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Abstract

This paper introduces a novel and innovative approach to simulating random variates
from two distinct probability distributions, namely the neutrosophic uniform distribu-
tion and the neutrosophic Weibull distribution. The primary objective of this research
is to present a cutting-edge methodology for generating random variates by lever-
aging the accept-reject simulation method, particularly in the context of managing
and addressing uncertainty. In addition to introducing the simulation methodology,
this work will also provide comprehensive algorithms tailored to these proposed
methods. These algorithms are essential for implementing the simulation techniques
and will be instrumental in their practical applications. Furthermore, this study aims
to explore the relationship between the level of indeterminacy and the resulting ran-
dom variates. By investigating how varying degrees of indeterminacy impact random
variates, we gain valuable insights into the dynamics of these distributions under dif-
ferent uncertainty conditions. Preliminary results suggest that random variates exhibit
a trend of decreasing as indeterminacy levels increase, shedding light on the intriguing
interplay between indeterminacy and random variate generation.

Keywords: Algorithm, Simulation, Classical statistics, Neutrosophic statistics, Random
numbers

Introduction

In recent years, due to the complexity of the systems, it may not be possible to evalu-
ate the work of the real system. The complete study of the complex systems may
increase the time and cost. When it is not possible to study the system directly, the
decision-makers from various fields of science depend on simulation. According to
Jdid et al. [12] “The simulation depends on the application of the study on systems
similar to the real systems and then projecting these results if they are appropri-
ate on the real system. The simulation is based on generating a series of random
numbers that are subject to a uniform probability distribution” Jdid et al. [11] sug-
gested using probability distribution to generate random numbers for the required
system. Random numbers are generated through a well-planned generator using the
probability distribution. The random number generators are run using the algorithm
designed keeping the mind the target to study the system. A physical or computer
method that generates random numbers is called the random number generator.
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A random number generator generates random numbers using the statistical dis-
tribution and has no specific pattern. Due to high-speed computers, mathematical
algorithms are designed and implemented to generate random numbers, see [24].
Accept-reject simulation method has been widely used to generate random numbers
using a suitable underlying distribution. In this simulation method, two uniform
numbers are generated and applied to calculate the probability using the underlying
distribution. The ratio of probabilities obtained using the first uniform number and
the mode are compared with the second uniform number in generating the random
numbers. Devroye [9] suggested the approach for generating random numbers using
log-concave probability densities. Hurtado and Barbat [10] used the Monte Carlo
simulation to generate random numbers. Ridout [19] engaged in the development of
a random number generation technique employing Laplace transformation. Martino
and Miguez [16] introduced accept/reject sampling to generate random numbers.
Stein and Keblis [23] introduced the method of simulation for triangular distribu-
tion. Wang et al. [25] introduced the accept-reject technique for generating random
variates. Martino et al. [15] worked on accept-reject simulation and presented an
algorithm to generate random numbers. Mohazzabi and Connolly [17] proposed the
simulation criteria for normal distribution. Luengo et al. [14] demonstrated param-
eter estimation through the utilization of Monte Carlo simulation methods. Schinazi
[20] proposed the method to generate discrete random numbers. Alvarez et al. [2]
improved the statistical qualities of a random number generator.

Recently, neutrosophic statistics have gotten attention due to many applications
for the data recorded from the complex process or when the data has neutrosophic
numbers, [22]. Many studies including [3, 7, 8] discussed the efficiency of neutro-
sophic statistics over classical statistics. Alhabib et al. [1] introduced the funda-
mentals of neutrosophic methods for generating uniform random numbers. Aslam
[4] introduced the Weibull distribution under indeterminacy as the generalization
of classical Weibull distribution. Khan et al. [13] explored the gamma distribution
within the framework of neutrosophic statistics and applied it to analyze complex
data. Sherwani et al. [21] presented the concept of work distributions under neu-
trosophic statistics. By following Aslam [4] and Nayana et al. [18] proposed DUS-
Weibull distribution under indeterminacy. Aslam [6] presented the truncated
variable algorithm for generating random variates from the neutrosophic DUS-
Weibull distribution. Second, [5] introduced novel approaches involving sine—cosine
and convolution techniques to generate random numbers within the neutrosophic
framework.

After a comprehensive review of the existing literature and to the best of our
understanding, no prior research has been conducted on the utilization of the
accept-reject simulation method within the framework of neutrosophic statistics.
This paper aims to address this gap by introducing the accept-reject simulation
technique tailored for neutrosophic uniform distribution (NUD) and neutrosophic
Weibull distribution (NWD). The following sections will detail the algorithms
employed for implementing the accept-reject simulation method and will provide
comprehensive tables of random variates across a spectrum of uncertainty levels.
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Preliminaries
In this section, we will introduce the neutrosophic uniform distribution and neutrosophic
Weibull distribution briefly.

Neutrosophic uniform distribution (NUD)

Consider the neutrosophic uniform random variable denoted as xxny;, which exhibits a
degree of uncertainty Iy,,, within the range [Iy,,, Ix,, | This variable follows a probability
distribution function (pdf) characterized by indeterminacy, with parameters ay and by
representing the uniform distribution, as detailed in the work of Aslam [4].

1 1
Snu) = ((bL — ﬂL)) + <(bu — ﬂu)>IxNu; IxNuE[IxLu’Ixuu]’“N <xNu < by
(1)

Note that the first part denotes the pdf of the uniform distribution under classical sta-
tistics and the second part denotes the indeterminate part. The corresponding cumulative
distribution function (cdf), say F (xny/) under indeterminacy can be given as

XNL — A, XNU — au
F(xNU) = ((bL _ ﬂL)) + <(bu _ ﬂu) >[xNu; IxNue [IxLui [xuu}:aN S XNU S bN
(2)

The probability density function, denoted as f (stu ), for the case when a; = ay; = ang
and by, = by = bys, and with the degree of indeterminacy Iys, can be expressed as follows:

>(1 + Ins); Ins€llLs, Ius],an < xnu < by (3)

f (o) = ((sz — ans)

The streamlined expression for the cumulative distribution function, denoted as F (s, ),
when a; = ay = ans and by, = by; = bns under conditions of indeterminacy, can be pre-
sented as follows:

XNS — ANS

F(xnsy) = () (1 4 Ins); Ins€llrs, lusl, an < xnu < by (4)
(bns — ans)

Note the pdf and cdf under indeterminacy reduces to pdf and cdf under classical statistics

when no indeterminacy is found that is I,,, = Ins = 0.

Neutrosophic weibull distribution

Aslam [4] introduced the concept of the neutrosophic Weibull distribution (NWD) for the
first time. Let x1y represent a neutrosophic random variable following the Weibull distri-
bution under indeterminacy, characterized by the scale parameter «, shape parameter j,
and the measure of indeterminacy Inw within the range [I7w, I;;w ] The probability density
function (pdf) for this indeterminate Weibull distribution, as derived in [4], is expressed as

follows:

S xnw) = { (5) <9;L>ﬂle_(?)ﬁ} " { (g) (%’)ﬁ’le—(’%)ﬁ }INW; InwellLw, luw]

(5)
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The modified version of the probability density function, denoted as f(xNSW), for
the scenario where x; = x;; = x5 and the measure of indeterminacy is Iys, can be for-
mulated as follows:

— xS ﬁ
f(xnsy) = {('B> (xi)ﬁ 16_(7) }(1 + Ins); Ins€[ILs, Tus] (6)

o o

The cdf corresponding to the Weibull distribution is represented as F (xnsy, ), and it
can be expressed as follows:

xS

p
F(xnsy) =1-— {e_(“> (1 +INS)} + Ins; Ins€[ILs, Lus] (7)

The mode of the Weibull distribution is represented as f(aAcNW) is given by

1

fEnw) =« <’8ﬁ_1> B(l + Ins); Ins€[lrs, Tus) (8)

The NWD reduces to the Weibull distribution under classical statistics when
Ins = Inw = 0.

Neutrosophic accept-reject simulation method

We present the neutrosophic accept-reject simulation method in the section. In this
section, we will present the routine to generate random variate from the NUD and
NWD. Suppose that upng ~ Un1([0,0], [1,1]) and upno ~ Un2([0,0], [1,1]) be two ran-
dom numbers follow the NUD. Suppose that xys, and xys,, are neutrosophic random
variables following the NWD and NUD, respectively. Let xyw and xyy; be the mode
of xnw and xnys, respectively. The random variate xxz; will be obtained from the fol-
lowing expression.

XNSy; = ans + < >(sz —ans); unelur, uirl, Insellrs, Ius] 9)

UuN
(I + Ins)

The random variate xxw will be obtained from the following expression.

1
1— (un — 1 B
XNSy = @ [—m(( = NS))} s InsellLs, Tus), un€lur, uu] (10)
1+ Ins

Based on the above-mentioned information, the following accept-reject routine under
indeterminacy will be implemented to generate #» random variate xys,, from NUD.

Step-1: pre-specified Ins, ans and bys.

Step-2: Generate two NUD random numbers, say uni1 ~ Un1([0,0],[1,1]) and

UN2 ~ UNZ([O, O], [1, 1])'

Step-3: Find xns;, using xns;,, = ans + (%) (bns — ans)

Step-4: Compute f(xNgu) using f(xNgu) = (;) (1 + Ins).

(bns—ans)
Step-5: Compute f@NSU) at any value between ays and bys.

Page 4 of 10
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Step-6: If uno <f(xN5u)/f (QNSU), then record xny; and go to step-7, otherwise,
repeat the previous steps.

Step-7: Return x5, and repeat the process to generate # variate of xys,,.

The algorithm to generate random variate from the NUD is depicted in Fig. 1.

The following accept-reject routine will be implemented to generate #» random vari-
ate xns,, from NWD.

Step-1: pre-specified Ins, ans and bys.

Step-2: Generate two NUD random numbers, say uni ~ Un1([0,0],[1,1]) and
un2 ~ Un2(10,0], 1, 1]). .

Step-3: Find x5, using xns,, = o {—ln (%}fow))} g

2\ B
Step-4: Compute f(xNgW) using f(xNSW) — { (g) (%s>ﬂ—1e_(7$> }(1 + Ins).

o o

Step-5: Compute mode f(ENSW) and compute f(Ensy ) = { (ﬁ) (275)13*16—(?73)/9 }(1 ‘i

Step-6: If un» <f(xN5W)/f(§N5W ), then record xyw and go to step-7, otherwise,
repeat the previous steps.

Step-7: Return xys,, and repeat the process to generate # variate of xnsg,,.

The algorithm to generate random variate from the NWD is depicted in Fig. 2.

Note that the proposed neutrosophic accept-reject algorithms are an extension of
accept-reject algorithms under classical statistics. The proposed simulation methods
under neutrosophic statistics are reduced to the simulation methods under classical
statistics when no indeterminacy is found in the data.

/ ' \‘\\ e — 2 Generate
(st ) ’ Put heyaluesof |, | o, -y, (0,0],[1.1]
w IS unz~Un2([0,0], [1,1])

m— Start Loop ¢ I

/ N 1=0

~& :

Sy = e | e (bys — ays) €
nsy = ans Gy ) (Ons — ans

1
f(xnsy) = <m) 1+ Iys)

|

I<=n f(’?Nsu)
For value between ayg and bys.

Yes " No
Recar:Nl’:Iue of P Uns < f(xNSU )/f(xNSU)

Fig. 1 Accept-reject routine for NUD
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Put the values of Generate
u valu
Ins, ays and b > | uy1~Upn1([0,0],[1,1])
Ns»> ANs NS upn2~Un-2([0,0],[1,1])
Start Loop I

[ (1 — (uny — INs))]W ——
Xnsy = @|—In(———"2L_NSC

1T+ Ins
f(xnsy)

& @

I

I<=n Re p-1 _(%s B
f(Rnsw) = {(g) (L—:) e %) }(1 + Ins)
Record Value of Yes No

<« upnz < f(xnsy)/f (Busy,)

XNsw

Fig. 2 Accept-reject routine for NWD

Simulation studies

An extensive simulation study has been carried out to investigate the behavior of ran-
dom variates generated by the developed algorithms across a range of parameters for
NUD and NWD. In this section, we will present and analyze the simulation tables
obtained through the accept-reject simulation method and the repetitive simulation
method. A wide simulation study is conducted to see the behavior of random variate
obtained from the developed algorithms at various values of parameters of NUD and
NWD. In this section, the simulation tables obtained from the accept-reject simulation
method and repetitive simulation method will be given and discussed.

Accept-reject simulation method

The random variate from the accept-reject method for the NUD is obtained for vari-
ous values of ays and by is reported in Tables 1, 2. To see the effect of intermediacy on
these random variate, various values of Iys are considered in the generation of random
variates from NUD and NWD. The random variate obtained from NUD using the values
of un1, un2, ans=10 and bys=20 are reported in Table 1. The random variate obtained
from NUD using the values of un1, un2, ans=15 and bns=20 are reported in Table 2.
From Tables 1, 2, it can be noted that for the fixed values of ays=15, bys=20 and Iys,
there is an increase in random variate. The random variate decreases as the values of Iyg
increases from 0 to 1. Note that the values of random variate Iys=0 presents the values
of random variate for classical statistics. From Tables 1, 2, it can be noted that inde-
terminacy plays a significant role in decreasing the random variate. It's worth empha-
sizing that computer-based uniform random variate generation is commonly employed
to simulate random numbers. However, this simulation approach often overlooks the
influence of the measure of indeterminacy when generating random numbers in the
computer. Our analysis underscores that, in the presence of uncertainty, the resulting
random numbers differ from those generated in a deterministic setting. Therefore, when
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Table 1 Random numbers from NUD when ays=10 and bys=20

uyt un2  Ins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

011 028 11.07 1097 1089 1082 1076 1071 1067 1063 1059 1056  10.53
030 050 1298 1271 1248 1229 1213 1198 1186 1175 1165 1157 1149
035 059 1348 1316 1290 1267 1248 1232 1217 1205 1193 1183 1174
078 056 1776 1706 1647 1597 1554 1517 1485 1457 1431 1409 1388
014 028 1141 1128 118 1109 1101 1094 1088 1083 1078 1074 10.71
085 033 1850 1773 1708 1654 1607 1567 1531 1500 1472 1447 1425
067 052 1665 1605 1554 1512 1475 1443 1416 1391 1370 1350 1333
015 020 1155 1141 1129 1119 1110 1103 1097 1091 1086 1081 10.77
018 048 1178 1162 1149 1137 1127 1109 1111 1105 1099 1094 10.89
087 061 1869 1790 1724 1669 1621 1580 1543 1511 1483 1458 1435
076 002 1762 1692 1635 1586 1544 1508 1476 1448 1423 1401 1381
061 075 1609 1554 1508 1469 1435 1406 1381 1358 1338 1321 13.05
067 028 1673 1612 1561 1518 1481 1449 1421 139 1374 1354 1337
006 088 1055 1050 1046 1043 1040 1037 1035 1033 1031 1029 10.28
044 092 1438 1398 1365 1337 1313 1292 1274 1258 1243 1231 1219

Table 2 Random numbers from NUD when ays=15 and bys=20

uyt  un2  Ins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

011 028 1553 1549 1544 1541 1538 1536 1533 1531 1530 1528 1527
030 050 1649 1635 1624 1614 1606 1599 1593 1588 1583 1578 1574
035 059 1674 1658 1645 1634 1624 1616 1609 1602 1597 1592 1587
078 056 1888 1853 1823 1799 1777 1759 1743 1728 1716 1704 1694
0.14 028 1571 1564 1559 1554 1550 1547 1544 1541 1539 1537 1535
085 033 1925 1886 1854 1827 1804 1783 1766 1750 1736 1724 1712
067 052 1833 1802 1777 1756 1738 1722 1708 1696 1685 1675 1666
015 020 1577 1570 1564 1559 1555 1552 1548 1545 1543 1541 1539
018 048 1589 1581 1574 1569 1564 1559 1556 1552 1550 1547 1545
087 061 1935 1895 1862 1834 1810 1790 1772 1756 1741 1729 1717
076 002 1881 1846 1817 1793 1772 1754 1738 1724 1712 1700 1690
061 075 1805 1777 1754 1734 1718 1703 1690 1679 1669 1660 16.52
067 028 1837 1806 1781 1759 1741 1724 1710 1698 1687 1677 1668
006 088 1528 1525 1523 1521 1520 1518 1517 1516 1515 1515 1514
044 092 1719 1699 1683 1668 1656 1646 1637 1629 1622 1615 16.10

faced with uncertainty, depending on uniformly distributed random variables generated
using traditional simulation methods could result in erroneous conclusions.

The random variate from N'WD for various values of Iys and parameters are shown
in Tables 3, 4, 5, 6. Table 3 is presented for « = 2 and = 0.50. The random variate for
a =2 and B8 =1 (exponential distribution) is shown in Table 4. The random variate
for « = 2 and 8 = 1.5 is shown in Table 5. The random variate for « =2 and 8 = 1.5
is shown in Table 5. The random variate for « = 2 and B8 = 2 is shown in Table 5.
From Tables 3, 4, 5, 6, there is a decreasing trend in random variate as the values of
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Table 3 Random numbers from NWD when @ = 2and 8 = 0.50

upn un2 Ins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1268 04469 0036 00300 0.0249 0.0211 00180 0.0156 0.0136 0.0120 0.0107 0.0095 0.0086
05698 0.6751 14227 10650 08294 06653 05460 04565 03876 03332 0.2897 0.2542 0.2249
0.7631 0.8754 12212 09224 07230 0.5827 04800 04025 03425 02951 0.2570 0.2258 0.2000
0.1133 06995 0.0289 0.0236 0.0197 00166 0.0142 00123 0.0108 0.0095 0.0085 0.0076 0.0068
06222 02475 18954 13910 1.0685 0.8484 06910 05743 04851 04154 03598 03148 02778
0.5988 0.7014 16686 1.2361 09556 0.7623 06231 05193 0439 03772 03272 0.2867 0.2533
09762 05398 12212 09224 07230 05827 04800 04025 03425 0.2951 0.2570 0.2258 0.2000
0.0749 0629 00121 0.0100 0.0083 0.0071 0.0061 0.0053 0.0046 0.0041 0.0036 0.0032 0.0029
06036 0.7176 1.7121 12659 09775 0.7791 06364 0.5300 04485 03847 03336 0.2922 0.2581
0.7040 0.2784 29642 20876 15612 12165 09769 08030 06724 05717 04923 04285 0.3765

Table 4 Random numbers from NWD whena = 2and 8 = 1.0

upn un2 Ins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

06724 03931 12212 09224 07230 0.5827 04800 04025 03425 0.2951 02570 0.2258 0.2000
03384 04095 0.8261 07352 06625 06030 05533 05113 04752 04439 04165 03922 03707
09633 0.8596 1.2212 09224 07230 0.5827 04800 04025 03425 0.2951 02570 0.2258 0.2000
0.0344 0.1764 00699 0.0635 0.0581 0.0536 0.0497 00463 0.0434 0.0408 0.0385 0.0365 0.0347
0.7971 0.8033 12212 09224 0.7230 0.5827 04800 04025 03425 0.2951 0.2570 0.2258 0.2000
0.8502 0.7501 12212 09224 0.7230 05827 04800 04025 03425 02951 02570 0.2258 0.2000
0.7074 07036 12212 09224 0.7230 05827 04800 04025 03425 0.2951 0.2570 0.2258 0.2000
03028 03204 07214 06440 0.5816 05304 04874 04510 04196 03923 03684 0.3472 0.3284
09702 05936 12212 09224 0.7230 05827 04800 04025 03425 0.2951 0.2570 0.2258 0.2000
0.8237 0.2993 12212 09224 0.7230 0.5827 04800 04025 03425 02951 02570 0.2258 0.2000

Table 5 Random numbers from NWD whena = 2and 8 = 1.50

un1 un2 Ins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1946 05075 0.7208 06717 06303 0.5947 05637 05365 05123 04907 04713 04537 04376
0.1403 0.2019 05676 05301 04982 04708 04468 04257 04069 03901 03749 03611 03485
0.1072 06891 04684 04380 04121 03897 03702 03529 03375 03237 03112 02999 0.2895
0.8911 08086 12212 09224 07230 0.5827 04800 04025 03425 02951 0.2570 0.2258 0.2000
0.8834 0.0830 33305 27644 24217 21800 1.9959 1.8491 1.7282 16263 15388 14626 1.3955
02193 0.1400 0.7884 0.7339 06880 0.6487 06145 05846 05580 0.5343 05130 04936 04760
03930 05098 12587 1.1606 1.0800 1.0121 09542 09039 0.8598 0.8208 0.7860 0.7546 0.7262
04797 06271 15058 13794 12772 1.1925 1.1207 1.0590 1.0053 09580 09159 0.8782 0.8441
02676 0.1190 09188 0.8533 0.7985 0.7517 07113 06759 06446 06168 05917 05691 05485
06454 0.1619 20488 18417 16829 15558 14512 13630 1.2875 12218 1.1641 1.1128 1.0670

Iys increase. For example, for the exponential distribution, when ux1 = 0.6724 and
uno = 0.3931, the value of random variate is 1.2212 when Inys=0 and the value of ran-
dom variate is 2.000.
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Table 6 Random numbers from NWD whena = 2and 8 = 2.0

upn un2 Ins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

09215 06408 1.2212 09224 07230 0.5827 04800 04025 03425 0.2951 02570 0.2258 0.2000
0.7373 0.0830 23125 21068 1.9525 1.8303 1.7297 1.6449 15719 15082 14519 14016 1.3564
04176 05260 14705 13820 13080 1.2450 1.1904 1.1424 1.0999 1.0619 1.0276 0.9964 0.9679
0.5954 03974 19025 1.7655 1.6559 15652 14885 14223 13644 13132 12675 1.2263 1.1889
02674 00462 1.1155 1.0554 1.0041 09597 09207 08861 0.8552 0.8273 0.8020 0.7788 0.7576
0.0808 04036 05806 0.5525 0.5281 05067 04877 04707 04554 04414 04287 04170 0.4062
05406 09562 12212 09224 0.7230 05827 04800 04025 03425 0.2951 0.2570 0.2258 0.2000
04129 06503 14594 13719 1.2987 12363 1.1822 1.1348 1.0926 1.0549 1.0209 0.9899 0.9617
0.8789 06710 12212 09224 0.7230 0.5827 04800 04025 03425 02951 02570 0.2258 0.2000
0.7306 05675 22904 20891 19376 18171 17179 1.6341 15620 14989 14431 1.3933 1.3485

Concluding remarks

This paper has introduced two simulation methods for generating random variates using
NUD and NWD. The paper presented the essential computational procedures, simula-
tion techniques, and algorithms necessary for these methods. Random variates derived
from NUD and NWD were generated under various parameter settings and indetermi-
nacy levels. The analysis reveals that the measure of indeterminacy significantly influ-
ences the random variates, with a decrease observed as the level of indeterminacy
increases. It’'s important to highlight that computer-based uniform random variate gen-
eration is a prevalent method for simulating random numbers. Nonetheless, this simula-
tion approach frequently disregards the impact of the measure of indeterminacy when
generating random numbers in the computer. Our analysis underscores that in the pres-
ence of uncertainty, the resulting random numbers deviate from those generated in a
deterministic environment. Therefore, depending on uniform random variables gen-
erated through traditional simulation methods can potentially lead to erroneous deci-
sions. These proposed simulation methods have versatile applications in fields such as
education, medicine, computer science, and engineering. Furthermore, the potential for
extending these methods to handle other distributions is a promising avenue for future
research.
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