist’*

LightGBM max_depth 4

Random Forest max_depth 4

Fig. 1 Five-fold cross validation
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where TP is the number of true positives and FP is the number of false positive. The 
definition of recall is

where FN is the number of false negatives. To calculate AUPRC, the threshold 
probability value for deciding class membership is successively reduced. For each 
threshold value, precision and recall values are plotted as points on a curve. There is a 
tendency for recall values to increase as the classification threshold decreases, due to a 
greater chance of an instance being assigned to the positive class. However, the increase 
in recall is often at the sacrifice of precision, also due to the higher chance of an instance 
being assigned to the positive class. Therefore, the multiple values of precision and recall 
recorded form a characteristic curve. The area under this curve is a composite metric, 
covering the model’s proficiency over a range of threshold values. Numerical integration 
techniques are used to calculate the area under the curve.

We have covered the ten iterations of five-fold cross validation, and calculation of 
AUPRC, which are elements in common to all five scenarios. Now, we proceed to dis-
cuss the aspects that are unique for each scenario. The scenarios exhaust the ways one 
could apply RUS and Feature Selection as data preprocessing steps. The first scenario, 
which we call “Scenario One” is the scenario where we apply RUS only. While other 
sampling techniques are available, results documented in previous research on sam-
pling techniques applied to highly imbalanced Big Data show that RUS yields the best 
performance [37]. Since RUS is only applied to the training data, it must be applied 
during each fold of five-fold cross validation. In order to apply RUS, we select a target 
class ratio of minority to majority instances, then we randomly remove instances of 

precision =
TP

TP+ FP
,

recall =
TP

TP+ FN
,

Fig. 2 Procedure for scenario one experiments, RUS only
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the majority class until the target class ratio is reached. For the experiments in this 
study, we use target class ratios of 1:1, 1:3, 1:27, 1:81. Moreover, we include experi-
ments where the data is left at its original class ratio to validate the effect of RUS. The 
stage in Scenario One experiments where RUS is applied is depicted in Fig. 2.

This concludes our discussion of Scenario One, now we move on to discuss Scenario 
Two. Since Scenario Two involves our supervised feature selection technique, we must 
describe it first. It is important to note that supervised feature selection takes place 
prior to the start of the ten iterations of five-fold cross validation. The crux of the fea-
ture selection process is a feature ranking technique. Our feature ranking technique 
leverages six learners to generate an ordered list of the features of a dataset. The six 
learners are CatBoost, XGBoost, LightGBM, Decision Tree, Random Forest, and ET. 
Each of these learners builds a feature importance list as a side effect of the training 
process. Therefore, we train the six learners to obtain six feature importance lists. To 
apply our feature selection technique we merge the six lists according to the follow-
ing logic: we assign each feature the median value of its rank in each of the six feature 
importance lists. This places an order on the features in the dataset, and we can select 
a number of features in this order. Figure 3 depicts the feature ranking process.

Scenario Two experiments are experiments where we apply our novel, ensemble 
supervised feature selection technique as the only data preprocessing step. The feature 
ranking process must be performed only once per dataset. In Fig. 4, we show how feature 
selection fits into Scenario Two. At the beginning of Scenario Two, we reuse the work 
depicted in Fig. 3 by selecting the top k features from the list that the feature ranking 
process produces. For the Scenario Two with Part D data, we use this technique to build 
feature sets of sizes 7, 10, 15, 20, 25, and 30 features. We include experiments where 
all features are used as a check for the effectiveness of the feature selection technique. 
One may notice in our results for experiments with Part D data that we have feature 

Fig. 3 Procedure for ensemble feature ranking
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sets named “7a” and “7b”. This is because it is possible for two features to be assigned 
the same rank, because they have the same median rank. Hence, we build datasets with 
seven features with one of each feature that has the same rank at position 7.

For experiments with Part B data, we use feature sets of size 10, 15, 20, 25, 30 as well 
as the set of all features. Experiments with Part D data showed that models built with 
ten features yielded performance that is significantly better than the performance 
of models built with any other number of features, hence the experiments with 7 
features for the Part D data. For experiments with Part B data, models built with 10 
features did not significantly outperform other models in terms of AUPRC scores, so 
it was not necessary to conduct experiments with fewer features.

The next scenario, Scenario Three is the first scenario where we use a combina-
tion of RUS and feature selection. In Scenario Three, we do feature selection first, 
then apply RUS. Before the start of the ten iterations of five-fold cross validation, the 
ensemble feature selection technique is applied to the dataset to rank the features. At 
the start of the experiment, a decision is made on how many of the highest ranking 
features will be used. Since our results from the Scenario Two experiments with the 
Part D data show that models built with 7 features do not outperform models built 
with ten features, for our Scenario Three experiments we use feature set sizes of 10, 
15, 20, 25, 30, and all features. The same numbers of features are used for experi-
ments with the Part D and the Part B data. Scenario Three experiments are similar to 
Scenario One experiments, since we apply RUS to the training data before the train-
ing step of each fold of five-fold cross validation. However, since the Scenario One 
experiments with the Part D and Part B data both show that the 1:81 class ratio yields 
the best performance, we only apply RUS to induce class ratios of 1:81 in the Scenario 
Three experiments. Scenario Three is depicted in Fig. 5.

In Scenario Four, we apply RUS prior to feature ranking. We refer to the modified 
feature ranking process as RUS prior to feature ranking. RUS is applied to the data 

Fig. 4 Methodology for scenario two experiments, feature selection only
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prior to the start of the ensemble feature ranking technique. We only apply RUS to 
induce a 1:81 class ratio in the data prior to feeding the data to the classifiers to 
obtain the feature importance lists. As stated previously, we use the 1:81 class ratio 
because we found that the 1:81 ratio yields the best performance in the Scenario One 
experiments. In order to perform RUS prior to feature selection we make a modifica-
tion to the ensemble feature selection technique. We make the modification in order 
to mitigate the impact of RUS on the ensemble feature ranking process. The modifi-
cation is that for each learner, we repeat the feature ranking process ten times. That 
is, we apply RUS to the data, to generate six ranked lists of all features, ten times. 
Then, in the merge step we merge all the ranked lists. In our study we use six learn-
ers, so we generate sixty ranked lists of features. We then merge the sixty ranked 
lists according to the same logic as the feature selection technique as it is described 
in figure 6.

After generating the ranked list of features from the RUS then feature selection pro-
cess depicted in Fig. 6, we are ready to conduct the Scenario Four experiments. We 
use the same numbers of features, 10, 15, 20, 25, 30, and all features, for the Scenario 
Four experiments as used in the Scenario Three experiments. In these experiments, 
we perform RUS during cross validation. It is important to note that the features in 
each subset of features selected in Scenario Four may be different from the features 
selected in Scenario Two or Three because the feature ranking process for Scenario 
Four is different from that used in Scenarios Two and Three. Please see Fig. 7 for a 
graphical description of Scenario Four. In Scenario Four, RUS to induce a class ratio 
of 1:81 is also applied during the training phase as well. We induce the 1:81 class ratio 
since this ratio yields the best results in Scenario One experiments.

We have Scenario Five as a control so that we can be certain there is some ben-
efit to our data reduction techniques. In Scenario Five, we apply no preprocessing 

Fig. 5 Methodology scenario three experiments, for feature selection, then RUS
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to the data before using it to train the classifiers. Therefore, in Scenario Five, we do 
ten iterations of five-fold cross validation, with all features and the data at its original 
class ratio. Hence, Scenario Five is depicted in Fig. 1. This concludes our discussion of 
methodology, now we move on to present our results.

Fig. 6 Methodology for RUS followed by supervised feature selection

Fig. 7 Methodology scenario four experiments, for RUS then feature selection
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Results
In this section, we present results for classification experiments. All the numeric fig-
ures in tables in this section are the mean values of ten iterations of five-fold cross 
validation. We present classification results first for experiments on the Part D data, 
and then for experiments with the Part B data. We have subsections for Scenarios 
One through Four. Results for Scenario Five are included as the columns in the tables 
for Scenario One where the original class ratios are used. In the tables of this section, 
the figures in bold text indicate the maximum value for the classifier.

Part D scenario one: RUS only

Table  7 holds results from experiments where we vary the induced class ratio 
with RUS. In Table  7, we notice an upward trend in AUPRC scores as the class 
ratio approaches the original ratio. However, there are some cases, such as that of 
LightGBM’s, when experiments where RUS is applied yield higher AUPRC scores 
than cases where RUS is not applied. As can be seen in Table  7 for LightGBM, 
this is the 1:27 ratio. The substantial improvement in LightGBM’s performance 
is significant, and highlights the importance of including RUS in experiments with 
highly imbalanced Big Data for evaluating classifiers.

Part D scenario two: feature selection only

The experimental outcomes in terms of AUPRC are listed in Tables  8 and 9. Inter-
estingly, the classifiers yield higher AUPRC scores when feature selection is applied. 

Table 7 Mean AUPRC values by classifier and induced class ratio for ten iterations of five-fold cross 
validation, for part D scenario one

The bold values indicates the maximum value for the classifier

Ratio Classifier 1:1 1:3 1:9 1:27 1:81 1:1,429

CatBoost 0.6304 0.7047 0.7498 0.7662 0.7798 0.7793

ET 0.0937 0.1199 0.1635 0.2029 0.2401 0.3254
LightGBM 0.5786 0.6588 0.7025 0.7183 0.6783 0.5132

Logistic regression 0.1189 0.1701 0.2173 0.2455 0.2700 0.3060
Random forest 0.1784 0.2208 0.2212 0.2240 0.2199 0.2469
XGBoost 0.6065 0.6768 0.7164 0.7377 0.7351 0.7372

Table 8 Mean AUPRC values by classifier and number of features (Part 1) for ten iterations of five-
fold cross validation, for part D scenario two

The bold values indicates the maximum value for the classifier

Features classifier 7a 7b 8 9 10

CatBoost 0.7575 0.7582 0.7570 0.7558 0.7585
ET 0.5941 0.5171 0.5585 0.6006 0.5878

LightGBM 0.4548 0.4533 0.4689 0.5116 0.5529
Logistic Regression 0.3468 0.3368 0.3497 0.3482 0.3537
Random Forest 0.5873 0.4937 0.5927 0.5393 0.5903

XGBoost 0.7533 0.7539 0.7533 0.7514 0.7571



Page 26 of 41Hancock et al. Journal of Big Data            (2024) 11:8 

CatBoost, Random Forest, Logistic Regression, and XGBoost yield the highest 
AUPRC scores with 15 features. ET yields the highest AUPRC score with nine fea-
tures. LightGBM yields the best performance with ten features. Therefore, the results 
in Tables 8 and 9 are strong evidence that feature selection can improve the perfor-
mance of classification results with Medicare Part D data.

Part D scenario 3: feature Selection, then RUS 1:81

Table  10 contains the mean AUPRC scores for the same experiments where we 
perform feature selection, then sample the training data to induce a 1:81 class ratio. It is 
interesting to note that all classifiers trained on preprocessed data yield higher AUPRC 
scores when classifying data in the test set than classifiers trained on the original data. In 
both the Scenario two and Scenario Three results we see better performance with fewer 
features. Models with fewer features are easier to explain because they are simpler and 
there is a reduced chance for complex interactions.

Part D scenario four: RUS 1:81 then feature selection

The last results we report are for experiments performed with another hybrid 
approach. The experiments in this scenario use RUS and feature selection in a different 
combination that in Scenario Three. In Scenario Four, data is sampled to a 1:81 level, 
then supervised feature selection is applied to rank features. A clear impact of the 
preprocessing treatment is apparent in terms of the AUPRC scores. In Table 11, we see 
that all classifiers exhibit a response to the preprocessing treatment. Models trained on 
the preprocessed data yield higher scores than models trained on the original dataset.

Table 9 Mean AUPRC values by classifier and number of features (Part 2) for ten iterations of five-
fold cross validation, for part D scenario two

The bold values indicates the maximum value for the classifier

Features classifier 15 20 25 30 82

CatBoost 0.8016 0.7953 0.7962 0.7949 0.7797

ET 0.4954 0.4647 0.4605 0.4391 0.3275

LightGBM 0.4447 0.4661 0.4603 0.4841 0.4982
Logistic regression 0.3669 0.3536 0.3519 0.2939 0.3047

Random forest 0.6097 0.5398 0.5519 0.5249 0.2429

XGBoost 0.7889 0.7448 0.7589 0.7548 0.7376

Table 10 Mean AUPRC values by classifier and number of features for ten iterations of five-fold 
cross validation, for part D scenario three

The bold values indicates the maximum value for the classifier

Features classifier 10 15 20 25 30 82

CatBoost 0.7589 0.8051 0.7973 0.7984 0.7938 0.7798

ET 0.4986 0.4151 0.3933 0.4009 0.3668 0.2401

LightGBM 0.7070 0.7400 0.7100 0.7019 0.6937 0.6783

Logistic regression 0.3117 0.3189 0.3117 0.3170 0.2486 0.2700

Random forest 0.4820 0.4753 0.3983 0.4120 0.3545 0.2199

XGBoost 0.7473 0.7860 0.7588 0.7554 0.7491 0.7351
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Part B scenario one: RUS only

Here, we report the results of experiments in which we repeated the scenarios we 
conducted in experiments with the Part D data, with the Part B data. Table 12 holds 
the AUPRC scores that are the outcomes of experiments where we induce various 
class ratios in the training data. Here the impact of the treatment is not as clear, 
however, there is an improvement in the performance of LightGBM when trained 
on the preprocessed data over LightGBM when trained with data at its original class 
ratio.

Part B scenario two: feature selection only

Table 13 contains the AUPRC scores that are the result of training models on the Part B 
data when it is preprocessed with feature selection. We find it is important to point out 
that all classifiers yield better performance when trained on fewer than all features.

Table 11 Mean AUPRC values by classifier and number of features for ten iterations of five-fold 
cross validation, for part D scenario four

The bold values indicates the maximum value for the classifier

Features classifier 10 15 20 25 30 82

CatBoost 0.7546 0.7992 0.7914 0.7965 0.7926 0.7798

ET 0.4765 0.4228 0.3857 0.3967 0.3639 0.2401

LightGBM 0.7073 0.7268 0.6971 0.6974 0.6857 0.6783

Logistic regression 0.2609 0.2785 0.2358 0.2461 0.2613 0.2700

Random forest 0.4209 0.4639 0.3311 0.3553 0.3392 0.2199

XGBoost 0.7471 0.7743 0.7550 0.7524 0.7476 0.7351

Table 12 Mean AUPRC values by classifier and induced class ratio for ten iterations of five-fold cross 
validation, for part B scenario one

The bold values indicates the maximum value for the classifier

Ratio classifier 1:1 1:3 1:9 1:27 1:81 1:2,500

CatBoost 0.4428 0.5320 0.6228 0.6569 0.6812 0.6817
ET 0.0125 0.0135 0.0184 0.0272 0.0336 0.0433
LightGBM 0.4001 0.4859 0.5563 0.5967 0.5766 0.4146

Logistic regression 0.0058 0.0069 0.0076 0.0086 0.0099 0.0103
Random forest 0.0791 0.1210 0.1596 0.1829 0.2017 0.2462
XGBoost 0.4240 0.5104 0.5783 0.6234 0.6536 0.6886

Table 13 Mean AUPRC values by classifier and number of features for ten iterations of five-fold 
cross validation, for part B scenario two

The bold values indicates the maximum value for the classifier

Features classifier 10 15 20 25 30 80

CatBoost 0.6581 0.6792 0.7069 0.7009 0.7016 0.6817

ET 0.0400 0.0462 0.0443 0.0524 0.0424 0.0433

LightGBM 0.3939 0.3830 0.4261 0.4589 0.4293 0.4146

Logistic regression 0.0093 0.0326 0.0338 0.0065 0.0064 0.0103

Random forest 0.4356 0.3990 0.3736 0.3800 0.3395 0.2462

XGBoost 0.6611 0.6715 0.6995 0.6956 0.6955 0.6886
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Part B scenario three: feature selection then RUS 1:81

Table 14 contains the AUPRC scores from the results of experiments in Scenario Three. 
In Scenario Three, Part B data that is preprocessed by feature selection, followed by RUS. 
The results in Table 14 show that all models respond well to being trained with data that 
is preprocessed with the Scenario Three approach. That is to say, the maximum scores 
each classifier yields is when the classifier is trained with the preprocessed data.

Part B scenario four: RUS 1:81 then feature selection

Lastly for the Part B data, we review the AUPRC scores of classifiers trained on 
data which is first undersampled to the 1:81 class ratio, and then feature selection is 
applied. An inspection of these scores in Table 15 reveals that all models yield higher 
AUPRC scores in the classification of the training data when they are trained on data 
preprocessed with the Scenario Four technique. We find this result is noteworthy and 
should be considered for further analysis.

Statistical analysis
In the Statistical analysis that follows, we first present an analysis of results for the 
four scenarios separately to determine which levels of experimental factors yield the 
best performance. Then, we do a combined analysis of the outcomes of each scenario 
to determine which scenario(s) yield the best performance. We coin the term “inter-
scenario analysis” for the combined analysis.

Table 14 Mean AUPRC values by classifier and number of features for ten iterations of five-fold 
cross validation, for part B scenario three

The bold values indicates the maximum value for the classifier

Features classifier 10 15 20 25 30 80

CatBoost 0.6600 0.6850 0.7143 0.7047 0.7023 0.6812

ET 0.0233 0.0261 0.0317 0.0429 0.0358 0.0336

LightGBM 0.5756 0.5904 0.6185 0.6009 0.6030 0.5766

Logistic regression 0.0076 0.0205 0.0217 0.0074 0.0076 0.0099

Random forest 0.2820 0.2758 0.3168 0.3225 0.2990 0.2017

XGBoost 0.6436 0.6535 0.6798 0.6708 0.6681 0.6536

Table 15 Mean AUPRC values by classifier and number of features for ten iterations of five-fold 
cross validation, for part B scenario four

The bold values indicates the maximum value for the classifier

Features classifier 10 15 20 25 30 80

CatBoost 0.6787 0.6725 0.6994 0.6978 0.6975 0.6812

ET 0.0289 0.0352 0.0495 0.0512 0.0462 0.0336

LightGBM 0.5968 0.5803 0.6063 0.5935 0.5938 0.5766

Logistic regression 0.0078 0.0065 0.0067 0.0069 0.0090 0.0099
Random forest 0.3313 0.3036 0.3161 0.3120 0.2892 0.2017

XGBoost 0.6560 0.6406 0.6644 0.6630 0.6662 0.6536
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Part D scenario one: RUS only

The first analysis we perform is for Scenario One, where we do RUS only. Our meth-
odology for statistical analysis is as follows: first we conduct an analysis of variance 
ANOVA test to determine whether the experimental factors have a significant impact 
on experimental outcomes [38]. We set a significance level of α = 0.01 for the ANOVA 
test so that if the Pr(>F), or p-value of the significance test is less than or equal to 0.01, 
we reject the null hypothesis that the factor has no impact on experimental outcomes. 
If we reject the null hypothesis, then we perform a Tukey’s Honestly Significant Dif-
ference (HSD) test to rank the levels of experimental factors in terms of their impact 
on the experimental outcomes [39]. The outcome of the Tukey HSD test is a labeling 
of experimental factors such that the alphabetical order of the label on the factor cor-
responds to the experimental outcome it is associated with. Therefore, the factors in 
the group labeled ‘a’ are associated with the highest values of experimental outcomes, 
and so on. For the purpose of this study, an experimental outcome is the mean AUPRC 
score recorded as the outcome of ten iterations of five-fold cross validation for a par-
ticular combination of experimental factors.

Table 16 holds the result of the ANOVA test for experiments in Scenario One. In 
Scenario One we select a classifier and a class ratio for the training data. As stated 
previously, we use six classifiers in our study, therefore, there are 5 degrees of free-
dom (DF) in Table 16. Similarly, since we use six different class ratios in our experi-
ments, DF for the Ratio Factor in Table 16 is also 5.

Since the Pr(>F) values for both the ratio and classifier factors in Table 16 are less 
than our selected significance level of 0.01, according to our statistical analysis proce-
dure, we conduct Tukey HSD tests to group the levels of the factors by their perfor-
mance. Table 17 contains the HSD test result for the ratio factor in the experiments in 
Scenario One. The result shows that there is no significant difference in the AUPRC 
scores of models built with data that is not preprocessed with RUS and models built 
with data that is preprocessed with RUS to make the class ratio 1:81 or 1:27. Hence, 
we find that that RUS, a data reduction technique, maintains the best performance.

Table 16 ANOVA for ratio and classifier as factors of performance in terms of AUPRC, for part D 
scenario one

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Ratio 5 3.34 0.67 239.59 *

Classifier 5 106.28 21.26 7614.63 *

Residuals 1789 4.99 0.00

Table 17 HSD test groupings after ANOVA of AUPRC for the Ratio factor, for part D scenario one

Group a consists of: 1:81, 1:1,429, 1:27

Group b consists of: 1:9

Group c consists of: 1:3

Group d consists of: 1:1
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Table  18 contains the HSD result for the classifier factor. The HSD test reveals 
that CatBoost yields the best performance in Scenario One. Moreover, we would 
like to point out that the three best performing classifiers, CatBoost, XGBoost, and 
LightGBM, are all GBDT techniques.

Part D scenario two: feature selection Only

The next statistical analysis we perform is for Scenario Two, where we use our ensem-
ble feature selection technique, by itself. Table 19 contains the ANOVA test result for 
the impact of the number of features (Features), and the choice of classifier (Classi-
fier) factors on AUPRC scores. The Pr(>F) value for both factors is practically zero, 
so we conclude that both factors have a significant effect on experimental outcomes.

Since the ANOVA test shows that both the classifier and number of features have 
a significant effect on experimental outcomes, we run HSD tests to determine which 
levels of the factors are associated with the highest AUPRC scores. The HSD result 
in Table 20 show that the use of ten features is associated with the best performance. 
Similar to the result for Scenario One, we find that an additional data reduction 
technique of feature selection also improves performance.

The HSD result for the classifier factor is in Table 21. Similar to the HSD result in 
Scenario One, the HSD result shows CatBoost and XGBoost yield the best perfor-
mance. However, unlike the result for Scenario One, the third GBDT classifier, Light-
GBM, is not among the top three performers.

Table 18 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part D scenario one

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: LightGBM

Group d consists of: Logistic Regression, Random Forest

Group e consists of: ET

Table 19 ANOVA for Features and Classifier as factors of performance in terms of AUPRC, for part D 
scenario two

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 9 2.97 0.33 47.15 *

Classifier 5 71.64 14.33 2050.15 *

Residuals 2985 20.86 0.01

Table 20 HSD test groupings after ANOVA of AUPRC for the Features factor, for part D scenario two

Group a consists of: ’10’

Group ab consists of: ’15’, ’9’, ’7a’, ’8’

Group bc consists of: ’25’, ’20’

Group c consists of: ’7b’, ’30’

Group d consists of: ’82’
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Part D scenario 3: feature selection, then RUS 1:81

Now we move on to the statistical analysis of the Scenario Three experiments with 
the Part D data, where we do feature selection, then apply RUS to induce a 1:81 class 
ratio in the training data. The ANOVA test result in Table 22 is similar to the results 
for Scenarios One and Two in that the Pr(>) F values both factors is practically zero. 
Since we use only one sampling ratio in Scenario Three, only the choice of classifier 
and number of features are treated as factors in the ANOVA test.

Since the ANOVA test shows that both the choice of classifier, and the number of 
features selected have a significant impact on AUPRC scores, we do the HSD tests to 
determine which levels of the factors yield the best performance. Table  23 contains 
the HSD result for the number of features factor. In it we see that, similar to the result 
in Scenario Two, models built with ten features are in the group that yields the best 
performance. This is a noteworthy result, since it demonstrates that a data reduction 
technique can yield better performance. In the results of both Scenario Two and 
Scenario Three, models with fewer features demonstrated superior performance. 
Such models are more straightforward, making them easier to interpret due to their 
inherent simplicity and decreased potential for intricate interactions.

Next we move on to the HSD result for the classifier factor. Here we see that the 
three GBDT techniques, CatBoost, XGBoost, and LightGBM yield the best perfor-
mance. It is interesting to note that this is similar to the HSD test result for the classi-
fier factor in Scenario One, and that in the experiments in Scenario One and Scenario 
Three, RUS is applied to the training data (Table 24).

Table 21 HSD test groupings after ANOVA of AUPRC for the Classifier factor, for Part D Scenario Two

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: Random Forest

Group d consists of: ET

Group e consists of: LightGBM

Group f consists of: Logistic Regression

Table 22 ANOVA for Features and Classifier as factors of performance in terms of AUPRC, for part D 
scenario three

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 2.17 0.43 178.58 *

Classifier 5 72.01 14.40 5933.71 *

Residuals 1789 4.34 0.00

Table 23 HSD test groupings after ANOVA of AUPRC for the Features factor, for part D scenario 
three

Group a consists of: ‘15’, ‘10’

Group b consists of: ‘25’, ‘20’

Group c consists of: ‘30’

Group d consists of: ‘82’
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Part D Scenario Four: RUS 1:81 then feature selection

Finally, we come to the last scenario for the experiments with Part D data. Table 25 contains 
the result of the ANOVA test for the Scenario Four experiments. Similar to Scenario Three, 
we only use one level of undersampling, 1:81. Therefore, we treat the number of features, and 
the choice of classifiers as experimental factors. The Pr(>F) values indicate that both factors 
have a significant effect on AUPRC scores.

Since the ANOVA test for Scenario Four indicates that the number of features used to train 
the model has a significant effect on experimental outcomes, we use the HSD test to deter-
mine which number of features yields the best performance. For the Scenario Four experi-
ments, we see in Table 26, that 15 features yields the best performance.

The HSD test for experiments with Part D data is documented in Table 27. Again 
we have the result that CatBoost yields the best performance, and the three GBDT 
techniques yield the top three mean AUPRC scores.

Table 24 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part D scenario 
three

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: LightGBM

Group d consists of: Random Forest, ET

Group e consists of: Logistic Regression

Table 25 ANOVA for features and classifier as factors of performance in terms of AUPRC, for part D 
scenario four

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 1.43 0.29 127.51 *

Classifier 5 80.72 16.14 7209.10 *

Residuals 1789 4.01 0.00

Table 26 HSD test groupings after ANOVA of AUPRC for the Features factor for, part D scenario four

Group a consists of: ‘15’

Group b consists of: ‘10’

Group c consists of: ‘25’, ‘20’, ‘30’

Group d consists of: ‘82’

Table 27 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part D scenario four

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: LightGBM

Group d consists of: ET

Group e consists of: Random Forest

Group f consists of: Logistic Regression
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Part D, inter‑scenario analysis
Now that we have documented the outcomes of the individual scenarios, we do a fur-
ther analysis to determine which scenario(s) yield the best performance over all. To get 
started we take note of which levels of factors yield the best performance in a scenario. 
We then select data from experiments to include for this analysis based on which 
experiments included factors set at the levels that yield the best performance. For Sce-
nario One, RUS only, we select RUS 1:81. For Scenario Two, feature selection only, we 
select experiments where ten features are used. For Scenario Three, feature selection, 
then RUS, we select experiments where 10 features are used, and RUS 1:81 is used. For 
Scenario Four, RUS, then feature selection, we select experiments where RUS 1:81 is 
used, and 10 features are used. We then treat each scenario, and the classifier as an 
experimental factor and conduct an ANOVA test, followed by HSD tests to determine 
which scenario(s) yield the best performance, and which classifiers yield the best per-
formance. We consider the case where no preprocessing is done to the data to be the 
fifth scenario. Table 28 summarizes the levels of factors used in all scenarios.

Table 29 contains the result of the ANOVA test for the scenario and classifier fac-
tors. The Pr(>F) values indicate that both the scenario, and the classifier have a sig-
nificant impact on experimental outcomes.

The ANOVA test result in Table  29 indicates that the scenario has a significant 
impact on experimental outcomes. Therefore, we can conduct a Tukey HSD test to 
determine which scenario yields the highest AUPRC scores. The HSD test result in 
Table 30 indicates that either feature selection, or feature selection followed by RUS 
yield the best performance.

Table 28 Summary of part D scenarios, and optimal levels of features selected from each scenario

Scenario Description

Scenario One RUS only: RUS 1:81 selected

Scenario Two Feature selection only: 10 features selected

Scenario Three Feature selection, then RUS: 10 features and RUS 1:81 selected

Scenario Four RUS, then feature selection: RUS 1:81 and 10 features selected

Scenario Five No preprocessing done on the data

Table 29 ANOVA for scenario and classifier as factors of performance in terms of AUPRC, for part D 
experiments

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Scenario 4 3.65 0.91 125.08 *

Classifier 5 48.41 9.68 1328.40 *

Residuals 1490 10.86 0.01

Table 30 HSD test groupings after ANOVA of AUPRC for the Scenario factor in part D experiments

Group a consists of: Scenario Two, Scenario Three

Group b consists of: Scenario Four

Group c consists of: Scenario One, Scenario Five
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Table 31 contains the HSD test result for the classifier factor. Since we find that for 
the majority of the scenarios individually that the GBDT classifiers yield the best per-
formance, it is not surprising that the three GBDT classifiers are members of the best-
performing groups.

Part B statistical analysis

We conduct a statistical analysis similar to the one performed here, for the Part B data. 
Please see Appendix A for the report of the analysis. After performing the analysis for 
each scenario, and then the inter-scenario analysis for the Part B data, we determined 
that both feature selection, followed by RUS, and RUS followed by feature selection yield 
the best performance. These two scenarios are by themselves in the HSD group ‘a’ for 
the scenario factor in the inter-scenario analysis for experiments with the Part B data. 
Moreover, the analysis of Part B experiments confirms that the GBDT classifiers yield 
the best performance, with CatBoost the best among all learners.

Conclusions
We presented an in-depth statistical analysis of the experimental outcomes in terms 
of AUPRC for results for Medicare insurance fraud detection in Big Medicare Data 
datasets. For both Medicare Part B and Part D datasets, we carry out experiments in five 
scenarios that exhaust the possible ways to utilize, or omit, the RUS and feature selection 
data reduction techniques. For both datasets, we found that data reduction techniques 
also improve classification results. We also found that the three GBDT classifiers, 
LightGBM, XGBoost, and CatBoost yield the best performance in all experiments, with 
one exception. In any case, CatBoost consistently yields the best performance.

In experiments with the Part D data, we conducted separate statistical analyses of the four 
scenarios where at least one data reduction technique was used, to determine which technique 
yields the best performance in each scenario. We then conducted a statistical analysis of results 
between all scenarios. The result of the analysis shows that our supervised feature selection tech-
nique alone, or our feature selection technique, followed by RUS, yields the best performance.

We performed a similar statistical analysis for experiments involving the Medicare Part B 
data. After doing the analysis of the individual scenarios, we again selected the techniques 
which yielded the best results, and performed an analysis of results between all scenarios. We 
find that either combination of using our feature selection technique, followed by RUS, or 
RUS followed by our feature selection technique both yield the best performance.

Therefore, in the classification of either dataset, we find that a technique with the 
largest amount of data reduction also yields the best performance. That is the tech-
nique of doing feature selection, then applying RUS. The same statistical analysis 

Table 31 HSD test groupings after ANOVA of AUPRC for the classifier factor in part D experiments

Group a consists of: CatBoost, XGBoost

Group b consists of: LightGBM

Group c consists of: ET

Group d consists of: Random Forest

Group e consists of: Logistic Regression
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shows that the GBDT classification techniques, XGBoost, CatBoost and LightGBM 
outperform the other three learners we use in our experiments. These other learners 
are Logistic Regression, Random Forest, and Extremely Randomized trees. An added 
benefit of our feature selection technique is model explainability. It is easier to reason 
about how a model performs classifications when it is built with fewer features. Over-
all, the key conclusion one should draw from our results is that intelligent data reduc-
tion techniques, applied in combination, may improve the results in classifying highly 
imbalanced, Big Data.

Appendix A statistical analysis of experiments with part B Data
Here we report individual scenario results for the experiments with Part B data. We 
do the analysis of scenarios in the same order for experiments with Part B data as 
we do for the Part D data, so we start with the scenario where only RUS is applied to 
preprocess the data. Table 32 contains the ANOVA test result for the Part B Scenario 
One experiments. The ANOVA test result shows that both the classifier and RUS ratio 
have a significant impact on experimental outcomes.

Since both the RUS ratio and the choice of classifier have a significant impact on 
AUPRC scores, we perform HSD tests to determine which levels of the factors are 
associated with the highest AUPRC scores. The HSD result in Table 33 indicates that 
classifiers trained on data preprocessed with RUS to induce class ratios of 1:81, 1:27, 
or the original data all yield the highest AUPRC scores.

Next we look at the HSD result for the analysis of the classifier factor in Scenario 
One. The result for the classifier factor continues the same trend we see in the major-
ity of scenarios for Part D data as well. The GBDT techniques yield the best perfor-
mance, and CatBoost yields the best performance over all (Table 34).

Part B scenario 2: feature selection only

Next we do the analysis for the Part B Scenario Two experiments, where only feature 
selection is performed as a preprocessing step. The ANOVA test result in Table  35 

Table 32 ANOVA for ratio and classifier as factors of performance in terms of AUPRC, for part B 
scenario one

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Ratio 5 3.99 0.80 259.76 *

Classifier 5 116.98 23.40 7613.74 *

Residuals 1789 5.50 0.00

Table 33 HSD test groupings after ANOVA of AUPRC for the Ratio factor, for part B scenario one

Group a consists of: 1:81, 1:27, 1:2,500

Group b consists of: 1:9

Group c consists of: 1:3

Group d consists of: 1:1
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shows that both the number of features used to train a classifier, and the choice of 
classifier have a significant effect on experimental outcomes.

Since the ANOVA test indicates that both the classifier and the number of features 
used have a significant effect on experimental outcomes, we conduct HSD tests 
to determine which levels of these factors yield the best performance. The HSD 
test result in Table  36 indicates that any level of feature selection yields the best 
performance, whereas using all features yields significantly worse performance.

The second HSD test we perform for Scenario Two is to determine which classifiers 
yield the best performance in the Part B Scenario Two experiments. As it has been the 
case for most scenarios we have analyzed thus far, the three GBDT techniques yield 
the best performance. This time CatBoost and XGBoost both yield the best perfor-
mance, since they are both in HSD group ‘a’(Table 37)

Part B scenario three, feature selection, then RUS

We continue to the first hybrid approach for experiments with Part B data, where 
we apply feature selection, then RUS. Although we apply RUS to make the class ratio 
1:81 in Scenario Three, RUS is not an experimental factor since it does not change 

Table 34 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part B scenario one

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: LightGBM

Group d consists of: Random Forest

Group e consists of: ET

Group f consists of: Logistic Regression

Table 35 ANOVA for Features and Classifier as factors of performance in terms of AUPRC, for Part B 
Scenario Two

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 0.24 0.05 13.16 *

Classifier 5 130.10 26.02 7242.04 *

Residuals 1789 6.43 0.00

Table 36 HSD test groupings after ANOVA of AUPRC for the features factor, for part B scenario two

Group a consists of: ’25’, ’20’, ’30’, ’15’, ’10’

Group b consists of: ’80’

Table 37 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part B scenario two

Group a consists of: CatBoost, XGBoost

Group b consists of: LightGBM

Group c consists of: Random Forest

Group d consists of: ET

Group e consists of: Logistic Regression
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throughout the course of the Part B Scenario Three experiments. Since we build 
models with different numbers of features and different classifiers, these are experi-
mental factors. The ANOVA test results in Table 38 show that both the choice of clas-
sifier and the number of features selected have a significant impact on experimental 
outcomes.

Since the ANOVA test result in Table 38 shows that the number of features selected 
has a significant impact on the AUPRC scores recorded in the Part B Scenario Three 
experiments, we perform an HSD test to determine which number of features can be 
used to build models that yield the best performance. The HSD test result in Table 39 
indicates that models built with 20 features yield the best performance, since this set 
of experiments is in the HSD group ‘a’.

Next, we turn to the result of the HSD test for the effect of the classifier on 
experimental outcomes in the Part B Scenario Three experiments. The result confirms 
the pattern we have seen deviated from only once. That pattern is that the GBDT 
methods yield the best AUPRC scores, with CatBoost yielding the best AUPRC scores 
(Table 40).

Part B, scenario four, RUS 1:81, then feature selection

Here we proceed to the analysis of the last of the Scenario Four experimental results 
with Part B data. This is the scenario where we apply RUS to induce a class ratio of 
1:81 prior to doing feature selection.

Table 38 ANOVA for features and classifier as factors of performance in terms of AUPRC, for part B 
scenario three

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 0.34 0.07 61.20 *

Classifier 5 146.24 29.25 26678.81 *

Residuals 1789 1.96 0.00

Table 39 HSD test groupings after ANOVA of AUPRC for the features factor, for part B scenario three

Group a consists of: ‘20’

Group ab consists of: ‘25’

Group b consists of: ‘30’

Group c consists of: ‘15’

Group d consists of: ‘10’, ‘80’

Table 40 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part B scenario three

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: LightGBM

Group d consists of: Random Forest

Group e consists of: ET

Group f consists of: Logistic Regression
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Following our procedure for statistical analysis, we conduct an ANOVA test to 
determine which experimental factors have a significant effect on experimental out-
comes. In Table 38, we confirm that both the choice of classifier and the number of 
features used in the experiment have a significant impact on experimental outcomes. 
Although RUS is employed prior to feature selection, it is not an experimental factor 
since we only apply RUS to induce a single class ratio.

The ANOVA test result in Table 41 indicates that the number of features used has 
a significant impact on experimental outcomes, so we conduct an HSD test. The test 
result is in Table 42. The test result indicates that RUS followed by feature selection 
with any number of features, except 15, yields the best performance, and also that 
applying RUS and then feature selection yields better performance than not applying 
feature selection.

The second HSD test we conduct for the Part B Scenario Four experiments is for the 
effect of the classifier on experimental outcomes. In Table 43 we confirm the clear pat-
tern in the HSD results we have observed in all but one scenario, and that is that the 
GBDT techniques outperform all others, and CatBoost yields the best performance.

Part B inter‑scenario analysis
Here we begin the analysis of results between scenarios. We do the same inter-sce-
nario analysis for the Part B scenarios that we did for the Part D scenarios. As stated 
previously in the context of the Part D data inter-scenario analysis, though we report 

Table 41 ANOVA for features and classifier as factors of performance in terms of AUPRC, for part B 
scenario four

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Features 5 0.20 0.04 33.72 *

Classifier 5 143.27 28.65 24577.10 *

Residuals 1789 2.09 0.00

Table 42 HSD test groupings after ANOVA of AUPRC for the features factor, for part B scenario four

Group a consists of: ‘20’, ‘25’, ‘30’, ‘10’

Group b consists of: ‘15’

Group c consists of: ‘80’

Table 43 HSD test groupings after ANOVA of AUPRC for the classifier factor, for part B scenario four

Group a consists of: CatBoost

Group b consists of: XGBoost

Group c consists of: LightGBM

Group d consists of: Random Forest

Group e consists of: ET

Group f consists of: Logistic Regression
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results for four scenarios, there is a latent fifth scenario, which is the case where do 
not do any preprocessing to the data. Also, similar to the Part D inter-scenario analy-
sis, we select the levels of factors that yield the best performance in each scenario. 
Table 44 contains a summary of the levels of factors selected for each scenario.

First, we conduct an ANOVA test to confirm that the scenario and the choice of 
classifier have a significant impact on experimental outcomes. The Pr(>F) values for 
both the scenario and classifier factors in Table  45 imply that both factors have a 
significant impact on AUPRC values.

Since we have confirmed that both the scenario and the classifier have a significant 
impact on experimental outcomes, we conduct an HSD test to determine which levels 
of the factors yield the best performance. The HSD test result in Table 46 implies that 
the two hybrid approaches yield the best performance. This is noteworthy since it 
means the two techniques that yield the largest data reduction also yield the strongest 
performance.

Finally, we take a look at the classifiers that perform the best over all scenarios. 
Here, we find CatBoost and XGBoost yield the best performance, followed by Light-
GBM. The consistent pattern we find in the results for the individual scenarios in Part 
B carries over into the results for the Part B inter-scenario analysis (Table 47)

Table 44 Summary of Part B Scenarios, and optimal levels of features selected from each scenario

Scenario Description

Scenario One RUS only: RUS 1:81 selected

Scenario Two Feature selection only: 10 features selected

Scenario Three Feature selection, then RUS: 20 features and RUS 1:81 selected

Scenario Four RUS, then feature selection: RUS 1:81 and 10 features selected

Scenario Five No preprocessing done on the data

Table 45 ANOVA for scenario and classifier as factors of performance in terms of AUPRC, for part B 
experiments

* indicates the value is less than 1× 10
−4

Df Sum Sq Mean Sq F value Pr(>F)

Scenario 4 0.46 0.12 28.70 *

Classifier 5 113.33 22.67 5621.43 *

Residuals 1490 6.01 0.00

Table 46 HSD test groupings after ANOVA of AUPRC for the scenario factor, for part B experiments

Group a consists of: Scenario Three, Scenario Four

Group b consists of: Scenario Two

Group bc consists of: Scenario One

Group c consists of: Scenario Five
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