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Introduction
Genome-wide association studies (GWAS) are the most used strategy for investigating 
the genetic architecture of common complex diseases. GWAS methodology examines 
the differences in allele frequencies between individuals affected and unaffected by the 
disease at single nucleotide polymorphisms (SNPs) across the genome. GWAS data 
can be used for predicting disease status and classification of cases from controls using 
machine learning (ML) algorithms. The use of ML algorithms for prediction is increas-
ingly being used over methodology such as polygenic risk scores [1, 2]. The application of 
ML algorithms have some advantages in this situation over classical statistical method-
ology such as the logistic regression model; (i) for the classification of cases and controls, 
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where a large number of possibly correlated variables may be modelled together; (ii) a 
significance threshold is not required; (iii) gene–gene interactions can be evaluated and 
(iv) assumptions based on normality and homogeneity of variances are not needed [3, 4].

GWAS data are suitable for ML data mining because large amounts of phenotype and 
genomic data can be studied simultaneously. Large complex GWAS data summarised 
with data mining approaches can be interpreted quickly and explained by graphics such 
as decision tree plots. Following the ML procedure, the selection of an appropriate sta-
tistical method is necessary to ensure time and cost savings. Methods that use classifica-
tion are at a disadvantage due to their long calculation time, and increased likelihood 
of over-fitting and under-fitting. Under-fitting occurs when the model cannot find the 
intricate patterns hidden in the data. Whereas, when the model learns from large quanti-
ties of data, over-fitting is more likely to occur. The likelihood of over-fitting is increased 
when the dataset is imbalanced [4, 5].

Imbalanced data is defined as the category/outcome variable used for classification 
having unequal classes or differing number of observations. Class imbalance is a prob-
lem that arises frequently when applying GWAS for diseases with low prevalence in 
large cohorts. In this case, it may be a solution to use adjusted the type-I error when 
using classical statistical methods such as the logistic regression model. However, ML 
algorithms are not immune to class imbalance. Therefore, datasets need to be balanced 
with statistically unbiased resampling techniques such as (Synthetic Minority Over-sam-
pling Technique (SMOTE). [6, 7].

GWAS typically interrogate millions of SNPs, many of which are in strong linkage dis-
equilibrium (LD) with each other, which poses considerable computational challenges in 
applying ML methods. LD may affect the classification performance. LD-clumping use 
to remove highly correlated SNPs, may be helpful for increasing classification perfor-
mance on ML. Clumping is a procedure within PLINK that selects the most significant 
SNPs in LD blocks. By doing this, the data size and the correlation between remaining 
SNPs is reduced [8]. Using clumping with ML is advantageous as it reduces processing 
time and it is a proven and commonly used procedure for applying ML in GWAS [9, 10].

In this paper, ML approaches were applied to a GWAS of type 2 diabetes (T2D) under-
taken in the Uppsala Longitudinal Study of Adult Men (ULSAM), which includes 165 
cases and 951 controls of European ancestry from Sweden. The objectives of this study 
are to examine the accuracy, specificity, and sensitivity of three different machine learn-
ing approaches and to compare the results. Furthermore, we applied LD clumping in 
both situations with/without SMOTE and compared the results.

Material and methods
When performing GWAS, the entire genome is analysed, to identify SNPs that may pre-
dispose a disease of interest. While logistic regression is used for dependent variables in 
a binary setting, linear regression methods are used for variables in a continuous setting. 
The datasets used for genetic association studies are high dimensional [11]. Sample size 
is very influential for classical statistical approaches like the logistic regression model 
because a small number of individuals (n) and/or a large number of SNPs (feature, p) can 
be a problem. The (XTX) parameters w that are used for predicting beta coefficients will 
not be a singular matrix and the parameters in the regression model cannot be uniquely 
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estimated [12]. However, ML algorithms are less affected by this problem than the clas-
sical multivariate approaches because ML algorithms have tuning parameters to opti-
mise and regulate the process. An example of this are penalized likelihood methods [13, 
14]. Another issue for both classical and ML models is imbalanced data, where the data 
collected between groups of samples are different [15]. Most often, LD clumping has 
been used when applying machine learning to GWAS data [16, 17]. Using clumping has 
benefits such as reducing calculation time and memory usage. It can be used to elimi-
nate unrelated SNPs that provide redundant information using a defined threshold of 
LD (usually  r2) [17, 18]. In this case, the majority class is more likely to be correctly clas-
sified than the minority class. In a classification problem, the class that has fewer ele-
ments than the other classes are called the minority class. Bias is the main contributor 
to this classification problem because ML algorithms tend to classify data according to 
the majority class. SMOTE is a powerful approach for avoiding bias against the minority 
class [18]. We applied ML methods with LD clumping comparing performance with and 
without SMOTE.

Synthetic minority over‑sampling technique

Class imbalance occurs in categorical data when one of the classes is less frequent and is 
a minority class [19]. This is often a problem in population based GWAS where cases of a 
disease are much less frequent than controls. This situation poses a problem for machine 
learning models [20]. High dimensional data sets such as gene expression, GWAS, elec-
tronic medical records, and text mining are frequently facing this problem [21]. Syn-
thetic Minority Over-sampling Technique (SMOTE) offers a solution to this problem in 
conjunction to applying ML. SMOTE increases the number of observations within the 
minority class, using k-nearest neighbours for balancing the data. SMOTE creates syn-
thetic samples by random interpolation among the nearest neighbours in the same class 
as the minority class sample[22]. When using interpolation operation, the decision space 
for the minority class is extended to get the closest possibility to the original variables 
when creating a new sample in the minority class. The minority class with the new sam-
ples have the same expected value as the original minority class samples, however, their 
variances are not the same [23–25]. The new artificial sample Xnew,X ′ randomly selected 
neighbor, Xi for each instance in minority class.

where � is a random number in the range [0, 1] and i ∈ [1, n], n is the number of individu-
als in the minority class.

X_minority: Input data containing samples from the minority class., N: Number of 
synthetic samples to generate., k: Number of nearest neighbors to consider.

Random Selection of Samples (Line 4): The pseudocode starts by randomly selecting 
a sample from the minority class data (X_minority). This is a crucial step as it ensures 
diversity in the generated synthetic samples. If only specific samples were selected, it 
could introduce bias. Finding Nearest Neighbors (Line 5): By finding the k-nearest neigh-
bors of the randomly selected sample, SMOTE aims to create synthetic samples that are 
within the local feature space of the existing data. This helps maintain the underlying 
data distribution and ensures that the generated samples are plausible representations of 

(1)Xnew = Xi −
(

X ′ − Xi

)

∗ �
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the minority class. Random Selection of Neighbor (Line 6): Randomly selecting a neigh-
bor from the nearest neighbors ensures variability in the synthetic samples. This step is 
important because it introduces randomness and avoids overfitting to specific neighbor-
ing samples. Generation of Synthetic Sample (Line 7): The formula used to generate the 
synthetic sample combines the randomly selected sample and a scaled difference with a 
randomly selected neighbor. This technique helps in creating new samples that are simi-
lar to existing ones but have some variation. Appending Synthetic Sample (Line 8): After 
generating a synthetic sample, it is added to the list of synthetic samples (X_synthetic). 
This step ensures that the generated samples are stored for later use, typically to aug-
ment the training dataset. Loop Iteration (Line 3): The loop iterates N times, generat-
ing N synthetic samples. This parameter allows control over the number of synthetic 
samples created, which can be adjusted based on the specific needs of the application. 
Output (Line 9): Finally, the list of synthetic samples (X_synthetic) is returned as the 
output of the algorithm. These synthetic samples can be combined with the original data 
to create a balanced dataset for training a machine learning model (Fig. 1).

Support vector machine SMOTE

Support vector machine SMOTE (SVM SMOTE) is a technique that based on combina-
tion of extrapolation and interpolation that defining boundaries with SVM separation 
formulas [26], N2 [27]. Instead of the k-neighbourhood computational interpolation in 
the SMOTE approach, SVM SMOTE uses support vectors, using interpolation for the 
majority class, while using extra polarization for the minority class, thus making the 
sample balanced. Synthetic data will be randomly created along the lines joining each 
minority class support vector with several its nearest neighbours [4].

SVM Model Training (Line 1): The pseudocode begins by applying an SVM classifier to 
the original imbalanced dataset. This is a standard step in building a classification model 
and serves as the baseline for comparison with the resampled dataset. Identification of 
Minority Class Samples (Line 2): Identifying the minority class samples is crucial for the 
subsequent steps. This ensures that the resampling technique is specifically applied to 
the class that requires additional support. Iterating Through Minority Class Samples 
(Line 3): The loop iterates through each minority class sample (x_i, y_i). This is necessary 

Input:
- Minority class samples (X_minority)
- Number of synthetic samples to generate (N)
- Number of nearest neighbors to consider (k)

Output:
- Synthetic samples (X_synthetic)

1:Procedure SMOTE(X_minority, N, k):
2:   X_synthetic = []
3: for i = 1 to N do:
4: random_sample = randomly select a sample from X_minority
5:  nearest_neighbors = find k-nearest neighbors of random_sample in X_minority
# Randomly select one of the nearest neighbors
6:  neighbor = randomly select a neighbor from nearest_neighbors
# Generate synthetic sample
7: synthetic_sample = random_sample + random () * (neighbor - random_sample) 
8: X_synthetic.append(synthetic_sample)   
9: return X_synthetic
10: Stop algorithm
X_minority: Input data containing samples from the minority class., N: Number of synthetic samples to generate., k: Number of 
nearest neighbors to consider.

Fig. 1 Pseudo-code of SMOTE
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to apply SMOTE on a sample-by-sample basis, ensuring that synthetic samples are gen-
erated in the local feature space of each individual sample. Finding Nearest Neighbors 
(Line 4): For each minority class sample, the algorithm identifies its n_neighbors nearest 
neighbors within the same class. This step is crucial for generating synthetic samples 
that are consistent with the distribution of the original data. Applying SMOTE (Line 5): 
SMOTE is applied to the current minority class sample, taking into account the speci-
fied parameters n_neighbors and over_sampling_ratio. This generates synthetic samples 
that help balance the class distribution. Accumulating Synthetic Samples (Line 6): The 
synthetic samples produced by SMOTE are added to the list of synthetic samples. This 
step ensures that the generated samples are retained for further processing. Combin-
ing Original and Synthetic Data (Lines 7–8): The synthetic samples are appended to the 
original feature matrix (X_train), and their corresponding labels are added to y_train. 
This combines the resampled data with the original training data, creating a balanced 
dataset for training. Output Resampled Data (Line 9): Finally, the resampled feature 
matrix (X_resampled) and corresponding labels (y_resampled) are returned as the out-
put of the algorithm. These resampled datasets can be used to train an SVM model on a 
balanced dataset (Fig. 2).

Adaptive synthetic sampling approach

The Adaptive Synthetic Sampling Approach (ADASYN) is an approach that can be 
used to solve class imbalance problems based on adaptive minority class generation 
on data samples. ADASYN increments the minority class by calculating the shuffled 
and randomly selected majority class distances to form the minority class [28] [N4]. 
While increasing the number of minority class elements, it not only reduces bias by 
randomizing the data instead of choosing the distances of those close to the major-
ity class, but also increases the number of minority class elements by considering the 
majority class elements that are difficult to include in the calculations [29].

Input:
- X_train: Feature matrix of the training set
- y_train: Corresponding labels of the training set
- n_neighbors: Number of nearest neighbors to consider in SMOTE
- svm_kernel: Kernel function for SVM (e.g., linear, RBF)
- svm_C: Penalty parameter for SVM
- over_sampling_ratio: Ratio of over-sampling for the minority class
Output:
- X_resampled: Resampled feature matrix
- y_resampled: Corresponding resampled labels
1: Apply SVM to the original imbalanced dataset to train a classification model.
2: Identify the minority class samples.
3: For each minority class sample (x_i, y_i):
4: Find its n_neighbors nearest neighbors within the same class.
5: Apply SMOTE to generate synthetic samples, considering n_neighbors and over_sampling_ratio.
6: Add the synthetic samples to the list of synthetic samples.
7: Combine the original training data with the synthetic samples:
8: Append the synthetic samples to the original feature matrix (X_train) and their corresponding labels to y_train.
9: Return the resampled feature matrix (X_resampled) and corresponding labels (y_resampled).
10: Stop algorithm

Fig. 2 Pseudo-code of SVM SMOTE



Page 6 of 28Öztornaci et al. Journal of Big Data          (2023) 10:174 

Iterating Through Minority Class Samples (Line 1): This loop ensures that ADASYN is 
applied to each individual minority class sample. This allows for the creation of synthetic 
samples tailored to the specific characteristics of each minority class instance. Comput-
ing the Number of Synthetic Samples (Line 2–3): The number of synthetic samples to 
generate for each minority class sample is calculated based on the desired total number 
of synthetic samples (n_adasyn), taking into account the imbalance ratio between the 
majority and minority classes. This ensures that the generation of synthetic samples is 
proportional to the class distribution. Finding Nearest Neighbors (Line 4): Identifying 
the n_neighbors nearest neighbors within the same class is a crucial step in the ADASYN 
process. This allows for the selection of neighboring samples that are relevant to the spe-
cific minority class instance. Computing Difference Vector and Beta Value (Lines 5–8): 
The difference vector (d) between the neighbor and the current minority class sample is 
computed. The beta value, which influences the distribution of different labels around a 
sample, is calculated based on the difference vector. This step captures the local feature 
space around the current sample. Generating Synthetic Samples (Lines 10–16): For each 
synthetic sample to be generated (based on the calculated n_synthetic), a neighbor is 
randomly selected. The difference vector and beta value are computed again to ensure 
variability. The synthetic sample is then generated using a weighted combination of the 
current sample and the selected neighbor. Adding Synthetic Samples to List (Line 17): 
The generated synthetic samples, along with their corresponding labels, are added to 
the list of synthetic samples. This step ensures that the generated samples are retained 
for further processing and integration with the original data. Combining Original and 
Synthetic Data (Lines 18–19): Appending the synthetic samples to the original feature 
matrix (X_train) and their corresponding labels to y_train combines the resampled data 
with the original training data, creating a balanced dataset for training. Output Resam-
pled Data (Line 20): Finally, returning the resampled feature matrix (X_resampled) and 
corresponding labels (y_resampled) provides the user with the balanced dataset, which 
can be used for training a machine learning model (Fig. 3).

Random under sampling

Random under sampling (RUS) technique is a method used to provide balance between 
minority class and majority class in large sample size data with class imbalance. In this 
method, instead of increasing the number of minority class elements, resampling is done 
by randomly selecting the majority class elements to equal the number of minority class 
elements [30]. While applying this method, no mathematical approach is applied, and 
majority class elements are chosen randomly. Therefore, in this case, data with poten-
tially important information may be deleted [31].

Counting Majority Class Samples (Line 1): Counting the number of samples in the 
majority class (N_majority) is a crucial first step. This provides a clear understanding of 
the class distribution in the dataset. Calculating Number of Majority Class Samples to 
Keep (Line 2–3): By multiplying the ratio with the total number of majority class sam-
ples, the algorithm determines how many samples to retain after under-sampling. This 
allows for control over the level of under-sampling and can be adjusted based on specific 
needs. Initialization and Storage of Indices (Line 4): Initializing an empty list to store 
the indices of samples to keep is a necessary preparatory step. This list will be populated 
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with the indices selected for retention. Iterating Through Class Labels (Line 5): Iterating 
through each unique class label in y_train allows the algorithm to distinguish between 
the minority and majority classes. Handling Minority Class (Lines 6–7): For the minor-
ity class, all indices corresponding to the minority class samples are added to the list of 
indices to keep. This ensures that all minority class samples are retained, preventing any 
loss of information from this class. Handling Majority Class (Lines 8–9): For the major-
ity class, the algorithm randomly selects N_keep indices from the majority class samples. 
This introduces variability in the selection process, helping to prevent potential bias. 
Extracting Feature Matrix and Labels (Line 10): Using the selected indices, the algorithm 
extracts the corresponding feature matrix and labels. This creates the resampled feature 
matrix (X_resampled) and corresponding labels (y_resampled) that will be returned as 
output. Output Resampled Data (Line 11): Finally, the resampled feature matrix and 
labels are returned, providing the user with the balanced dataset, which can be used for 
training a machine learning model (Fig. 4).

Machine learning general concepts

Machine learning is a rapidly evolving discipline that involves the examination, learning 
and development of algorithms to improve computational performance when analys-
ing data. These algorithms help us make the most accurate hypothesis-driven decisions. 
The two main categories of machine learning are supervised and unsupervised learning 
[32]. When applying ML methods, data should be divided into training and testing sets. 
Training is a data subset to train the algorithm, and the test data is for evaluating the 
performance of the algorithm. Test sets must be independent of the training set to avoid 
over-fitting. Test sets cannot be used for training the algorithm [33].

Input:
- X_train: Feature matrix of the training set
- y_train: Corresponding labels of the training set
- n_neighbors: Number of nearest neighbors to consider in SMOTE
- n_adasyn: Desired number of synthetic samples to generate
- beta: Distribution of different labels around a sample
Output:
- X_resampled: Resampled feature matrix
- y_resampled: Corresponding resampled labels
1: For each minority class sample (x_i, y_i):
2: Compute the number of synthetic samples to generate for x_i:
3: n_synthetic = round(n_adasyn * (number of samples in the majority class / number of samples in the minority class))
4: Find its n_neighbors nearest neighbors within the same class.
5: For each neighbor (x_nn, y_nn) in the neighbors:
6: Compute the difference vector d = x_nn - x_i
7: Compute the beta value:
8: beta = exp(-d / var(d))
9: Generate n_synthetic samples:
10: For j in range(n_synthetic):
11: Randomly select a neighbor (x_nn, y_nn)
12: Compute the difference vector d = x_nn - x_i 
13: Compute the beta value:
14: beta = exp(-d / var(d))
15: Compute the synthetic sample:
16: x_synthetic = x_i + beta * (x_nn - x_i)
17: Add (x_synthetic, y_i) to the list of synthetic samples.
18: Combine the original training data with the synthetic samples:
19: Append the synthetic samples to the original feature matrix (X_train) and their corresponding labels to y_train.
20: Return the resampled feature matrix (X_resampled) and corresponding labels (y_resampled)
21: Stop algorithm

Fig. 3 Pseudo-code of Adaptive Synthetic Sampling Approach
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Supervised learning is generally concerned with examining classification problems. 
We can think of classification models in two steps: the first step is to classify the data 
according to the existing characteristics, constraints, and conditions, and the second 
step is to test the accuracy of the classes and the validity of the model [32]. If we want to 
define the classification, simplistically, we can say that it is the process of predicting the 
classes of data. It is the process of segmenting similar objects, observations, and events 
according to a specific purpose [33] (Fig. 5).

Random forests

Random forests (RF), which were introduced by Breiman et al.  [34] in 2001, are com-
binations of several random decision trees, with each tree sampled independently and 

Input:
- X_train: Feature matrix of the training set
- y_train: Corresponding labels of the training set
- ratio: Ratio of majority class samples to keep (e.g., 1.0 means keep all, 0.5 means keep half)
Output:
- X_resampled: Resampled feature matrix
- y_resampled: Corresponding resampled labels
1: Count the number of samples in the majority class (N_majority).
2: Calculate the number of majority class samples to keep after under-sampling:
3:    N_keep = round(ratio * N_majority)
4: Initialize an empty list to store the indices of the samples to keep.
5: For each unique class label c in y_train:
6:    If c is the minority class:
7:        Add all indices corresponding to the minority class samples to the list of indices to keep.
8:    Else (c is the majority class):
9:        Randomly select N_keep indices from the majority class samples and add them to the list of indices to keep.
10: Extract the corresponding feature matrix and labels using the selected indices.
11: Return the resampled feature matrix (X_resampled) and corresponding labels (y_resampled)
12: Stop algorithm

Fig. 4 Pseudo-code of Random Under Sampling

ULSAM Data Set 
(165 Cases 951 Controls)

Appyling Machine learning Models to Imbalanced 
Data

(SVM, RF, MLP)

Applying Resampling Methods
(SMOTE, SVM SMOTE, ADASYN, RUS)

Applying Machine Learning Models to Balanced 
Data 

(SVM, RF, MLP) 

Finding Best Model with Resampling Methods

Fig. 5 Implementation Process
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with the same distribution. The main objective is to achieve higher accuracy for pre-
diction. All trees are constructed with a different bootstrap sample selection from the 
original data set [35]. Random forests are generated using the Classification and Regres-
sion Tree (CART) algorithm, and an information gain criterion is used for splitting each 
node. Although RF can be used for data with many variables, it requires a lot of available 
computational memory [36]. The Gini index is used for building the sub-trees within the 
random forest. The Gini index formulation can be written as the following, where T rep-
resents the training set and 

(

f (Gi.T )|T |
)

 is the probability of the cases selected belong-
ing to the class Gi [37].

Support vector machine

Support vector machines (SVM) were developed by Vapnik et al. [38]. SVM algorithms 
can be used to find the solution of both clustering (unsupervised) and classification 
(supervised) problems. Consider drawing a border separating two groups along a plane. 
SVM determines how this border is drawn [39, 40]. SVM algorithms search for the best 
solution to the classification problem by utilising optimisation principles which are use-
ful for “big data” evaluation [41, 42]. SVMs can be used for classification, dimension 
reduction, and SNP selection, by applying one of three different kernels: linear kernel, 
polynomial kernel, or Radial basis function kernel (RBF)/Gaussian Kernel. RBF is used 
when solving non-linear problems [43–45]. It is crucial to draw a small margin amongst 
the two classes to reduce the number of errors produced through classification. If we 
select two points for the realisation of linear separation and define them as k and l, we 
maximise the equations wxk + b = −1andwxl + b = +1 through subtraction.

Conditionally, if yi= + 1 then wTx − b ≥ 1 or if yi=-1 then wTx − b ≤ -1. From this, 
we can deduce that the minimum is calculated using, 12 ||w||

2 Where, w is a weight vector, 
b is bias, x is the input vector, and yi is the I’th target (i.e. in this case, 1 or -1).

Multi‑layer perceptron

Multilayer perceptron (MLP) is a method that can be used for both classification and clus-
tering. It is a method inspired by the human brain [46]. The MLP follows a neural network 
structure which consists of three different layers; i) input, ii) hidden (one or more), and iii) 
output. MLP, is a feed-forward method [47], where hidden layers provide a transmission 
from the input layer to the output layer to classify variables. MLP offers a solution for non-
linear classification problems, because it uses the delta learning rule. This rule is based on 

(2)
∑

n
∑

i=1

(

f (Gi.T )|T |
)

(f (Gi,T )|T |)

(3)w(xk − xl) = 2 and �w� ∗ α = 2

(4)α =
w(xk − x1)

�w�
α =

2

�w�

(5)αmaximization,∈ {−1, +1}
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sigmoid rules such as a logistic function [48, 49]. The learning function of MLP is repre-
sented as:

f (x) = W2g
(

WT
1 SNP + b1

)

+ b2 , W ∈ Rm and b1, b2 are model parameters ∈ R , G repre-
sents the Genotypes and W represents the weights. Delta rules are defined by:

where, α is the learning rate,g(x) is the derivative of the target output. hj is the weighted 
sum of the neuron’s inputs and yj is the actual output defined as

Logistic regression
Logistic regression (LR) is a statistical method used in binary data to determine the rela-
tionship between SNPs and disease in GWAS. Since LR is the classical statistical approach, 
it is used to measure the p-value and odds ratio ratios and the relationship between SNPs 
and disease [50]. Generally, SNPs associated with the disease are determined with the aid of 
a Manhattan plot, along the threshold of  10–8. Since LR is a method used as a classification 
method, in this study, machine learning methods and classification success were compared 
[51].

Performance measurement metrics

We have assessed the prediction of these ML algorithms using five complementary metrics. 
Table 1 below defines the confusion matrix terms.

Accuracy is determined by dividing all data by the predicted values. This method, how-
ever, is not a sufficient measurement when using imbalanced data.

Sensitivity is calculated by dividing the true positive cases by all predicted positive cases.

Specificity is calculated by dividing the true negative cases by all predicted negative 
cases.

(6)
(

G1, y1
)

,
(

G2, y2
)

, . . . .,
(

Gn, yn
)

where, i ∈ Rmandyi ∈ {0, 1}

(7)∇Wj,i = α

(

targetj − yj

)

∗ g ′
(

hj
)

∗ Gi

(8)hj =
∑

Gi ∗Wj,iandyj∗g
(

hj
)

(9)Accuracy =
TN + TP

TP + TN + FP + FN

(10)Sensitivity =
TP

TP + FN

Table 1 Confusion matrix definitions for the predicted and real class

Confusion matrix Predicted class

Status Control Case

Real class Control True negative (TN) False positive (FP)

Case False negative (FN) True positive (TP)



Page 11 of 28Öztornaci et al. Journal of Big Data          (2023) 10:174  

The Positive Predictive Value is the percentage of cases that are true positives as pre-
dicted by the ML algorithms.

The Negative Predictive Value is the percentage of controls that are true controls who 
are predicted by the ML algorithms.

The F1 score (also known as an F-score or F-measure) is a measure of accuracy. When 
calculating the F1 score, both precision and recall metrics are used.

The F1 score is used for the evaluation of data that has class imbalance. This metric is 
widely used for the evaluation of ML models [52, 53].

ULSAM study

The Uppsala Longitudinal Study of Adult Men (ULSAM) is an investigation of healthy 
elderly men in the Uppsala region of Sweden [54]. It was initiated as a health screen to 
identify metabolic risk factors for cardiovascular disease. In 1970, all 50-year-old men 
living in Uppsala were invited to participate, of whom 82% initially agreed to participate, 
and were subsequently invited back for further study at ages 60, 70 and 77. At each visit, 
a wide range of phenotypes were collected, including blood pressure, insulin metabo-
lism, weight and height, lipid markers, diet, cognitive function, and socio-economic 
factors. At age 70, participants were given a glucose tolerance test and insulin clamp to 
measure insulin resistance. T2D case status was defined by doctor-diagnosed disease 
or fasting whole blood glucose > 6.1  mmol/l, with all non-cases defined as controls. A 
total of 1178 participants were genotyped with the Illumina 2.5 M Omni array and Illu-
mina CardioMetaochip [54]. Samples were excluded if the call rate was less than 95%, 
if they had extreme heterozygosity (> 3 SD from the mean), if they were of non-Euro-
pean ancestry, or if they were female on the basis of X chromosome data. SNP quality 
control measures included exact p-value for deviation from (Hardy Weinberg Equilib-
rium) HWE <  10–6, call rate less than 95% (or less than 99% for SNPs with (Minor Allele 
Frequency) MAF < 5%), and MAF < 1%. Multidimensional scaling (MDS) of a genetic 
relatedness matrix from LD-pruned autosomal data was performed to obtain principal 
components to adjust for population structure.

We conducted our analyses on the ULSAM dataset, comprising 165 cases and 951 
controls, which exhibited a significant class imbalance. Initially, we assessed the models 
without addressing this imbalance. Subsequently, we applied techniques to mitigate class 
imbalance and re-evaluated the models.

(11)Specificity =
TN

TN + FP

(12)Positive PredictiveValue =
TP

TP + FP
∗ 100

(13)Negative PredictiveValue =
TN

TN + FN
∗ 100

(14)F1Score = 2 ∗
Precision ∗ Recall

Precision+ Recal
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The overarching purpose of this study was twofold: firstly, to apply machine learn-
ing techniques on real genetic data characterized by class imbalance, and secondly, to 
develop effective strategies for handling this critical issue. By doing so, we aimed not 
only to identify the most suitable algorithm for this specific dataset but also to contrib-
ute to the advancement of methodologies for analyzing genetic data in the presence of 
class imbalance.

Results
Machine learning results without clumping

The ULSAM GWAS data were divided into two parts; 70% training set and 30% test-
ing set in preparation for the supervised learning algorithms for classifying cases and 
controls. tenfold cross-validation was performed to avoid over-fitting [32]. A total of 
399,935 SNPs with no missing genotype information for each of the 1116 samples (165 
cases and 951 controls) were used in the analysis. After using SMOTE for the adjust-
ment of imbalanced classes, there were 1902 individuals, equally divided between the 
two classes (951 cases and 951 controls. After using SVM SMOTE for the adjustment of 
imbalanced classes, there were individuals, 1552 equally divided between the two classes 
(776 cases and 776 controls). After using ADASYN for the adjustment of imbalanced 
classes, there were individuals, 1872 equally divided between the two classes (936 cases 
and 936 controls). After using RUS for the adjustment of imbalanced classes, there were 
individuals, 466 equally divided between the two classes (233 cases and 233 controls). 
The choice of tuning parameters affects both the sensitivity and classification perfor-
mance independently [55]. Therefore, we used the optimal tuning parameters according 
to the instructions in the Scikit-learn package documentation for Python 3.7 [49, 56].

In the initial phase of our study, we applied machine learning models, namely Sup-
port Vector Machines (SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP), 
to a dataset characterized by class imbalance. The first columns of all respective tables 
denote the performance metrics achieved using the imbalanced data for each of the 
aforementioned models. Subsequently, we conducted an investigation involving the 
application of re-sampling techniques, namely Synthetic Minority Over-sampling Tech-
nique (SMOTE), Support Vector Machine Synthetic Minority Over-Sampling Technique 
(SVM SMOTE), Adaptive Synthetic (ADASYN), and Random Under-Sampling (RUS). 
The outcomes of these experiments were meticulously recorded in the subsequent col-
umns for each of the models (SVM, RF, MLP). This rigorous methodology empowers us 
to methodically ascertain the optimal model performance amidst varying re-sampling 
methodologies.

When comparing the methods used to eliminate the whole class imbalance and the 
original data, SMOTE method gives the best results for support vector machines with 
the highest accuracy rate (91%) and F1 score (90%). The SMOTE method is followed by 
the ADASYN method with an accuracy of 90% and an F1 score of 89%. The RUS method, 
on the other hand, had the worst results. (Table 2).

It is evident that SMOTE demonstrated the highest efficiency among the imbalanced 
learning methods applied to enhance the performance of the SVM model, closely fol-
lowed by ADASYN. While SVM SMOTE also exhibited improvement, its effectiveness 
was slightly lower than that of SMOTE. In contrast, employing the RUS method and 
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applying the machine learning methods without any correction led to significantly lower 
classification success, as indicated by the ROC curve (Fig. 6).

When comparing the methods used to eliminate the whole class imbalance and the 
original data, the SMOTE method and ADASYN are the methods that give the best 
results for the random forest with the highest accuracy rates (92%) and approximately F1 
scores (92%). Therefore, both methods can be used interchangeably. Although the SVM 
SMOTE method achieved accuracy with a 5% difference compared to the method whose 
class Imbalance problem was not resolved, it achieved better results in terms of F1 score 
and sensitivity and specificity than the case without class imbalance. Although the RUS 
method has the lowest accuracy rate, it has a sensitivity difference of 35% compared to 
the original data (Table 3).

As can be seen from the Roc curve, it is seen that the classification success of the RF 
results used without any correction with the RUS method is low, and at the same time, 
the lines for the SMOTE and ADASYN methods intersect at almost the same point, 
therefore, the ADASYN and SMOTE methods are almost equal in terms of all metrics 
(Fig. 7).

Among the methods used to correct class imbalance for MLP, the SMOTE method 
has the best result with the highest accuracy rate (97%) and F1 score (97%). The SVM 
SMOTE method, on the other hand, follows the SMOTE method with 92% accuracy and 
88% F1 score rate. Although the ADASYN method is not as high in accuracy as SMOTE 
and SVM SMOTE, it has a very good F1 score (93%). The RUS method, on the other 
hand, was seen as a bad method (47%) with accuracy and (7%) F1 score (Table 4).

As can be seen from the Roc curve, SMOTE, SVM SMOTE, and ADASYN meth-
ods have very high classification success for MLP. The original data and RUS methods 
showed poor classification performance (Fig. 8.).

Table 2 The performances of support vector machine with imbalanced learning methods

*  PPV: Positive Predictive Value

**NPV: Negative Predictive Value

Imbalanced learning 
methods number of 
SNP 399935

Prediction class PPV* NPV** Sensitivity Specificity F1 Score Accuracy

SVM Controls Cases

Reel class Controls 278 0 0.00 0.82 0.00 1.00 0.00 0.82

Cases 57 0

SMOTE Controls Cases

Reel Class Controls 287 0 1.00 0.85 0.83 1.00 0.90 0.91

Cases 47 237

SVM SMOTE Controls Cases

Reel Class Controls 293 0 1.00 0.83 0.67 1.00 0.80 0.87

Cases 56 117

ADASYN Controls Cases

Reel Class Controls 285 0 1.00 0.84 0.81 1.00 0.89 0.90

Cases 51 226

RUS Controls Cases

Reel Class Controls 47 0 ** 0.47 0.00 1.00 0.00 0.47

Cases 53 0
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The logistic regression results applied to the data with class imbalance were found to 
be quite similar to all machine learning results, with an accuracy rate of 82% and an F1 
score of 0.00. The ADASYN method achieved very close results to the SMOTE method, 

Fig. 6 ROC Curve: Comparison of the performances of Support Vector Machine with Imbalanced Learning 
Methods

Table 3 The performances of random forest with imbalanced learning methods

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced learning 
methods number of 
SNP 399935

Prediction class PPV* NPV** Sensitivity Specificity F1 Score Accuracy

RF Controls Cases

Reel class Controls 278 0 0.00 0.82 0.00 1.00 0.00 0.82

Cases 57 0

SMOTE Controls Cases

Reel class Controls 286 1 0.99 0.87 0.85 0.99 0.92 0.92

Cases 40 244

SVM SMOTE Controls Cases

Reel class Controls 290 3 0.97 0.84 0.68 0.98 0.80 0.87

Cases 54 119

ADASYN Controls Cases

Reel class Controls 285 0 1.00 0.86 0.84 1.00 0.91 0.92

Cases 43 234

RUS Controls Cases

Reel class Controls 26 21 0.47 0.43 0.35 0.55 0.40 0.45

Cases 34 19
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with an accuracy of 95% and an F1 score of 93%. The SVM SMOTE method can be con-
sidered as an alternative to these two methods with 90% accuracy and 84% F1 score. 
Although the RUS method, like all other machine learning methods, had poor results, 
it achieved a 41% higher sensitivity rate than the data with unbalanced classes (Table 5).

Fig. 7 ROC Curve: Comparison of the performances of Random Forest with Imbalanced Learning Methods

Table 4 The performances of multi-layer perceptron with imbalanced learning methods

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced learning 
methods number of 
SNP 399935

Prediction class PPV* NPV** Sensitivity Specificity F1 Score Accuracy

MLP Controls Cases

Reel class Controls 277 1 0.00 0.82 0.00 0.99 0.00 0.82

Cases 57 0

SMOTE Controls Cases

Reel class Controls 282 5 0.98 0.96 0.96 0.98 0.97 0.97

Cases 9 275

SVM SMOTE Controls Cases

Reel class Controls 290 3 0.97 0.89 0.80 0.98 0.88 0.92

Cases 33 140

ADASYN Controls Cases

Reel class Controls 285 0 1.00 0.89 0.88 1.00 0.93 0.84

Cases 32 245

RUS Controls Cases

Reel class Controls 45 2 0.50 0.46 0.03 0.95 0.07 0.47

Cases 51 2
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Fig. 8 ROC Curve: Comparison of the performances of Multi-Layer Perceptron with Imbalanced Learning 
Methods

Table 5 The performances of logistic regression with imbalanced learning methods

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced learning 
methods number of 
SNP 399935

Prediction Class PPV* NPV** Sensitivity Specificity F1 Score Accuracy

LR Controls Cases

Reel class Controls 276 2 0.00 0.82 0.00 0.99 0.00 0.82

Cases 57 0

SMOTE Controls Cases

Reel class Controls 284 0 0.90 1.00 1.00 0.91 0.95 0.95

Cases 26 262

SVM SMOTE Controls Cases

Reel class Controls 291 2 0.98 0.86 0.74 0.99 0.84 0.90

Cases 44 129

ADASYN Controls Cases

Reel class Controls 285 0 1.00 0.89 0:87 1.00 0.93 0.93

Cases 35 242

RUS Controls Cases

Reel class Controls 28 19 0.53 0.47 0.41 0.59 0.46 0.50

Cases 31 22
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For LR, the SMOTE, ADASYN, and SVM SMOTE methods, which are used to elimi-
nate class imbalance, yield almost identical metrics, resulting in very similar results for 
the entire Roc curve. For RUS and the original data, the ROC curve clearly showed that 
both methods failed in classification (Fig. 9.).

Machine learning results with clumping

Following the clumping procedure in PLINK [8], the thresholds were chosen as 0.0001, 
0.01, 0.50 and 250 for the parameters p1, p2, r2 and kb, respectively. p1: Significance 
threshold for index SNPs, p2: Secondary significance threshold for clumped SNPs, r2: 
LD threshold for clumping, kb: Physical distance threshold for clumping. PLINK [8] was 
used to LD clump SNPs, using an r2 threshold of 0.50 in windows of 250 kb, based on 
a significance threshold of p < 0.01 for index SNPs and p < 0.0001 for clumped SNPs. In 
total, 29 SNPs with very low correlation with one another were obtained.

Data with class imbalances are similar to results before using clumping (e.g., 83% accu-
racy, 0% F1 score). All the Class Imbalance resolved methods significantly increased the 
sensitivity measure. The lowest sensitivity rate was found with RUS (72%). All imbal-
anced learning methods significantly increased the F1 score. SMOTE has the highest F1 
score with 82%. (Table 6).

In terms of the Clumping and SVM method, the classification performances of all the 
methods used to eliminate the class imbalance are very close to each other. Because, 
when metric values such as sensitive and specificity are examined, it is seen that the 
results are close to each other (Fig. 10.).

The RF used with the SMOTE method achieved the best result in terms of F1 score 
(82%). There is no difference between the clumping method and the use of all SNPs 

Fig. 9 ROC Curve: Comparison of the Performances of Logistic Regression with Imbalanced Learning 
Methods



Page 18 of 28Öztornaci et al. Journal of Big Data          (2023) 10:174 

in data with class imbalance, as in SVM. A good PPV value was obtained with SVM 
SMOTE (90%). The ADASYN method and the RUS methods obtained very close results 
with an accuracy rate of 75% (Table 7).

Table 6 The performances of support vector machine with imbalanced learning methods with 
using clumped SNPs

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced learning 
methods number of 
SNP 29

Prediction class PPV* NPV** Sensitivity Specificity F1 score Accuracy

SVM Controls Cases

Reel class Controls 278 0 0.00 0.83 0.00 1.00 0.00 0.83

Cases 57 0

SMOTE Controls Cases

Reel class Controls 190 84 0.76 0.85 0.89 0.69 0.82 0.79

Cases 34 263

SVM SMOTE Controls Cases

Reel class Controls 225 53 0.81 0.77 0.77 0.81 0.79 0.79

Cases 67 226

ADASYN Controls Cases

Reel class Controls 201 83 0.75 0.83 0.86 0.71 0.80 0.78

Cases 42 249

RUS Controls Cases

Reel class Controls 44 12 0.72 0.79 0.72 0.79 0.72 0.76

Cases 12 31

Fig. 10 ROC Curve: Comparison of the performances of Support Vector Machine with Imbalanced Learning 
Methods with using Clumped SNPs
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Table 7 The performances of random forest with imbalanced learning methods with using 
clumped SNPs

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced learning 
methods number of 
SNP 29

Prediction class PPV* NPV** Sensitivity Specificity F1 score Accuracy

RF Controls Cases

Reel class Controls 278 0 0.00 0.82 0.00 1.00 0.00 0.82

Cases 57 0

SMOTE Controls Cases

Reel class Controls 184 90 0.75 0.84 0.89 0.67 0.81 0.78

Cases 34 263

SVM SMOTE

Reel class Controls 260 18 0.90 0.65 0.53 0.94 0.67 0.73

Cases 138 155

ADASYN Controls Cases

Reel class Controls 216 68 0.76 0.74 0.74 0.76 0.75 0.75

Cases 76 215

RUS Controls Cases

Reel class Controls 39 17 0.67 0.83 0.81 0.70 0.74 0.75

Cases 8 35

Fig. 11 ROC Curve: Comparison of the performances of Random Forest with Imbalanced Learning Methods 
with using Clumped SNPs
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It is seen in the graph that the results very close to the use of the Clumping SVM 
method are also obtained with the RF method (Fig. 11).

Compared to SVM and RF, the use of clumping with MLP gave relatively better results 
with an accuracy rate of 82% and an F1 score of 43%. However, when the class imbalance 
problem was resolved, F1 scores above 80% were obtained with SMOTE, SVM SMOTE 
and ADASYN. It should be considered that the RUS method also achieved an F1 score 
of 63%, although it had a low accuracy rate of 69% compared to the case where the class 
imbalance was not resolved (Table 8).

For MLP used with the clamping method, there is no difference between the methods 
used to get rid of the class imbalance in terms of classification performance (Fig. 12.).

While high accuracy (89%) was obtained for data without class imbalance, low sensi-
tivity rate (50%) and low F1 score (60%) were obtained due to class imbalance. In all the 
methods that eliminated the class imbalance, F1 score, and sensitivity were obtained at a 
higher rate than the original data, including RUS (Table 9).

All the methods used to eliminate class imbalance gave very close results for LR and 
LR is no different in terms of classification performance from the method used to elimi-
nate any class imbalance. (Fig. 13.).

Assessment of machine learning results

As will be noted in all tables, accuracy is not the best indicator when evaluating ML 
models, whereas the F1 score is more informative. All models achieved "good" accu-
racy results and most methods achieved a positive predictive value and sensitivity 
value of 0.00. Zero precision algorithms cannot capture true positives. The methods 
used to resolve the class imbalance not only improved the performance of machine 
learning methods, but also increased the performance for the classical method, 

Table 8 The performances of multi-layer perceptron with imbalanced learning methods with using 
clumped SNPs

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced Learning 
Methods Number of 
SNP 29

Prediction Class PPV* NPV** Sensitivity Specificity F1 Score Accuracy

MLP Controls Cases

Reel Class Controls 251 27 0.46 0.88 0.40 0.90 0.43 0.82

Cases 34 23

SMOTE Controls Cases

Reel Class Controls 210 64 0.79 0.80 0.82 0.77 0.81 0.80

Cases 52 245

SVM SMOTE Controls Cases

Reel Class Controls 221 57 0.81 0.81 0.82 0.79 0.81 0.81

Cases 53 240

ADASYN Controls Cases

Reel Class Controls 213 71 0.78 0.86 0.88 0.75 0.83 0.81

Cases 36 255

RUS Controls Cases

Reel Class Controls 42 14 0.65 0.71 0.60 0.75 0.63 0.69

Cases 17 26
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logistic regression. SMOTE applied to all SNPs has been shown to produce better 
results than clustering with SMOTE (Tables 2, 3, 4 and 5). MLP was the best method 
overall, but all methods were performed similarly for each analysis comparison. 

Fig. 12 ROC Curve: Comparison of the performances of Multi-Layer Perceptron with Imbalanced Learning 
Methods with using Clumped SNPs

Table 9 The performances of logistic regression with imbalanced learning methods with using 
clumped SNPs

* PPV Positive predictive value
** NPV Negative predictive value

Imbalanced learning 
methods number of 
SNP 29

Prediction class PPV* NPV** Sensitivity Specificity F1 score Accuracy

LR Controls Cases

Reel class Controls 272 6 0.82 0.90 0.47 0.98 0.60 0.89

Cases 30 27

SMOTE Controls Cases

Reel class Controls 210 64 0.79 0.76 0.79 0.77 0.79 0.78

Cases 67 245

SVM SMOTE Controls Cases

Reel class Controls 213 65 0.77 0.74 0.75 0.77 0.76 0.76

Cases 73 220

ADASYN Controls Cases

Reel class Controls 208 76 0.75 0.76 0.77 0.73 0.76 0.75

Cases 67 224

RUS Controls Cases

Reel class Controls 48 8 0.79 0.79 0.70 0.86 0.74 0.79

Cases 13 30
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Considering the clumping method, all machine learning methods used to get rid of 
class imbalance only increased the sensitivity (Tables 6, 7, 8 and 9).

Since the methods we used to eliminate class imbalance in all methods gave 
close results and the method that gave the best results in general among them was 
SMOTE, when we compared the BMI correction using the SMOTE method with 
the BMI correction, it was seen that BMI had no effect on the classification suc-
cess. As shown in Additional file 1: Tables S1-S4, although BMI is a highly signifi-
cant predictor of T2D, it has little effect on the predictive metrics evaluated across 
the methodology. Most interesting is the effect of BMI on the MLP algorithm when 
clustered SMOTE is applied as there is an increase in prediction accuracy. When 
we compare the MLP performance in Table 5 and Additional file 1: Table S3, we can 
see an increase in prediction accuracy of 0.05 and better classification of cases and 
controls.

Our study constitutes a significant stride in the realm of genetic epidemiology. Pre-
vious investigations have not systematically assessed the performance of machine 
learning algorithms in distinguishing between patients and controls using authentic 
genetic data characterized by class imbalance, particularly in the context of GWAS 
data. By redressing this imbalance in genetic data, applying our novel approach to 
genuine genetic datasets, and refining genetic analytical techniques, our work not 
only conducts an empirical inquiry but also imparts a substantive contribution to 
the wider scientific community. This study provides valuable insights for researchers 
seeking to discern the optimal machine learning and resampling methods for effec-
tively discriminating between patients and controls in genetic data featuring class 
imbalance.

Fig. 13 ROC Curve: Comparison of the performances of Logistic Regression with Imbalanced Learning 
Methods with using Clumped SNPs
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Covariate investigation

Obesity is a well-established risk factor for T2D. The mean and standard deviation (SD) 
of BMI in the controls (N = 951) and cases (N = 165) were 25.97 ± 3,22 and 27.93 ± 3,94 
respectively. As expected, BMI is strongly associated with T2D (t = − 6.035, p < 0.001). 
We repeated our classification with adjustment for BMI by including it as a variable in 
the model. The ML results including BMI are shown in the Additional file. All the mod-
els both with and without clumping were not affected by the inclusion of BMI. Never-
theless, the same results were obtained for the models with SMOTE (Additional file 1: 
Tables S1–S4).

Discussion
The results when using SMOTE (resampling) for imbalanced classification are shown to 
be the most accurate. The clumping method is better suited in terms of computational 
speed but is dependent on LD pruning because correlated SNPs are less likely to be 
eliminated from the analysis. Only a small number of related SNPs were selected using 
clumping and then pruned by the chosen LD threshold.

Our findings suggest that using the SMOTE method with all the SNPs in a given 
dataset should be implemented in order to avoid over-fitting. Doing this enabled the 
use of the whole dataset for SNP pattern recognition compared to the clumping proce-
dure, where many potentially false positive or true negative associated SNPs were not 
eliminated.

The specificity results in Table  4, highlight a concern with using ML methods. ML 
methods fall short when dealing with an imbalanced class of data for selecting controls. 
For this reason, methods such as clumping and SMOTE are important for achieving 
unbiased results [57–59]. Because, when applying clumping, the SNPs that are lowly 
correlation with one another are included in the analysis. Applying SVM with clumping 
achieved very high classification metric results as shown in Table 6. As a final point, we 
recommend using SMOTE with any of the three ML models we discussed for GWAS 
data with imbalanced classes. This is because SMOTE seems unaffected by the imbal-
anced sample size and the volume of SNPs to be analysed. However further analysis 
is needed with a greater number of patients. Machine learning techniques are being 
applied to a variety of different data types and are growing in popularity in several indus-
tries. One key advantage over classical statistical methodology is that ML models do not 
require any assumptions. This helps in the search for patterns in large scale datasets pro-
duced in the field of genomics.

Different problems can be faced when using ML, such as class imbalance, computation 
time and memory usage. The imbalanced class problem causes underfitting, and we have 
shown that using SMOTE could be a solution [60]. Our results show that using SMOTE 
with RF can drastically improve prediction performance. On the other hand, clumping 
is beneficial for reducing computation time and memory usage with improved predic-
tion performance over using ML methods without clumping. The clumping method is 
the best option for large datasets due to its stringent feature elimination criteria. The 
inflated accuracy results from all models may be related to the dimensionality of the 
data. Previous studies of a similar nature have shown comparable accuracy rates [61, 62].



Page 24 of 28Öztornaci et al. Journal of Big Data          (2023) 10:174 

In parallel with this methodology, previous studies have also explored the application 
of RF on datasets characterized by imbalanced class distributions when predicting Dia-
betes Mellitus risk. Remarkably, these investigations yielded noteworthy results, reveal-
ing that the integration of both SMOTE and SVM SMOTE techniques led to a significant 
enhancement in the classification performance of RF [63]. According to another study 
employing class-imbalanced data with a machine learning approach, it was observed 
that the utilization of MLP led to a significant enhancement in classification perfor-
mance when class imbalance was mitigated through the integration of SMOTE and 
ADASYN. These findings underscore the efficacy of employing advanced resampling 
techniques in conjunction with MLP for achieving superior classification outcomes in 
imbalanced datasets [64]. In a separate study focusing on parameter optimization in the 
presence of class imbalance, SVM was employed. It was observed that the classification 
success of SVM experienced a significant boost when combined with the SMOTE [65]. 
While previous literature has recommended the application of resampling methods to 
address class imbalance in various datasets, none have specifically utilized GWAS data. 
In our study, we introduced an innovative approach to the literature by implementing 
resampling techniques in machine learning on GWAS data exhibiting class imbalance.

Among the methods used to eliminate the other class imbalance, SMOTE and 
ADASYN generally obtained close results. The RUS method, on the other hand, had 
poor results when used with all SNPs, because if examined, information loss may occur 
in randomly selected samples depending on the data size. The reason for the good results 
of using RUS with Clumping should be taken into account that the loss of information 
may be less because the data size is reduced (it has decreased to only 29 SNPs).

This paper makes recommendations and suggestions based on data similar to that of 
the ULSAM genetic and cohort data. Investigators should always be careful and mind-
ful of the impact on their results when selecting and using ML models with imbalanced 
classes. Previous literature have shown that class imbalance can affect sensitivity or 
specificity [66]. ML is currently a useful method for the validation of classical GWAS 
approaches to identify SNPs associated with disease and for the prediction of disease 
status. As more and larger datasets become widely available, this will enable ML algo-
rithms to predict disease status using SNP data more accurately in future cohorts. Leav-
ing behind the need for stringent p-value thresholds and assumptions.

In this study, machine learning is not used for find out a new SNPs, it is used for diag-
nostics and precision medicine in individual. This study is a novel for GWAS data with 
Class-Imbalanced. Compared to other methods, we recommend using SMOTE with 
MLP.

Conclusion
This study underscores the critical importance of addressing class imbalance in 
genetic data analysis. Among the methodologies evaluated, the utilization of SMOTE 
(Synthetic Minority Over-sampling Technique) for imbalanced classification consist-
ently yielded the most accurate results. Additionally, the clumping method demon-
strated computational efficiency, although it requires LD (Linkage Disequilibrium) 
pruning to maintain efficacy. Our findings strongly advocate for the implementa-
tion of the SMOTE method using the entirety of SNPs within a dataset to prevent 
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overfitting. This approach enables comprehensive SNP pattern recognition, distin-
guishing it from the clumping procedure, which may retain potentially false-positive 
or true-negative associated SNPs.

It is worth noting that machine learning methods may face challenges, includ-
ing class imbalance, computation time, and memory usage. Our results showcase 
that SMOTE, when applied in conjunction with Random Forest (RF), significantly 
enhances prediction performance, presenting a viable solution for addressing the 
imbalanced class problem. The clumping method, on the other hand, proves benefi-
cial for large datasets due to its stringent feature elimination criteria. However, the 
inflated accuracy results from all models should be interpreted cautiously, consider-
ing the dimensionality of the data.

This study is not without limitations. It specifically addresses ULSAM genetic and 
cohort data, and caution should be exercised when extrapolating to different datasets. 
Our work pioneers the application of machine learning in genetic epidemiology, focus-
ing on diagnostics and precision medicine at an individual level. The study contributes 
to the evolving landscape of GWAS data analysis, providing a novel approach for han-
dling class imbalance. Moving forward, we recommend the continued use of SMOTE in 
conjunction with Multi-Layer Perceptron (MLP) models for similar studies.

As more extensive datasets become available, the integration of machine learning 
algorithms holds promise for enhanced disease status prediction, potentially circum-
venting the need for stringent p-value thresholds and assumptions. This study sets 
the stage for future endeavours in genetic epidemiology, poised to make substantial 
strides in disease understanding and personalized intervention strategies.
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