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Abstract 

This paper introduces a novel and innovative approach to simulating random variates 
from two distinct probability distributions, namely the neutrosophic uniform distribu-
tion and the neutrosophic Weibull distribution. The primary objective of this research 
is to present a cutting-edge methodology for generating random variates by lever-
aging the accept-reject simulation method, particularly in the context of managing 
and addressing uncertainty. In addition to introducing the simulation methodology, 
this work will also provide comprehensive algorithms tailored to these proposed 
methods. These algorithms are essential for implementing the simulation techniques 
and will be instrumental in their practical applications. Furthermore, this study aims 
to explore the relationship between the level of indeterminacy and the resulting ran-
dom variates. By investigating how varying degrees of indeterminacy impact random 
variates, we gain valuable insights into the dynamics of these distributions under dif-
ferent uncertainty conditions. Preliminary results suggest that random variates exhibit 
a trend of decreasing as indeterminacy levels increase, shedding light on the intriguing 
interplay between indeterminacy and random variate generation.

Keywords:  Algorithm, Simulation, Classical statistics, Neutrosophic statistics, Random 
numbers

Introduction
In recent years, due to the complexity of the systems, it may not be possible to evalu-
ate the work of the real system. The complete study of the complex systems may 
increase the time and cost. When it is not possible to study the system directly, the 
decision-makers from various fields of science depend on simulation. According to 
Jdid et al. [12] “The simulation depends on the application of the study on systems 
similar to the real systems and then projecting these results if they are appropri-
ate on the real system. The simulation is based on generating a series of random 
numbers that are subject to a uniform probability distribution”. Jdid et al. [11] sug-
gested using probability distribution to generate random numbers for the required 
system. Random numbers are generated through a well-planned generator using the 
probability distribution. The random number generators are run using the algorithm 
designed keeping the mind the target to study the system. A physical or computer 
method that generates random numbers is called the random number generator. 
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A random number generator generates random numbers using the statistical dis-
tribution and has no specific pattern. Due to high-speed computers, mathematical 
algorithms are designed and implemented to generate random numbers, see [24]. 
Accept-reject simulation method has been widely used to generate random numbers 
using a suitable underlying distribution. In this simulation method, two uniform 
numbers are generated and applied to calculate the probability using the underlying 
distribution. The ratio of probabilities obtained using the first uniform number and 
the mode are compared with the second uniform number in generating the random 
numbers. Devroye [9] suggested the approach for generating random numbers using 
log-concave probability densities. Hurtado and Barbat [10] used the Monte Carlo 
simulation to generate random numbers. Ridout [19] engaged in the development of 
a random number generation technique employing Laplace transformation. Martino 
and Miguez [16] introduced accept/reject sampling to generate random numbers. 
Stein and Keblis [23] introduced the method of simulation for triangular distribu-
tion. Wang et al. [25] introduced the accept-reject technique for generating random 
variates. Martino et  al. [15] worked on accept-reject simulation and presented an 
algorithm to generate random numbers. Mohazzabi and Connolly [17] proposed the 
simulation criteria for normal distribution. Luengo et al. [14] demonstrated param-
eter estimation through the utilization of Monte Carlo simulation methods. Schinazi 
[20] proposed the method to generate discrete random numbers. Álvarez et  al. [2] 
improved the statistical qualities of a random number generator.

Recently, neutrosophic statistics have gotten attention due to many applications 
for the data recorded from the complex process or when the data has neutrosophic 
numbers, [22]. Many studies including [3, 7, 8] discussed the efficiency of neutro-
sophic statistics over classical statistics. Alhabib et  al. [1] introduced the funda-
mentals of neutrosophic methods for generating uniform random numbers. Aslam 
[4] introduced the Weibull distribution under indeterminacy as the generalization 
of classical Weibull distribution. Khan et  al. [13] explored the gamma distribution 
within the framework of neutrosophic statistics and applied it to analyze complex 
data. Sherwani et  al. [21] presented the concept of work distributions under neu-
trosophic statistics. By following Aslam [4] and Nayana et  al. [18] proposed DUS-
Weibull distribution under indeterminacy. Aslam [6] presented the truncated 
variable algorithm for generating random variates from the neutrosophic DUS-
Weibull distribution. Second, [5] introduced novel approaches involving sine–cosine 
and convolution techniques to generate random numbers within the neutrosophic 
framework.

After a comprehensive review of the existing literature and to the best of our 
understanding, no prior research has been conducted on the utilization of the 
accept-reject simulation method within the framework of neutrosophic statistics. 
This paper aims to address this gap by introducing the accept-reject simulation 
technique tailored for neutrosophic uniform distribution (NUD) and neutrosophic 
Weibull distribution (NWD). The following sections will detail the algorithms 
employed for implementing the accept-reject simulation method and will provide 
comprehensive tables of random variates across a spectrum of uncertainty levels.
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Preliminaries
In this section, we will introduce the neutrosophic uniform distribution and neutrosophic 
Weibull distribution briefly.

Neutrosophic uniform distribution (NUD)

Consider the neutrosophic uniform random variable denoted as xNU , which exhibits a 
degree of uncertainty IxNU within the range 

[
IxLU , IxUU

]
 . This variable follows a probability 

distribution function (pdf) characterized by indeterminacy, with parameters aN and bN 
representing the uniform distribution, as detailed in the work of Aslam [4].

Note that the first part denotes the pdf of the uniform distribution under classical sta-
tistics and the second part denotes the indeterminate part. The corresponding cumulative 
distribution function (cdf), say F(xNU ) under indeterminacy can be given as

The probability density function, denoted as f
(
xNSU

)
 , for the case when aL = aU = aNS 

and bL = bU = bNS , and with the degree of indeterminacy INS , can be expressed as follows:

The streamlined expression for the cumulative distribution function, denoted as F
(
xNSU

)
 , 

when aL = aU = aNS and bL = bU = bNS under conditions of indeterminacy, can be pre-
sented as follows:

Note the pdf and cdf under indeterminacy reduces to pdf and cdf under classical statistics 
when no indeterminacy is found that is IxNU = INS = 0.

Neutrosophic weibull distribution

Aslam [4] introduced the concept of the neutrosophic Weibull distribution (NWD) for the 
first time. Let xLW  represent a neutrosophic random variable following the Weibull distri-
bution under indeterminacy, characterized by the scale parameter α , shape parameter β , 
and the measure of indeterminacy INW  within the range [ILW , IUW ] . The probability density 
function (pdf) for this indeterminate Weibull distribution, as derived in [4], is expressed as 
follows:

(1)

f (xNU ) =

(
1

(bL − aL)

)
+

(
1

(bU − aU )

)
IxNU ; IxNU ǫ

[
IxLU , IxUU

]
, aN ≤ xNU ≤ bN

(2)

F(xNU ) =

(
xNL − aL

(bL − aL)

)
+

(
xNU − aU

(bU − aU )

)
IxNU ; IxNU ǫ

[
IxLU , IxUU

]
, aN ≤ xNU ≤ bN

(3)f
(
xNSU

)
=

(
1

(bNS − aNS)

)
(1+ INS); INSǫ[ILS , IUS], aN ≤ xNU ≤ bN

(4)F
(
xNSU

)
=

(
xNS − aNS

(bNS − aNS)

)
(1+ INS); INSǫ[ILS , IUS], aN ≤ xNU ≤ bN

(5)

f (xNW ) =

{(
β

α

)(xL
α

)β−1

e
−

(
xL
α

)β}
+

{(
β

α

)(xU
α

)β−1

e
−

(
xU
α

)β}
INW ; INW ǫ[ILW , IUW ]
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The modified version of the probability density function, denoted as f
(
xNSW

)
 , for 

the scenario where xL = xU = xS and the measure of indeterminacy is INS , can be for-
mulated as follows:

The cdf corresponding to the Weibull distribution is represented as F
(
xNSW

)
 , and it 

can be expressed as follows:

The mode of the Weibull distribution is represented as f
(
x̂NW

)
  is given by

The NWD reduces to the Weibull distribution under classical statistics when 
INS = INW = 0.

Neutrosophic accept‑reject simulation method
We present the neutrosophic accept-reject simulation method in the section. In this 
section, we will present the routine to generate random variate from the NUD and 
NWD. Suppose that uN1 ∼ UN1([0, 0], [1, 1]) and uN2 ∼ UN2([0, 0], [1, 1]) be two ran-
dom numbers follow the NUD. Suppose that xNSU and xNSW  are neutrosophic random 
variables following the NWD and NUD, respectively. Let x̂NW  and x̂NU be the mode 
of xNW  and xNU , respectively. The random variate xNU will be obtained from the fol-
lowing expression.

The random variate xNW  will be obtained from the following expression.

Based on the above-mentioned information, the following accept-reject routine under 
indeterminacy will be implemented to generate n random variate xNSU from NUD.

Step-1: pre-specified INS , aNS and bNS.
�Step-2: Generate two NUD random numbers, say uN1 ∼ UN1([0, 0], [1, 1]) and 
uN2 ∼ UN2([0, 0], [1, 1]).
Step-3: Find xNSU using xNSU = aNS +

(
uN1

(1+INS)

)
(bNS − aNS)

Step-4: Compute f
(
xNSU

)
 using f

(
xNSU

)
=

(
1

(bNS−aNS)

)
(1+ INS).

Step-5: Compute f
(
x̂NSU

)
 at any value between aNS and bNS.

(6)f
(
xNSW

)
=

{(
β

α

)(xS
α

)β−1

e
−

(
xS
α

)β}

(1+ INS); INSǫ[ILS , IUS]

(7)F
(
xNSW

)
= 1−

{
e
−

(
xS
α

)β
(1+ INS)

}
+ INS; INSǫ[ILS , IUS]

(8)f
(
x̂NW

)
= α

(
β − 1

β

) 1
β

(1+ INS); INSǫ[ILS , IUS]

(9)xNSU = aNS +

(
uN

(1+ INS)

)
(bNS − aNS);uN ǫ[uL,uU ], INSǫ[ILS , IUS]

(10)xNSW = α

[
−ln

(
1− (uN − INS)

1+ INS

)] 1
β

; INSǫ[ILS , IUS],uN ǫ[uL,uU ]
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�Step-6: If uN2 < f
(
xNSU

)
/f
(
x̂NSU

)
 , then record xNU and go to step-7, otherwise, 

repeat the previous steps.
Step-7: Return xNSU and repeat the process to generate n variate of xNSU.
The algorithm to generate random variate from the NUD is depicted in Fig. 1.
�The following accept-reject routine will be implemented to generate n random vari-
ate xNSW  from NWD.
Step-1: pre-specified INS , aNS and bNS.
�Step-2: Generate two NUD random numbers, say uN1 ∼ UN1([0, 0], [1, 1]) and 
uN2 ∼ UN2([0, 0], [1, 1]).

Step-3: Find xNSW  using xNSW = α

[
−ln

(
1−(uN1−INS)

1+INS

)] 1
β

Step-4: Compute f
(
xNSW

)
 using f

(
xNSW

)
=

{(
β
α

)(
xS
α

)β−1
e
−

(
xS
α

)β}

(1+ INS).

Step-5: Compute mode f
(
x̂NSW

)
 and compute f

(
x̂NSW

)
=

{(
β
α

)(
x̂S
α

)β−1

e
−

(
x̂S
α

)β}

(1+ INS)

Step-6: If uN2 < f
(
xNSW

)
/f
(
x̂NSW

)
 , then record xNW  and go to step-7, otherwise, 

repeat the previous steps.
Step-7: Return xNSW  and repeat the process to generate n variate of xNSW .
The algorithm to generate random variate from the NWD is depicted in Fig. 2.
Note that the proposed neutrosophic accept-reject algorithms are an extension of 

accept-reject algorithms under classical statistics. The proposed simulation methods 
under neutrosophic statistics are reduced to the simulation methods under classical 
statistics when no indeterminacy is found in the data.

Fig. 1  Accept-reject routine for NUD
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Simulation studies
An extensive simulation study has been carried out to investigate the behavior of ran-
dom variates generated by the developed algorithms across a range of parameters for 
NUD and NWD. In this section, we will present and analyze the simulation tables 
obtained through the accept-reject simulation method and the repetitive simulation 
method. A wide simulation study is conducted to see the behavior of random variate 
obtained from the developed algorithms at various values of parameters of NUD and 
NWD. In this section, the simulation tables obtained from the accept-reject simulation 
method and repetitive simulation method will be given and discussed.

Accept‑reject simulation method

The random variate from the accept-reject method for the NUD is obtained for vari-
ous values of aNS and bNS is reported in Tables 1, 2. To see the effect of intermediacy on 
these random variate, various values of INS are considered in the generation of random 
variates from NUD and NWD. The random variate obtained from NUD using the values 
of uN1 , uN2 , aNS=10 and bNS=20 are reported in Table 1. The random variate obtained 
from NUD using the values of uN1 , uN2 , aNS=15 and bNS=20 are reported in Table 2. 
From Tables 1, 2, it can be noted that for the fixed values of aNS=15, bNS=20 and INS , 
there is an increase in random variate. The random variate decreases as the values of INS 
increases from 0 to 1. Note that the values of random variate INS =0 presents the values 
of random variate for classical statistics. From Tables  1, 2, it can be noted that inde-
terminacy plays a significant role in decreasing the random variate. It’s worth empha-
sizing that computer-based uniform random variate generation is commonly employed 
to simulate random numbers. However, this simulation approach often overlooks the 
influence of the measure of indeterminacy when generating random numbers in the 
computer. Our analysis underscores that, in the presence of uncertainty, the resulting 
random numbers differ from those generated in a deterministic setting. Therefore, when 

Fig. 2  Accept-reject routine for NWD
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faced with uncertainty, depending on uniformly distributed random variables generated 
using traditional simulation methods could result in erroneous conclusions.

The random variate from NWD for various values of INS and parameters are shown 
in Tables 3, 4, 5, 6. Table 3 is presented for α = 2 and β = 0.50 . The random variate for 
α = 2 and β = 1 (exponential distribution) is shown in Table  4. The random variate 
for α = 2 and β = 1.5 is shown in Table 5. The random variate for α = 2 and β = 1.5 
is shown in Table  5. The random variate for α = 2 and β = 2 is shown in Table  5. 
From Tables  3, 4, 5, 6, there is a decreasing trend in random variate as the values of 

Table 1  Random numbers from NUD when aNS=10 and bNS=20

uN1 uN2 INS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.11 0.28 11.07 10.97 10.89 10.82 10.76 10.71 10.67 10.63 10.59 10.56 10.53

0.30 0.50 12.98 12.71 12.48 12.29 12.13 11.98 11.86 11.75 11.65 11.57 11.49

0.35 0.59 13.48 13.16 12.90 12.67 12.48 12.32 12.17 12.05 11.93 11.83 11.74

0.78 0.56 17.76 17.06 16.47 15.97 15.54 15.17 14.85 14.57 14.31 14.09 13.88

0.14 0.28 11.41 11.28 11.18 11.09 11.01 10.94 10.88 10.83 10.78 10.74 10.71

0.85 0.33 18.50 17.73 17.08 16.54 16.07 15.67 15.31 15.00 14.72 14.47 14.25

0.67 0.52 16.65 16.05 15.54 15.12 14.75 14.43 14.16 13.91 13.70 13.50 13.33

0.15 0.20 11.55 11.41 11.29 11.19 11.10 11.03 10.97 10.91 10.86 10.81 10.77

0.18 0.48 11.78 11.62 11.49 11.37 11.27 11.19 11.11 11.05 10.99 10.94 10.89

0.87 0.61 18.69 17.90 17.24 16.69 16.21 15.80 15.43 15.11 14.83 14.58 14.35

0.76 0.02 17.62 16.92 16.35 15.86 15.44 15.08 14.76 14.48 14.23 14.01 13.81

0.61 0.75 16.09 15.54 15.08 14.69 14.35 14.06 13.81 13.58 13.38 13.21 13.05

0.67 0.28 16.73 16.12 15.61 15.18 14.81 14.49 14.21 13.96 13.74 13.54 13.37

0.06 0.88 10.55 10.50 10.46 10.43 10.40 10.37 10.35 10.33 10.31 10.29 10.28

0.44 0.92 14.38 13.98 13.65 13.37 13.13 12.92 12.74 12.58 12.43 12.31 12.19

Table 2  Random numbers from NUD when aNS=15 and bNS=20

uN1 uN2 INS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.11 0.28 15.53 15.49 15.44 15.41 15.38 15.36 15.33 15.31 15.30 15.28 15.27

0.30 0.50 16.49 16.35 16.24 16.14 16.06 15.99 15.93 15.88 15.83 15.78 15.74

0.35 0.59 16.74 16.58 16.45 16.34 16.24 16.16 16.09 16.02 15.97 15.92 15.87

0.78 0.56 18.88 18.53 18.23 17.99 17.77 17.59 17.43 17.28 17.16 17.04 16.94

0.14 0.28 15.71 15.64 15.59 15.54 15.50 15.47 15.44 15.41 15.39 15.37 15.35

0.85 0.33 19.25 18.86 18.54 18.27 18.04 17.83 17.66 17.50 17.36 17.24 17.12

0.67 0.52 18.33 18.02 17.77 17.56 17.38 17.22 17.08 16.96 16.85 16.75 16.66

0.15 0.20 15.77 15.70 15.64 15.59 15.55 15.52 15.48 15.45 15.43 15.41 15.39

0.18 0.48 15.89 15.81 15.74 15.69 15.64 15.59 15.56 15.52 15.50 15.47 15.45

0.87 0.61 19.35 18.95 18.62 18.34 18.10 17.90 17.72 17.56 17.41 17.29 17.17

0.76 0.02 18.81 18.46 18.17 17.93 17.72 17.54 17.38 17.24 17.12 17.00 16.90

0.61 0.75 18.05 17.77 17.54 17.34 17.18 17.03 16.90 16.79 16.69 16.60 16.52

0.67 0.28 18.37 18.06 17.81 17.59 17.41 17.24 17.10 16.98 16.87 16.77 16.68

0.06 0.88 15.28 15.25 15.23 15.21 15.20 15.18 15.17 15.16 15.15 15.15 15.14

0.44 0.92 17.19 16.99 16.83 16.68 16.56 16.46 16.37 16.29 16.22 16.15 16.10
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INS increase. For example, for the exponential distribution, when uN1 = 0.6724 and 
uN2 = 0.3931 , the value of random variate is 1.2212 when INS =0 and the value of ran-
dom variate is 2.000.

Table 3  Random numbers from NWD when α = 2 and β = 0.50

uN1 uN2 INS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1268 0.4469 0.036 0.0300 0.0249 0.0211 0.0180 0.0156 0.0136 0.0120 0.0107 0.0095 0.0086

0.5698 0.6751 1.4227 1.0650 0.8294 0.6653 0.5460 0.4565 0.3876 0.3332 0.2897 0.2542 0.2249

0.7631 0.8754 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.1133 0.6995 0.0289 0.0236 0.0197 0.0166 0.0142 0.0123 0.0108 0.0095 0.0085 0.0076 0.0068

0.6222 0.2475 1.8954 1.3910 1.0685 0.8484 0.6910 0.5743 0.4851 0.4154 0.3598 0.3148 0.2778

0.5988 0.7014 1.6686 1.2361 0.9556 0.7623 0.6231 0.5193 0.4396 0.3772 0.3272 0.2867 0.2533

0.9762 0.5398 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.0749 0.6296 0.0121 0.0100 0.0083 0.0071 0.0061 0.0053 0.0046 0.0041 0.0036 0.0032 0.0029

0.6036 0.7176 1.7121 1.2659 0.9775 0.7791 0.6364 0.5300 0.4485 0.3847 0.3336 0.2922 0.2581

0.7040 0.2784 2.9642 2.0876 1.5612 1.2165 0.9769 0.8030 0.6724 0.5717 0.4923 0.4285 0.3765

Table 4  Random numbers from NWD when α = 2 and β = 1.0

uN1 uN2 INS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6724 0.3931 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.3384 0.4095 0.8261 0.7352 0.6625 0.6030 0.5533 0.5113 0.4752 0.4439 0.4165 0.3922 0.3707

0.9633 0.8596 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.0344 0.1764 0.0699 0.0635 0.0581 0.0536 0.0497 0.0463 0.0434 0.0408 0.0385 0.0365 0.0347

0.7971 0.8033 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.8502 0.7501 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.7074 0.7036 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.3028 0.3204 0.7214 0.6440 0.5816 0.5304 0.4874 0.4510 0.4196 0.3923 0.3684 0.3472 0.3284

0.9702 0.5936 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.8237 0.2993 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

Table 5  Random numbers from NWD when α = 2 and β = 1.50

uN1 uN2 INS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1946 0.5075 0.7208 0.6717 0.6303 0.5947 0.5637 0.5365 0.5123 0.4907 0.4713 0.4537 0.4376

0.1403 0.2019 0.5676 0.5301 0.4982 0.4708 0.4468 0.4257 0.4069 0.3901 0.3749 0.3611 0.3485

0.1072 0.6891 0.4684 0.4380 0.4121 0.3897 0.3702 0.3529 0.3375 0.3237 0.3112 0.2999 0.2895

0.8911 0.8086 1.2212 0.9224 0.7230 0.5827 0.4800 0.4025 0.3425 0.2951 0.2570 0.2258 0.2000

0.8834 0.0830 3.3305 2.7644 2.4217 2.1800 1.9959 1.8491 1.7282 1.6263 1.5388 1.4626 1.3955

0.2193 0.1400 0.7884 0.7339 0.6880 0.6487 0.6145 0.5846 0.5580 0.5343 0.5130 0.4936 0.4760

0.3930 0.5098 1.2587 1.1606 1.0800 1.0121 0.9542 0.9039 0.8598 0.8208 0.7860 0.7546 0.7262

0.4797 0.6271 1.5058 1.3794 1.2772 1.1925 1.1207 1.0590 1.0053 0.9580 0.9159 0.8782 0.8441

0.2676 0.1190 0.9188 0.8533 0.7985 0.7517 0.7113 0.6759 0.6446 0.6168 0.5917 0.5691 0.5485

0.6454 0.1619 2.0488 1.8417 1.6829 1.5558 1.4512 1.3630 1.2875 1.2218 1.1641 1.1128 1.0670
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Concluding remarks
This paper has introduced two simulation methods for generating random variates using 
NUD and NWD. The paper presented the essential computational procedures, simula-
tion techniques, and algorithms necessary for these methods. Random variates derived 
from NUD and NWD were generated under various parameter settings and indetermi-
nacy levels. The analysis reveals that the measure of indeterminacy significantly influ-
ences the random variates, with a decrease observed as the level of indeterminacy 
increases. It’s important to highlight that computer-based uniform random variate gen-
eration is a prevalent method for simulating random numbers. Nonetheless, this simula-
tion approach frequently disregards the impact of the measure of indeterminacy when 
generating random numbers in the computer. Our analysis underscores that in the pres-
ence of uncertainty, the resulting random numbers deviate from those generated in a 
deterministic environment. Therefore, depending on uniform random variables gen-
erated through traditional simulation methods can potentially lead to erroneous deci-
sions. These proposed simulation methods have versatile applications in fields such as 
education, medicine, computer science, and engineering. Furthermore, the potential for 
extending these methods to handle other distributions is a promising avenue for future 
research.
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