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Abstract 

3D road user detection is an essential task for autonomous vehicles and mobile robots, 
and it plays a key role, for instance, in obstacle avoidance and route planning tasks. 
Existing solutions for detection require expensive GPU units to run in real-time. This 
paper presents a light algorithm that runs in real-time without a GPU. The algorithm 
combines a classical point cloud proposal generator approach with a modern deep 
learning technique to achieve a small computational requirement and comparable 
accuracy to the state-of-the-art. Typical downsides of this approach, such as many 
out-of-distribution proposals and loss of location information, are examined, and solu-
tions are proposed. We have evaluated the performance of the method with the KITTI 
dataset and with our own annotated dataset collected with a compact mobile robot 
platform equipped with a low-resolution LiDAR (16-channel). Our approach reaches 
a real-time inference on a standard CPU, unlike other solutions in the literature. 
Furthermore, we achieve superior speed on a GPU, which indicates that our method 
has a high degree of parallelism. Our method enables low-cost mobile robots to detect 
road users in real-time.

Keywords: Perception, Deep learning, Object detection, Limited computational 
resources

Introduction
Detection of road users is an essential task for autonomous vehicles and mobile robots, 
and it is crucial, for instance, in obstacle avoidance and route planning tasks. The task 
focuses solely on detecting road users, i.e., cars, pedestrians, and cyclists. This allows 
the utilization of class-specific biases; for example, objects are expected to be on the 
ground surface. The task differs from the more general object detection task, which aims 
to detect any object. Many object detection methods have been developed for detect-
ing road users from point clouds. However, much of the efforts have been directed 
toward developing methods that achieve high accuracy, and significantly less effort has 
been directed toward low-latency approaches. The present study addresses this issue 
with a novel architecture developed with attention to latency. An algorithm that has 
low latency and computational cost has a large number of benefits. It allows the better 
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use of high-frequency (> 20 Hz) sensors as the algorithm is also high-frequency. A light 
algorithm decreases energy consumption, resulting in a longer operation time for mobile 
robots. It also removes the requirement for a GPU, enabling lighter weight and less 
expensive hardware, which is crucial in many applications.

To tackle the issue of latency in neural networks, attention should be directed towards 
the memory (DRAM) reading, as stated by Horowitz et al. [1]. This paper takes a unique 
data-dependent approach to 3D road user detection to achieve low latency. Unlike most 
methods in the literature, our approach saves memory by discarding irrelevant parts of 
the input point cloud. Specifically, a simple algorithm removes coarse parts of the point 
clouds, such as the ground plane. Then, more complex algorithms, deep neural net-
works, are used for making the detections. Therefore, as the amount of data decreases, 
the complexity of the algorithm increases, and the neural network processes only the fil-
tered relevant data. In practice, object proposals are generated with ground removal and 
clustering, and then a novel out-of-distribution- and location-aware PointNets make the 
detections from the proposals. We filter out-of-distribution proposals throughout the 
pipeline to reduce memory and computational footprint. We are also the first to imple-
ment an out-of-distribution detection method on classification and bounding box esti-
mation tasks with point cloud object proposals. This approach achieves superior latency 
and comparable accuracy in 3D road user detection to the state-of-the-art. Huang et al. 
[2] studied out-of-distribution detection methods directly on 3D object detection, show-
ing the applicability of such methods.

As stated, the literature has many point cloud object detection methods tested for 3D 
road user detection. However, most of them require a powerful GPU unit to run in real-
time, which some mobile robots do not have due to, e.g., power, cost, weight, or size 
restrictions. To complement this under-explored area, we develop an algorithm that 
runs in real-time on a standard CPU. We summarize the contributions of this paper as 
follows.

• A novel architecture for 3D road user detection on point cloud data running in real-
time on a CPU.

• To the best of our knowledge, we are the first to implement an out-of-distribution 
detection method on classification and bounding box estimation tasks with point 
cloud object proposals.

• A novel proposal voxel location encoder, which improves the accuracy of the models 
by a significant margin.

• A ground segmentation method, which outperforms competitive methods. We pre-
sent simple convolutional filters for sampling ground points for the plane fit.

• A study on a 3D road user detection task with models trained only with the KITTI 
high-resolution point cloud data and tested with low-resolution and low-perspective 
point cloud data.

Related work
This section presents frequent 3D object detection approaches that are well-proven and 
provide a fair comparison to our approach. The approaches are divided into voxel, graph, 
projection image, point, and bird’s eye view methods. VoxelNet [3] partitions the point 
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cloud into voxel partitions. Points within a voxel partition are encoded into a vector rep-
resentation characterizing the shape information. 3D convolution is performed on the 
voxels to predict bounding boxes and classes. SECOND [4] improved the accuracy and 
reduced computational cost of VoxelNet by preprocessing the point cloud by dropping 
voxels that include no points.

Authors of [5–8] use methods based on a range image. A range image is a point cloud 
projection on a spherical surface. The benefit of using projection is to preserve the infor-
mation of neighboring measurements. However, the authors claim that some informa-
tion is lost during the projection. The authors use a 2D convolutional neural network to 
predict bounding boxes and classes.

One approach is to use a bird’s eye view image as input for the detection algorithm 
[9–12]. PointPillars [9] is a popular method using this approach. It constructs pillar-like 
features from the point cloud with a neural network and forms a bird’s eye view image. 
Then, a 2D convolutional neural network is applied to this image, making predictions. 
Bird’s eye view is a convenient representation of the point cloud because objects are 
rarely stacked on top of each other in, for example, outdoor driving scenarios, given an 
optimal vertical field-of-view of the sensor.

More recently, graph neural networks (GNNs) have been implemented into the point 
cloud object detection task. Shi et al. [13] were the first ones to do so. In their method, 
point clouds are preprocessed into a graph representation utilizing a grouping method 
similar to PointNet++ [14]. Then, a GNN architecture predicts the classes and bound-
ing boxes. At the time of publication, they achieved superior results in several public 
benchmarks, proving that graph-based pre-processing works well in the object detection 
task from point clouds.

Point-based methods use raw point clouds as an input [15–17]. One benefit is that no 
pre-processing is needed, e.g., voxelization, range- or bird’s eye view-projection. Typi-
cally, this results in a lower computational cost overall. However, preserving the geo-
metrical context is challenging since points are processed individually. Ngiam et al. [18] 
proposed that targeting computation to certain regions benefits computational cost and 
generalizability. They generated proposals with the furthest and random point sampling 
and utilized a neural network architecture for estimating bounding boxes.

Methods
A general schematic of the proposed architecture is presented in Fig. 1. The basic prin-
ciple is to generate simple, unclassified proposals and utilize classifiers that differenti-
ate between the in-distribution (ID) and out-of-distribution (OOD) proposals. This is 
implemented using novel energy-based OOD PointNets. The first PointNet predicts the 
class probability vectors and energy scores, which are used for discarding the first batch 
of OODs. This is done in the first ID pass-through module. Then, 3D bounding boxes 
are predicted for the remaining proposals with an alternative PointNet, which also pre-
dicts energy scores. Further, the second ID pass-through module filters out the remain-
ing OODs based on the bounding box energy scores. In addition, a novel proposal voxel 
location encoder (PVLE) is utilized to preserve location information otherwise lost 
in the proposal normalization process. PVLE attempts to increase the accuracy of the 
neural networks without adding a significant amount of computation. The increased 
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accuracy will prove that proposal location information has value in the proposal classifi-
cation and bounding box estimation tasks. The architecture aims to achieve low compu-
tational requirements by discarding information hierarchically while preserving helpful 
information regarding the road user detection task.

Ordered point cloud representation

Point coordinates from a typical LiDAR sensor p = (x, y, z) are mapped 
� : Rn×3 �→ R

sh×sw×3 to spherical coordinates, and finally to image coordinates, as 
defined by

where (sh, sw) are the height and width of the desired projection image representation, fv 
is the total vertical field-of-view of the sensor, and fvup is the vertical field-of-view span-
ning upwards from the horizontal origin plane. The resulting list of image coordinates 
is used to construct a (x, y, z)-channel image, which is the input for the next stage of the 
architecture.

Ground segmentation

As an additional contribution, we introduce a novel ground segmentation method, 
which is ultra-fast and more accurate than most of the methods in the literature. Our 
ground segmentation combines a novel point sampling with the well-proven RANSAC 
plane fitting method. Figure 2 shows a graphical presentation of the method.

It is essential to segment the ground at the beginning of the pipeline for the follow-
ing reasons: (a) reduce the number of points to process, (b) remove points that are 
invalid and not considered in later stages of the pipeline and (c) improve the perfor-
mance of the clustering algorithm, as some clusters would be fused through ground 
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Fig. 1 The proposed architecture. The input point cloud is organized by mapping � : Rn×3 �→ R
sh×sw×3 . 

Then, the ground segmentation, coupled with a clustering algorithm, generates simple proposals fed 
into the classifier neural network. Then, the first ID pass-through module discards coarse OOD proposals, 
which enables low computational requirements for the box estimation network. Similarly, the second 
ID pass-through module discards boxes that are OOD. In parallel, the PVLE encodes the locations of the 
proposals and feeds them into the classifier and the box estimator. The final output of the pipeline is 3D 
bounding boxes and class probabilities for the objects of interest
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points. We sample the ordered point cloud for potential ground plane points with two 
convolutional Sobel [19] inspired filters. These kernel filters are formulated as follows.

The filters are discrete differentiation operators that operate on the ordered point cloud 
tensor. In convolution, Sv and Su yield approximations of vertical and horizontal deriva-
tives on the ordered point cloud, respectively. The first term of Sv and the second term of 
Su are the centers of the filters. The filters incorporate information of multiple neighbor-
ing points with discretized Gaussian function, where points closer to the center have a 
higher effect on the result of the computation. This is done because simply computing 
the derivatives with a subtraction between two neighboring points is too noisy in a typi-
cal LiDAR measurement. In a typical LiDAR sensor, the horizontal resolution is signifi-
cantly higher than the vertical resolution. Therefore, the shape of Su is 1x4, which means 
that it does not consider points on neighboring rows, as they are significantly more dis-
tant compared to points on neighboring columns (Fig. 2). This way, the filter can capture 
the approximation of the local derivative more accurately. The convolutions are com-
puted with a range channel 

√
X2 + Y2 = R ∈ R

sh×sw and a height channel Z ∈ R
sh×sw.

where ∗ denotes the 2-dimensional convolution operation. Matrices Fy and Fx denote an 
approximation of point-wise normal, as filters produce derivatives. Approximating the 
point-wise normal with this method requires only a small amount of computation while 
achieving satisfactory accuracy. We apply a threshold to Fy and Fx , which gives us a mask 
of ground point samples:

(2)Sv =
[

2 1
−2 − 1

]

Su =
[

1 2 −2 −1
]

.

(3)Fy =
�Z

�R
=

Sv ∗ Z
Sv ∗ R

Fx = Su ∗ R

Fig. 2 An illustration of the ground segmentation method. On the left, points that passed the filter are 
indicated by green, and points between the dashed lines are segmented ground points. On the right, points 
surrounded by ellipses are considered by Sv and Su filters when computing the point marked with a star. A 
plane is fitted to each sector of points. Note that R =

√
X2 + Y2 , i.e., the distance to the z-axis
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Then, the samples Gsamples ∈ R
sh×sw×3 are computed for the RANSAC algorithm:

where (X,Y,Z) ∈ R
sh×sw×3 contain the Cartesian coordinates of each point in the point 

cloud, and ⊙ indicates Hadamard product. Only the sampled points are considered in 
the random sampling of the RANSAC algorithm. Thus, only a handful of iterations are 
needed, compared to a case where the samples are taken from the entire point cloud, 
which reduces the computational cost. RANSAC((X,Y,Z)s,Gsamples) = {a1, a2, a3, a4}s 
gives the parameters of detected planes, as we run this operation on sectors of points 
(Fig. 2). If the distance between a point and the detected plane in the corresponding sec-
tor satisfies a threshold, it is labeled as ground.

Angle‑based clustering

The clustering algorithm is a key component of the proposal generator. We use the 
angle-based clustering method [20], mainly because it is fast (full scan from a 64 channel 
LiDAR in 10 ms with a single core of a 2.2 GHz CPU, reported in [20]) but also because 
it is sparsity invariant. Moreover, this method is less prone to fusing nearby objects 
under the same cluster because the clustering is based on an angle instead of a distance 
measurement. This is crucial and affects the performance of our architecture. How-
ever, our architecture does not have constraints that would prevent the usage of other 
standard clustering algorithms such as [21–25]. Still, we found through experimentation 
that these methods caused our architecture to perform worse. The angle-based cluster-
ing algorithm is sparsity invariant because it computes the angle between neighboring 
points. If this angle satisfies a threshold, the point is assigned under the label of the cur-
rently computed cluster. A breath-first search (BFS) is implemented to add points to the 
current cluster, and a completed BFS indicates the completion of a cluster. The algorithm 
is fast since it takes advantage of the order of the point cloud, which means that finding 
the neighboring points is convenient.

Energy‑based out‑of‑distribution detection

The energy-based out-of-distribution detection method performs well in image classifi-
cation tasks, and it has been well-proven. Its implementation is also convenient because 
its input is the raw output of a neural network, unlike with methods such as [26–30]. 
Moreover, it is light computationally. Therefore, we define it as the baseline method on 
point cloud data.

(4)Fmask(r, c) =
{

1, if |Fy(r, c)| < yth, and |Fx(r, c)| < xth
0, otherwise.

(5)Gsamples = Fmask ⊙ (X,Y,Z)

(6)D =
Cs
∑

s=0

(a1X + a2Y + a3Z+ a4)s

||{a1, a2, a3}s||

(7)Gmask(r, c) =
{

1, if |D(r, c)| < pth
0, otherwise.
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The basic idea of an energy-based function is to map each point of the input space to 
a non-probabilistic scalar called energy E(x; f ) : RL �→ R [31]. In our application, the 
output vectors of the classifier and bounding box estimator networks are mapped into 
their respective energy scalars that represent the distance to the class distribution. The 
method presented here is based on Liu et al. [32], where a modified version of the Helm-
holtz free energy from statistical mechanics is used as E(x; f ) [33].

where x denotes the input of a neural network, T temperature scalar, L number of logits, 
and f a neural network. We utilize Equation (8) in training the classifier and the box esti-
mator networks and during the inference time for separating IDs from OODs.

Network architectures and training objectives

This paper presents a novel implementation of an energy-based OOD detection method 
for point cloud classifiers and 3D bounding box estimation networks. The proposed 
neural network architectures (Fig. 3) build on PointNet [34], applying some application-
specific modifications to reduce computational cost and increase performance. These 
modifications include concatenating the proposal voxel position encoder features to 
leverage the observation angle and distance and simplifying the network in the main 
encoders and the fully connected layers. The main modification is implementing an 
energy-based OOD learning objective to mitigate the false positive rate since our pro-
posal generator is simple, resulting in vast OOD instances. Furthermore, we discovered 
that the respective critical and the upper bound point sets for classifier and box esti-
mation networks differ for the same cluster of points. We exploit this phenomenon by 
implementing two separate ID pass-through modules for improved OOD detection. The 
classifier and the bounding box estimator inputs are transformed with R-Net and T-Net 
networks, respectively. R-Net predicts a rotational matrix Trot ∈ R

3×3 , which normal-
izes the rotation angle of the samples to simplify the classification task. Similarly, T-Net 
predicts a transformation matrix Ttra ∈ R

3 , which normalizes the location of the sam-
ples to simplify the bounding box estimation task.

Classifier training objective is to minimize classification cross-entropy and ID/OOD 
squared hinge loss,

(8)E(x; f ) = −T · log
L

∑

i

efi(x)/T

Fig. 3 Proposed classifier PointNet is shown in (a) and the bounding box estimator PointNet is shown in (b)
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where σ is the softmax output of the classifier c. The energy loss is computed as

where xID is an ID sample from KITTI training split (points inside a ground truth bound-
ing box), and xOOD is an OOD sample (clustered points outside the ground truth bound-
ing boxes) also from KITTI training split. Terms mID and mOOD are the means of ID and 
OOD energies of the default trained network, respectively. They are used in Equation 
(10) to push down the energy of IDs, lift the energy of OODs, and expand the energy gap 
between them. Terms mID and mOOD are pre-computed and static during the training.

Bounding box estimator training objective combines a bounding box prediction and 
an energy-based OOD detection objective. Center, size, and heading (xc, yc, zc, l,w, h, θ) 
of a bounding box are parameterized to a combination of classes and residuals: 
c ∈ R

3, s ∈ R
NS , sr ∈ R

NS×3,h ∈ R
NH ,hr ∈ R

NH . The goal is to minimize the following 
function:

Our contribution is the definition of the term Lbox−energy , which penalizes the network 
depending on the energy output. Lc1−reg and Lc2−reg are for T-Net and center prediction, 
respectively, Lh−cls and Lh−reg are for heading, and Ls−cls and Ls−reg are for size. Classi-
fication and regression tasks have cross entropy and Huber [35] losses, respectively. In 
addition, a cornel loss term is used. The corner loss helps to minimize both the class and 
regression losses as it penalizes the network based on the distance between the corners 
of the predicted and ground truth bounding boxes [36]. It is computed as:

where P∗∗
h  denotes a corner of the flipped label box relative to the original label box P∗

h.
Calculating the energy score is straightforward with the classifier since logits c(x) 

are just the class probabilities. However, the output of the box estimation network 
b(x) ∈ R

3+4·NS+2·NH is a structure of heading and size class probabilities, and residual 
heading, size, and center residuals for each object class k (car, pedestrian, and cyclist). 
NH and NS denote the number of heading and size classes, respectively. Consequently, 
we must find an optimal way of using this special vector. We found experimentally that 
the heading h ∈ R

NH and the size s ∈ R
NS class vectors provide the best measure for ID/

OOD separation, we ignore all residual elements because they did not have significant 
separation in the energy distributions. By ignoring all residual elements, a total of K · 2 
individual logit vectors remain, where K indicates the number of classes.

We start by examining the energy distributions of the default trained box estimator. 
Initial energy gaps are found in all logit vectors compared to their respective near-OOD 

(9)min
θ

E(x,y)∼D
train
ID

(− log ·σ(c(x)))+ �Lenergy

(10)
Lenergy = E

(xID ,y)∼D
train
ID

((E(xID; c)−mID)
+)2

+ E
xOOD∼D

train
OOD

((mOOD − E(xOOD; c))+)2

(11)
min
θ

E(x,yb)∼D
train
ID

(Lc1−reg + Lc2−reg + Lh−cls + Lh−reg

+ Ls−cls + Ls−reg + ζLcorner)+ �Lbox−energy

(12)Lcorner =
NS
∑

i=1

NH
∑

j=1

δij min

{

8
∑

h=1

||Pij
h − P∗

h ||,
8

∑

i=1

||Pij
h − P∗∗

h ||

}

.



Page 9 of 19Seppänen et al. Journal of Big Data            (2024) 11:2  

(NOOD) pairs, which makes it easier to train for larger energy gaps. This allows us to define 
a loss function from K · 2 individual elements that will encourage the model to learn larger 
energy gaps on each vector pair. A near-OOD is an OOD sample that has passed the classi-
fier pass-through module. It is good to note that the box estimator has a more challenging 
task than the classifier because it tries to separate NOODs from IDs, unlike the classifier 
that separates OODs from IDs. The box estimator is often uncertain about the heading 
angle of the ID samples in π intervals. Thus, the value in the NH/2 offset of the maximum 
heading logit is changed to −∞ , which removes the contribution of that logit to the energy 
score since limbi(x)→−∞ ebi(x) = 0:

We define the loss as a weighted sum of squared hinge loss of each ID/NOOD heading 
and size pair.

where wk = 1/
√
Nk  where Nk denotes the number of samples in an ID class k, G = 2 

indicates the number of vectors per class.
We discovered that the critical and upper bound point sets for a sample x significantly 

differ in the classification and box estimation tasks. The classifier and the box estimator 
learn different sets of features of x . This would explain why the box estimator network has 
different energy distributions than the classifier network.

ID pass‑through modules

During inference time, energy score for each sample x is computed from logits c(x) , b(x)h , 
and b(x)s of the networks using equation (8). Since the classifier and bounding box estima-
tor are optimized to their respective tasks, we implemented two separate ID pass-through 
modules to have more effective ID/OOD separation. The ID/OOD detection is computed 
with thresholds γc and γb(k , g) . The pass-through modules for the classifier and the bound-
ing box estimator are defined, respectively, as.

where a sample x is an ID if classifier and box estimation energies are lower than γc and 
γb , respectively; otherwise, it is an OOD.

(13)hargmax h±NH /2(x) = −∞.

(14)
Lbox−energy =

K
∑

k=0

G
∑

g=0

(wk(E(xID ,yb)∼D
train
ID

((E(xID; b)−mID)
+)2

+ E
xNOOD∼D

train
NOOD

((mNOOD − E(xNOOD; b))+)2))kg

(15)p1(x; γc, c) =
{

in, if E(x; c) < γc
out, otherwise.

(16)p2(x; γb(k , g), b) =







in, if E(b(x)h) < γb(k , h)
and E(b(x)s) < γb(k , s)

out, otherwise.
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Proposal voxel location encoder

The road user proposals are normalized on the origin before the classifier because it 
increases performance [34]. However, distance and observation angle information is lost 
during this process (Fig.  4a). To make use of this information, we propose a proposal 
voxel location encoder (PVLE) module (Fig. 4b), which aims to improve the point cloud 
proposal classification and 3D bounding box estimation tasks. The module processes 
voxel coordinates of the proposals and outputs learned features. The intuition behind 
this method is that the observation angle and the distance of an ID proposal carry use-
ful information that can be used to improve the detection performance. In practice, the 
arithmetic mean point of a given proposal is first voxelized and then encoded into a 
small feature vector, which is concatenated with the global features of the classifier and 
bounding box networks as well as the R-Net and T-Net. Now, the networks can leverage 
the observation angle and distance. The design of this encoder (MLP: 3,64,32) is inspired 
by the first encoder layer of the PointNet (MLP: 3,64). The output feature vector has a 
length 32 because it is the closest 2n to the voxel grid resolution 3× 10 . We utilize simi-
lar layer dimensions to the vanilla PointNet because the voxel coordinate input has the 
same shape as a point input in the vanilla PointNet.

Proposals shift to different voxel locations if the vehicle operates on uneven ground 
and the sensor pivots. With a spherical coordinate system, the magnitude of the shift 
is unrelated to the location of the proposal since angle limits define voxel boundaries. 
Therefore, a spherical coordinate system is more robust in this scenario than Cartesian 
and cylindrical coordinate systems.

Experiments
Experiments are conducted in three datasets. KITTI [37] and SemanticKITTI [38] are 
used to measure the accuracy of the 3D object detection and ground segmentation, 
respectively. Moreover, detection accuracy is also measured on our dataset with anno-
tated road users collected with a compact mobile robot platform (Fig. 5). An in-depth 
quantitative analysis is carried out to validate our design choices. Lastly, qualitative 
results and a discussion of the strengths and weaknesses of our methods are presented.

Fig. 4 Proposal location normalization is shown in (a) and the proposal voxel location encoder is shown in (b)
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Implementation details

Inference time is benchmarked with a 4.0 GHz CPU. Both classifier and box estima-
tor are trained for 200 epochs with a learning rate of 0.001 and with the Adam opti-
mizer [39]. The resolution of the voxel grid is θ = 10◦ , and r = 7.5 m. Proposals that 
have a higher number of points than 128 are sampled down to 128.

Data

Set 1. The KITTI dataset [37] is divided into training, validation, and test splits. All 
models are trained with the training split. The input of our architecture is instance 
samples; therefore, IDs, OODs, and NOODs are extracted from the training set into 
a separate set in the following manner. First, points inside ground truth bounding 
boxes are extracted as ID samples. Second, the remaining points are fed through 
the proposal generator. The output is saved into an auxiliary OOD dataset. Finally, 
OODs are fed through a trained classifier, the energy threshold is applied, and the 
samples that pass are saved into their respective class as NOODs.

Set 2. We also conduct tests with our dataset. It is collected with a compact mobile 
robot platform with a Velodyne VLP-16 LiDAR from a sidewalk area. There are 2130 
and 1733 3D bounding box labels for cars and pedestrians in 1096 scans. The height 
of the sensor mount is 0.5 m from the ground. We want to emphasize that this data-
set is used only for testing, not training. The detailed specifications are listed in 
Table 1.

Fig. 5 The mobile robot platform equipped with a 16-channel LiDAR and the environment used for data 
collection

Table 1 The numbers of 3D bounding box labels in our 16-channel LiDAR point cloud dataset

This set is only used for testing

Sequence Car Pedestrian Van Truck Scans FOV

1 1876 0 136 233 401 360◦

2 258 1733 0 0 695 360◦
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Set 3. The SemanticKITTI [38] is used to measure the accuracy of the ground seg-
mentation methods. It includes point-wise labels for the ground surface in traffic 
scenarios and thus is ideal for our experiment.

Overall performance

The performance on the KITTI dataset is presented in Table 2. For the comparison, 
we chose state-of-the-art methods both in terms of speed and accuracy [9, 15], and 
frequent methods that are performing on a similar level to our method [3, 4, 40–42]. 
They use voxel and bird’s eye view modalities, which make a fair comparison as our 
method utilizes voxels and point-based methods. Moreover, all methods are imple-
mented using PyTorch [43] to have a more fair comparison.

Our method achieves similar AP on pedestrian and cyclist detection to other meth-
ods, which is impressive considering the computational cost of our approach. Table 2 
compares the performance in terms of FPS and mAP. Our method is the only one that 
achieves real-time performance on a CPU.

Figure  6 illustrates the separability between ID and OOD samples in the classi-
fier. The plot includes 104 samples from IDs and OODs, respectively. In the dataset, 

Table 2 3D detection on the KITTI dataset

Bold font indicates the best FPS

GPU: Nvidia GTX 1060, CPU: 4.0 GHz Intel i5-7600K 5th generation

Method Cars AP (0.7) Pedestrians AP (0.5) Cyclists AP (0.5) Speed FPS

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard GPU CPU

VoxelNet [3] 87.99 82.47 77.34 55.35 48.79 46.22 78.44 66.40 59.20 2.3 0.1

SECOND [4] 88.21 81.32 75.23 53.35 49.66 45.79 79.53 64.69 57.32 4.7 1.2

IA-SSD [15] 89.44 81.32 76.36 45.39 41.51 37.77 79.46 62.55 57.05 19.8 4.3

PointPillars [9] 86.64 76.74 74.16 51.46 47.94 43.80 81.86 63.66 60.91 14.5 2.1

BirdNet [40] 24.14 19.22 16.32 42.72 31.25 28.21 41.39 26.92 26.42 9.1 1.7

BirdNet+ [41] 77.15 65.05 60.21 42.36 34.96 33.23 66.27 56.32 54.12 10.5 1.8

AVOD [42] 72.53 64.28 58.11 36.98 30.73 22.52 59.34 42.31 39.79 3.3 0.2

Ours 64.34 56.25 52.01 47.41 41.12 37.61 62.85 47.12 47.26 76.1 15.2

Fig. 6 Energy distributions from the out-of-distribution-optimized classifier display ID/OOD separability of 
each class
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the actual partitions of IDs and OODs are approximately 6% and 94%, respectively. 
The energy distribution of cars is much narrower compared to other classes because 
the amount of car samples in the training set is more significant compared to other 
classes. This allows the network to learn the difference between cars and OODs better.

Figure 7 shows the energy distributions in the bounding box estimation network. The 
plot includes 104 samples from IDs and NOODs, respectively. The energy distributions 
have notable differences depending on the class and the vector type. This is a significant 
result, given that the classifier falsely detected these NOOD samples as ID samples. Car 
class has the best ID/NOOD separability. We suspect this is due to a large sample count 
in the training data compared to pedestrian and cyclist classes.

Performance on the 16‑channel LiDAR dataset

Models are trained with the KITTI training set. Performance is tested with our anno-
tated 16-channel LiDAR data. Therefore, this study investigates the performance of 
models on a low-resolution point cloud trained with a high-resolution point cloud. Fur-
thermore, labels span full 360◦ in our dataset, unlike in the KITTI dataset, where labels 
are limited to approximately 90◦ sector. Our method performs on par with the state-of-
the-art while achieving real-time performance on the CPU (Table 3). Our method per-
forms the best in the study that measures the performance difference from the KITTI 
dataset to the low resolution and low perspective point cloud dataset (Table 4).

Fig. 7 Bounding box estimator energy distributions with the Lbox−energy term in the training objective. The 
distributions display the NOOD/ID separability of each vector pair

Table 3 3D detection on the 16-channel LiDAR mobile robot dataset

Bold font indicates the best FPS

All methods are trained only with the KITTI dataset. GPU: Nvidia GTX 1060, CPU: 4.0 GHz Intel i5-7600K 5th generation

Method Cars AP (0.5) Pedestrians AP (0.25) Speed FPS

GPU CPU

VoxelNet [3] 18.21 17.13 2.3 0.1

SECOND [4] 18.56 18.01 4.8 1.3

IA-SSD [15] 34.24 22.45 20.2 4.4

PointPillars [9] 19.22 18.88 18.1 2.3

Ours 34.25 15.69 77.2 16.1
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Ablation study

Table 5 illustrates the contributions of the proposed modules to the mAP and FPS. Mod-
ules improve the mAP and FPS significantly. The first ID pass-through module improves 
the speed significantly, as it reduces the samples processed by the box estimator. Based 
on the ablation of the PVLE modules, the location carries valuable information regard-
ing the 3D road user detection task, which satisfies the hypothesis discussed in the 
methods. The PVLE module for the box estimator slightly improves the car and cyclist 
classes while worsening it for the pedestrian class. This suggests that the module can be 
prone to overfit if the total number of samples is small, as it is for the pedestrian class.

Ground segmentation

The performance test results are summarized in Table  6. Our ground segmentation 
method is compared to frequent and state-of-the-art methods in the literature. It per-
forms well in terms of computational cost, accuracy, and IOU. This is due to our effec-
tive sampling method, which reduces the iterations needed in the RANSAC function. 
Furthermore, fitting multiple planes in sensor azimuth direction yields more accurate 
segmentation, especially on an uneven ground surface.

Qualitative results and discussion

For qualitative analysis, we have randomly picked detection results. They are visualized 
in Fig. 8. Videos displaying the detection performance can be found at.1 The geometri-
cal proposal generator reduces the computational requirement significantly while still 
achieving mAP comparable to the state-of-the-art. The trade-off suggests that not using 
learned proposals is justified. The proposal generator has another benefit, too. It allows 
data streaming, meaning that the point clouds can be processed in smaller sectors to 
start the processing earlier than in whole scan approaches. This will decrease the latency 
of the detection significantly. The limitation of the proposal generator is cluster fusion 
when physical contact of the road users is visible to the sensor. This could be solved 
using another proposal generator, such as furthest point sampling. However, this is not 
the accuracy bottleneck of our approach since the performance increases when the IOU 
threshold is decreased. This is especially apparent with the car class, which has a harsh 
0.7 IOU threshold. Although the car class separated better from the OODs than the 
pedestrian and cyclist classes, the final bounding box predictions were worse with the 

Table 4 Decrease in performance on the low-resolution point cloud dataset

� AP = (KITTI AP) − (16chn-LiDAR AP) illustrates the performance gap for models trained with the KITTI dataset and tested 
with the 16-channel LiDAR mobile robot dataset. Smaller is better

Method Cars �AP Pedestrians �AP

VoxelNet [3] 64.39 32.99

SECOND [4] 63.02 31.59

IA-SSD [15] 48.13 19.10

PointPillars [9] 59.96 28.85

Ours 23.28 26.35

1 https:// www. youtu be. com/ watch?v= CM1c2 l8I3ac, https:// www. youtu be. com/ watch?v= Q7VYJ cX0UmY.

https://www.youtube.com/watch?v=CM1c2l8I3ac
https://www.youtube.com/watch?v=Q7VYJcX0UmY
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Table 6 A comparison of ground segmentation methods

Our results are achieved with a single core of a 4.0 GHz Intel i5-7600K 5th generation CPU. 360◦ scan is divided evenly into 
16 sectors. * – GPU inference

Method Dataset Scans Time (s) Precision Recall Accuracy IOU

HD [44] SemKITTI 23201 0.306 0.47 0.95 – 0.45

LF [44] SemKITTI 23201 0.658 0.38 0.77 – 0.34

GPF [44] SemKITTI 23201 31.71 0.67 0.63 – 0.45

GPF-Opti [44] SemKITTI 23201 0.207 0.66 0.59 – 0.43

GPF-RANSAC [44] SemKITTI 23201 0.028 0.65 0.88 – 0.74

Hybrid-reg [45] KITTI 5 0.888 – – 0.88 –

CNN-method [46] Custom 252 0.139 0.93 0.99 – –

CRF-method [47] SemKITTI 3040 0.147 0.80 – – 0.78

GndNet [48] SemKITTI 3040 0.018* 0.84 0.99 – 0.84

Ours SemKITTI 23201 0.016 0.89 0.93 0.93 0.83

Fig. 8 Randomly picked detection results on the KITTI dataset (a) and on the 16-channel LiDAR dataset (b). 
We suggest zooming in for better detail
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car class. Therefore, the accuracy bottleneck is in the bounding box estimator network 
caused by incorrectly predicted bounding boxes on correctly classified proposals. Thus, 
improvements to this network would be a good subject of interest in future research.

How does the OOD training objective affect the accuracy of the ID classification 
and bounding box estimation? By adding an energy-based OOD training objective, 
networks learn not only the original task but also the energy-based task. This decreases 
the performance of the original task slightly. However, many false positives are removed 
using the energy values, which increase AP more than rare classification errors decrease 
it.

Is the inductive bias of the proposal voxel location encoder beneficial? The bias of 
the module is beneficial as the voxel grid resolution is relatively low. This results in more 
proposals for a single voxel location, which results in a more general representation of 
the location. Hence, the model is not prone to overfit to voxel location information. This 
is indicated by the results in Table 5.

Conclusion
This paper presented a novel architecture for the 3D road user detection task. The archi-
tecture has an extremely low computational requirement; therefore, it is suitable for 
applications with limited computational resources. An impressive 15.2 FPS was achieved 
with a 4.0 GHz CPU-only implementation while having comparable accuracy to the 
state-of-the-art. Furthermore, our architecture performed the best on the low-resolution 
LiDAR dataset. The architecture is based on a geometrical proposal generator and out-
of-distribution- and location-aware PointNets. To our surprise, the accuracy bottleneck 
was not the proposal generator but the bounding box estimator. In the future, improve-
ments to the bounding box estimator could be carried out, and other OOD detection 
methods could be studied in the 3D road user detection task.
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