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Abstract 

Flight delay prediction is one of the most significant components of intelligent aviation 
systems that may spread throughout the whole aviation network and cause multi-
billion-dollar losses faced by airlines and airports, it is quickly becoming an important 
research issue to improve airport and airline performance. Thus this paper proposed 
an effective algorithm called Flight Delay Path Previous-based Machine Learning 
(FDPP-ML) capable of improved prediction of individual flight delay minutes using 
regression models to an up level of accuracy. As aviation system connectivity presents 
complex spatial–temporal correlations, machine learning approaches have addressed 
flight delay prediction by using complex flight or weather features, or private informa-
tion for specific airports and airlines that are hard to obtain, In contrast, the proposed 
FDPP-ML improved prediction based only on basic flight schedule features even 
with wide flight networks. The FDPP-ML consists of a novel algorithm with a supervised 
learning model, which works on reshaping datasets and creates two new features 
the main feature is previous flight delay (PFD) for flight paths, there is a strong rela-
tionship between departure and arrival delay, and vice versa for the same flight path, 
which increases the strength of the training model based on historical data. For target 
future flights, the algorithm works on inheriting the predicted flight delay to the next 
flight on the same flight path and repeats this process to end the prediction forecast 
horizon. The proving of approach effectiveness by using a wide network of US flight 
arrival and departure flights containing 366 airports and 10 airlines with various metrics 
accuracies of regression, and explanatory the impacts on various forecast horizons 
2, 6, and 12 h for future flights. The FDPP-ML outperforms traditional training models 
by using machine and deep learning models and improving model accuracy in 10 
models with an average of up to 39% in MAE, and 42% in MSE in a forecast horizon 
of 2 h. Finally, providing airport and airline analysis further reveals that can improve 
prediction than traditional training models for the individual busiest airports "Core 
30" with an average of 35% in MAE and 42% in MSE respectively, and for the busiest 
10 airlines with an average of 36% in MAE and 47% in MSE respectively. The findings 
of this study may offer informative recommendations to airport regulators and avia-
tion authorities for developing successful air traffic control systems for enhanced flight 
delay prediction to flight operational effectiveness, not only over the US flight network 
but with wide worldwide flight networks if a dataset of flights existed.
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Introduction
Flight performance on time is an important measure of an airport’s and airline’s service 
excellence, the prediction of flight delay duration over a predetermined horizon can help 
airlines adopt contingency plans as soon as possible and eliminate missed revenue and 
penalty costs [1]. Flight delays whether arrival or departure had a great impact on air-
lines, passengers, and airports. Flight arrival delays are one of the leading reasons for 
commercial airlines’ losses and passenger complaints [2]. In 2019, the Federal Aviation 
Administration FAA anticipated that delays would cost $ 33 billion per year [3]. It also 
has a negative influence on the environment since it raises petrol emissions through fuel 
usage, to save fuel, airlines are also always looking for new technology and improving 
flight procedures [4]. On the other hand, flight departure delay prediction benefits the 
airport by allocating unused airport capacity and airspace to alternative airlines, pro-
viding customers with reliable travel plans, and improving airline service performance 
by altering schedules ahead of time [5]. Overall the arrival and departure delay predic-
tion provides airport planners effective staff workload curve because flight time changes 
in actual time while they depend on flight schedule time when planned such as in [6], 
this enables them to make more reliable decisions regarding the strategic workforce 
required. Furthermore, the prediction helps Airport operation control centers (AOCC) 
for the monitoring and adjustment of airline schedules on the day of operations to help 
air traffic control, airport, and ground handling service providers, instead of elaborating 
manually based on expertise [7]. As a result, precise flight delay forecasts will remain 
crucial in supporting airports and airlines to provide high-quality service, there are 
several attempts to forecast flight delays, in parallel with increased competition in the 
commercial aviation sectors. Despite the unsupervised techniques being successful clas-
sification [8], this paper uses supervised techniques to predict individual flight delay 
minutes.

A flight delay indicates a delay of more than 15 min, according to the FAA [9], most 
flight delay prediction studies are divided into two main categories regression and clas-
sification prediction, the classification prediction of delay known as binary classification 
has two variables (on time, delay 15 min), while regression prediction can do that and be 
more robust for air transportation systems by predict specific delay times approached to 
actual delay minutes, providing more granular guidance for practical application in the 
relevant sectors. The regression model examines significant associations of the strength 
of the effects of multiple different independent variables on a dependent variable, and 
the flight delay problem is the result of the interaction of multiple flight features in the 
data [10]. In this context, this paper proposed FDPP-ML contains ML regression mod-
els hybrid with a novel algorithm and demonstrates its improvement on these advanced 
regression models for flight delay prediction. in the flight features, the temporal vari-
ables constitute the fundamental components features [11], called “Flight schedule” 
which contains basic features of flights that airports have in advance [12]. No study can 
rely on flight schedules only to predict flight delays so far, owing to the major causes 
of flight delays being different according to the numerous stochastic features involved 
and the flight network domain, it might be 30 features in the default flight dataset. 
An initial flight delay can be attributed to extreme weather, air carriers, security con-
cerns, flight network congestion [13], and other factors [14]. According to the Bureau of 
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Transportation Statistics (BTS) report summarized from June to November 2022 [15], 
Fig. 1 shows the factors causing flight arrival delays. It should be noted the weather has 
a great portion represents 52.43% of causes of delays, volume 35.47% %, closed runways 
5.78%, other factors account for 5.47%, and equipment 0.86%, respectively, due to air-
line company problems or technological issues. Accordingly, the first objective of this 
paper avoid these features to a high degree at the same time provide effective flight delay 
prediction.

For example in weather features several studies demonstrated that it is a major cause of 
flight delays [16], the weather is an important aspect in investigating aircraft delays since 
it impacts other delay factors, but due to data gathering challenges, assessing the influ-
ence of meteorological conditions along the airway is particularly difficult [17]. Flight 
delay requires further particularly confidential data for the specific airport such as Auto-
matic dependent surveillance-broadcast messages (ADS-B), special airport information 
[18, 19], and one airline [2], the flight delay can need specific flying features such as alti-
tude, ramp weight, and runway direction [1], that means these approach implemented 
at one their case study of an airport or one airline. Consequently, the airports, airlines, 
and aviation authorities desperately need an effective flight delay prediction model 
that relies on only basic flight features "Flight schedule", and capable implemented for 
a wide airports network, in the proposed approach FDPP-ML provides a solution for 
effective flight delay prediction based on only features flight schedule and can be used 
over all wide world flight networks if a flight data set existed in real-time implemented, 
this paper’s actual experiments are already based on US flights from 366 airports and 10 
airlines.

Through investigation, we found that departure delay was commonly chosen as a suc-
cessful element to improve arrival flight delay prediction because arrival and departure 
delays are inextricably linked, a flight that is delayed on departure will almost certainly be 
delayed on arrival. According to [20] overcrowding at the destination arrival airport was 
mostly caused by the origin departure airport. Figure 2 shows the correlation between 
US flight departure and arrival delay within the available dataset, the same flight that has 
a delay in departure has caused an arrival delay with a percent correlation of 91.82%.

As a result, according to the close relationship between departure and arrival delays 
for the same flight, the studies depended on the feature we called the “Previous Flight 

Fig. 1 Factors causing flight arrival delays
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Delay" feature (PFD) to enhance prediction, for example, the previous arrival delay 
feature was used to enhance the prediction next of departure delay in studies [20, 21]. 
The reverse is also, using the previous departure delay feature to enhance the predic-
tion of the next arrival delay [22]. And others used a delay of arrival and departure 
feature to predict the corresponding delay of departure and arrival, respectively [23]. 
However, in common practice, this action PFD gives a forecast horizon for delay just 
a few minutes before flight time equal to the distance between the two airports, which 
lessens taking advantage of prediction. For example, on US domestic flights the short-
est distance from Wrangell International Airport (WRG) to Petersburg International 
Airport (PSG) is 31 miles, with 33 min flight duration [24]. That means when we rely 
on the opposite delay feature to obtain the departure delay feature in this flight to 
forecast flight arrival delay, that is not available only 33 min before the flight arrival 
time, leading to a weak flight delay forecast horizon. As a result, the studies have 
a critical issue in that it is difficult to interpret the variables or features that influ-
ence the enhanced delay prediction, so resorted to using the PFD opposite delay fea-
ture, which leads to reduce the forecast horizon to a few minutes. In this context, we 
proposed an FDPP-ML algorithm for a flight delay prediction solution by utilizing 
the previous flight delay feature PFD advantages, but at the same time providing a 
longer forecast horizon effectively depending on only basic flight schedule features. 
On another hand, we established a second new feature called "Flight Duration Time" 
(FDT) which is possible to be one of two cases. Figure  3 shows the cases of flight 
duration time FDT Fig.  3a, shows case 1 ground handling time, represented flight 

Fig. 2 Correlation between US flight departure and arrival delay

Fig. 3 Flight duration time (FDT)



Page 5 of 40Mamdouh et al. Journal of Big Data          (2023) 10:179  

duration time between arrival and departure means the aircraft case turnaround to 
provide resources ground handling time until flight departure and this turnaround 
process performance relates to the amount of flight delay [7]. Figure 3b shows case 2 
flight travel time, representing flight duration time between departure airport origin 
and arrival destination airport, as much as traveling time increases, the flight has an 
opportunity to reduce delays caused by the previous point. as given in these two cases 
there is a relationship between FDT and flight delay, we established this feature as one 
of the proposed features created to support ML models and play their role for dis-
cover relations and improving delay prediction.

An overview of proposed FDPP‑ML

The proposed FDPP-ML contains an algorithm to create new flight features side-by-side 
to support machine learning models to capture the impact of delay propagation over the 
flight network and their impacts on future individual flights on the same path, which 
contains three phases, the first is an algorithm for a data-driven approach capable of 
using and organizing flight features to catch the paths in historical data, then re-struc-
tured flight data and transform flights from default to points stops in the flight path. 
Figure  4 explains the flight paths, Fig.  4a represents default flights Fig.  4b represents 
reshaped flight path to points by algorithm, the algorithm dismantles the default flight’s 
record and transforms it to flight points, thus each flight is converted to two points as 
departure and arrival and converted to an integrated flight path, then the algorithm cre-
ates each point two new features the first feature is flight time duration (FTD) repre-
sented the difference time between the current point and the previous point, the second 
feature is the previous flight delay feature (PFD) that mentioned before of how to uti-
lize the worth of using opposite previous flight delay feature for effective current flight 
prediction. The second phase is the ML model role for training on a recently formed 
data set from phase one which contains flight schedule features with new two features 
created (FDT, PFD), then phase three contains the algorithm with a model trained to 
predict flight delay for new future flights, the algorithm takes the model output of flight 
delay predicted to be a PFD feature for the next flight point in the same path, and the 
algorithm looping continues to finish the end of all flight paths. In this regard, we utilize 

Fig. 4 Flight paths
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the worth of the PFD feature and reach the best solution to improve flight delay predic-
tion with a longer time forecast horizon than a few minutes before flight time equal to 
the distance between the two airports, we take into consideration implementing three 
different forecast horizons 2, 6, and 12 h to measure how far FDPP-ML outperformed 
based the previous flight delay prediction than traditional training models.

The major findings of the study represented to improve the literature on flight delay 
modeling summarized as follows: (1) It is the first attempt to develop flight delay predic-
tion individually based only on basic flight features. (2) Support ML regression models 
to improve prediction by the proposed algorithm FDPP-ML to be implemented into 10 
regression Models to prove outperformed. (3) The power of FDPP-ML prediction results 
based on US flight networks’ real-world data provide analysis insights into 366 airports 
and 10 airlines involved in the estimation of their future flight delay minutes per flight. 
The remaining paper is organized as follows: “Literature reviews” Section illustrates the 
literature reviews on flight delay prediction. “Methodology” Section illustrates the meth-
odology and basic concepts. “Implement” Section illustrates the implementation of the 
proposed FDPP-ML model. “Result and discussion” Section illustrates our model results 
and discusses the comparison of proposed state-of-the-art and basic models.

Literature reviews
Lately, because of the massive data involved in flight features, the development of 
machine learning is a perfectly viable technique for forecasting flight delays. Previous 
studies have been researched, analyzed, and benefitted from by focusing on the primary 
aspects to better enhance prediction in this suggested strategy. Flight delay prediction 
has tended to learn a single model for flight delay prediction, while an individual model 
can’t make a sensible explanation of complicated flight features. The studies resorted to 
ensemble learning which alternate strategy for overcoming this bottleneck, developed 
to enhance flight delay binary classification using ensemble voting classification and 
[18], ensemble stacking [25], despite these studies’ interest in binary classification and 
neglecting the estimated duration time of flight delay, we will already concern it in our 
approach by predicting delay duration time in minutes, but flight delay prediction needs 
to evolve not narrowly by a new strategy that has a group of models only such as ensem-
ble strategy, but by a mechanism capable of moving all models performance to an up 
level, that is provided by proposed our approach. In interesting regression models to 
predict flight delay [26], estimate average delay for airlines, our proposed approach is 
more robust by using flight features for individual flight delay prediction.

From the perspective scope of airport application [13], proposed a model for captur-
ing flight delay effects of en-route traffic congestion in an air traffic network, including 
a data-driven technique and a cluster model to quantify delays in China’s 56 airport air 
traffic network, this study suitable for analyzing and developing improvement methods 
for airport traffic management. Also [27] proposed graph architecture-based learning 
with an attention mechanism (AG2S-Net) to multi-step-ahead hourly predicted for 
arrival and departure delay of the traffic network with 75 airports, providing the lowest 
RMSE and MAE values when estimated delay. On another hand, implemented in a wider 
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traffic network of 366 airports and 10 airlines for US flights, the proposed is capable 
to implement over a worldwide traffic network if the dataset existed. In addition, the 
proposal gives accurate flight delay minutes for individual flight, it’s widening to pro-
vide benefits, and be effective for airports and airlines. While the studies on comparative 
Ml algorithms revealed flight delay prediction has constraints like the number of air-
lines and airports involved [2]. Proposed flight data and weather variables created using 
data correlation by big data analytics, the proposed prediction model of on-time arrival 
flight explores the relationship between pressure patterns and flight data for just one air-
line Peach-Aviation [25]. Suggested comparing ML models for predicting arrival delay 
using flying and weather parameters, using 5 years of US flights but just with 45 airports, 
the RF outperformed other models with an accuracy of 80.36% [28]. Analysis of arrival 
delay prediction for the top five busiest airports in US flights, and proposed a compari-
son using four ML algorithms, (GBC) outperformed accuracy was 79.7%, the default in 
improvement to the variables has reflected a low level of accuracy. However, the same 
author in the study [29] used the SMOTE method for balanced data in binary classifi-
cation, the accuracy increased from 80.89 to 85.73%. The author advocated predicting 
flight delays by taking into account air traffic flow to improve flight individual delay pre-
diction. However, the domain of implementation is only in five airports in the US flights. 
According to previous studies besides having limitations in the scope of airports, the 
(GBC) is outperforming other models, so will be nominated for using gradient-boosted 
regression (GBR) as one of the benchmark models in our approach. In addition, high-
light the advantage of the regression model used in the proposed approach because not 
needs a method for balancing binary value to be equivalent such as (SMOTE), and the 
regression model predicts continuous minute delay and provides more near-delay near-
delay minute values [25]. Presented stacking binary classification of delays using six 
algorithms, the RF accuracy was 0.822 However; the implementation considers binary 
categorization and just two airports in the US flights [30]. Proposed stacking regression 
with proposed two novel variables, arrival/departure pressure, and cruise pressure, and 
proposed sine and cosine functions to convert data to (x, y) including hours of the day, 
days of the week, and months in a year. This approach could be effective in creating these 
features when using one airport as the author used Beijing Capital International Airport 
and one route from PEK to HGH was utilized to conduct a case study. It’s a huge extreme 
and impossible to create when applied to a wide flight network connected to each other 
such as our approach to US 366 airports involved [31]. Constructing a machine learning 
model RF to predict delay time, the implementation was on US flights for one air carrier, 
it’s minimal effective for airport systems because has a shortage of carriers in the dataset 
[32]. Proposed a gated recurrent unit (GRU) model to predict flight departure delays 
using the flight of (ZSNJ) airport in China, outperforming other models. In our proposal 
taking into consideration the GRU model as one of the set ML models to ensure our 
proposed FDPP-ML is robust. In addition, predict flight departure and arrival delays 
given its importance [18]. Proposed RF and LSTM models with create a dataset from 
automatic dependent surveillance-broadcast (ADS-B) messages and integrated weather 
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conditions, flight schedules, and airport information [16]. Proposed RF classification 
and regression with special factors such as previous flight delays PFD, airport crowded-
ness, wind direction, the extent of weather conditions, wind speed, and so on. When 
using all special features, has an accuracy of 96.48%, whereas with basic flight a feature 
was 89.46%. The special features improved accuracy, but accumulating particular airport 
data makes it more difficult to obtain these features especially when using a wide airport 
network.

The selection of flight features and special information of airports have a significant 
impact on the accuracy of flight delay prediction, Which encourages our approach to 
improve flight delay based on only basic flight schedules minimize specific information 
elements used for airports, and improve accuracies based on appropriate data repre-
sented with just flight schedule features. In addition, using the RF model according to 
contributed in the last studies, we nominated using RFR regression in the benchmark 
model approach.

The time of forecast horizon before flight time in studies to indicate the beginning of 
the forecast horizon to be useful to apply in our proposed approach, as the following 
studies resorted to the prediction of just a two-hour forecast horizon before flight time 
to enhance flight delay prediction [9], proposed a framework considered an agent-based 
delay prediction model, containing two RFR models based on a conditional probabil-
ity model, using US flight delay on the Ground Delay Programmes (GDPs) or carrier-
related reasons, The prediction model was 89.5% accurate using a 15-min threshold for 
only a 2-h forecast horizon [17]. Proposed hybrid Deep belief network to mine the inner 
patterns, and support vector regression (DBN-SVR) to perform supervised fine-tuning 
inside the current predictive architecture, other ML models were outperformed by the 
suggested DBN-SVR. Studies take into consideration the forecast prediction horizon 
two hours before the intended flight time and use specific airport information such as 
(GDPs). Accordingly, the proposed approach takes into consideration the forecast hori-
zon of two hours to prove results improved. The usage of the departure delay feature 
to predict arrival delay called PFD action caused to limits the prediction horizon to a 
few minutes, however studies taking into consideration this feature to enhance predic-
tion, for example [33] presented the XGBoost model, and LR model to determine the 
link between independent and dependent factors, use of the departure delay feature 
to predict arrival delay aided in achieving an accuracy of 94.2% in their dataset, as [23] 
used the departure delay feature to enhance predict arrival delay using a framework that 
combines the Social Ski Driver algorithm (SSDCA based LSTM), using US flights, the 
SSDCA enhances the network with an accuracy of 92.68% and was less error than other 
state-of-art models. In another hand, we utilize PFD action in our FDPP-ML model 
to handle to make the forecast horizon longer than flight travel time [26]. Proposed a 
framework for flight delay using a set of models regression, the experiments used four 
dataset kinds based on four sorts of flight characteristics (flight schedule—weather—air-
port GPS trajectories awareness map air traffic). LightGBM has the best results with the 
lowest error, which makes us consider using the LightGBM model as one of the bench-
mark models. proposes deep Learning based on an autoencoder hybrid with the Lev-
enberg-Marquart algorithm (SAE-LM), to identify the right weights and biases of great 
complexity while using enormous quantities of data, and has outperformed other two 
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state-of-the-art models, it’s a useful approach to improving prediction within individual 
models, on the other hand, we seek to improve the flight delay prediction by finding a 
new approach to support all ML models to prediction enhance [34].

However, most existing studies on individual flight delay modeling do not consider 
alternative solutions rather than developed machine learning or deep learning models 
to enhance flight delay prediction, which led to using private information hard to obtain 
to implement in other airports, studies have enhanced prediction airports and airlines 
just within limited scope implementation or relied on flight delay feature for departure 
to enhance arrival delay prediction (PFD) action which leads to minimized forecast 
horizon of time in advance. Therefore, we propose a novel flight delay model, to fill in 
the research gap, (FDPP-ML) utilizes PFD action to make the forecast horizon longer 
than flight travel time, capable of improving flight delay prediction models to an up level 
of accuracy based only on basic flight schedule features even with a huge flight traffic 
network.

Methodology
Proposed approach (FDPP‑ML)

The proposed approach FDPP-ML works on disassembly flights and re-structure them 
to catch flight paths in historical data, and organizing each path to be a sequence of 
points of flights, starting from the first beginning point whether arrival or departure, and 
following the end of the path. Then the FDPP-ML framework creates for each point in 
track two new features called (flight time duration, and previous flight delay). The FDPP-
ML uses ML to train historical data with these new features, then works on future flights 
to organize and put flights on their paths to inherit their previous delay, the algorithm 
makes the ML predict flight delay for each flight in the path, and the algorithm continues 
side by ML to inherit this predicted delay to the next flight on the same path, and contin-
ues to be all paths finished and complete prediction of future flights delay. The proposed 
FDPP-ML algorithm was developed to help provide the proposed approach represented 
with pseudo-code in Algorithms 1–4 showing the proposed FDPP-ML model. Figure 5 
shows the architecture of the proposed FDPP-ML, which contains 8 phases explained as 
follows:

Fig. 5 Architecture of proposed FDPP-ML
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Pre‑processing data

The pre-processing step eliminates irrelevant data and saves just crucial data to ensure 
coherence before FDPP-ML work, the data is organized and prepared using removing 
duplicates and missing values with, null values removed, and removed flights canceled 
which represents the percentage (2%) of total data.

Reframe flight schedule to path points

The flight schedule data frame has each flight feature details from the departure (origin) 
airport to the arrival (destination) airport, in this stage each flight is restructured into 
two points containing departure and arrival, which means each point inherits the same 
flight features to prepare for creating new two features. Algorithm 1 represents steps 1 
and 2.

Flight time duration (FTD)

Before start creating new features (FTD, PFD), we use sort values based on these fea-
tures “Tail number” then “Schedule date time” and the algorithm works on divides the 
flights to paths. The worth of the FTD feature was explained in the introduction sec-
tion as how may impact and has a relation with flight delay time, the FDPP-ML estab-
lishes the calculation of the flight time duration in minutes between the current point 
(departure, arrival) and the previous point which on the same path. The FTD feature 
is extracted based on (the flight schedule date and times feature) which airports obtain 
in advance, when we restructured flights and transformed them into points, we unified 
these (flight schedule date and times features) of departure or arrival into one feature 
renamed "Schedule date time". Then FDPP-ML calculates the FTD feature for all flights 
including historical with future flights.

Partition with data encode

This step converts sting and categorical data to numerical with encoded flight features to 
prepare for the subsequent training and testing using ML models. In addition, flight data 
is partitioned based on the current time into two partitions the first is historical flights 
before the current time and future flights after the current time. In other words, the time 
of implementing the proposed algorithm for forecast horizon future flights. The histori-
cal flight moved to step 5, and the future flight moved to step 6. Algorithm 2 represents 
steps 3 and 4.

Extract previous flight delay feature (PFD)

The action of using the PFD feature in studies was explained in the introduction and 
literature sections how it’s more improves flight delay prediction accuracy but is use-
less because this feature is obtained only before flight time equal to flight duration time 
whether arrival to departure or vice versa. We used this action and improved by FDPP-
ML and handled the forecast horizon to be longer. Thus, in the proposed FDPP-ML the 
ML model predicts the flight delay for the first flights on the paths, and the algorithm 
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passes the predicted flight delay for the next flight that is on the same paths. Each flight 
record has schedules and actual times for both departure and arrival, the difference 
between the scheduled time and actual time represents the delay of departure or arrival. 
When we restructured flights and transformed them into points, we unified these delays 
of departure or arrival into one feature renamed "Flight delay" which represents the 
value of minutes. The PFD feature is extracted only for historical flights based on (the 
previous flight delay feature) that are on the same path. The FDPP-ML extracting of the 
PFD feature is only for historical flights, on other meaning that flights before the current 
time become with PFD feature to be training data for Ml models represented a value in 
minutes. At this step, the algorithm cuts the last flight only for all paths and moves these 
flights to step 6 future flights.

Future flights with the last points of Paths historical flights

In this step, after partitioning and handling the data is ready for training and testing 
using ML models. The historical flight’s features before the current time become with 
PFD feature. The last point for each path of historical flights will be cut and merged with 
future flights, to be the first point for each path of future flights, to guarantee each first 
flight on paths has a PFD feature which machine learning trained on it and the remain-
ing future flights did not have PFD value, this is the future flights which need to predict 
a flight delay with complete their paths points, this mission will be executed at another 
step 8. Algorithm 3 represents steps 5 and 6.

Machine learning

The FDPP-ML passes historical flights to the ML model for training with support to 
improve prediction by new features created (FTD, and PFD), the ML model considers 
a built-in FDPP-ML and is ready to predict flight delay for future flights. The FDPP-ML 
framework depends upon the primary model but in experiments trained 10 regression 
models that would later explain to illustrate the algorithm contribution to improve ML 
models for flight delay prediction.

Gathering data

In this step, the FDPP-ML will pass each first point in the paths of future flights which 
has a PFD feature to the model for predicting the delay of this point or flight. Then the 
predicted flight delay merged to the next point to be the PFD feature to the next flight 
on the same flight path, and the algorithm resends the new flight (point) to the model 
for predicting the delay with the PFD predicted feature. The FDPP-ML will repeat these 
steps to complete this current path and move to the next path to complete their points 
and so on. Finally, the FDPP-ML algorithm completes predicting flight delay to all of the 
specific horizons time of future flights. Algorithm 4 represents steps 7 and 8.
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Algorithm 1 FDPP-ML steps 1 & 2
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Algorithm 2 FDPP-ML steps 3 & 4
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Algorithm 3 FDPP-ML steps 5 & 6
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Algorithm 4 FDPP-ML steps 7 $ 8

Fig. 6 Basic architecture of LSTM model
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Machine learning regression models

In this section, we overview models implemented with machine learning benchmarks 
and advanced models to highlight how to improve performance with the proposed 
FDPP-ML.

RNN and LSTM

RNNs are robust models that perform classification and sequential inputs such as text 
and audio. Due to the exploding gradient and vanishing gradient resulting from the pri-
mary issue of long-term reliance when the distance between the pertinent information 
and the point at which it is needed widens, the RNN cannot learn to link the informa-
tion. The Lstm is a kind of RNN that has the capacity to selectively store and retrieve 
information and can avoid this problem of long-term dependency by using certain hid-
den units. Figure 6 shows the architecture of LSTM, the Lstm’s repeating units each have 
four neural components, the forget gate layer, the input gate layer, the output gate layer, 
and all memory cells are responsible for remembering values over time [35], the Lstm 
unit at the current time step t, the input gate represented by (igt), while the forget gate 
represented by (fgt), and (ogt) represents the output gate. The internal cell state is rep-
resented by (Ct), while the hidden state known as the unit’s output represented by (ht). 
Figure 6 demonstrates the Lstm’s fundamental architecture, the calculated controls how 
the Lstm processes data in the following ways:

The activation function is represented by σ, which is a sigmoid function here, and ⊙ 
conducts multiple elements to elements. The responsible weight vectors are represented 
by (W and U), respectively, while the responsible bias vectors are by (B), The memory 
cell state’s potential candidate values vector is managed by 

(

C∼
t

)

 , to obtain the cell state, 
which is coupled with the input gate by(Ct) , Eq.  (1) shows the input gate, Eq.  (2) rep-
resents the forget gate. The output gate, represented by Eq.  (3), and Eq.  (4) shows the 
instantaneous information 

(

C∼
t

)

 is obtained by putting the previous current input and 
output through a tanh function. The outputs of Eq.  (3) and (5) are multiplied by the 
information about the current memory and input gates in Eq.  (5). Finally, The LSTM 

(1)igt = σ
(

Wigxt + Uight−1 + Big

)

(2)fgt = σ
(

Wfgxt + Ufght−1 + Bfg

)

(3)ogt = σ
(

Wogxt + Uoght−1 + Bog

)

(4)C∼
t = tanh(Wcxt + Ucht−1 + Bc)

(5)Ct = fgt ⊙ ct−1 + igt ⊙ C∼
t

(6)ht = ogt ⊙ tanh (ct)
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output (Ot) is created by multiplying this data by the output gate result from Eq. (6) after 
it has passed through a tanh layer [36].

GRU 

In [37] 2014 proposed Gated Recurrent Neural Networks GRU similar to LSTM, but 
simpler to calculate and apply. The hidden state output at time t is calculated using the 
input time series value at time t and the hidden state at time t-1. GRU is introduced but 
with attention to LSTM’s inherently complicated and unpredictable learning process, 
and combines hidden states and neurons, combines the input gate and forget gate into 
a single update gate, and reduces the number of network parameters to hasten train-
ing. The four following formulae are used by the GRU neural network to extract features 
from the original data.

We consider the current time input to be xt , and the hidden state of the earlier 
moment is represented in ht−1 , and ht represents the hidden state calculated at the cur-
rent moment. Equation (7) represents the calculation of the reset gate rgt value, while σ 
is the sigmoid activation function, and Wr is the hidden state responsible for the reset 
gate layer. Equation (8) represents ht hidden state calculation. Equation (9) is a function 
to calculate the update gate value, Eq. (10) calculates the current hidden state at the end, 
and the hidden state is supplied to the next layer of neurons [32]. The function of reset 
gates is similar to forget gates of LSTM, as GRU NNs have several similarities to LSTM 
NNs, we will not go deep into the detailed formula. the regression part and optimization 
method we use in this paper for GRU NNs are the same as the LSTM NNs. On the side 
deep learning models used in this paper, we used RNN, LSTM, and GRU models.

Gradient boosting

Freidman [38] Explains the Gradient Boosting GB approach in his work, because it is an 
upgraded form of the gradient-boosting decision tree technique that has been expressly 
designed to incorporate categorical features. It employs binary decision trees as its pri-
mary predictors, the data during training is randomly mixed and reshuffled numerous 
times to determine the mean for each item based only on its previous data [39]. We 
begin with considering the dataset D =

{(

xi, yi
)}

i=1......,n
 the number of iterations to be 

n, and a differentiable loss function L =
(

y, F(x)
)

 . The goal of the boosting strategy is 
to find a function that minimizes the loss function as closely as possible. The mapping 
function is termed F0(x) is following describes how to minimize the loss function using a 
constant value in Eq. (11):

(7)rgt = σ(Wr[ht−1, xt ])

(8)ht = tan
(

Wh[rgt × ht−1, xt ]
)

(9)zt = σ(Wz[ht−1, xt ])

(10)ht = (1− zt)ht−1 + zt × ht
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The pseudo-residuals (rim) are calculated from iteration 1 to n to resolve the optimiza-
tion problem, as shown in Eq. (12).

Moreover, the base learner βm(x) is carried to rim by using the training set {(xi, rim)}ni=1 
the multiplier represented in ym is calculated next step by the following one-dimensional 
solving optimization problem represented in Eq. (13).

Consequently, by utilizing the following Eq. (14), the model may be updated to gener-
ate the output

An Eq. (12)-(14) demonstrates the categorical gradient boozsting method’s significant 
steps, where splitting parameters, cut points and individual tree nodes are included in 
the parameterized function.

Categorical boost

Prokhorenkova et al., propose and compare the CatBoost CAT algorithm to XGBoost 
and LightGBM. In their explanation of the CatBoost learner, they discuss their improve-
ments to the GBDT method described by Friedman [40]. CatBoost is a part of the GBDT 
machine-learning ensemble approach family. CatBoost has been utilized effectively by 
academics for machine learning projects including prediction since its launch in late 
2018 [41], we use this chance to include CatBoost in our prediction model and gain 
best practices from research that promotes CatBoost. CatBoost encrypts categorical 
variables to address the issue of target leakage. CatBoost is also well suited to machine 
learning applications involving category, heterogeneous data because it is a Decision 
Tree-based technique. Recent works from a variety of areas demonstrate CatBoost’s use-
fulness and limitations in classification and regression challenges. CatBoost is its sensi-
tivity to hyperparameters and the importance of hyperparameter tuning [42], which is a 
perfect model we are interested in implementing in our experiments approach.

Random forest (RF)

The RF technique used in this work is considered a successful model, despite the major 
of ML research in the field of Autism Spectrum Disorder ASD [43], RF is one of the 
important models used to diagnose it [44]. RF is a supervised machine learning approach 
that employs an average of many decision trees to reduce uncertainty and overfitting 
[45]. It outperforms a basic regression tree, especially when the training data is minimal, 

(11)F0(x) = arg minf

n
∑

i=1

L
(

y, F(x)
)

(12)rim = −

[

∂L
(

yi, F(xi)
)

∂F(xi)

]

F(x)=Fm−1(x)

for i = 1, . . . .n

(13)ym = argminf

n
∑

i=1

L
(

y, Fm−1(xi)+ yβm(xi)
)

(14)Fm(x) = Fm−1(x)+ ymβm(x)
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hence it is sensitive to the training data used to create the tree. Furthermore, can handle 
huge datasets, is more interpretable, and incorporates many characteristics, based on 
the architecture of the tree structure’s expectation, which is all assessed using the same 
distribution, the random forest approach may rank the relative significance of each pre-
dictor variable. The bootstrap technique is used to build a forest of decision trees, with 
each tree created individually using a subset of predictor data. Without pruning, the 
trees grow to their maximum size, and the ultimate output means from all of the multi-
ple decision trees are the conclusion, RF providing efficient regression performance [46]. 
Because of its improved stability and generalization, it has a wide range of applications. 
These characteristics motivated us to use the random forest regression RFR model.

LightGBR

LightGBM is another GBDT algorithm that supports the automatic encoding of cate-
gorical features. We used it in the first level because many of the works proved it has 
high accuracy and always compares the performance of CatBoost. Lightgbm is a highly 
efficient gradient boosting decision tree. LightGBM’s support for categorical features, 
has an advantage in general it uses a fast, distributed, high-performance gradient lift-
ing decision tree technique based on the Histogram algorithm [41]. The main distinc-
tion between it and other approaches is that it breaks the tree based on leaves, allowing 
it to find crucial spots and cease computations (other lifting algorithms are level-based 
or depth-based). When the number of leaf nodes in a tree is increased, the leaf‐wise 
approach minimizes more loss than the levels technique, resulting in higher accu-
racy. The downside of leaf‐wise is that it can create overfitting by growing a somewhat 
deep decision tree. As a result, LightGBM has a maximum depth restriction leaf‐wise, 
assuring great efficiency while limiting overfitting. Faster training times, more efficacy, 
improved accuracy, reduced memory utilization, and support for parallel and distrib-
uted computing are some of the benefits of the LightGBM. The maximum tree leaves for 
base learners (num_leaves) and the maximum tree depth for base learners (max_depth) 
are the major hyperparameters to modify when creating a LightGBM model [47].

Fig. 7 Sample of US flight network visualization
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Ensemble learning

By combining a number of weak learners into a single strong learner, ensemble algo-
rithms have been successful in machine learning. By combining the predictions from 
several classifiers into a single, reliable prediction, ensemble learning can increase the 
effectiveness of classification [48]. The primary goal of ensemble learning is to decrease 
the likelihood of picking a single learning algorithm that performs badly and to improve 
the performance of one algorithm by employing an intelligent ensemble of several dis-
tinct algorithms [49]. The value of ensemble learning has been well proved in exten-
sively demonstrated. One of the states-of-art in ensemble transform learning (TL) [50], 
outperformed rice disease detection over ML [51], also ensemble averaging of transfer 
learning models [52], outperformed the advanced learning model like Convolution-
XGBoost [53]. We used the Voting model as one of the benchmark models, a prediction 
model is created by fusing the skills of several basic base learners. Despite ML models 
utilized for identifying the depression diagnosis [54], the majority voting enhanced by 
carrying out in all possible ML selection techniques [55]. The same dataset is used to 
train many separate models, each of which produces independent predictions and has 
a unique capacity for learning. These predictions are subsequently used as input for 
ensemble learning to produce a final prediction that is more reliable and error-free. Vot-
ing regression is one ensemble learning technique that integrates the predictions from 
several individual models as base learners. Because VR is flexible and can be used with 
any base learner that represents a variation bias trade-off, it is more effective at reduc-
ing reducible error. The suggested approach’s fundamental component is Stacking, 
which often takes into account heterogeneous weak learners, trains them concurrently 
and then combines them to provide a new prediction based on the predictions of the 
multiple weak models [56]. The meta-learner receives its input from the first-level learn-
ers’ output. Although it is feasible to build stacked ensembles using the same learning 

Table 1 Flight schedule features used

Type No Flight features 
used

Model 
input and 
output

Data type Attribute type Variables format

Airport 1 Origin Input Object Categorical 3 digits letters code 
eg. SEA

2 Destination Input Object Categorical 3 digits letters code 
eg. JFK

Carriers 3 Carrier code Input Object Categorical 2 digits letter code 
eg. F9

Flight date and 
time

4 Tail number Input Object Categorical 6 digits code eg. 
N170SY

5 Flight number Input Object Categorical 4 digits number eg. 
2434

6 Schedule depar-
ture

Input Datetime64 Continuous 16 digits

7 Schedule arrival Input Datetime64 Continuous 16 digits

Flight delay 8 Departure delay 
minutes

Output int64 Continuous 5 digits number 
eg. -28

9 Arrival delay 
minutes

Output int64 Continuous 5 digits number 
eg. 16
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algorithms, first-level learners are frequently composed of unique and distinct learning 
algorithms [57], studies have demonstrated that a stacked ensemble performs admirably, 
generally outperforming a single best classifier.

Implement
The proposed FDPP-ML makes the flight delay prediction a close representation effec-
tive and easy to implement with a wide flight traffic network.

Overview dataset

The dataset used in the proposed approach includes flights from the Bureau of Trans-
portation Statistics (BTS) archive of historical US flights [15], the datasets are availa-
ble in [58]. We selected 8  months from May to December 2019, the dataset contains 
5,512,904 individual flights containing 366 international airports and 10 airlines in the 
United States. Figure 7 shows US domestic flights to represent airports and flights recre-
ated code from [59] introduces visualization based on Basemap library code for 60,000 
flights approximately one day of operation, enough to illustrate flight paths with airports 
that have more flights according to the blue point size with their flights (paths) repre-
sented by gray lines.

Table 1 shows flight schedule features used, the input data contains a variety of numer-
ical, categories, and chronological variables. Some features, such as the actual arrival and 
departure times and the Flight delay causes group, and weather features, were rationally 
eliminated and omitted from the list of essential flight schedule features.

Simulation of FDPP‑ML with flight data

The proposed FDPP-ML is based on utilizing the major feature of a previous flight delay 
(PFD), this feature enhances flight delay prediction if exists, but at the same time, this 

Fig. 8 Simulation of FDPP-ML with flight data
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feature is known before flight time a few minutes. Accordingly, the FDPP-ML will pro-
vide for ML and DL models this feature (PFD) with an increase in the forecast horizon to 
hours rather than minutes. Figure 8 shows the simulation of FDPP-ML with flight data, 
to reshape the flight data to be a flight path containing the sequence of points of flights to 
catch flight paths in historical data and organize each path to be a sequence of points of 
flights, starting from the first beginning point whether arrival or departure and following 
the end of the path. Then the FDPP-LM creates proposed features (FTD, PFD) according 
to paths, and separates the dataset into historical flights to train the model and future 
flights that need to predict delay. The FDPP-LM created an FTD feature based on the 
schedule time feature for both historical and future data. Regarding the PFD feature the 
FDPP-LM was created based on previous flight delays in historical flights, but in future 
flights (testing) the FDPP-LM will pass each first point in the paths of future flights 
which has a PFD feature to the model, and transfer the predicted delay from model to be 
a PFD feature for next flight on the path, and so on to the paths finished.

Handling dataset

During pre-processing, we eliminate irrelevant data and save just crucial ones to ensure 
coherence. Before training, the data is organized and prepared using removing missing 
values and duplicates, and removing canceled flights represents the percentage of total 
data (2%). Null values and errors are removed, converting categorical data to numerical.

Train ML model

Firstly, the prediction FDPP-ML is trained using a dataset of US historical flights after 
reshaping and extracting new features process. In general, linear models perform predic-
tion by training and developing the computing of the parameters of the model weighted 
sum of input variables and bias. Finding parameter values that reduce the sum of squared 
errors is the training aim, which is the cost function applied to the models’ evaluation. 
Essentially the training of the proposed approach FDPP-ML is based on one model 
nominated for implementation and completes the cycle of an algorithm, but this paper 
will be experimenting with 10 models to evaluate the prediction development results 
of FDPP-ML, we explained these models in detail in the methodology section. Accord-
ingly, we use machine learning models with default parameters, because the tuning of 
parameters is another issue, and the main what’s behind these experiments is to measure 
the size of flight delay prediction improvement when using FDPP-ML. So we selected 
models (CATR, GBR, RFR, LGR, LR) with default hyper parameters, and (Stacking, Vot-
ing) models basically contain three models (GBM, RFR, LGBM) with default parameter, 
except the Stacking has LR model at the end level of stacking with default parameter. 
On the other hand, the deep learning selected models are RNN, LSTM, and GRU have 
a normal parameter network containing two layers with 32 units of nods for each layer, 
the activation function is “relu” for each layer, and the activation function for the dense 
layer is “linear”, the training was with epoch 50 and batch size 100.

The ML and DL models were trained as an initial hidden experiment on 1 month of 
flights, we found the results could be enhanced if using more flights. The number of 
flights should not be overlooked especially when training with basic flight schedule 
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Table 2 Accuracy of models training

Models Traditional training model Proposed FDPP‑ML Error reduction percent by FDPP‑ML

MAE MSE RMSE MAE MSE RMSE MAE (%) MSE (%) RMSE (%)

CATR 23.37 2593 50.92 13.36 1321 36.34 43 49 29

GBR 23.74 2641 51.39 14.47 1485 38.54 39 44 25

GRU 23.68 2647 51.45 14.49 1493 38.64 39 44 25

LGR 23.52 2616 51.14 13.65 1385 37.21 42 47 27

LR 24.03 2672 51.69 17.76 1863 43.17 26 30 16

LSTM 24.40 2660 51.58 15.49 1568 39.60 37 41 23

RFR 18.28 1669 40.86 9.21 716 26.76 50 57 34

RNN 23.94 2667 51.64 14.99 1488 38.57 37 44 25

Stacking 21.85 2429 49.28 10.71 1026 32.04 51 58 35

Voting 21.57 2244 47.37 12.18 1140 33.77 44 49 29

Average error reduction percent by FDPP-ML 41 46 27

Table 3 Accuracy of forecast horizons 12 h

Models Traditional training model Proposed FDPP‑ML Error reduction percent by FDPP‑ML

MAE MSE RMSE MAE MSE RMSE MAE (%) MSE (%) RMSE (%)

CATR 30.62 4341 65.88 25.87 3483 59.01 16 20 10

GBR 31.02 4422 66.50 26.48 3777 61.45 15 15 8

GRU 31.04 4441 66.64 26.46 3966 62.98 15 11 5

LGR 30.87 4366 66.08 25.96 3574 59.79 16 18 10

LR 31.25 4485 66.97 29.78 4329 65.80 5 3 2

LSTM 31.25 4467 66.84 27.02 4180 64.66 14 6 3

RFR 31.76 4477 67.27 26.30 3501 59.17 17 22 12

RNN 31.17 4488 67.00 26.78 3999 63.24 14 11 6

Stacking 30.34 4385 66.22 24.82 3541 59.50 18 19 10

Voting 30.87 4392 66.28 25.76 3549 59.57 17 19 10

Average error reduction percent by FDPP-ML 15 14 8

Table 4 Accuracy of forecast horizons 6 h

Models Traditional training model Proposed FDPP‑ML Error reduction percent by FDPP‑ML

MAE MSE RMSE MAE MSE RMSE MAE (%) MSE (%) RMSE (%)

CATR 29.21 3943 62.79 22.63 2841 53.30 23 28 15

GBR 29.43 4013 63.35 23.31 3115 55.81 21 22 12

GRU 29.44 4034 63.52 23.41 3266 57.15 21 19 10

LGR 29.35 3963 62.95 22.67 2913 53.97 23 26 14

LR 29.52 4082 63.89 26.78 3735 61.11 9 9 4

LSTM 29.61 4072 63.81 24.14 3448 58.72 18 15 8

RFR 30.29 4098 64.02 22.76 2830 53.20 25 31 17

RNN 29.58 4078 63.86 23.57 3184 56.43 20 22 12

Stacking 28.83 3977 63.07 21.52 2855 53.43 25 28 15

Voting 29.38 3981 63.10 22.50 2897 53.83 23 27 15

Average error reduction percent by FDPP-ML 21 23 12
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features, we observed that when the dataset increases the model is trained well. Accord-
ingly, ML and DL models were trained on 8 months of flights, which maximum data can 
be obtained and available online for the US a wide traffic network. The testing was on 
three scenarios represented on forecast horizons 2, 6, and 12 h, containing flights 5286, 
15954, and 26006 respectively. The experimental computer’s hardware is set up with an 
Intel core i7 10th processor clocked at 2.60 GHz and 16 GB of RAM with a maximum 
speed of 5.3 GHz. NVIDIA GeForce RTX 2080 SUPER graphics processor-accelerated 
graphics card. The Python 3.7-based Keras framework serves as the development envi-
ronment [60].

Result and discussion
The evaluation of the proposed approach FDPP-ML to improve flight delay prediction 
was done with different analyses. The main way is to demonstrate the results of flight 
delay prediction based using basic flight schedule features by using 10 benchmarks and 
state-of-the-art regression models and comparing when using traditional training mod-
els, and when using the FDPP-ML algorithm with new features created, and demonstrat-
ing the measure of proposed FDPP-ML reduction errors with three forecast horizons 
12, 6, and 2 h. These interval times to measure what extent of the strength of the FDPP-
ML forecast horizon when relying on (PFD) action because when the forecast horizon 
is longer will be weaker, owing to FDPP-ML relying on the prediction inheritance of the 
“Previous Flight Delay" (PFD) as additional feature supported to the next flight that on 
the same flight path to predict their delay.

The second way is to demonstrate the improved reduction of error by FDPP-ML to 
Traditional ML, by select an outperformed model with a deep analysis of FDPP-ML 
impacts on 366 airports and demonstrate how FDPP-ML enhances accuracies using a 
sample of airports represented in the busiest US OPE (Operational Evolution Partner-
ship), which is the commercial US airports with a significant activity that is employed in 
the streamlined National Airspace System (NAS), More than 70 percent of passengers 

Table 5 Accuracy of forecast horizons 2 h

Models Traditional training model Proposed FDPP‑ML Error reduction percent by FDPP‑ML

MAE MSE RMSE MAE MSE RMSE MAE (%) MSE (%) RMSE (%)

CATR 26.71 3544 59.53 17.34 2088 45.70 35 41 23

GBR 26.68 3616 60.14 18.24 2262 47.56 32 37 21

GRU 26.83 3620 60.17 18.57 2355 48.53 31 35 19

LGR 26.71 3570 59.75 17.59 2131 46.16 34 40 23

LR 27.22 3655 60.46 21.56 2733 52.28 21 25 14

LSTM 27.21 3671 60.59 19.64 2451 49.51 28 33 18

RFR 28.16 3685 60.71 17.29 2032 45.08 39 45 26

RNN 26.91 3665 60.54 19.08 2339 48.36 29 36 20

Stacking 26.29 3579 59.83 16.69 2071 45.50 37 42 24

Voting 26.87 3583 59.86 17.47 2111 45.95 35 41 23

Average error reduction percent by FDPP-ML 32 38 21
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move through these airports, this airport list contains 30 airports [61]. In addition, pro-
vides an analysis of how to improve prediction on all airlines in the dataset used contains 
10 airlines.

Accuracy of proposed FDPP‑ML

Firstly, estimated the accuracy of flight delay prediction of both traditional models and 
FDPP-ML by using basic flight schedule features (BFS). Tables 2, 3, and 4, and 5 show 
measure error tools MAE, MSE, and RMSE to explain flight delay prediction accuracy 
for 10 regression models implemented, each table is divided into three groups contain-
ing three measure error tools, the first group is the traditional training model, the sec-
ond is the proposed FDPP-ML, and the third is Error reduction percent by FDPP-ML. 
Table  2 shows errors measure for training models, despite the testing considered the 
main core of the proposed approach contribution, the training accuracies are a strong 
indicator success of FDPP-ML. in the group name "Error reduction percent by FDPP-
ML" in the table demonstrates the percent of enhanced prediction by FDPP-ML. Overall 
we can say the average error reduction percent by FDPP-ML in training 10 models were 
41%, 46%, and 27% in MAE, MSE, and RMSE respectively.

Let highlighted the RFR model in details, it can be seen in the traditional training 
model was less error MAE of 18.28  min, on the other side the proposed FDPP-ML 
also had less MAE error of 9.21 min, which indicates FDPP-ML improved prediction 
than the traditional training model by 50%. As well MSE in the traditional training 
model was 1669, and in the FDPP-ML the MSE was 716, the FDPP-ML improved pre-
diction than the traditional training model by 57%, and so on in RMSE the FDPP-
ML improved prediction by 34%. let highlighted the Stacking model, in the traditional 

Fig. 9 Accuracy of forecast horizon 12 h, a mean absolute error MAE, b mean absolute error MSE, c root 
mean absolute error RMSE, and d error reduction by FDPP-ML
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model was a second less MAE error with 21.85 min on the other hand in the proposed 
FDPP-ML the Stacking model was also a second less MAE error with 10.71  min, 
which indicates the percent of enhanced and improved FDPP-ML than traditional 
training model archive to 51%, and improved MSE and RMSE with 58% and 35% 
respectively. Thus proposed FDPP-ML improves prediction by the massive reduction 
of error than the traditional training models within similar proportions.

The proposed FDPP-ML will become clear with the testing represented in various 
forecast horizons of flight delay predicted, illustrating how FDPP-ML is much bet-
ter than traditional training models. Firstly, Table 3 shows the measured error tools 

Fig. 10 Accuracy of forecast horizon 6 h, a mean absolute error MAE, b mean absolute error MSE, c root 
mean absolute error RMSE, and d error reduction by FDPP-ML

Fig. 11 Accuracy of forecast horizon 2 h, a mean absolute error MAE, b mean absolute error MSE, c root 
mean absolute error RMSE, and d error reduction by FDPP-ML
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within the long forecast horizon 12 h, in spite of this containing 26006 flights relying 
on flight delay prediction inheriting to the next flight to be as FDP feature to pre-
dict the next delay that is on the same path for 12 h, should be noted that the aver-
age error reduction percent by FDPP-ML in testing 10 models in forecast horizon 
12  h were 15%, 14%, and 8% in MAE, MSE, and RMSE respectively. let highlighted 
in details on Stacking model it can be seen the outperform model in experiments the 
FDPP-ML improves accuracy with a reduced error by 18%, becoming from an MAE 
of 30.34 error in traditional training models to 24.82 in FDPP-ML, also reduced error 
in Stacking by 19% and 10% in MSE and RMSE respectively. As well as FDPP-ML 
improved accuracy at all models from 14 to 18% in MAE, except the LR model with 
only 5%. Figure  9 shows the accuracy of the forecast horizon 12  h, Fig.  9a, b, and 
c represent MAE, MSE, and RSME respectively for all model errors with traditional 
trained models and proposed FDPP-ML. Figure  9d represents the error reduction 
percent by FDPP-ML for all models.

The experiments are still ongoing there is plenty of time before flight time repre-
sented in the forecast horizon. As much as the forecast horizon is short the FDPP-ML 
will be more outperform. Accordingly, the proposed FDPP-ML will implement within 
the forecast horizon of 6  h which contains 15,954 flights monitoring the results. 
Table 4 shows the model’s result in this case, should be noted that the average error 
reduction percent by FDPP-ML in testing 10 models in forecast horizon 6  h were 
21%, 23%, and 12% in MAE, MSE, and RMSE respectively. To show the result model 
in details let highlighted the Stacking model can be seen that is the best model in both 
the traditional training model and FDPP-ML, was MAE of 28.83, and become 21.52, 
as well in MSE was 3977 and become 2855, the FDPP-ML improve accuracy in the 
stacking model by 25% and 28% in MAE and MSE respectively. We found the FDPP-
ML with a shortage of forecast horizon will start to improve prediction, it should be 
noted that the FDPP-ML improves accuracy in the forecast horizon of 12 h in MAE 
from 14 to 18%, and was in the forecast horizon of 6 h increased all models from 18 to 
25% except LR with 9%. There is a reverse relation between the proposed FDPP-ML 
and the forecast horizon, as much as the shortage of forecast horizon the FDPP-ML 
is capable of improving accuracy and increasing the gap than the traditional train-
ing model. Figure 10 shows the accuracy of the forecast horizon 6 h, Fig. 10a, b, and 
c represent MAE, MSE, and RSME respectively for all model errors with traditional 
trained models and proposed FDPP-ML. Figure 10.d represents the error reduction 
percent by FDPP-ML for all models, it can be seen that error reduction was in MAE 
from 18 to 25%, and in MSE from 19 to 31%, and so on error reduction in RMSE.

The experiments were established based forecast horizon of 2  h containing 5286 
flights, we found studies interested in the forecast horizon of two hours before the 
intended flight time even using special airport information. Table 5 shows the accu-
racy of forecast horizons 2 h, Fig. 11 shows the accuracy of the forecast horizon, and 
Fig. 11a. shows the MAE for models, it should be noted that the gap between tradi-
tional training and FDPP-ML becomes more than other forecast horizons, should be 
noted that the average error reduction percent by FDPP-ML in testing 10 models in 
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forecast horizon 2 h were 32%, 38%, and 21% in MAE, MSE, and RMSE respectively. 
It could be higher in individual model it can be seen in the stacking model has the 
lowest error in traditional training in MAE 26.3 min and becomes 16.7 min in FDPP-
ML. Followed by the RFR model in MAE was 28.2 became 17.3, and the model CATR 
in MAE was 26.7 became 17.3, and so on in all models. Figure 11b shows the MSE 
for models, it’s relatively similar to MAE, the first model has low error RFR in MSE 
was 3685 and becomes 2023, followed by stacking in MSE was 3679 and becomes 
207, and so on. Figure 11C shows the RMSE for models, it’s relatively similar to MSE, 
overall the Stacking outperformed in the proposed FDPP-ML has MAE 16.7 while in 
traditional training was MAE 26.3. Figure 11d shows the error reduction percent by 

Table 6 Accuracy of core 30 airports

NO Airports
IATA Code

Traditional training 
model

Proposed FDPP‑ML Error reduction percent by 
FDPP‑ML

MAE MSE RMSE MAE MSE RMSE MAE (%) MSE (%) RMSE (%)

1 ATL 17 1074 33 10 502 22 44 53 32

2 BOS 32 3485 59 22 2503 50 31 28 15

3 BWI 25 2528 50 16 919 30 38 64 40

4 CLT 17 841 29 11 638 25 34 24 13

5 DCA 24 1636 40 13 734 27 48 55 33

6 DEN 28 2586 51 17 1079 33 40 58 35

7 DFW 24 3441 59 15 3055 55 40 11 6

8 DTW 27 3317 58 17 2640 51 36 20 11

9 EWR 57 21885 148 43 12873 113 25 41 23

10 FLL 15 394 20 12 394 20 21 0 0

11 HNL 17 689 26 14 449 21 18 35 19

12 IAD 32 4800 69 21 3620 60 34 25 13

13 IAH 23 1466 38 14 652 26 41 55 33

14 JFK 21 1157 34 16 932 31 22 19 10

15 LAS 18 1263 36 13 965 31 30 24 13

16 LAX 19 1300 36 14 487 22 29 63 39

17 LGA 22 956 31 12 453 21 47 53 31

18 MCO 18 707 27 12 406 20 33 43 24

19 MDW 17 922 30 10 221 15 40 76 51

20 MEM 29 3087 56 13 553 24 56 82 58

21 MIA 26 7798 88 21 7568 87 19 3 1

22 MSP 66 15660 125 40 7413 86 39 53 31

23 ORD 42 7405 86 29 4536 67 33 39 22

24 PHL 31 2760 53 24 2314 48 22 16 8

25 PHX 18 836 29 11 529 23 39 37 20

26 SAN 18 1294 36 10 228 15 45 82 58

27 SEA 20 834 29 13 361 19 36 57 34

28 SFO 21 774 28 13 390 20 39 50 29

29 SLC 14 338 18 9 124 11 37 63 39

30 TPA 20 1580 40 15 1192 35 25 25 13

Average error reduction percent by FDPP-ML 35 42 25
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FDPP-ML, the proposed FDPP-ML is capable of significantly improving accuracy for 
example in MAE with the red line the enhancement accuracy amounts to 39% in the 
RFR model, and enhancement accuracy by 37% in the stacking model, and relatively 
similar for remain models.

Table 7 Accuracy of US airlines

NO Airlines 
IATA Code

Traditional training 
model

FDPP‑ML Error reduction percent by 
FDPP‑ML

MAE MSE RMSE MAE MSE RMSE MAE (%) MSE (%) RMSE (%)

1 AA 26 2788 53 16 1931 44 37 31 17

2 AS 18 779 28 11 314 18 38 60 37

3 B6 24 1080 33 17 641 25 30 41 23

4 DL 28 4323 66 17 2226 47 40 48 28

5 F9 19 497 22 11 196 14 45 61 37

6 G4 25 2438 49 15 847 29 40 65 41

7 HA 12 321 18 10 198 14 19 39 22

8 NK 22 1806 42 13 1164 34 38 36 20

9 UA 37 7762 88 24 4554 67 34 41 23

10 WN 16 1023 32 11 498 22 35 51 30

Average error reduction percent by FDPP-ML 36 47 28

Fig. 12 Accuracy of Core 30 airports, a mean absolute error MAE, b mean absolute error MSE, and c root 
mean absolute error RMSE
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Overall we deduced from a summary of the results, that must be taken into consid-
eration that the success of FDPP-ML training accuracies was due to the created new 
features, especially (PFD) feature, we found considerable differences in improving pre-
diction at training and testing model accuracies, that because we use training models 
dataset containing the actual (PFD) feature for historical flights. While in the testing 
model, the flight delay prediction is considered as (PFD) feature for the next flight on 
the same path, during this inherited looping of course the model will be weaker as much 
as long of forecast horizon. Thus the testing of proposed FDPP-ML has successful pre-
diction with the short-term forecast horizons, especially in 2  h and the improvement 
decreases when increasing the forecast horizon for future flights.

Accuracy improvement of airports and airlines

This subsection provides a deep analysis of FDPP-ML impacts on 366 airports involved 
in the dataset by showing the busiest 30 airports called "Core 30". The FDPP-ML 
enhances the accuracies of the traditional trained models for these airports separately 
during flight delay prediction experiments based on a forecast horizon of 2  h within 
stacking model. Table 6 shows the core 30 airports’ flight delay accuracies between the 
traditional training models compared to the proposed FDPP-ML and illustrates the 

Fig. 13 Accuracy of US airlines, a mean absolute error MAE, b mean absolute error MSE, and c root mean 
absolute error RMSE
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error reduction percent by FDPP-ML in these airports. Overall, it should be noted that 
the average error reduction percent by FDPP-ML in the core 30 airports in forecast hori-
zon 2 h were 35%, 42%, and 25% in MAE, MSE, and RMSE respectively.

Figure 12 shows in details the three measure error tools for core 30 airports, Fig. 12a,b, 
and c represent MAE, MSE, and RSME respectively. It should be noted that FDPP-ML 
contributes to improving the accuracy of airports differently according to the size of 
flights operation and times. In Fig. 12a represents MAE error note that in ATL airport 
which is considered the busiest airport at US airport, the FDPP-ML error reduction was 
44% the percentage represents cuts MAE from 17 to 10 min. In Fig. 12b represents MSE 
in ATL airport the FDPP-ML error reduction was 53% the percentage represents cuts 
MSE from 1074 to 502. In Fig. 12c represents RMSE in ATL airport the FDPP-ML error 
reduction was 32% the percentage represents cuts RMSE from 33 to 22, and so on in the 
remaining airports. Overall, the percent of FDPP-ML error reduction in the three meas-
ure tools was relatively symmetric and illustrates the improved accuracy in all airports 
significantly, with the knowledge that we sufficiently represent the improvement at 30 
airports, on another hand, we have implicit results that can draw by of 366 airports and 
it is difficult to their represented in this paper.

We also provide an analysis of improved prediction on all airlines involved in the data-
set used containing 10 airlines, the proposed FDPP-ML contributed to enhancing accu-
racy over traditional training models. Table  7 shows the flight delay accuracies of US 
airlines compared to the traditional training model and proposed FDPP-ML and illus-
trates the error reduction percent by FDPP-ML in these airlines.

Overall, it should be noted that the average error reduction percent by FDPP-
ML in the involved 10 airports in forecast horizon 2 hour were 36%, 47%, and 28% 
in MAE, MSE, and RMSE respectively. Figure 13 shows in details the three measure 
error tools, Fig. 13a, b, and c represent MAE, MSE, and RSME respectively. It should 
be noted that FDPP-ML contributes to improving the accuracy of airlines differently 
according to the size of flights airlines. In Fig. 13a represent MAE error, it can be seen 
that the error reduction percent by FDPP-ML for example reached to 45% in F9 air-
line the percentage represents cuts from 19 to 11 minutes, In Fig. 13b represent MSE 
error can be seen that the percent of FDPP-ML was 61% in F9 the percentage repre-
senting cuts from 497 to 196, In Fig. 13C represents RMSE error, it can be seen that 
the percent of FDPP-ML improve accuracy was 37% in F9 the percentage represent-
ing cuts from 22 to 14. The FDPP-ML improved accuracy in all airlines and airports 
significantly, with the knowledge that there are studies that seek to provide enhanced 
flight delay prediction for one specific airline or specific airport. Appendix A and B 
represent the flight operation for Core_30 airports and 10 airlines respectively for 
each airport and airline with their names, each Figure represents 80 flights as a sam-
ple of flight delay predicted from a forecast horizon of 2 hours, with the nominated 
model Stacking from models implemented, containing three curves in chart actual 
flight delay represent with a red dashed line, the predict traditional training model 
represent with a light blue line, and predicted FDPP-ML represent with a green line.
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Improvement insights
Airport flight delays continue to be a major problem that has an impact on both air-
port and airline operations. If aviation system decision-makers want to stay com-
petitive, they should prioritize the inclusion of flight delay estimates in their insights 
at the multi-level. The suggested method for integrating IOT and cloud computing 
apps with passenger re-communication capabilities for the smart airport [62, 63] that 
enable crew members, flexible counters, gates, and airlines to interact to notify pas-
sengers of updates and emphasize flight time issues in order to win their loyalty. On 
the other hand side, when it comes to workforce planning and workload in airports 
[6, 64], aviation authorities and airline suppliers ought to consider the duration of 
aircraft delays when rescheduling workers. This may include making a fast decision, 
such as extending staff shifts to cover busy hours.

Limitations and future research
While the proposed approach technique improves the ability to anticipate flight 
delays, there are certain drawbacks that point to possible directions for further study.

1- The results show outperformed FDPP-ML flight delay prediction using basic flight 
schedule features. Future studies may take into account extracting relevant charac-
teristics to improve prediction from the existing flight information, such as an index 
for each airport containing the average of the number of flights that are delayed and 
the number of flights that are planned for a certain time period, to enable training 
and testing.

2- The proposed implemented 10 benchmark and state-of-art regression models in 
FDPP-ML but with their default parameters, the parameters play an important role 
in enhancing prediction, Future work could be considered implementing stronger 
parameters of models hybrid with FDPP-ML, consequently the prediction enhances.

3- on the part of the training model, in real-time when future flight delay prediction is 
required, we don’t need at every time to retrain the model it’s a waste of time, It is 
better to save the training model in advance, and FDPP-ML all steps execution with-
out lines 3 and 4 in (Algorithm 4 FDPP-ML steps 7and8).

Conclusion
In an intelligent aviation system, it is essential to make precise and prompt flight delay 
predictions which are caused by complex spatial–temporal correlations, ranging from 
weather, airport operations, passengers, and impact flight delay departure or arrival on 
each other. At the same time, it is hard to obtain these features, especially with a wide 
network of flights, therefore, is necessary to develop flight delay prediction models based 
only on flight schedule features to be available with high performance to make crucial 
decisions. This paper proposed FDPP-ML a novel algorithm with a supervised learn-
ing model that works on reshaping datasets and creates new significant and discrimi-
nating features (PFD) and (FTD) which contribute to improving ML models to predict 
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flight delay. To evaluate the performance of the FDPP-ML, we focus on utilizing only 
basic flight schedule features for flight delay prediction using a wide flight network of 
US flights with many experiments of predicting flight delay in three forecast horizons 2, 
6, and 12 h, using 10 machine and deep learning models with error measure tools MAE, 
MSE, and RMSE. The FDPP-ML improves the accuracy of all 10 models and error reduc-
tion than traditional training models, the average error reduction percent by FDPP-ML 
in testing 10 models in forecast horizon 2 h were 32%, 38%, in MAE, MSE respectively, 
in forecast horizon 6 h were 21%, 23%, in MAE, MSE respectively, in forecast horizon 
12  h were 15%, 14%, in MAE, MSE respectively. The FDPP-ML is more effective in a 
short forecast horizon because the flight delay prediction is considered (PFD) feature 
for the next flight that is on the same path, during this inherited looping of course the 
model will be weaker the more of the forecast horizon. In forecast horizon 2 h the out-
performing prediction model was Stacking in FDPP-ML in MAE 16.69 min compared 
to traditional training in MAE 26.29 min the FDPP-ML improvement and reduction of 
errors with a 37% percent. Based on stacking prediction can improve individual airlines 
and airports, the average error reduction percent by FDPP-ML in the core 30 airports 
were 35%, 42%, in MAE, MSE, respectively. And the average error reduction percent by 
FDPP-ML in 10 airlines involved were 36%, 47%, in MAE, MSE, respectively. The pro-
posed approach is yielding encouraging results and shows the ability of prediction to 
utilize previous flight delay PFD features when integrated into FDPP-ML. Finally recom-
mended using the FDPP-ML model proves successful to predict flight delays with only 
flight schedules to our perception and motivation for using this proposed approach that 
leads to promoting efficiency for stakeholders and passenger satisfaction by improving 
airport management efficiency.
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