
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Cantini et al. Journal of Big Data (2024) 11:19
https://doi.org/10.1186/s40537-023-00862-w

Journal of Big Data

Block size estimation for data partitioning
in HPC applications using machine learning
techniques
Riccardo Cantini1, Fabrizio Marozzo1,2*, Alessio Orsino1, Domenico Talia1,2, Paolo Trunfio1,2, Rosa M. Badia3,
Jorge Ejarque3 and Fernando Vázquez‑Novoa3

Abstract

The extensive use of HPC infrastructures and frameworks for running data‑intensive
applications has led to a growing interest in data partitioning techniques and strate‑
gies. In fact, application performance can be heavily affected by how data are parti‑
tioned, which in turn depends on the selected size for data blocks, i.e. the block size.
Therefore, finding an effective partitioning, i.e. a suitable block size, is a key strategy
to speed‑up parallel data‑intensive applications and increase scalability. This paper
describes a methodology, namely BLEST‑ML (BLock size ESTimation through Machine
Learning), for block size estimation that relies on supervised machine learning tech‑
niques. The proposed methodology was evaluated by designing an implementation
tailored to dislib, a distributed computing library highly focused on machine learn‑
ing algorithms built on top of the PyCOMPSs framework. We assessed the effective‑
ness of the provided implementation through an extensive experimental evaluation
considering different algorithms from dislib, datasets, and infrastructures, includ‑
ing the MareNostrum 4 supercomputer. The results we obtained show the ability
of BLEST‑ML to efficiently determine a suitable way to split a given dataset, thus provid‑
ing a proof of its applicability to enable the efficient execution of data‑parallel applica‑
tions in high performance environments.

Keywords: Data partitioning, High performance computing, Data‑parallel
applications, Machine learning, Big data

Introduction
Data partitioning refers to splitting a dataset into small and fixed-size units, called
blocks or chunks, to enable efficient data-parallel processing and storing in distributed-
memory-based systems. Several issues related to data partitioning must be addressed
to reduce execution times and ensure the good scalability of applications. For example,
when a dataset is mapped on a set of nodes of a parallel/distributed computing system,
two very critical problems are highlighted: (i) the choice of the destination node for a
given block (i.e., the node where that block will be stored); and (ii) the selection of an
appropriate size of the blocks the dataset is divided into, i.e. the block size. The first

*Correspondence:
fmarozzo@dimes.unical.it

1 University of Calabria, Rende,
Italy
2 Dtok Lab SRL, Rende, Italy
3 Barcelona Supercomputing
Center, Barcelona, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00862-w&domain=pdf

Page 2 of 23Cantini et al. Journal of Big Data (2024) 11:19

problem has been addressed in several studies [1–4], in which scheduling algorithms
have been proposed to minimize data movement at run-time. The second problem
addressed in this work has been tackled in the literature by different distributed comput-
ing frameworks, through fixed-size partitioning strategies and heuristics [5, 6]. Besides
the use of built-in partitioning techniques provided by these frameworks, general-pur-
pose autotuners [7] can be exploited to adjust several hyperparameters, including the
block size.

The block size can heavily affect the trade-off between single-node efficiency and
parallelism in data-intensive applications. Specifically, a larger size reduces parallelism
(fewer blocks) but makes tasks larger. Although this can lead to an overhead reduc-
tion, it must be ensured that the block size does not exceed the memory available on
the individual nodes, so as to avoid memory saturation. On the other hand, a smaller
size leads to finer exploitation of parallelism, while introducing a larger overhead due to
communication, synchronization, and task management, which can negatively impact
performance.

In this work, we propose BLEST-ML (BLock size ESTimation through Machine
Learning), a novel methodology for data block size estimation that relies on supervised
machine learning techniques. Specifically, it leverages a cascade of tree-based classifiers
to determine a proper value for the block size, given an execution to be performed. The
model is trained on a log of past executions, represented by a set of descriptive features,
including algorithm, dataset, and execution environment characteristics.

The effectiveness of BLEST-ML was assessed by designing an implementation tailored
to dislib, a distributed computing library focused on machine learning algorithms. We
carried out an extensive experimental evaluation on different execution environments,
including the MareNostrum 4 supercomputer (MN4) [8] located at the Barcelona Super-
computing Center (BSC), and several real-world datasets, including High Energy Physics
(HEP) and bio-informatics. The results show the ability of the proposed methodology
to efficiently predict a suitable value for the block size in dislib applications running on
a large-scale High Performance Computing (HPC) system such as MN4. Our findings
provide a proof of the applicability of BLEST-ML to support programmers in choosing
proper data partitioning, thus enabling the efficient execution of data-parallel applica-
tions in HPC environments.

The main contribution of the proposed work lies in the application of supervised
machine learning techniques for block size estimation, facilitating efficient data par-
titioning in HPC applications. Specifically, we employ a cascade of decision models
trained on a historical log of past executions to learn the patterns that connect a given
configuration to the most suitable block size. Adopting this approach, BLEST-ML can
determine a good estimate in a quick and efficient way, demanding minimal domain
knowledge, and avoiding the necessity for resource-intensive exploration of vast search
spaces and dynamic profiling at runtime. Furthermore, it can handle non-monotonic
relationships between performance and configuration, which makes it applicable in a
wide range of use cases related to the execution of data-parallel applications in distrib-
uted and HPC environments. All these factors collectively make our approach more effi-
cient and effective than the existing trial-and-error heuristics, and a valuable alternative
to autotuning frameworks.

Page 3 of 23Cantini et al. Journal of Big Data (2024) 11:19

The remainder of the paper is organized as follows. Section Related work discusses the
main methods for data partitioning present in the literature. Section A machine learning
approach for block size estimation describes the proposed methodology. Section Block size
estimation in dislib applications introduces the dislib library of PyCOMPSs, i.e. the frame-
work chosen as the testbed. Section Experimental evaluation presents the experimental
evaluation and results. Finally, Sect. Conclusions and final remarks concludes the paper.

Problem statement

The problem of partitioning a dataset in a distributed environment requires defining how
the dataset should be divided into blocks. Besides some techniques that use fixed-size
blocks, many others leverage the concept of block size that defines the number of rows and
columns of each block the dataset is divided into. The choice of this parameter is challeng-
ing but key to speed-up parallel data-intensive applications and increase scalability, as it
determines the trade-off between parallelism, scheduling overhead, and memory usage.

Typically, block size estimation is not an easy task for programmers. In fact, they usually
proceed by following a trial-and-error approach, only supported by simple heuristics and
domain knowledge (i.e., the awareness of the behavior of the algorithm in a given distrib-
uted environment). As a result, this tuning process is often time-consuming and resource-
intensive, especially when large datasets and complex hardware infrastructures are used.

The block size estimation problem is formulated as follows. Let d be a dataset composed
of n rows and m columns, and a the algorithm to be run on d within the execution envi-
ronment e. The goal is to determine the best size of data blocks, that is a bidimensional
variable (r∗, c∗) , in which r∗ and c∗ represent the optimal number of rows and columns
of each block. A slightly different approach, used in this work, formulates the problem as
the prediction of the number of rows and columns partitions in which to divide the data-
set, i.e. the target variable (p∗r , p∗c) . Starting from this, the block size is then obtained as
(r∗, c∗) = (n/p∗r ,m/p∗c) . For the sake of clarity, Table 1 reports the meaning of the main
symbols used throughout the paper.

Table 1 Meaning of the main symbols used throughout the paper

Symbol Meaning

d Dataset composed by n rows and m columns

e A representation of the target execution environment

a The machine learning algorithm to be executed on d within e

p∗r The optimal number of partitions along rows

p∗c The optimal number of partitions along columns

r∗ The optimal number of rows in a block

c∗ The optimal number of columns in a block

(r∗ , c∗) The optimal block size expressed as (n/p∗r ,m/p∗c)

Page 4 of 23Cantini et al. Journal of Big Data (2024) 11:19

Related work
In high performance computing, data partitioning is a key strategy to speed-up parallel
data-intensive applications and increase scalability. In this section, we describe the main
methods proposed in the literature and used in HPC infrastructures.

Horizontal, vertical, and hybrid partitioning. The data partitioning problem is
generally addressed by using three main alternative techniques: horizontal, vertical, or
hybrid partitioning [9].

• Horizontal partitioning This technique, also called sharding, divides the rows of the
dataset into disjoint subsets so that each subset has the same number of columns as
the whole dataset. This approach is used in many state-of-the-art frameworks for big
data processing, such as Hadoop and Spark [5, 6].

• Vertical partitioning In this approach, the columns of the dataset are divided into
subsets, usually based on the columns on which data querying is more frequently
performed, or a heuristic approach [10, 11].

• Hybrid partitioning It combines the horizontal and vertical approaches, by aggregat-
ing data according to how it is used by the target application and/or system [12, 13].
It is also called functional partitioning.

Among all described strategies, horizontal partitioning is the one that is mostly used
in big data applications and HPC systems, while the other two strategies are less used
and therefore explored in the literature. Specifically, the horizontal partitioning can be
further categorized into hash-, range-, and random- based. The hash-based approach
divides records into subsets by hashing the record key and then mapping the hash value
of the key to a partition. A common method to do this mapping is using a round-robin
algorithm, which guarantees a balanced partitioning among nodes and partitions of
equivalent size. In hash-based partitioning records having the same key value must have
the same hash value, and consequently, they will be mapped to the same partition. The
range-based partitioning approach, instead, partitions a dataset according to a given
range and distributes records having the keys within the same range on the same node.
In distributed environments, how to set this range is often challenging, especially when
dealing with large-scale data analysis. Finally, the random-based partitioning approach
divides the records randomly into subsets using a random number generator to deter-
mine where to distribute each record, producing approximately subsets of equal size. As
an example, Salloum et al. proposed the Random Sample Partition (RSP) data model to
support distributed big data analysis [14, 15]. This model represents a big dataset as a
set of non-overlapping blocks, where each block is a random sample of the whole data-
set. In addition, Wei et al. [16] proposed a two-stage algorithm to generate RSP data
blocks from the Hadoop Distributed File System (HDFS). A drawback of random-based
approaches is that they do not consider the correlation between records, which instead
can be leveraged to avoid unnecessary computations. As an example, in [17] the authors
designed a context-based multi-dimensional partitioning technique that relies on data
correlation to determine a suitable split.

Static and dynamic partitioning. Main approaches for data partitioning can be fur-
ther categorized into static or dynamic [18]. Static approaches use a fixed size when a

Page 5 of 23Cantini et al. Journal of Big Data (2024) 11:19

block is selected, often defined in MB, and the partitioning is computed before starting
the execution. As an example, data in HDFS is divided into fixed-size blocks, obtained
from horizontal partitioning. Particularly, a typical block size is 128 MB, which means
that if we have a 1 GB file, it will be partitioned into 8 blocks, each one of 128 MB. Simi-
larly, in Spark, the HDFS blocks need to be loaded into an in-memory data structure,
called Resilient Distributed Dataset (RDD) [19], which can be then partitioned using
either the aforementioned strategies, such as hash and range, or a custom partitioning.
Specifically, Spark runs a single task for every partition of an RDD, up to 2− 3 x times
the number of cores in the cluster. Hence, a heuristic can be derived that determines the
number of partitions as a small multiple of the total number of available cores. On the
contrary, in the dynamic approaches, the dimension and shape of the blocks in which
to partition the dataset are not chosen a priori, but at runtime. As an example, several
dynamic strategies can be found in [18], specially designed for graph data partitioning.
Both approaches present some issues. Static approaches define a priori how data should
be partitioned, without taking into account any dataset characteristic or algorithm fea-
ture. On the other hand, dynamic approaches support adaptation to the actual workload
at runtime, but they can introduce significant overhead in dynamically adjusting data
partitioning. To overcome these issues, in this work we propose a hybrid and static data
partitioning approach, able to determine how to adequately partition the dataset before
the execution, thus avoiding the overhead introduced by dynamic approaches, while also
taking into account dataset and algorithm characteristics and infrastructure features.
Specifically, we determine the best size of data blocks by using a supervised machine
learning technique, focusing on the estimation of two quantities, i.e. the number of par-
titions in which to divide dataset rows and columns. This allows finding a good parti-
tioning to make the most of the computational resources of the execution environment,
thus improving application performance and scalability.

Autotuners. Besides the discussed techniques specially designed to address the data
partitioning problem, general-purpose autotuners can be used to tune different applica-
tion parameters, including the block size, in order to improve application performance
and throughput. As an example, OpenTuner [7] is a framework for building domain-
specific multi-objective program autotuners, which leverages an ensemble of search
techniques that can be run simultaneously. Candidate configurations (i.e., selected
points in a user-defined multi-dimensional search space) are evaluated through a meta-
search strategy, which allocates tests to search techniques, relying on the resolution
of the multi-armed bandit problem. Among the other tools, SmartConf [20] relies on
control theory to optimize system performance and stability, by performing automated
and dynamic configuration adjustments, based on performance constraints. Although
the aforementioned tuners represent general-purpose solutions, which can be effectively
used for parameter configuration, they have some limitations. As an example, SmartConf
suffers from the lack of capacity to deal with the non-monotonic relationship between
performance and configuration. Specifically, considering the block size estimation prob-
lem—on which the present work is focused - there exists a non-monotonic relationship
between the number of blocks and application performance since too few blocks would
hinder application parallelism, while too many blocks would introduce a non-negligible
overhead which results in significant performance degradation. In such a case, as stated

Page 6 of 23Cantini et al. Journal of Big Data (2024) 11:19

by the authors in [20], a machine-learning solution—like the one proposed in this work—
would be a better fit. Such a solution, in addition, can also be faster than autotuners, by
quickly providing a suggestion that solely relies on the learned patterns linking a given
configuration with the most suitable block size, without the need for resource-intensive
exploration of vast search spaces and dynamic profiling at runtime. Nonetheless, it is
worth noticing that solutions like OpenTuner [7] cope with this issue by leveraging intel-
ligent search mechanisms aimed at evaluating a relatively small set of candidate configu-
rations, thus effectively handling huge search spaces whose full exhaustive search would
be unfeasible. Furthermore, machine learning-based approaches may require a large
amount of historical training data in order to generalize well to new or unseen inputs,
and are generally tailored to a specific optimization problem.

A machine learning approach for block size estimation
BLEST-ML leverages a classification-based approach to address the problem of data par-
titioning, by determining the best block size S = (n/pr ,m/pc) that minimizes the execu-
tion time of algorithm a on a dataset d composed of n rows and m columns. Specifically,
the target classes to be predicted by the machine learning model are pr and pc , two dis-
crete variables ranging from 1 to a maximum number of partitions, usually defined as a
small multiple of the total number of cores available. We selected this kind of approach
because it results to be more stable compared to a regression-based one, in which the
block size is directly predicted by identifying the number of elements of each block. In
fact, the main problem of the regression-based approach is that its output is generally
unconstrained, which may lead to a set of blocks with a non-uniform size. The classifi-
cation-based approach, instead, is less affected by this problem, as it selects the number
of partitions against a finite number of possible values. However, the ability to generalize
heavily depends on the representativeness of the training data, which implies that the
produced estimates are reliable for HPC systems having similar infrastructure features
and datasets whose size is of the same order of magnitude as those seen during training.
In the following, we provide a detailed description of the three main steps that make up
BLEST-ML (see Fig. 1).

Execution environment analysis

Given a distributed environment in which data analysis applications can be run, BLEST-
ML aims to enable their efficient execution by identifying a proper size for data blocks.
This can help programmers to make the most of all the computing and storage resources
that are available in the environment, as they can efficiently obtain a suitable estimate for
the block size, without the need for heavy tuning processes or domain knowledge. As a

Execution environment
analysis

Log analysis to extract
training data

Classification
model training

train extract

Frameworks
and libraries

Hardware
Infrastructure

Execution
log history

Training
data

Training
data

Block size
estimation model

Fig. 1 Execution flow of BLEST‑ML (BLock size ESTimation through Machine Learning)

Page 7 of 23Cantini et al. Journal of Big Data (2024) 11:19

preliminary step, the execution environment must be carefully analyzed. Generally, it is
characterized by a set of software features, such as the available frameworks and librar-
ies, and infrastructure features, such as the number of nodes, cores per node, available
memory, and disk space.

Log analysis to extract training data

BLEST-ML leverages a log of past executions to extract the patterns that link a spe-
cific execution to the best block size, by training a supervised machine learning
model. However, in order to learn effective patterns, raw logs must be adequately pro-
cessed to extract an appropriate set of training data. The log L consists of a collection
of executions, performed by both standard users and domain experts, in which a sin-
gle execution is described by the characteristics of the dataset (d), the algorithm (a),
the execution environment (e), the applied partitioning along rows (pr) and columns
(pc), the overall execution time (t), and other measurements such as main memory/
disk usage. Formally, an execution in L is represented by the tuple 〈d, a, e, pr , pc, t〉 .
Based on the information available in L and the application domain, which includes
the execution framework and the target infrastructure (e.g., a single node or an HPC
cluster), d, a and e can be represented in different ways to consider domain-specific
aspects. As an example: i) for the dataset d, the number of rows and columns can be
considered, together with the dataset size that is useful when a fixed- size partitioning
is used; ii) for the algorithm a, it could be relevant to discern between the type of task
(e.g., classification or clustering) and usage mode (i.e., training and inference); iii) for
the execution environment e, the number of cores and the available amount of RAM
can be used, while other features like the number of nodes and the RAM per node
only apply to distributed infrastructures.

In order to generate the training dataset D , all executions in L are grouped by the
triple 〈d, a, e〉 . In this way, we can observe how, given a fixed configuration, execu-
tion time is affected by different block sizes. Afterward, for each group, the best
partitioning (p∗r , p∗c) that led to the minimum execution time is found and the tuple
�d, a, e, p∗r , p

∗
c � is added to D . At the end of the process, the dataset D will contain the

best partitioning found for each triple 〈d, a, e〉 , specifically:

• Features related to algorithm a, dataset d (dimension in MB, number of rows,
etc.), and execution environment e (number of cores, number of nodes, etc.).

• The optimal partitioning (p∗r , p∗c) , i.e. the target variable.

Table 2 shows an example of an excerpt of D obtained from the training data extrac-
tion step.

An information-rich log, from which to extract a fairly representative dataset, is
generally available, as current distributed processing frameworks, such as PyCOMPSs
and Apache Spark, provide accurate instrumentation tools for collecting a wide range
of information, which is usually stored with the aim of facilitating application perfor-
mance monitoring. However, depending on the particular use case, it may be required
to integrate D with supplementary executions to ensure high-quality estimates. To
face this issue, training data can be generated and/or enriched by arranging a set of

Page 8 of 23Cantini et al. Journal of Big Data (2024) 11:19

executions, with the aim of finding the block size that optimizes execution time for
the considered configurations. This process is characterized by several degrees of
freedom, including the executed algorithm (a), input data characteristics (d), and
infrastructure features of the execution environment (e), which leads to the need for
an efficient search strategy. For this purpose, a grid search technique can be lever-
aged, in which several triples 〈d, a, e〉 are generated and annotated with the best block
size found during the search. Specifically, for each triple, the following operations are
performed.

• Given ncores the number of available cores, a k × k grid G is built, with k = logs(ncores) ,
where s is a search step such that logs(ncores) is an integer number. The step s (set to
2 by default) can be used to control the trade-off between the cost of the grid search
and the representativeness of the generated training samples.

• Each element gi,j in the grid G, with i and j ranging from 1 to k, is determined as the
time of executing algorithm a on the dataset d within the environment e, by splitting
d using the (pr = si , pc = sj) partitioning. This means that the rows and columns of
d will be divided into si and sj blocks, respectively. The execution time in the case of
failures (e.g., out-of-memory errors) is set to ∞.

• By exploring the grid, the best partitioning (p∗r , p∗c) for the triple 〈d, a, e〉 is found,
which leads to the minimum execution time. Formally, it is computed as the pair
(p∗r , p

∗
c) = (si

∗
, sj

∗
) , where (i∗, j∗) = arg min

i,j

G . Finally the triple 〈d, a, e〉 is labeled

with (p∗r , p∗c) and added to the training dataset D.

It is important to notice that these supplementary executions occur offline (i.e., at any
time before an actual prediction is required). For instance, these additional executions
can be scheduled as low-priority jobs. Consequently, the time required to complete
these executions will not affect the response to a user query (i.e., a suitable block size for
the submitted application). In this way, the time-to-solution can be drastically reduced
compared to manually trying several possible configurations when a request is submit-
ted by the user.

This approach for training data generation via execution monitoring was successfully
leveraged in [21], whose purpose is to improve the in-memory execution of data-inten-
sive workflows on parallel machines [22].

Table 2 Excerpt of the training set extracted by the log of executions

Algorithm Dataset rows Dataset columns Dataset
size (GB)

Infrastructure features Best
partitioning

nodes # cores RAM p∗r p∗c

K‑means 500,000 1000 2.39 4 64 256 32 4

Ran‑
dom Forest

1000 500,000 2.92 4 64 256 32 8

SVM 10,000 10,000 1.1 4 64 256 16 16

Page 9 of 23Cantini et al. Journal of Big Data (2024) 11:19

Classification model training

Given the dataset D obtained in the previous step, a classification model is trained to
learn the patterns that relate the execution features/parameters and the best partitioning
(p∗r , p

∗
c) . Thus, the output of this step is a classification model capable of estimating the opti-

mal number of partitions in which to split the rows and the columns of a given dataset,
based on its characteristics, the algorithm to be run, and the underlying execution environ-
ment. Since the target variable to be predicted, that is the best partitioning (p∗r , p∗c) , is two-
dimensional, a multi-output classification model is needed. Among the main approaches
for multi-output classification, a popular one consists in fitting a separate classifier for each
dimension of the target variable (i.e., two separate classifiers in our case). The main draw-
back of such an approach is that it ignores the relationships between the predicted outputs
of the single classifiers. For this reason, a stacking approach is leveraged that allows consid-
ering such relationships by using a cascade of two different decision tree classifiers. The two
classifiers, namely DTr and DTc , are used to predict the best number of rows and column
blocks, respectively. This approach is more suited for the case of block size, in which the
number of rows and the number of columns in a block are very likely to be dependent on
each other. Therefore, in the chained model, the predictions of DTc are conditioned on the
output of DTr , as shown in Fig. 2. In addition, we followed this order in chaining the two
decision tree models since partitioning along the rows is generally more relevant. The train-
ing step is performed as described below.

1. We train the first decision tree DTr with the training instances of D to learn the
number of blocks p∗r in which to partition dataset rows.

2. The second decision tree DTc is trained with the training instances concatenated
with the output of DTr , with respect to the second target variable p∗c , to learn the
number of blocks in which to partition dataset columns.

Afterward, the corresponding block size is determined as (r∗, c∗) = (n/p∗r ,m/p∗c) , where n
and m are the rows and columns of the considered dataset.

For the sake of clarity, we report an end-to-end example of computing the block size for a
given input instance. Let n = 51, 200 and m = 256 be the number of dataset rows and col-
umns, respectively. Suppose we have to predict the block size related to the execution of an
SVM algorithm, and that the result of the prediction is (p∗r , p∗c) = (4, 16) . Then the optimal
block size can be computed as follows:

Fig. 2 Chained multi‑output classification model

Page 10 of 23Cantini et al. Journal of Big Data (2024) 11:19

Block size estimation in dislib applications
The proposed methodology can be applied to a wide range of frameworks for distributed
data processing [23]. In fact, the majority of these systems, such as Hadoop [6], Spark
[5], DMCF [24] and PyCOMPSs [25], leverage a data-parallel approach that involves a
data partitioning step for distributing the dataset across a set of working nodes. Con-
sequently, BLEST-ML can bring huge benefits, by suggesting an adequate partitioning
that allows to effectively run distributed applications, reducing overhead while ensuring
a good level of parallelism and throughput. Among the main frameworks and libraries
of interest for distributed data processing, we selected as a testbed PyCOMPSs, focusing
on dislib [26], a distributed computing library built on top of it that provides distributed
machine learning algorithms. The early implementation, based on PyCOMPSs and dis-
lib, is publicly available on GitHub.1

PyCOMPSs [25, 27] is a task-based programming model that enables the paral-
lel execution of sequential Python code in distributed computing platforms. By means
of Python decorators, the developer identifies the function/methods to be considered
tasks. PyCOMPSs also offers a small API for synchronization. It is based on a runtime
able to identify the data dependencies that exist among tasks building a data depend-
ency graph. The task graph exposes the possible task concurrency that is exploited by
the runtime, which manages the execution of the tasks in distributed infrastructures,
scheduling them, and performing all the necessary data transfers. A task in PyCOMPSs
can run using multiple cores if internally parallelized with threads or other alternative
programming models such as OpenMP.

The Distributed Computing Library (dislib) [26], implemented on top of PyCOMPSs,
provides various distributed algorithms for several machine learning tasks, including
classification, clustering, and dimensionality reduction. Dislib is inspired by scikit-learn
and NumPy, and it comes with two primary programming interfaces: an API to man-
age data in a distributed way and an estimator-based interface to work with different
machine learning models. Its main data structure is the distributed array (ds-array)
which enables it to distribute the datasets in multiple nodes of a distributed infrastruc-
ture. A ds-array is a matrix divided into blocks, which can be a NumPy array or a SciPy
CSR (Compressed Sparse Row) matrix, depending on the kind of data used to cre-
ate the ds-array. Dislib provides an API similar to NumPy to work with ds-arrays, but
ds-arrays are stored remotely, allowing to store much more data than regular NumPy
arrays. All operations on ds-arrays are internally parallelized with PyCOMPSs. The typ-
ical workflow in dislib consists of the following steps: i) reading input data into a ds-
array; ii) creating an estimator object; iii) fitting the estimator with the input data; iv)
getting information from the model’s estimator or applying the model to new data. At
each step, the level of parallelism is driven by the number of blocks of the ds-arrays that

(r∗, c∗) = (n/p∗r ,m/p∗c) = (12800, 16)

1 https:// github. com/ eflow s4hpc/ dislib- block- size- estim ation.

https://github.com/eflows4hpc/dislib-block-size-estimation

Page 11 of 23Cantini et al. Journal of Big Data (2024) 11:19

are operated, which in turn is controlled by the ds-array’s block size, which defines the
number of rows and columns of each block.

Choosing the right size of a block-array can be a quite challenging task: small blocks
allow for higher parallelism as the computation is divided into more tasks. However,
handling a large number of blocks can generate overhead that can negatively impact
performance. Thus, the optimal block size will allow the full utilization of the available
resources without adding too much overhead. In addition to this, block size also affects
the amount of data that tasks load into memory. This means that block size should never
be bigger than the amount of available memory per processor. Summing up, the choice
of the optimal block size is often difficult but essential for exploiting the full potential of
dislib, hence the possibility of effectively applying the proposed methodology.

Experimental evaluation
This section presents the extensive experimental evaluation we carried out to assess the
effectiveness of BLEST-ML, analyzing how the partitioning suggested by BLEST-ML can
improve the execution of dislib applications in different scenarios. Specifically, we evalu-
ated our methodology in a single-node and a multi-node execution environment, i.e. a
cluster node and the MareNostrum 4 supercomputer.

For what concerns the evaluation metrics, we used makespan ratio to measure the
improvement in speed of execution brought by the predicted block size, with respect
to other possible partitions. Specifically, given an algorithm a to be run in a distributed
environment e, let t∗ and tother be the execution times achieved by using the predicted
block size and a different one, respectively. We compute the makespan ratio as follows:

In addition, we measured the percentage makespan reduction, i.e. the percentage
amount of execution time saved by running a given algorithm with the predicted block
size, with respect to a different one. Formally:

Single‑node experiments

The used log contains information about almost 5000 executions performed on data-
sets of varying sizes using a wide range of machine learning algorithms provided by dis-
lib for classification and clustering, including Support Vector Machine (SVM), Random
Forest (RF), Gaussian Mixture Model (GMM), and K-means. In the following sections,
we describe the results achieved in the single-node scenario, by evaluating the benefits
brought by the estimated block size with the use of both real-world and synthetic test
datasets.

makespan ratio =
tother

t∗

makespan reduction =
tother − t∗

tother

Page 12 of 23Cantini et al. Journal of Big Data (2024) 11:19

Real‑world datasets

The effectiveness of BLEST-ML in suggesting a suitable block size value was evaluated
on two real-world datasets used for clustering and classification:

• HEPMASS [28]: it is a high-energy physics dataset containing signatures of exotic
particles, learned from Monte Carlo simulations of the collisions that produce them.
The dataset contains 7 million training samples with 27 features that can be sepa-
rated into two clusters, i.e. particle-producing collisions and background sources.

• MNIST [29]: it is a multi-class dataset used for image classification and pattern rec-
ognition, containing gray-scale images of handwritten digits, from 0 to 9, labeled
with the represented number. In particular, the dataset contains 60 thousand training
images in a 28× 28 format, which can be represented by vectors of 784 features.

Since both test datasets are characterized by a big number of rows against a relatively
small number of columns, BLEST-ML suggested in both cases a block size that parti-
tions both datasets only horizontally, that is just one block for the columns containing
all features. For this reason, the number of blocks generated by creating the distributed
arrays is equal to the number of partitions along rows. The results achieved by running
K-means and Random Forest on HEPMASS and MNIST datasets are summarized in
Table 3.

Specifically, the time t∗ achieved by running the two algorithms using the predicted
block size was compared against the best, worst, and average times achieved by using
all other possible partitionings, calculated using progressive powers of 2 from 2 to 256,
i.e. 4x times the total number of cores available. The best time provides an upper bound
to t∗ , while the worst time is used as a lower bound for performance. Moreover, Fig. 3
shows the measured execution time by using different gradations of red, where a greater
intensity corresponds to a higher duration. In the proposed plots, the time obtained by
using the predicted partitioning is marked by a cyan circle, while the best one is marked
by a green star.

By observing Fig. 3a, it can be noticed that the optimal number of blocks that led to
the best execution time for the K-means algorithm was 16, while BLEST-ML suggested
partitioning rows in 32 blocks. However, the time measured by using the predicted block
size, i.e. t∗ , is the second best time, and the difference with the best one is negligible (≈ 1
s). By comparing t∗ with the average execution time, the predicted block size led to a

Table 3 Makespan ratio and percentage makespan reduction measured by running K‑means and
Random Forest algorithms on the HEPMASS and MNIST datasets

Algorithm Dataset
name

Dataset
rows

Dataset
columns

Metric Best time Average
time

Worst time

K‑means HEPMASS 7 · 106 27 Makespan
ratio

0.96± 0.03 1.48± 0.04 2.53± 0.07

Makespan
red.

−3.80%± 0.09 32.6%± 0.05 60.5%± 0.06

 Random
Forest

MNIST 6 · 104 784 Makespan
ratio

1.00± 0.01 1.27± 0.03 1.65± 0.03

Makespan
red.

0%± 0.01 21.32%± 0.04 39.51%± 0.06

Page 13 of 23Cantini et al. Journal of Big Data (2024) 11:19

1.48 makespan ratio, with a percentage reduction of makespan equal to 32.6% . The worst
execution time was observed in the case in which 256 blocks were used. This is caused
by the excessively small size of the blocks, which leads to the generation of a too large
number of blocks and tasks. In fact, such a degree of parallelism produces too much
overhead that results in a degradation of application performance. A similar execution
time was measured when just one block was used, i.e. no partitioning is performed.
This is the opposite case, in which parallelism is not exploited at all. By comparing t∗
with the worst execution time, we measured a makespan ratio of 2.53 and a makespan
reduction of 60.5% , which confirms how the block size suggested by BLEST-ML allows
determining a proper partitioning, which leads to a quite good trade-off between the
degree of parallelism and the introduced overhead. The quality of the partitioning sug-
gested by BLEST-ML is further confirmed by the execution of Random Forest on the
MNIST dataset (Fig. 3b). In this case, BLEST-ML predicts exactly the best possible par-
titioning, i.e. 16 blocks along rows. Also in this case, the worst values were measured
at the extremes, where the level of parallelism is either zero (1 block) or too high (256

Fig. 3 Execution times (in seconds) achieved by K‑means and Random Forest executed on two real‑world
datasets. The time obtained by using the predicted number of row blocks is marked by the cyan circle, while
the best one is marked by the green star

Page 14 of 23Cantini et al. Journal of Big Data (2024) 11:19

blocks). Furthermore, we measured a makespan ratio of 1.27 and 1.65 and a makespan
improvement of 21.32% and 39.51% , compared to the average and worst execution times,
respectively.

Synthetic datasets

To further explore the effectiveness of BLEST-ML, its estimates were evaluated against
a set of synthetic test datasets, which is useful to observe how the algorithms behave in
some specific cases. For this purpose, we generated a series of multiclass test datasets, by
allocating one or more normally-distributed clusters of points to each class. Particularly,
we used both isotropic and anisotropic Gaussian blobs. In addition, the obtained sam-
ples were augmented with random noise and redundant features, generated as a linear
combination of the original ones.

Starting from a set of synthetic test datasets of varying shapes, generated following the
aforementioned process, we measured the performance improvement achievable with
the use of BLEST-ML, relative to the execution of K-means and Random Forest algo-
rithms. Specifically, for each test dataset, we compared the time t∗ , achieved by using
the predicted block size, against the best, worst and average times obtained from all
other possible partitionings. The different partitionings for this comparison were calcu-
lated using progressive powers of 2 from 2 to 64 for both the number of row and column
blocks, which leads to 36 possible configurations. Furthermore, each test execution was
repeated 10 times, taking the median value, in order to get a robust measure of execution
time, preventing the evaluation process from being biased by noisy measures. Achieved
results, in terms of makespan ratio and percentage makespan reduction, averaged on all
test datasets, are summarized in Table 4 and discussed in the following.

By comparing t∗ with the best time measured by trying all possible partitionings, it
can be noticed that the data partitioning suggested by the learning algorithm is almost
always the best one, i.e. it guarantees an execution time very close to the shortest obtain-
able time. In particular, we measured a very little difference compared to the best execu-
tion time, with a makespan ratio almost equal to 1, and a negligible increase of execution
time less than 0.8% . Regarding the comparison with the average time, we obtained a
good performance improvement, with a percentage reduction of makespan equal to
24.71% and a makespan ratio equal to 1.25. These results show how the choice of an
unsuitable block size may lead to a degradation of performance, which can be avoided
with the aid of the proposed methodology.

We further stressed this aspect by comparing t∗ with the worst execution time, achiev-
ing a remarkable reduction of makespan equal to 55% and a makespan ratio equal to

Table 4 Average values of makespan ratio and percentage makespan reduction obtained from
executing K‑means and Random Forest algorithms on the synthetic test datasets

Metric Best time Average time Worst time

Makespan ratio 0.99± 0.02 1.25± 0.06 2.11± 0.08

Makespan reduction (%) −0.79%± 0.03 24.71%± 0.05 55.06%± 0.06

Page 15 of 23Cantini et al. Journal of Big Data (2024) 11:19

2.11. Measured values confirm the ability of BLEST-ML in supporting the execution of
machine learning algorithms in parallel and distributed environments.

To make more detailed and clear the benefits brought by the use of our methodology,
Figs. 4 and 5 show the results achieved with K-means and Random Forest in three pos-
sible cases, in which the number of rows n and columns m can be equal or very imbal-
anced. A synthetic test dataset for each case was generated as follows:

• n >> m : 500,000 rows, 1000 columns.
• m >> n : 1000 rows, 500,000 columns.
• n ≈ m : 10,000 rows, 10,000 columns.

Again, we compare execution times achieved by using the predicted partitioning and
all other possible partitionings, set using progressive powers of 2 from 2 to 64 for both
the number of row and column blocks (as explained above). By observing Fig. 4, we can
see that, even in the presence of a high imbalance, the algorithm always suggests a block
size value very close or equal to the best one, thus allowing an efficient execution of the
K-means algorithm. Particularly, the time obtained by using the predicted block size is
marked by the cyan circle, while the best one is marked by the green star. Moreover, the
heatmap is useful to show how the variation of the block size affects the execution time,

Fig. 4 Execution times (in seconds) achieved by running K‑means on datasets of both balanced and
imbalanced shape. The time obtained with the predicted block size is marked by the cyan circle, while the
best one by the green star

Page 16 of 23Cantini et al. Journal of Big Data (2024) 11:19

depicted in different gradations of red, where a greater intensity corresponds to a higher
execution time. We observed that the time t∗ obtained by using the predicted block size
leads to the second best time in the first two cases, and to the best time for the last one.
The mean percentage difference between t∗ and the best time is almost equal to 1% ,
which shows how the partitioning suggested by BLEST-ML is a very good estimate of
the optimal one. Moreover, by comparing t∗ with the average and worst times, we meas-
ured an average makespan ratio of 1.17 and 1.53 and an average percentage improve-
ment of makespan equal to 14.27% and 34.44%.

The good results achieved with K-means are confirmed by the experiments per-
formed on Random Forest, shown in Fig. 5. In this case, t∗ resulted in the best execu-
tion time in two cases out of three (the first and the third), and the third best time in

Fig. 5 Execution times (in seconds) achieved by running Random Forest on datasets of both balanced and
imbalanced shape. The time obtained with the predicted block size is marked by the cyan circle, while the
best one by the green star

Table 5 Average makespan ratio and percentage makespan reduction measured by running
K‑means and Random Forest on datasets of both balanced and imbalanced shape

Algorithm Metric Best time Average time Worst time

K‑means Makespan ratio 0.99± 0.03 1.17± 0.05 1.53± 0.07

Makespan reduction (%) −1.03%± 0.02 14.27%± 0.04 34.44%± 0.06

 Random Forest Makespan ratio 0.99± 0.01 1.03± 0.05 1.10± 0.05

Makespan reduction (%) −0.56%± 0.04 3.74%± 0.06 9.44%± 0.09

Page 17 of 23Cantini et al. Journal of Big Data (2024) 11:19

the remaining case (the second). In particular, we measured a negligible difference
of 0.56% between t∗ and the best execution time. Moreover, by comparing t∗ with the
average and worst times we observed a makespan ratio of 1.03 and 1.10 and a per-
centage makespan reduction of 3.74% and 9.44% . All these results are summarized in
Table 5.

To further assess the generalization abilities of the trained model, we analyzed how
well it can handle datasets of increasing size without any retraining, using the same
experimental setup described at the beginning of this Section. As suggested in the
literature [30], we used synthetic test datasets of increasing size (i.e., 1k, 50k, 250k,
500k) to compare execution times achieved by K-means and Random Forest using the
predicted block size against the best, worst, and average times. It is worth noticing
that the test datasets were generated such that the resulting pairs dataset-algorithm
were unknown to the model, i.e. not included in the training set. Obtained results,
shown in Fig. 6, highlight the ability of BLEST-ML to cope with datasets of increas-
ing size, leading to very similar execution times compared to the best block size.
Moreover, we measured marked differences in execution time compared to the aver-
age and worst times for both algorithms, with an average makespan ratio and reduc-
tion up to 2.47 and 50.4% , respectively, which further confirms the effectiveness of
our methodology.

Multi‑node experiments

We further investigated the effectiveness of BLEST-ML in a distributed execution envi-
ronment. Specifically, we leveraged the MareNostrum 4 supercomputer (MN4) [8],
located at the Barcelona Supercomputing Center. Its current peak performance is 11.15
Petaflops and it is composed of 3456 nodes, each of which has two Intel®Xeon Plati-
num 8160 (24 cores at 2.1 GHz each) and 96 GB of main memory. It has also 100 GB
Intel®Omni-Path Full-Fat Tree Interconnection, and 14 PB of shared disk storage man-
aged by the Global Parallel File System [31].

In this experimental evaluation, we focused on the execution of the Principal Compo-
nent Analysis (PCA) algorithm. It is a dimensionality reduction algorithm, whose aim is

Fig. 6 Execution times (in seconds) achieved by K‑means and Random Forest executed on datasets of
increasing size. Time achieved by using the predicted block size is compared against the best, worst, and
average times

Page 18 of 23Cantini et al. Journal of Big Data (2024) 11:19

to compute a meaningful low-dimensional representation of the input data by projecting
each sample onto only the first few principal components. The log used for the extrac-
tion of the training data was enriched using several real-world datasets, listed in the fol-
lowing, which belong to different fields, ranging from medicine to particle physics.

• Diabetes: medical data, used for predicting whether or not a patient has diabetes,
based on diagnostic measurements.

• Cleveland: medical data, used for predicting the heart disease risk based on clinical
measurements.

• Banknote: high-resolution images, used for evaluating if a banknote is authentic or
forgery.

• Superconductors [32]: superconductors data, used for predicting the critical tempera-
ture.

• Accelerometer [33]: accelerometer data, used for predicting motor failures.
• 1ubq.bck.10.crd, 1ubq.bck.1.crd, 1ubq.heavy.1.crd: particle physics datasets, contain-

ing up to 1 million atom trajectories described by a varying number of features and
obtained from GROMACS simulations [34].

For the experimental evaluation, we used three test datasets containing biomolecular
simulation data in a mdrcd2 format, containing trajectories of atoms, whose number
ranges from almost 7000 to more than 30, 000. These datasets are described in Table 6.

For the execution of our experiments, we employed 16 nodes of the MN4 super-
computer, with 96 GB of RAM per node. In addition, the number of used cores per
PyCOMPSs task with the large and extra-large datasets was set to 24 due to the heavy
computation and their big memory size, while for the medium dataset, we used 8 cores
per PyCOMPSs task.

Table 6 Test datasets used to evaluate the benefits brought by BLEST‑ML on the execution of the
PCA algorithm on the MN4 supercomputer

Algorithm Dataset name Dataset rows Dataset columns

PCA Traj_medium 60,000 20,736

PCA Traj_large 100,000 59,544

PCA Traj_xlarge 100,000 94,896

Table 7 Results obtained in MareNostrum 4 using model predictions and domain expert estimates

Dataset Predicted partitioning Manual partitioning

p∗r p∗c Time (s) p̂r p̂c Time (s)

Traj_medium 4 16 270 6 21 484

Traj_large 8 40 1123 14 36 1096

Traj_xlarge 8 48 1770 14 48 1825

2 Amber trajectory format, https:// amber md. org/ FileF ormats. php.

https://ambermd.org/FileFormats.php

Page 19 of 23Cantini et al. Journal of Big Data (2024) 11:19

Unlike the experiments shown in section Single-node experiments, we did not con-
sider the large set of all possible partitionings, as the huge size of test datasets could have
led to an excessively expensive process, due to time-consuming and resource-intensive
computation. In this case, instead, we compared the time achieved by using the pre-
dicted partitioning (p∗r , p∗c) against the best partitioning that was individuated by domain
experts (p̂r , p̂c), by following a trial-and-error approach. The obtained results are shown
in Table 7.

By comparing the time achieved by using the block size predicted by BLEST-ML
with that estimated by the domain experts, we achieved quite good results, with an
average value of makespan ratio and makespan percentage reduction equal to 1.27
and 14.92% , respectively. In addition, as reported in Table 7, the data partitioning sug-
gested by BLEST-ML is the best one in two out of three test cases, resulting in the
shortest execution time. Moreover, it is worth noticing that in the remaining case,
corresponding to the Traj_large dataset, the relative difference between the two exe-
cution times is quite small (≈ 2%). The prediction is indeed reasonably good, as it can
be calculated quickly without involving any trial-and-error approach and requiring a
small amount of resources and domain knowledge.

Fig. 7 Execution times (in seconds) achieved in MareNostrum 4 by running PCA on the Traj_medium dataset.
The time obtained with the predicted block size is marked by the cyan circle, while the best one by the green
star

Table 8 Performance obtained by exhaustive search, OpenTuner, and BLEST‑ML in tuning the PCA
algorithm running on the MN4 supercomputer on the Traj_medium dataset

Tuning technique Tuning time Number of
tests

 Best configuration Best time (s)

Exhaustive search 9 h 23 min 36 (2, 16) 236

OpenTuner [7] 2 h 51 min 12 (2, 16) 236

 BLEST‑ML (ours) 2 · 10−3 s − (4, 16) 270

Page 20 of 23Cantini et al. Journal of Big Data (2024) 11:19

For the sake of completeness, in Fig. 7 we provide the execution times measured by
executing the PCA algorithm on the Traj_medium dataset with all possible partition-
ings, computed using progressive powers of 2, from 2 to 64, leading to 36 possible
configurations. Consequently, the maximum number of blocks that can be generated
is equal to 642 , i.e. the 64 × 64 configuration is selected and the dataset is divided into
64 blocks along both rows and columns. Each of the generated blocks will be then
handled by PyCOMPSs tasks, one for each block.

The plot shows that the partition suggested by BLEST-ML is the third best possi-
ble. Nevertheless, while not leading to the minimum execution time, the estimate is
still an excellent approximation, obtainable in a very efficient way. Indeed, our meth-
odology allows obtaining a suitable estimate very quickly, since the machine learn-
ing model takes just a few milliseconds to compute a prediction. On the contrary,
according to the execution times reported in Fig. 7, a full exhaustive search would
take more than 9 hours. To further stress this concept, we tuned the PCA application
by using the OpenTuner [7] autotuning framework, comparing the obtained results
with those achieved by BLEST-ML and the exhaustive search (see Table 8). In particu-
lar, we performed 15 tuning runs with OpenTuner, selecting the one that had the best
tuning time, i.e., it identified the optimum in the shortest time. The best tuning time
recorded was approximately 3 h, finding the optimum with the UniformGreedyMuta-
tion search technique and 12 performed tests. This results in a clear improvement
over exhaustive search, reducing tuning time to less than a third. Nonetheless, the
time required to determine the recommended partitioning in response to a user
request remains significantly greater than that employed by BLEST-ML, which uses
machine learning to directly calculate an appropriate block size. Consequently, our
approach can significantly improve the time-to-solution as compared to experiment-
ing with multiple potential configurations when a user submits a request.

In addition, we compared the time obtained with the predicted partitioning with the
average and worst times shown in Fig. 7. We measured a makespan ratio equal to 3.54
and 13.59 and a percentage reduction of makespan of 71.75% and 92.64% compared to
the average and worst times. All of these results further confirm how crucial it is to
choose a suitable partitioning for running data-intensive applications in high-perfor-
mance distributed environments.

Finally, it is worth noticing that attempting to manually explore a set of potential
configurations—or even all, in the case of the exhaustive search—in search of the one
that minimizes execution time may be worthless. Indeed, once the first configuration
is tested, the outcome of the executed algorithm is already available, which would make
testing subsequent candidate configurations superfluous. Moreover, the optimal block
size found via a manual approach would not be applicable to different unseen execu-
tions. On the contrary, the use of a machine learning model allows for direct inference
and multiple re-use, as it is trained once (as described in Sect. Classification model
training) and can be used multiple times for block size prediction, given different unseen
input instances.

Page 21 of 23Cantini et al. Journal of Big Data (2024) 11:19

Conclusions and final remarks
Data-intensive applications are widespread in several domains, such as bioinformatics,
high-energy physics, and the modeling of natural phenomena. In such applications, an
effective strategy for data partitioning is crucial to enable their efficient execution in
distributed HPC environments. This paper introduced a novel methodology, namely
BLEST-ML (BLock size ESTimation through Machine Learning), aimed at optimiz-
ing the execution of such applications by determining the best block size to be used for
data partitioning. Our methodology was evaluated on the dislib library of PyCOMPSs,
considering different execution environments, including the MareNostrum 4 super-
computer, and different real-world datasets. Experimental results show how BLEST-
ML can lead to a significant improvement in application performance and a reduction
in execution time, by following a machine learning-based approach. In future work, we
plan to improve our methodology to make it even more generic and usable, supporting
the choice of other parameters required to configure a distributed environment. Fur-
thermore, we can investigate its applicability to frameworks and libraries other than
PyCOMPSs and dislib, as it can be exploited in any case where data partitioning is essen-
tial to improve application performance and scalability.
Acknowledgements
This work has been partially supported by the European Commission through the Horizon 2020 Research and Innovation
program and the EuroHPC JU under contract 955558 (eFlows4HPC project) and by MCIN/AEI/10.13039/501100011033
and the European Union NextGenerationEU/PRTR (PCI2021‑121957 and CEX2021‑ 001148‑S) and by the Spanish Govern‑
ment (PID2019‑107255GB), and Generalitat de Catalunya (contract 2021‑SGR‑00412). We also acknowledge financial
support from “National Centre for HPC, Big Data and Quantum Computing”, CN00000013 ‑ CUP H23C22000360005, and
from “FAIR ‑ Future Artificial Intelligence Research” project ‑ CUP H23C22000860006.

Author contributions
All the authors contributed to the structuring of this paper, providing critical feedback and helping shape the research,
analysis, and manuscript. RC, FM, and JE conceived the presented idea and organized the manuscript. RC, FM, AO, and FV
wrote the manuscript with input from all authors and implemented and tested the methodology. DT, PT, and RMB were
involved in planning the work and supervised and reviewed the structure and contents of the paper.

Funding
Not applicable.

Availability of data and materials
An implementation of BLEST‑ML is publicly available on GitHub at the following link https:// github. com/ eflow s4hpc/
dislib‑ block‑ size‑ estim ation.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 January 2023 Accepted: 14 December 2023

References
 1. Gandomi A, Reshadi M, Movaghar A, Khademzadeh A. Hybsmrp: a hybrid scheduling algorithm in Hadoop Mapre‑

duce framework. J Big Data. 2019;6(1):1–16.
 2. Carver B, Zhang J, Wang A, Anwar A, Wu P, Cheng Y. Wukong: a scalable and locality‑enhanced framework for server‑

less parallel computing. In: Proceedings of the 11th ACM Symposium on Cloud Computing, 2020; 1– 15.
 3. Marozzo F, Rodrigo Duro F, Garcia Blas J, Carretero J, Talia D, Trunfio P. A data‑aware scheduling strategy for workflow

execution in clouds. Concurr Comput Pract Exp. 2017;29: e4229.

https://github.com/eflows4hpc/dislib-block-size-estimation
https://github.com/eflows4hpc/dislib-block-size-estimation

Page 22 of 23Cantini et al. Journal of Big Data (2024) 11:19

 4. Giampà S, Belcastro L, Marozzo F, Talia D, Trunfio P. A data‑aware scheduling strategy for executing large‑scale
distributed workflows. IEEE Access. 2021;9:47354–64.

 5. Apache Spark. https:// spark. apache. org/.
 6. Apache Hadoop. https:// hadoop. apache. org/.
 7. Ansel J, Kamil S, Veeramachaneni K, Ragan‑Kelley J, Bosboom J, O’Reilly U‑M, Amarasinghe S. Opentuner: an extensi‑

ble framework for program autotuning. In: Proceedings of the 23rd International Conference on Parallel Architec‑
tures and Compilation, 2014: 303– 316.

 8. Barcelona Supercomputing Center (BSC): MareNostrum IV Technical Information. https:// www. bsc. es/ maren ostrum/
maren ostrum/ techn ical‑ infor mation.

 9. Mahmud MS, Huang JZ, Salloum S, Emara TZ, Sadatdiynov K. A survey of data partitioning and sampling methods
to support big data analysis. Big Data Mining Anal. 2020;3(2):85–101.

 10. Ramírez‑Gallego S, Lastra I, Martínez‑Rego D, Bolón‑Canedo V, Benítez JM, Herrera F, Alonso‑Betanzos A. Fast‑
mrmr: fast minimum redundancy maximum relevance algorithm for high‑dimensional big data. Int J Intell Syst.
2017;32(2):134–52.

 11. Palma‑Mendoza R‑J, de Marcos L, Rodriguez D, Alonso‑Betanzos A. Distributed correlation‑based feature selection in
spark. Inf Sci. 2019;496:287–99.

 12. Al‑Kateb M, Sinclair P, Au G, Ballinger C. Hybrid row‑column partitioning in Teradata®. Proc VLDB Endow.
2016;9(13):1353–64.

 13. Schreiner GA, Duarte D, Dal Bianco G, Mello RdS. A hybrid partitioning strategy for newsql databases: The voltdb
case. iiWAS2019, pp. 353–360. Association for Computing Machinery, New York, NY, USA 2019;

 14. Salloum S, Huang JZ, He Y. Exploring and cleaning big data with random sample data blocks. J Big Data.
2019;6(1):1–28.

 15. Salloum S, Huang JZ, He Y. Random sample partition: a distributed data model for big data analysis. IEEE Trans
Industr Inf. 2019;15(11):5846–54.

 16. Wei C, Salloum S, Emara TZ, Zhang X, Huang JZ, He Y. A two‑stage data processing algorithm to generate random
sample partitions for big data analysis. In: International Conference on Cloud Computing. Springer 2018;347– 364

 17. Migliorini S, Belussi A, Quintarelli E, Carra D. Copart: a context‑based partitioning technique for big data. J Big Data.
2021;8(1):1–28.

 18. Bertolucci M, Carlini E, Dazzi P, Lulli A, Ricci L. Static and dynamic big data partitioning on apache spark. In: Paral‑
lel Computing: On the Road to Exascale, Proceedings of the International Conference on Parallel Computing,
2015;489–498.

 19. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, Franklin MJ, Shenker S, Stoica I. Resilient distributed
datasets: a Fault‑Tolerant abstraction for In‑Memory cluster computing. In: 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), 2012; 15–28.

 20. Wang S, Li C, Hoffmann H, Lu S, Sentosa W, Kistijantoro AI. Understanding and auto‑adjusting performance‑sensitive
configurations. Acm Sigplan Notices. 2018;53(2):154–68.

 21. Cantini R, Marozzo F, Orsino A, Talia D, Trunfio P. Exploiting machine learning for improving in‑memory execution of
data‑intensive workflows on parallel machines. Future Internet. 2021; 13(5).

 22. Sukhoroslov O. Toward efficient execution of data‑intensive workflows. J Supercomput. 2021;77(8):7989–8012.
 23. Belcastro L, Cantini R, Marozzo F, Orsino A, Talia D, Trunfio P. Programming big data analysis: principles and solutions.

J Big Data 2022; 9(4).
 24. Marozzo F, Talia D, Trunfio P. Scalable script‑based data analysis workflows on clouds. In: Proceedings of the 8th

Workshop on Workflows in Support of Large‑scale Science, 2013; 124–133.
 25. Tejedor E, Becerra Y, Alomar G, Queralt A, Badia RM, Torres J, Cortes T, Labarta J. Pycompss. Int J High Perform Com‑

put Appl. 2017;31(1):66–82.
 26. Álvarez Cid‑Fuentes J, Solà S, Álvarez P, Castro‑Ginard A, Badia RM. dislib: large Scale High Performance Machine

Learning in Python. In: Proceedings of the 15th International Conference on eScience, 2019; 96–105.
 27. Lordan F, et al. Services: an interoperable programming framework for the cloud. J Grid Comput. 2014;12(1):67–91.
 28. Baldi P, Cranmer K, Faucett T, Sadowski P, Whiteson D. Parameterized machine learning for high‑energy physics. arXiv

preprint 2016; arXiv: 1601. 07913.
 29. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient‑based learning applied to document recognition. Proc IEEE.

1998;86(11):2278–324.
 30. Mariani G, Anghel A, Jongerius R, Dittmann G. Scaling application properties to exascale. In: Proceedings of the 12th

ACM International Conference on Computing Frontiers,2015: 1–8.
 31. Schmuck F, Haskin R. {GPFS} : A {Shared‑Disk} file system for large computing clusters. In: Conference on File and

Storage Technologies (FAST 02) 2002.
 32. Hamidieh K. A data‑driven statistical model for predicting the critical temperature of a superconductor. Comput

Mater Sci. 2018;154:346–54.
 33. Sampaio GS, de Aguiar Vallim Filho AR, da Silva LS, da Silva LA. Prediction of motor failure time using an artificial

neural network. Sensors. 2019;19(19):4342.
 34. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. Gromacs: high performance molecular simula‑

tions through multi‑level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Riccardo Cantini is a researcher in computer engineering at the University of Calabria.

Fabrizio Marozzo is an assistant professor of computer engineering at the University of Calabria.

https://spark.apache.org/
https://hadoop.apache.org/
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
http://arxiv.org/abs/1601.07913

Page 23 of 23Cantini et al. Journal of Big Data (2024) 11:19

Alessio Orsino is a Ph.D. student of computer engineering at the University of Calabria.

Domenico Talia is a professor of computer engineering at the University of Calabria and an adjunct pro‑
fessor at Fuzhou University.

Paolo Trunfio is an associate professor of computer engineering at the University of Calabria.

Rosa M.Badia is the manager of the Workflows and Distributed Computing research group at the Barce‑
lona Supercomputing Center.

Jorge Ejarque is a senior research engineer at the Barcelona Supercomputing Center.

Fernando Vázquez‑Novoa is a junior research engineer at the Barcelona Supercomputing Center.

	Block size estimation for data partitioning in HPC applications using machine learning techniques
	Abstract
	Introduction
	Problem statement

	Related work
	A machine learning approach for block size estimation
	Execution environment analysis
	Log analysis to extract training data
	Classification model training

	Block size estimation in dislib applications
	Experimental evaluation
	Single-node experiments
	Real-world datasets
	Synthetic datasets

	Multi-node experiments

	Conclusions and final remarks
	Acknowledgements
	References

