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Abstract 

The extensive use of HPC infrastructures and frameworks for running data‑intensive 
applications has led to a growing interest in data partitioning techniques and strate‑
gies. In fact, application performance can be heavily affected by how data are parti‑
tioned, which in turn depends on the selected size for data blocks, i.e. the block size. 
Therefore, finding an effective partitioning, i.e. a suitable block size, is a key strategy 
to speed‑up parallel data‑intensive applications and increase scalability. This paper 
describes a methodology, namely BLEST‑ML (BLock size ESTimation through Machine 
Learning), for block size estimation that relies on supervised machine learning tech‑
niques. The proposed methodology was evaluated by designing an implementation 
tailored to dislib, a distributed computing library highly focused on machine learn‑
ing algorithms built on top of the PyCOMPSs framework. We assessed the effective‑
ness of the provided implementation through an extensive experimental evaluation 
considering different algorithms from dislib, datasets, and infrastructures, includ‑
ing the MareNostrum 4 supercomputer. The results we obtained show the ability 
of BLEST‑ML to efficiently determine a suitable way to split a given dataset, thus provid‑
ing a proof of its applicability to enable the efficient execution of data‑parallel applica‑
tions in high performance environments.

Keywords: Data partitioning, High performance computing, Data‑parallel 
applications, Machine learning, Big data

Introduction
Data partitioning refers to splitting a dataset into small and fixed-size units, called 
blocks or chunks, to enable efficient data-parallel processing and storing in distributed-
memory-based systems. Several issues related to data partitioning must be addressed 
to reduce execution times and ensure the good scalability of applications. For example, 
when a dataset is mapped on a set of nodes of a parallel/distributed computing system, 
two very critical problems are highlighted: (i) the choice of the destination node for a 
given block (i.e., the node where that block will be stored); and (ii) the selection of an 
appropriate size of the blocks the dataset is divided into, i.e. the block size. The first 
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problem has been addressed in several studies [1–4], in which scheduling algorithms 
have been proposed to minimize data movement at run-time. The second problem 
addressed in this work has been tackled in the literature by different distributed comput-
ing frameworks, through fixed-size partitioning strategies and heuristics [5, 6]. Besides 
the use of built-in partitioning techniques provided by these frameworks, general-pur-
pose autotuners [7] can be exploited to adjust several hyperparameters, including the 
block size.

The block size can heavily affect the trade-off between single-node efficiency and 
parallelism in data-intensive applications. Specifically, a larger size reduces parallelism 
(fewer blocks) but makes tasks larger. Although this can lead to an overhead reduc-
tion, it must be ensured that the block size does not exceed the memory available on 
the individual nodes, so as to avoid memory saturation. On the other hand, a smaller 
size leads to finer exploitation of parallelism, while introducing a larger overhead due to 
communication, synchronization, and task management, which can negatively impact 
performance.

In this work, we propose BLEST-ML (BLock size ESTimation through Machine 
Learning), a novel methodology for data block size estimation that relies on supervised 
machine learning techniques. Specifically, it leverages a cascade of tree-based classifiers 
to determine a proper value for the block size, given an execution to be performed. The 
model is trained on a log of past executions, represented by a set of descriptive features, 
including algorithm, dataset, and execution environment characteristics.

The effectiveness of BLEST-ML was assessed by designing an implementation tailored 
to dislib, a distributed computing library focused on machine learning algorithms. We 
carried out an extensive experimental evaluation on different execution environments, 
including the MareNostrum 4 supercomputer (MN4) [8] located at the Barcelona Super-
computing Center (BSC), and several real-world datasets, including High Energy Physics 
(HEP) and bio-informatics. The results show the ability of the proposed methodology 
to efficiently predict a suitable value for the block size in dislib applications running on 
a large-scale High Performance Computing (HPC) system such as MN4. Our findings 
provide a proof of the applicability of BLEST-ML to support programmers in choosing 
proper data partitioning, thus enabling the efficient execution of data-parallel applica-
tions in HPC environments.

The main contribution of the proposed work lies in the application of supervised 
machine learning techniques for block size estimation, facilitating efficient data par-
titioning in HPC applications. Specifically, we employ a cascade of decision models 
trained on a historical log of past executions to learn the patterns that connect a given 
configuration to the most suitable block size. Adopting this approach, BLEST-ML can 
determine a good estimate in a quick and efficient way, demanding minimal domain 
knowledge, and avoiding the necessity for resource-intensive exploration of vast search 
spaces and dynamic profiling at runtime. Furthermore, it can handle non-monotonic 
relationships between performance and configuration, which makes it applicable in a 
wide range of use cases related to the execution of data-parallel applications in distrib-
uted and HPC environments. All these factors collectively make our approach more effi-
cient and effective than the existing trial-and-error heuristics, and a valuable alternative 
to autotuning frameworks.
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The remainder of the paper is organized as follows. Section Related work discusses the 
main methods for data partitioning present in the literature. Section A machine learning 
approach for block size estimation describes the proposed methodology. Section Block size 
estimation in dislib applications introduces the dislib library of PyCOMPSs, i.e. the frame-
work chosen as the testbed. Section  Experimental evaluation presents the experimental 
evaluation and results. Finally, Sect. Conclusions and final remarks concludes the paper.

Problem statement

The problem of partitioning a dataset in a distributed environment requires defining how 
the dataset should be divided into blocks. Besides some techniques that use fixed-size 
blocks, many others leverage the concept of block size that defines the number of rows and 
columns of each block the dataset is divided into. The choice of this parameter is challeng-
ing but key to speed-up parallel data-intensive applications and increase scalability, as it 
determines the trade-off between parallelism, scheduling overhead, and memory usage.

Typically, block size estimation is not an easy task for programmers. In fact, they usually 
proceed by following a trial-and-error approach, only supported by simple heuristics and 
domain knowledge (i.e., the awareness of the behavior of the algorithm in a given distrib-
uted environment). As a result, this tuning process is often time-consuming and resource-
intensive, especially when large datasets and complex hardware infrastructures are used.

The block size estimation problem is formulated as follows. Let d be a dataset composed 
of n rows and m columns, and a the algorithm to be run on d within the execution envi-
ronment e. The goal is to determine the best size of data blocks, that is a bidimensional 
variable (r∗, c∗) , in which r∗ and c∗ represent the optimal number of rows and columns 
of each block. A slightly different approach, used in this work, formulates the problem as 
the prediction of the number of rows and columns partitions in which to divide the data-
set, i.e. the target variable (p∗r , p∗c ) . Starting from this, the block size is then obtained as 
(r∗, c∗) = (n/p∗r ,m/p∗c ) . For the sake of clarity, Table 1 reports the meaning of the main 
symbols used throughout the paper.

Table 1 Meaning of the main symbols used throughout the paper

Symbol Meaning

d Dataset composed by n rows and m columns

e A representation of the target execution environment

a The machine learning algorithm to be executed on d within e

p∗r The optimal number of partitions along rows

p∗c The optimal number of partitions along columns

r∗ The optimal number of rows in a block

c∗ The optimal number of columns in a block

(r∗ , c∗) The optimal block size expressed as (n/p∗r ,m/p∗c )
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Related work
In high performance computing, data partitioning is a key strategy to speed-up parallel 
data-intensive applications and increase scalability. In this section, we describe the main 
methods proposed in the literature and used in HPC infrastructures.

Horizontal, vertical, and hybrid partitioning. The data partitioning problem is 
generally addressed by using three main alternative techniques: horizontal, vertical, or 
hybrid partitioning [9].

• Horizontal partitioning This technique, also called sharding, divides the rows of the 
dataset into disjoint subsets so that each subset has the same number of columns as 
the whole dataset. This approach is used in many state-of-the-art frameworks for big 
data processing, such as Hadoop and Spark [5, 6].

• Vertical partitioning In this approach, the columns of the dataset are divided into 
subsets, usually based on the columns on which data querying is more frequently 
performed, or a heuristic approach [10, 11].

• Hybrid partitioning It combines the horizontal and vertical approaches, by aggregat-
ing data according to how it is used by the target application and/or system [12, 13]. 
It is also called functional partitioning.

Among all described strategies, horizontal partitioning is the one that is mostly used 
in big data applications and HPC systems, while the other two strategies are less used 
and therefore explored in the literature. Specifically, the horizontal partitioning can be 
further categorized into hash-, range-, and random- based. The hash-based approach 
divides records into subsets by hashing the record key and then mapping the hash value 
of the key to a partition. A common method to do this mapping is using a round-robin 
algorithm, which guarantees a balanced partitioning among nodes and partitions of 
equivalent size. In hash-based partitioning records having the same key value must have 
the same hash value, and consequently, they will be mapped to the same partition. The 
range-based partitioning approach, instead, partitions a dataset according to a given 
range and distributes records having the keys within the same range on the same node. 
In distributed environments, how to set this range is often challenging, especially when 
dealing with large-scale data analysis. Finally, the random-based partitioning approach 
divides the records randomly into subsets using a random number generator to deter-
mine where to distribute each record, producing approximately subsets of equal size. As 
an example, Salloum et al. proposed the Random Sample Partition (RSP) data model to 
support distributed big data analysis [14, 15]. This model represents a big dataset as a 
set of non-overlapping blocks, where each block is a random sample of the whole data-
set. In addition, Wei et  al. [16] proposed a two-stage algorithm to generate RSP data 
blocks from the Hadoop Distributed File System (HDFS). A drawback of random-based 
approaches is that they do not consider the correlation between records, which instead 
can be leveraged to avoid unnecessary computations. As an example, in [17] the authors 
designed a context-based multi-dimensional partitioning technique that relies on data 
correlation to determine a suitable split.

Static and dynamic partitioning. Main approaches for data partitioning can be fur-
ther categorized into static or dynamic [18]. Static approaches use a fixed size when a 
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block is selected, often defined in MB, and the partitioning is computed before starting 
the execution. As an example, data in HDFS is divided into fixed-size blocks, obtained 
from horizontal partitioning. Particularly, a typical block size is 128 MB, which means 
that if we have a 1 GB file, it will be partitioned into 8 blocks, each one of 128 MB. Simi-
larly, in Spark, the HDFS blocks need to be loaded into an in-memory data structure, 
called Resilient Distributed Dataset (RDD) [19], which can be then partitioned using 
either the aforementioned strategies, such as hash and range, or a custom partitioning. 
Specifically, Spark runs a single task for every partition of an RDD, up to 2− 3 x times 
the number of cores in the cluster. Hence, a heuristic can be derived that determines the 
number of partitions as a small multiple of the total number of available cores. On the 
contrary, in the dynamic approaches, the dimension and shape of the blocks in which 
to partition the dataset are not chosen a priori, but at runtime. As an example, several 
dynamic strategies can be found in [18], specially designed for graph data partitioning. 
Both approaches present some issues. Static approaches define a priori how data should 
be partitioned, without taking into account any dataset characteristic or algorithm fea-
ture. On the other hand, dynamic approaches support adaptation to the actual workload 
at runtime, but they can introduce significant overhead in dynamically adjusting data 
partitioning. To overcome these issues, in this work we propose a hybrid and static data 
partitioning approach, able to determine how to adequately partition the dataset before 
the execution, thus avoiding the overhead introduced by dynamic approaches, while also 
taking into account dataset and algorithm characteristics and infrastructure features. 
Specifically, we determine the best size of data blocks by using a supervised machine 
learning technique, focusing on the estimation of two quantities, i.e. the number of par-
titions in which to divide dataset rows and columns. This allows finding a good parti-
tioning to make the most of the computational resources of the execution environment, 
thus improving application performance and scalability.

Autotuners. Besides the discussed techniques specially designed to address the data 
partitioning problem, general-purpose autotuners can be used to tune different applica-
tion parameters, including the block size, in order to improve application performance 
and throughput. As an example, OpenTuner [7] is a framework for building domain-
specific multi-objective program autotuners, which leverages an ensemble of search 
techniques that can be run simultaneously. Candidate configurations (i.e., selected 
points in a user-defined multi-dimensional search space) are evaluated through a meta-
search strategy, which allocates tests to search techniques, relying on the resolution 
of the multi-armed bandit problem. Among the other tools, SmartConf [20] relies on 
control theory to optimize system performance and stability, by performing automated 
and dynamic configuration adjustments, based on performance constraints. Although 
the aforementioned tuners represent general-purpose solutions, which can be effectively 
used for parameter configuration, they have some limitations. As an example, SmartConf 
suffers from the lack of capacity to deal with the non-monotonic relationship between 
performance and configuration. Specifically, considering the block size estimation prob-
lem—on which the present work is focused - there exists a non-monotonic relationship 
between the number of blocks and application performance since too few blocks would 
hinder application parallelism, while too many blocks would introduce a non-negligible 
overhead which results in significant performance degradation. In such a case, as stated 
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by the authors in [20], a machine-learning solution—like the one proposed in this work—
would be a better fit. Such a solution, in addition, can also be faster than autotuners, by 
quickly providing a suggestion that solely relies on the learned patterns linking a given 
configuration with the most suitable block size, without the need for resource-intensive 
exploration of vast search spaces and dynamic profiling at runtime. Nonetheless, it is 
worth noticing that solutions like OpenTuner [7] cope with this issue by leveraging intel-
ligent search mechanisms aimed at evaluating a relatively small set of candidate configu-
rations, thus effectively handling huge search spaces whose full exhaustive search would 
be unfeasible. Furthermore, machine learning-based approaches may require a large 
amount of historical training data in order to generalize well to new or unseen inputs, 
and are generally tailored to a specific optimization problem.

A machine learning approach for block size estimation
BLEST-ML leverages a classification-based approach to address the problem of data par-
titioning, by determining the best block size S = (n/pr ,m/pc) that minimizes the execu-
tion time of algorithm a on a dataset d composed of n rows and m columns. Specifically, 
the target classes to be predicted by the machine learning model are pr and pc , two dis-
crete variables ranging from 1 to a maximum number of partitions, usually defined as a 
small multiple of the total number of cores available. We selected this kind of approach 
because it results to be more stable compared to a regression-based one, in which the 
block size is directly predicted by identifying the number of elements of each block. In 
fact, the main problem of the regression-based approach is that its output is generally 
unconstrained, which may lead to a set of blocks with a non-uniform size. The classifi-
cation-based approach, instead, is less affected by this problem, as it selects the number 
of partitions against a finite number of possible values. However, the ability to generalize 
heavily depends on the representativeness of the training data, which implies that the 
produced estimates are reliable for HPC systems having similar infrastructure features 
and datasets whose size is of the same order of magnitude as those seen during training. 
In the following, we provide a detailed description of the three main steps that make up 
BLEST-ML (see Fig. 1).

Execution environment analysis

Given a distributed environment in which data analysis applications can be run, BLEST-
ML aims to enable their efficient execution by identifying a proper size for data blocks. 
This can help programmers to make the most of all the computing and storage resources 
that are available in the environment, as they can efficiently obtain a suitable estimate for 
the block size, without the need for heavy tuning processes or domain knowledge. As a 
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Fig. 1 Execution flow of BLEST‑ML (BLock size ESTimation through Machine Learning)
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preliminary step, the execution environment must be carefully analyzed. Generally, it is 
characterized by a set of software features, such as the available frameworks and librar-
ies, and infrastructure features, such as the number of nodes, cores per node, available 
memory, and disk space.

Log analysis to extract training data

BLEST-ML leverages a log of past executions to extract the patterns that link a spe-
cific execution to the best block size, by training a supervised machine learning 
model. However, in order to learn effective patterns, raw logs must be adequately pro-
cessed to extract an appropriate set of training data. The log L consists of a collection 
of executions, performed by both standard users and domain experts, in which a sin-
gle execution is described by the characteristics of the dataset (d), the algorithm (a), 
the execution environment (e), the applied partitioning along rows ( pr ) and columns 
( pc ), the overall execution time (t), and other measurements such as main memory/
disk usage. Formally, an execution in L is represented by the tuple 〈d, a, e, pr , pc, t〉 . 
Based on the information available in L and the application domain, which includes 
the execution framework and the target infrastructure (e.g., a single node or an HPC 
cluster), d, a and e can be represented in different ways to consider domain-specific 
aspects. As an example: i) for the dataset d, the number of rows and columns can be 
considered, together with the dataset size that is useful when a fixed- size partitioning 
is used; ii) for the algorithm a, it could be relevant to discern between the type of task 
(e.g., classification or clustering) and usage mode (i.e., training and inference); iii) for 
the execution environment e, the number of cores and the available amount of RAM 
can be used, while other features like the number of nodes and the RAM per node 
only apply to distributed infrastructures.

In order to generate the training dataset D , all executions in L are grouped by the 
triple 〈d, a, e〉 . In this way, we can observe how, given a fixed configuration, execu-
tion time is affected by different block sizes. Afterward, for each group, the best 
partitioning ( p∗r  , p∗c ) that led to the minimum execution time is found and the tuple 
�d, a, e, p∗r , p

∗
c � is added to D . At the end of the process, the dataset D will contain the 

best partitioning found for each triple 〈d, a, e〉 , specifically:

• Features related to algorithm a, dataset d (dimension in MB, number of rows, 
etc.), and execution environment e (number of cores, number of nodes, etc.).

• The optimal partitioning (p∗r , p∗c ) , i.e. the target variable.

Table 2 shows an example of an excerpt of D obtained from the training data extrac-
tion step.

An information-rich log, from which to extract a fairly representative dataset, is 
generally available, as current distributed processing frameworks, such as PyCOMPSs 
and Apache Spark, provide accurate instrumentation tools for collecting a wide range 
of information, which is usually stored with the aim of facilitating application perfor-
mance monitoring. However, depending on the particular use case, it may be required 
to integrate D with supplementary executions to ensure high-quality estimates. To 
face this issue, training data can be generated and/or enriched by arranging a set of 
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executions, with the aim of finding the block size that optimizes execution time for 
the considered configurations. This process is characterized by several degrees of 
freedom, including the executed algorithm (a), input data characteristics (d), and 
infrastructure features of the execution environment (e), which leads to the need for 
an efficient search strategy. For this purpose, a grid search technique can be lever-
aged, in which several triples 〈d, a, e〉 are generated and annotated with the best block 
size found during the search. Specifically, for each triple, the following operations are 
performed.

• Given ncores the number of available cores, a k × k grid G is built, with k = logs(ncores) , 
where s is a search step such that logs(ncores) is an integer number. The step s (set to 
2 by default) can be used to control the trade-off between the cost of the grid search 
and the representativeness of the generated training samples.

• Each element gi,j in the grid G, with i and j ranging from 1 to k, is determined as the 
time of executing algorithm a on the dataset d within the environment e, by splitting 
d using the (pr = si , pc = sj) partitioning. This means that the rows and columns of 
d will be divided into si and sj blocks, respectively. The execution time in the case of 
failures (e.g., out-of-memory errors) is set to ∞.

• By exploring the grid, the best partitioning (p∗r , p∗c ) for the triple 〈d, a, e〉 is found, 
which leads to the minimum execution time. Formally, it is computed as the pair 
(p∗r , p

∗
c ) = (si

∗
, sj

∗
) , where (i∗, j∗) = arg min

i,j

G . Finally the triple 〈d, a, e〉 is labeled 

with (p∗r , p∗c ) and added to the training dataset D.

It is important to notice that these supplementary executions occur offline (i.e., at any 
time before an actual prediction is required). For instance, these additional executions 
can be scheduled as low-priority jobs. Consequently, the time required to complete 
these executions will not affect the response to a user query (i.e., a suitable block size for 
the submitted application). In this way, the time-to-solution can be drastically reduced 
compared to manually trying several possible configurations when a request is submit-
ted by the user.

This approach for training data generation via execution monitoring was successfully 
leveraged in [21], whose purpose is to improve the in-memory execution of data-inten-
sive workflows on parallel machines [22].

Table 2 Excerpt of the training set extracted by the log of executions

Algorithm  Dataset rows  Dataset columns Dataset 
size (GB)

Infrastructure features Best 
partitioning

# nodes # cores RAM    p∗r p∗c

K‑means 500,000 1000 2.39 4 64 256    32 4

Ran‑
dom Forest

1000 500,000 2.92 4 64 256    32 8

SVM 10,000 10,000 1.1 4 64 256    16 16
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Classification model training

Given the dataset D obtained in the previous step, a classification model is trained to 
learn the patterns that relate the execution features/parameters and the best partitioning 
(p∗r , p

∗
c ) . Thus, the output of this step is a classification model capable of estimating the opti-

mal number of partitions in which to split the rows and the columns of a given dataset, 
based on its characteristics, the algorithm to be run, and the underlying execution environ-
ment. Since the target variable to be predicted, that is the best partitioning (p∗r , p∗c ) , is two-
dimensional, a multi-output classification model is needed. Among the main approaches 
for multi-output classification, a popular one consists in fitting a separate classifier for each 
dimension of the target variable (i.e., two separate classifiers in our case). The main draw-
back of such an approach is that it ignores the relationships between the predicted outputs 
of the single classifiers. For this reason, a stacking approach is leveraged that allows consid-
ering such relationships by using a cascade of two different decision tree classifiers. The two 
classifiers, namely DTr and DTc , are used to predict the best number of rows and column 
blocks, respectively. This approach is more suited for the case of block size, in which the 
number of rows and the number of columns in a block are very likely to be dependent on 
each other. Therefore, in the chained model, the predictions of DTc are conditioned on the 
output of DTr , as shown in Fig. 2. In addition, we followed this order in chaining the two 
decision tree models since partitioning along the rows is generally more relevant. The train-
ing step is performed as described below. 

1. We train the first decision tree DTr with the training instances of D to learn the 
number of blocks p∗r in which to partition dataset rows.

2. The second decision tree DTc is trained with the training instances concatenated 
with the output of DTr , with respect to the second target variable p∗c , to learn the 
number of blocks in which to partition dataset columns.

Afterward, the corresponding block size is determined as (r∗, c∗) = (n/p∗r ,m/p∗c ) , where n 
and m are the rows and columns of the considered dataset.

For the sake of clarity, we report an end-to-end example of computing the block size for a 
given input instance. Let n = 51, 200 and m = 256 be the number of dataset rows and col-
umns, respectively. Suppose we have to predict the block size related to the execution of an 
SVM algorithm, and that the result of the prediction is (p∗r , p∗c ) = (4, 16) . Then the optimal 
block size can be computed as follows:

Fig. 2 Chained multi‑output classification model
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Block size estimation in dislib applications
The proposed methodology can be applied to a wide range of frameworks for distributed 
data processing [23]. In fact, the majority of these systems, such as Hadoop [6], Spark 
[5], DMCF [24] and PyCOMPSs [25], leverage a data-parallel approach that involves a 
data partitioning step for distributing the dataset across a set of working nodes. Con-
sequently, BLEST-ML can bring huge benefits, by suggesting an adequate partitioning 
that allows to effectively run distributed applications, reducing overhead while ensuring 
a good level of parallelism and throughput. Among the main frameworks and libraries 
of interest for distributed data processing, we selected as a testbed PyCOMPSs, focusing 
on dislib [26], a distributed computing library built on top of it that provides distributed 
machine learning algorithms. The early implementation, based on PyCOMPSs and dis-
lib, is publicly available on GitHub.1

PyCOMPSs [25, 27] is a task-based programming model that enables the paral-
lel execution of sequential Python code in distributed computing platforms. By means 
of Python decorators, the developer identifies the function/methods to be considered 
tasks. PyCOMPSs also offers a small API for synchronization. It is based on a runtime 
able to identify the data dependencies that exist among tasks building a data depend-
ency graph. The task graph exposes the possible task concurrency that is exploited by 
the runtime, which manages the execution of the tasks in distributed infrastructures, 
scheduling them, and performing all the necessary data transfers. A task in PyCOMPSs 
can run using multiple cores if internally parallelized with threads or other alternative 
programming models such as OpenMP.

The Distributed Computing Library (dislib) [26], implemented on top of PyCOMPSs, 
provides various distributed algorithms for several machine learning tasks, including 
classification, clustering, and dimensionality reduction. Dislib is inspired by scikit-learn 
and NumPy, and it comes with two primary programming interfaces: an API to man-
age data in a distributed way and an estimator-based interface to work with different 
machine learning models. Its main data structure is the distributed array ( ds-array ) 
which enables it to distribute the datasets in multiple nodes of a distributed infrastruc-
ture. A ds-array is a matrix divided into blocks, which can be a NumPy array or a SciPy 
CSR (Compressed Sparse Row) matrix, depending on the kind of data used to cre-
ate the ds-array. Dislib provides an API similar to NumPy to work with ds-arrays, but 
ds-arrays are stored remotely, allowing to store much more data than regular NumPy 
arrays. All operations on ds-arrays are internally parallelized with PyCOMPSs. The typ-
ical workflow in dislib consists of the following steps: i) reading input data into a ds-
array; ii) creating an estimator object; iii) fitting the estimator with the input data; iv) 
getting information from the model’s estimator or applying the model to new data. At 
each step, the level of parallelism is driven by the number of blocks of the ds-arrays that 

(r∗, c∗) = (n/p∗r ,m/p∗c ) = (12800, 16)

1 https:// github. com/ eflow s4hpc/ dislib- block- size- estim ation.

https://github.com/eflows4hpc/dislib-block-size-estimation
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are operated, which in turn is controlled by the ds-array’s block size, which defines the 
number of rows and columns of each block.

Choosing the right size of a block-array can be a quite challenging task: small blocks 
allow for higher parallelism as the computation is divided into more tasks. However, 
handling a large number of blocks can generate overhead that can negatively impact 
performance. Thus, the optimal block size will allow the full utilization of the available 
resources without adding too much overhead. In addition to this, block size also affects 
the amount of data that tasks load into memory. This means that block size should never 
be bigger than the amount of available memory per processor. Summing up, the choice 
of the optimal block size is often difficult but essential for exploiting the full potential of 
dislib, hence the possibility of effectively applying the proposed methodology.

Experimental evaluation
This section presents the extensive experimental evaluation we carried out to assess the 
effectiveness of BLEST-ML, analyzing how the partitioning suggested by BLEST-ML can 
improve the execution of dislib applications in different scenarios. Specifically, we evalu-
ated our methodology in a single-node and a multi-node execution environment, i.e. a 
cluster node and the MareNostrum 4 supercomputer.

For what concerns the evaluation metrics, we used makespan ratio to measure the 
improvement in speed of execution brought by the predicted block size, with respect 
to other possible partitions. Specifically, given an algorithm a to be run in a distributed 
environment e, let t∗ and tother be the execution times achieved by using the predicted 
block size and a different one, respectively. We compute the makespan ratio as follows:

In addition, we measured the percentage makespan reduction, i.e. the percentage 
amount of execution time saved by running a given algorithm with the predicted block 
size, with respect to a different one. Formally:

Single‑node experiments

The used log contains information about almost 5000 executions performed on data-
sets of varying sizes using a wide range of machine learning algorithms provided by dis-
lib for classification and clustering, including Support Vector Machine (SVM), Random 
Forest (RF), Gaussian Mixture Model (GMM), and K-means. In the following sections, 
we describe the results achieved in the single-node scenario, by evaluating the benefits 
brought by the estimated block size with the use of both real-world and synthetic test 
datasets.

makespan ratio =
tother

t∗

makespan reduction =
tother − t∗

tother
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Real‑world datasets

The effectiveness of BLEST-ML in suggesting a suitable block size value was evaluated 
on two real-world datasets used for clustering and classification:

• HEPMASS [28]: it is a high-energy physics dataset containing signatures of exotic 
particles, learned from Monte Carlo simulations of the collisions that produce them. 
The dataset contains 7 million training samples with 27 features that can be sepa-
rated into two clusters, i.e. particle-producing collisions and background sources.

• MNIST [29]: it is a multi-class dataset used for image classification and pattern rec-
ognition, containing gray-scale images of handwritten digits, from 0 to 9, labeled 
with the represented number. In particular, the dataset contains 60 thousand training 
images in a 28× 28 format, which can be represented by vectors of 784 features.

Since both test datasets are characterized by a big number of rows against a relatively 
small number of columns, BLEST-ML suggested in both cases a block size that parti-
tions both datasets only horizontally, that is just one block for the columns containing 
all features. For this reason, the number of blocks generated by creating the distributed 
arrays is equal to the number of partitions along rows. The results achieved by running 
K-means and Random Forest on HEPMASS and MNIST datasets are summarized in 
Table 3.

Specifically, the time t∗ achieved by running the two algorithms using the predicted 
block size was compared against the best, worst, and average times achieved by using 
all other possible partitionings, calculated using progressive powers of 2 from 2 to 256, 
i.e. 4x times the total number of cores available. The best time provides an upper bound 
to t∗ , while the worst time is used as a lower bound for performance. Moreover, Fig. 3 
shows the measured execution time by using different gradations of red, where a greater 
intensity corresponds to a higher duration. In the proposed plots, the time obtained by 
using the predicted partitioning is marked by a cyan circle, while the best one is marked 
by a green star.

By observing Fig. 3a, it can be noticed that the optimal number of blocks that led to 
the best execution time for the K-means algorithm was 16, while BLEST-ML suggested 
partitioning rows in 32 blocks. However, the time measured by using the predicted block 
size, i.e. t∗ , is the second best time, and the difference with the best one is negligible ( ≈ 1 
s). By comparing t∗ with the average execution time, the predicted block size led to a 

Table 3 Makespan ratio and percentage makespan reduction measured by running K‑means and 
Random Forest algorithms on the HEPMASS and MNIST datasets

Algorithm Dataset 
name

Dataset 
rows

Dataset 
columns

Metric Best time Average 
time

Worst time

K‑means HEPMASS 7 · 106 27 Makespan 
ratio

0.96± 0.03 1.48± 0.04 2.53± 0.07

Makespan 
red.

−3.80%± 0.09 32.6%± 0.05 60.5%± 0.06

 Random 
Forest

MNIST 6 · 104 784 Makespan 
ratio

1.00± 0.01 1.27± 0.03 1.65± 0.03

Makespan 
red.

0%± 0.01 21.32%± 0.04 39.51%± 0.06
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1.48 makespan ratio, with a percentage reduction of makespan equal to 32.6% . The worst 
execution time was observed in the case in which 256 blocks were used. This is caused 
by the excessively small size of the blocks, which leads to the generation of a too large 
number of blocks and tasks. In fact, such a degree of parallelism produces too much 
overhead that results in a degradation of application performance. A similar execution 
time was measured when just one block was used, i.e. no partitioning is performed. 
This is the opposite case, in which parallelism is not exploited at all. By comparing t∗ 
with the worst execution time, we measured a makespan ratio of 2.53 and a makespan 
reduction of 60.5% , which confirms how the block size suggested by BLEST-ML allows 
determining a proper partitioning, which leads to a quite good trade-off between the 
degree of parallelism and the introduced overhead. The quality of the partitioning sug-
gested by BLEST-ML is further confirmed by the execution of Random Forest on the 
MNIST dataset (Fig. 3b). In this case, BLEST-ML predicts exactly the best possible par-
titioning, i.e. 16 blocks along rows. Also in this case, the worst values were measured 
at the extremes, where the level of parallelism is either zero (1 block) or too high (256 

Fig. 3 Execution times (in seconds) achieved by K‑means and Random Forest executed on two real‑world 
datasets. The time obtained by using the predicted number of row blocks is marked by the cyan circle, while 
the best one is marked by the green star
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blocks). Furthermore, we measured a makespan ratio of 1.27 and 1.65 and a makespan 
improvement of 21.32% and 39.51% , compared to the average and worst execution times, 
respectively.

Synthetic datasets

To further explore the effectiveness of BLEST-ML, its estimates were evaluated against 
a set of synthetic test datasets, which is useful to observe how the algorithms behave in 
some specific cases. For this purpose, we generated a series of multiclass test datasets, by 
allocating one or more normally-distributed clusters of points to each class. Particularly, 
we used both isotropic and anisotropic Gaussian blobs. In addition, the obtained sam-
ples were augmented with random noise and redundant features, generated as a linear 
combination of the original ones.

Starting from a set of synthetic test datasets of varying shapes, generated following the 
aforementioned process, we measured the performance improvement achievable with 
the use of BLEST-ML, relative to the execution of K-means and Random Forest algo-
rithms. Specifically, for each test dataset, we compared the time t∗ , achieved by using 
the predicted block size, against the best, worst and average times obtained from all 
other possible partitionings. The different partitionings for this comparison were calcu-
lated using progressive powers of 2 from 2 to 64 for both the number of row and column 
blocks, which leads to 36 possible configurations. Furthermore, each test execution was 
repeated 10 times, taking the median value, in order to get a robust measure of execution 
time, preventing the evaluation process from being biased by noisy measures. Achieved 
results, in terms of makespan ratio and percentage makespan reduction, averaged on all 
test datasets, are summarized in Table 4 and discussed in the following.

By comparing t∗ with the best time measured by trying all possible partitionings, it 
can be noticed that the data partitioning suggested by the learning algorithm is almost 
always the best one, i.e. it guarantees an execution time very close to the shortest obtain-
able time. In particular, we measured a very little difference compared to the best execu-
tion time, with a makespan ratio almost equal to 1, and a negligible increase of execution 
time less than 0.8% . Regarding the comparison with the average time, we obtained a 
good performance improvement, with a percentage reduction of makespan equal to 
24.71% and a makespan ratio equal to 1.25. These results show how the choice of an 
unsuitable block size may lead to a degradation of performance, which can be avoided 
with the aid of the proposed methodology.

We further stressed this aspect by comparing t∗ with the worst execution time, achiev-
ing a remarkable reduction of makespan equal to 55% and a makespan ratio equal to 

Table 4 Average values of makespan ratio and percentage makespan reduction obtained from 
executing K‑means and Random Forest algorithms on the synthetic test datasets

Metric Best time Average time Worst time

Makespan ratio 0.99± 0.02 1.25± 0.06 2.11± 0.08

Makespan reduction (%) −0.79%± 0.03 24.71%± 0.05 55.06%± 0.06
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2.11. Measured values confirm the ability of BLEST-ML in supporting the execution of 
machine learning algorithms in parallel and distributed environments.

To make more detailed and clear the benefits brought by the use of our methodology, 
Figs. 4 and 5 show the results achieved with K-means and Random Forest in three pos-
sible cases, in which the number of rows n and columns m can be equal or very imbal-
anced. A synthetic test dataset for each case was generated as follows:

• n >> m : 500,000 rows, 1000 columns.
• m >> n : 1000 rows, 500,000 columns.
• n ≈ m : 10,000 rows, 10,000 columns.

Again, we compare execution times achieved by using the predicted partitioning and 
all other possible partitionings, set using progressive powers of 2 from 2 to 64 for both 
the number of row and column blocks (as explained above). By observing Fig. 4, we can 
see that, even in the presence of a high imbalance, the algorithm always suggests a block 
size value very close or equal to the best one, thus allowing an efficient execution of the 
K-means algorithm. Particularly, the time obtained by using the predicted block size is 
marked by the cyan circle, while the best one is marked by the green star. Moreover, the 
heatmap is useful to show how the variation of the block size affects the execution time, 

Fig. 4 Execution times (in seconds) achieved by running K‑means on datasets of both balanced and 
imbalanced shape. The time obtained with the predicted block size is marked by the cyan circle, while the 
best one by the green star
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depicted in different gradations of red, where a greater intensity corresponds to a higher 
execution time. We observed that the time t∗ obtained by using the predicted block size 
leads to the second best time in the first two cases, and to the best time for the last one. 
The mean percentage difference between t∗ and the best time is almost equal to 1% , 
which shows how the partitioning suggested by BLEST-ML is a very good estimate of 
the optimal one. Moreover, by comparing t∗ with the average and worst times, we meas-
ured an average makespan ratio of 1.17 and 1.53 and an average percentage improve-
ment of makespan equal to 14.27% and 34.44%.

The good results achieved with K-means are confirmed by the experiments per-
formed on Random Forest, shown in Fig. 5. In this case, t∗ resulted in the best execu-
tion time in two cases out of three (the first and the third), and the third best time in 

Fig. 5 Execution times (in seconds) achieved by running Random Forest on datasets of both balanced and 
imbalanced shape. The time obtained with the predicted block size is marked by the cyan circle, while the 
best one by the green star

Table 5 Average makespan ratio and percentage makespan reduction measured by running 
K‑means and Random Forest on datasets of both balanced and imbalanced shape

Algorithm Metric Best time Average time Worst time

K‑means Makespan ratio 0.99± 0.03 1.17± 0.05 1.53± 0.07

Makespan reduction (%) −1.03%± 0.02 14.27%± 0.04 34.44%± 0.06

 Random Forest Makespan ratio 0.99± 0.01 1.03± 0.05 1.10± 0.05

Makespan reduction (%) −0.56%± 0.04 3.74%± 0.06 9.44%± 0.09
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the remaining case (the second). In particular, we measured a negligible difference 
of 0.56% between t∗ and the best execution time. Moreover, by comparing t∗ with the 
average and worst times we observed a makespan ratio of 1.03 and 1.10 and a per-
centage makespan reduction of 3.74% and 9.44% . All these results are summarized in 
Table 5.

To further assess the generalization abilities of the trained model, we analyzed how 
well it can handle datasets of increasing size without any retraining, using the same 
experimental setup described at the beginning of this Section. As suggested in the 
literature [30], we used synthetic test datasets of increasing size (i.e., 1k, 50k, 250k, 
500k) to compare execution times achieved by K-means and Random Forest using the 
predicted block size against the best, worst, and average times. It is worth noticing 
that the test datasets were generated such that the resulting pairs dataset-algorithm 
were unknown to the model, i.e. not included in the training set. Obtained results, 
shown in Fig. 6, highlight the ability of BLEST-ML to cope with datasets of increas-
ing size, leading to very similar execution times compared to the best block size. 
Moreover, we measured marked differences in execution time compared to the aver-
age and worst times for both algorithms, with an average makespan ratio and reduc-
tion up to 2.47 and 50.4% , respectively, which further confirms the effectiveness of 
our methodology.

Multi‑node experiments

We further investigated the effectiveness of BLEST-ML in a distributed execution envi-
ronment. Specifically, we leveraged the MareNostrum 4 supercomputer (MN4) [8], 
located at the Barcelona Supercomputing Center. Its current peak performance is 11.15 
Petaflops and it is composed of 3456 nodes, each of which has two Intel®Xeon Plati-
num 8160 (24 cores at 2.1 GHz each) and 96 GB of main memory. It has also 100 GB 
Intel®Omni-Path Full-Fat Tree Interconnection, and 14 PB of shared disk storage man-
aged by the Global Parallel File System [31].

In this experimental evaluation, we focused on the execution of the Principal Compo-
nent Analysis (PCA) algorithm. It is a dimensionality reduction algorithm, whose aim is 

Fig. 6 Execution times (in seconds) achieved by K‑means and Random Forest executed on datasets of 
increasing size. Time achieved by using the predicted block size is compared against the best, worst, and 
average times
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to compute a meaningful low-dimensional representation of the input data by projecting 
each sample onto only the first few principal components. The log used for the extrac-
tion of the training data was enriched using several real-world datasets, listed in the fol-
lowing, which belong to different fields, ranging from medicine to particle physics.

• Diabetes: medical data, used for predicting whether or not a patient has diabetes, 
based on diagnostic measurements.

• Cleveland: medical data, used for predicting the heart disease risk based on clinical 
measurements.

• Banknote: high-resolution images, used for evaluating if a banknote is authentic or 
forgery.

• Superconductors [32]: superconductors data, used for predicting the critical tempera-
ture.

• Accelerometer [33]: accelerometer data, used for predicting motor failures.
• 1ubq.bck.10.crd, 1ubq.bck.1.crd, 1ubq.heavy.1.crd: particle physics datasets, contain-

ing up to 1 million atom trajectories described by a varying number of features and 
obtained from GROMACS simulations [34].

For the experimental evaluation, we used three test datasets containing biomolecular 
simulation data in a mdrcd2 format, containing trajectories of atoms, whose number 
ranges from almost 7000 to more than 30, 000. These datasets are described in Table 6.

For the execution of our experiments, we employed 16 nodes of the MN4 super-
computer, with 96 GB of RAM per node. In addition, the number of used cores per 
PyCOMPSs task with the large and extra-large datasets was set to 24 due to the heavy 
computation and their big memory size, while for the medium dataset, we used 8 cores 
per PyCOMPSs task.

Table 6 Test datasets used to evaluate the benefits brought by BLEST‑ML on the execution of the 
PCA algorithm on the MN4 supercomputer

Algorithm Dataset name Dataset rows Dataset columns

PCA Traj_medium 60,000 20,736

PCA Traj_large 100,000 59,544

PCA Traj_xlarge 100,000 94,896

Table 7 Results obtained in MareNostrum 4 using model predictions and domain expert estimates

Dataset Predicted partitioning Manual partitioning

p∗r p∗c Time (s) p̂r p̂c Time (s)

Traj_medium 4 16 270 6 21 484

Traj_large 8 40 1123 14 36 1096

Traj_xlarge 8 48 1770 14 48 1825

2 Amber trajectory format, https:// amber md. org/ FileF ormats. php.

https://ambermd.org/FileFormats.php
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Unlike the experiments shown in section Single-node experiments, we did not con-
sider the large set of all possible partitionings, as the huge size of test datasets could have 
led to an excessively expensive process, due to time-consuming and resource-intensive 
computation. In this case, instead, we compared the time achieved by using the pre-
dicted partitioning ( p∗r , p∗c ) against the best partitioning that was individuated by domain 
experts ( p̂r , p̂c ), by following a trial-and-error approach. The obtained results are shown 
in Table 7.

By comparing the time achieved by using the block size predicted by BLEST-ML 
with that estimated by the domain experts, we achieved quite good results, with an 
average value of makespan ratio and makespan percentage reduction equal to 1.27 
and 14.92% , respectively. In addition, as reported in Table 7, the data partitioning sug-
gested by BLEST-ML is the best one in two out of three test cases, resulting in the 
shortest execution time. Moreover, it is worth noticing that in the remaining case, 
corresponding to the Traj_large dataset, the relative difference between the two exe-
cution times is quite small ( ≈ 2% ). The prediction is indeed reasonably good, as it can 
be calculated quickly without involving any trial-and-error approach and requiring a 
small amount of resources and domain knowledge.

Fig. 7 Execution times (in seconds) achieved in MareNostrum 4 by running PCA on the Traj_medium dataset. 
The time obtained with the predicted block size is marked by the cyan circle, while the best one by the green 
star

Table 8 Performance obtained by exhaustive search, OpenTuner, and BLEST‑ML in tuning the PCA 
algorithm running on the MN4 supercomputer on the Traj_medium dataset

Tuning technique  Tuning time  Number of 
tests

 Best configuration  Best time (s)

Exhaustive search 9 h 23  min 36 (2, 16) 236

OpenTuner  [7] 2 h 51 min 12 (2, 16) 236

 BLEST‑ML (ours) 2 · 10−3 s − (4, 16) 270
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For the sake of completeness, in Fig. 7 we provide the execution times measured by 
executing the PCA algorithm on the Traj_medium dataset with all possible partition-
ings, computed using progressive powers of 2, from 2 to 64, leading to 36 possible 
configurations. Consequently, the maximum number of blocks that can be generated 
is equal to 642 , i.e. the 64 × 64 configuration is selected and the dataset is divided into 
64 blocks along both rows and columns. Each of the generated blocks will be then 
handled by PyCOMPSs tasks, one for each block.

The plot shows that the partition suggested by BLEST-ML is the third best possi-
ble. Nevertheless, while not leading to the minimum execution time, the estimate is 
still an excellent approximation, obtainable in a very efficient way. Indeed, our meth-
odology allows obtaining a suitable estimate very quickly, since the machine learn-
ing model takes just a few milliseconds to compute a prediction. On the contrary, 
according to the execution times reported in Fig.  7, a full exhaustive search would 
take more than 9 hours. To further stress this concept, we tuned the PCA application 
by using the OpenTuner [7] autotuning framework, comparing the obtained results 
with those achieved by BLEST-ML and the exhaustive search (see Table 8). In particu-
lar, we performed 15 tuning runs with OpenTuner, selecting the one that had the best 
tuning time, i.e., it identified the optimum in the shortest time. The best tuning time 
recorded was approximately 3 h, finding the optimum with the UniformGreedyMuta-
tion search technique and 12 performed tests. This results in a clear improvement 
over exhaustive search, reducing tuning time to less than a third. Nonetheless, the 
time required to determine the recommended partitioning in response to a user 
request remains significantly greater than that employed by BLEST-ML, which uses 
machine learning to directly calculate an appropriate block size. Consequently, our 
approach can significantly improve the time-to-solution as compared to experiment-
ing with multiple potential configurations when a user submits a request.

In addition, we compared the time obtained with the predicted partitioning with the 
average and worst times shown in Fig. 7. We measured a makespan ratio equal to 3.54 
and 13.59 and a percentage reduction of makespan of 71.75% and 92.64% compared to 
the average and worst times. All of these results further confirm how crucial it is to 
choose a suitable partitioning for running data-intensive applications in high-perfor-
mance distributed environments.

Finally, it is worth noticing that attempting to manually explore a set of potential 
configurations—or even all, in the case of the exhaustive search—in search of the one 
that minimizes execution time may be worthless. Indeed, once the first configuration 
is tested, the outcome of the executed algorithm is already available, which would make 
testing subsequent candidate configurations superfluous. Moreover, the optimal block 
size found via a manual approach would not be applicable to different unseen execu-
tions. On the contrary, the use of a machine learning model allows for direct inference 
and multiple re-use, as it is trained once (as described in Sect.  Classification model 
training) and can be used multiple times for block size prediction, given different unseen 
input instances.
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Conclusions and final remarks
Data-intensive applications are widespread in several domains, such as bioinformatics, 
high-energy physics, and the modeling of natural phenomena. In such applications, an 
effective strategy for data partitioning is crucial to enable their efficient execution in 
distributed HPC environments. This paper introduced a novel methodology, namely 
BLEST-ML (BLock size ESTimation through Machine Learning), aimed at optimiz-
ing the execution of such applications by determining the best block size to be used for 
data partitioning. Our methodology was evaluated on the dislib library of PyCOMPSs, 
considering different execution environments, including the MareNostrum 4 super-
computer, and different real-world datasets. Experimental results show how BLEST-
ML can lead to a significant improvement in application performance and a reduction 
in execution time, by following a machine learning-based approach. In future work, we 
plan to improve our methodology to make it even more generic and usable, supporting 
the choice of other parameters required to configure a distributed environment. Fur-
thermore, we can investigate its applicability to frameworks and libraries other than 
PyCOMPSs and dislib, as it can be exploited in any case where data partitioning is essen-
tial to improve application performance and scalability.
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