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Introduction
Travel time estimation (TTE) is an actively developing branch of computational logistics 
that considers the prediction of potential time expenditures for specific types of trips 
[1, 2]. With the recent growth of urban environment complexity, such algorithms have 
become highly demanded both in commercial services and general traffic management 
[3]. Following this line, better TTE decreases logistic costs for different kinds of delivery 
[4], improves end-user experience for taxi services [5], and ensures the quality of 
adaptive traffic control [6].

Despite the applied significance of travel time estimation, it still remains a challenging 
task in the case of ground vehicles. This situation arises from the influence of different 
patterns of road network topology, nonlinear traffic dynamics, changing weather 
conditions, and other types of unexpected temporal events. The majority of the currently 
established algorithms [7, 8] tend to utilize specific data modalities in order to capture 
complex spatio-temporal dependencies influencing the traffic flow. With the recent 
success of multimodal approaches in adjacent areas of travel demand prediction [9] and 
journey planning [10], fusing the features from different sources is expected to be the 
next step towards better performance in TTE.
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In this paper, we explored the predictive capabilities of TTE algorithms with different 
temporal encoders and proposed a new transformer-based model GCT-TTE. The main 
contributions of this study are the following: 

1.	 In order to perform the experiments with the image modality, we extended the graph-
based datasets for Abakan and Omsk [11] by the map patches (image modality) in 
accordance with the provided trajectories. Currently, the extended datasets are the 
only publicly available option for experiments with multimodal TTE algorithms.

2.	 In order to boost further research in the TTE area, we reimplemented and published 
the considered baselines in a unified format as well as corresponding weights 
and data preprocessing code. This contribution will enable the community to 
enhance evaluation quality in the future, as most of the TTE methods lack official 
implementations.

3.	 We proposed the GCT-TTE neural network for travel time estimation and 
extensively studied its generalization ability under various conditions. Obtained 
results allowed us to conclude that our pipeline achieved better performance 
regarding the baselines in terms of several metrics. Conducted experiments explicitly 
indicate that the performance of the transformer-based models is less prone to 
decrease (in the sense of the considered metrics) with the scaling of a road network 
size. This property remains crucial from an industrial perspective, as the classic 
recurrent models undergo considerably larger performance dropdowns.

4.	 For demonstration purposes, we deployed inference of the GCT-TTE model as the 
web application accessible for manual experiments.

The web application is available at http://gctte.online and the code is published in the 
GitHub repository of the project. https://​github.​com/​Eigho​net/​GCT-​TTE.

Related work
Travel time estimation methods can be divided into two main types of approaches 
corresponding to the path-blind and path-aware estimation, Table  1. The path-blind 
estimation refers to algorithms relying only on data about the start and end points of 
a route [12]. The path-aware models use intermediate positions of a moving object 
represented in the form of GPS sequences [13], map patches [14], or a road subgraph [7]. 
Despite the computational complexity increase, such approaches provide significantly 
better results, which justify the attention paid to them in the recent studies [8, 15, 16].

Table 1  Demonstration of utilized modalities in path-blind and path-aware models

Path-blind models Path-aware models

Model Modality Model Modality

Graph Images GPS Graph Images GPS

 AVG − − −  WDR  +  − −
 LR − − −  DeepIST −  +  −
 MURAT​  +  − −  DeepTTE − −  + 

 DeepI2T  +   +  −  DeepI2T  +   +  −

https://github.com/Eighonet/GCT-TTE
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One of the earliest path-aware models was the wide-deep-recurrent (WDR) architec-
ture [17], which mostly inherited the concept of joint learning from recommender sys-
tems [18]. In further studies, this approach was extended regarding the usage of different 
data modalities. In particular, the DeepIST [14] model utilizes rectangular fragments of 
a general reference map corresponding to elements of a route GPS sequence. Extracted 
images are fed into a convolutional neural network (CNN) that captures spatial patterns 
of depicted infrastructure. These feature representations are further concatenated into 
the matrix processed by the long short-term memory (LSTM) layer [19].

In contrast with the other approaches, DeepTTE [20] is designed to operate directly 
on GPS coordinates via geospatial convolutions paired with a recurrent neural network. 
The first part of this pipeline transforms raw GPS sequences into a series of feature maps 
capturing the local spatial correlation between consecutive coordinates. The final block 
learns the temporal relations of obtained feature maps and produces predictions for the 
entire route along with its separate segments.

The concept of modality fusing was first introduced in TTE as a part of the DeepI2T 
[21] model. This architecture uses large-scale information network embedding [22] 
to produce grid representations and 3-layer CNN with pooling for image processing. 
As well as DeppTTE, DeepI2T includes the segment-based prediction component 
implemented in the form of residual blocks on the top of the Bi-LSTM encoder.

In addition to extensively studied recurrent TTE methods, it is also important to 
mention recently emerged transformer models [23, 24]. Despite the limited comparison 
with classic LSTM-based methods, they have already demonstrated promising 
prediction quality, preserving the potential for further major improvements [25, 26]. As 
most of the transformer models lack a comprehensive evaluation, we intend to explore 
GCT-TTE performance with respect to a sufficient number of state-of-the-art solutions 
to reveal its capabilities explicitly.

Preliminaries
In this section, we introduce the main concepts required to operate with the proposed 
model, Fig. 1.

Fig. 1  Example of data modalities of an arbitrary route r: for each GPS coordinate cri  from cr , there is a 
corresponding node gri  with associated features and map patch pri
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Route A route r is defined as the set {cr , ar , tr} , where cr is the sequence of GPS coor-
dinates of a moving object, ar is the vector of temporal and weather data, tr is the travel 
time.

As the image modality pr of a route r, we use geographical map patches corresponding 
to each coordinate cri ∈ cr . Each image has a fixed size 256× 256× 3 across all of the 
GPS sequences in a specific dataset.

Road network Road network is represented in the form of graph G = {V ,E,X} , 
where V = {v1, ... , vn} is the set of nodes corresponding to the segments of city 
roads, E = {(vi, vj) | vi → vj} is the set of edges between connected nodes vi, vj ∈ V  , 
X : n×m → R is a feature matrix of nodes describing properties of the roads’ segments 
(additional information regarding available graph features is provided in Additional 
file 1: S1).

Description of a route r can be further extended by the graph modality 
gr = {vk | k = argminj ρ(c

r
i , vj)}

|cr |
i=1 , where ρ(cri , vj) is the minimum Euclidean distance 

between coordinates associated with vj and cri  . Following the same concept as in the case 
of pr , the graph modality represents a sequence of nodes and their features aggregated 
with respect to the initial GPS coordinates cr.

Travel time estimation For each entry r, it is required to estimate the travel time tr 
using the elements of feature description {cr , pr , gr , ar}.

Data
We explored the predictive performance of the algorithm on two real-world datasets 
collected during the period from December 1, 2020 to December 31, 2020 in Abakan 
(112.4 square kilometers) and Omsk (577.9 square kilometers). Each dataset consists of a 
road graph and associated routes, Table 2. In the preprocessing stage, we excluded trips 
that lasted less than 30 s (273, 0.22% for Abakan; 1194, 0.15% for Omsk) along with the 
ones that took more than 50 min (223, 0.18% for Abakan; 3681, 0.47% for Omsk). The 
distributional statistics of both datasets are depicted in Fig. 2.

Since initial versions of Abakan and Omsk datasets did not have any relevant input 
data for image-based models, we extended their road graphs with the map patches 
parsed from Open Street Map (OSM) https://​www.​opens​treet​map.​org.  The pars-
ing algorithm extracted patches from the OSM tile server URLs in accordance with 
the following request template: http://a.tile.openstreetmap.org/{zoom}/{longitude}/
{latitude}.png. In order to utilize obtained data together with initial graphs, it was 
extended by mapping tables including the closest node id for each patch. The applied 
proximity measure was based on the Euclidean distance between location of image 

Table 2  Description of the Abakan and Omsk datasets

Road network Trips

Property\city Abakan Omsk Property\city Abakan Omsk

 Nodes 65,524 231,688  Trips number 121,557 767,343

 Edges 340,012 1,149,492  Coverage 53.3% 49.5%

 Clustering 0.5278 0.53  Average time 427 s 608 s

 Usage median 12 8  Average length 3604 m 4216 m

https://www.openstreetmap.org
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centroids and geographical coordinates of graph vertexes. Due to the limitations of 
the API throughput, the procedure of image extraction was distributed between sev-
eral machines with a total execution time exceeding 1 week.

The provided extension consists of images dated July 2022: due to the absence of 
significant changes in the road network topology since 2020, image modality for 
Abakan and Omsk remains actual with respect to the original graph-based data. The 
content of the patches includes a full range of geographic objects useful for travel 
time estimation (e.g., road networks, landscape groups, buildings and associated 
infrastructural objects) and covers all of the routes provided in the initial datasets.

Depending on the requirements of the considered learning model, image 
datasets had to be organized regarding the fixed grid partitions or centered around 
the elements of GPS sequences. In the first case, a geographical map of a city was 
divided into equal disjoint patches, which were further mapped with the GPS data in 
accordance with the presence of coordinates in a specific partition. Trajectory-based 
approach to dataset construction does not require the disjoint property of images 
and relies on the extraction of patches with the center in the specified coordinate, 
Algorithm 1 (collect and split functions can be accessed in Additional file 1: S2, S3). 
The obtained grid-based image dataset consists of 96,101 instances for Abakan and 
838,865 for Omsk while the trajectory-based dataset has 544,502 and 3,376,294 
images correspondingly.

One of the crucial features of the considered datasets is the absence of traffic flow 
properties. The availability of such data is directly related to the specialized tracking 
systems (based on loop detectors or observation cameras), which are not presented in 
the majority of cities. In order to make the GCT-TTE suitable for the greatest number 
of urban environments, we decided not to limit the study by the rarely accessible data.

Method
In this section, we provide an extensive description of the GCT-TTE main 
components: pointwise and sequence representation blocks, Fig. 3.

Fig. 2  Cumulative frequencies of car activity and distribution of trips duration for Abakan (a) and Omsk (b) in 
the four hours interval
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Patches encoder

In order to extract features from the image modality, we utilized the RegNetY [27] 
architecture from the SEER model family. The key component of this architecture is 
the convolutional recurrent neural network (ConvRNN) which controls the spatio-
temporal information flow between building blocks of the neural network.

Each RegNetY block consists of three operators. The initial convolution layer of 
t’th block processes the input tensor Xt

1 and returns the feature map Xt
2 . Next, the 

obtained representation Xt
2 is fed to ConvRNN:

where Ht−1 is the hidden state of the previous RegNetY block, bh is a bias tensor, Cx and 
Ch correspond to convolutional layers. In the following stage, Xt

2 and Ht are fed as input 
to the last convolution layer, which is further extended by residual connection.

As the SEER models are capable of producing robust features that are well-suited 
for out-of-distribution generalization [28], we pre-trained RegNetY with the following 
autoencoder loss:

where L is the binary cross-entropy function, f is an image flattening operator, and W is 
the projection matrix of learning parameters that maps model output to the flattened 
image.

Auxiliary encoder

Along with the map patches and graph elements, we apply additional features 
ar corresponding to the temporal and weather data (e.g., trip hour, type of day, 
precipitation). The GCT-TTE model processes this part of the input with the help of a 
trivial linear layer:

(1)Ht = tanh(Cx(X
t
2)+ Ch(H

t−1)+ bh),

(2)L(W × RegNet(X), f (X)) → 0,

Fig. 3  Demonstration of the GCT-TTE pipeline: feature extraction algorithms applied to considered 
modalities and extended by transformer encoder capturing the concatenated sequence of embeddings
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where W is a matrix of learning parameters.

Graph encoder

The graph data is handled with the help of the graph convolutional layers defined as 
follows:

where h(k)u  is a k-hop embedding [29] of u ∈ V  , h(0)u = xu , W (k) is a matrix of learning 
parameters of k’th convolutional layer, N (u) is a set of neighbour nodes of u, AGG v∈N (u) 
is a sum aggregarion function, and ||Nuv|| =

√
|N (u)||N (v)|.

To accelerate the convergence of the GCT-TTE model, we pre-trained the weights 
of the graph convolutions by the Deep Graph InfoMax algorithm [30]. This approach 
optimizes the loss function that allows learning the difference between initial and 
corrupted embeddings of nodes:

where hu is an embedding of node u based on the initial graph G , h̃u is an embedding of a 
node u from the corrupted version G̃ of the graph G , D corresponds to the discriminator 
function.

The final output of the pointwise block constitutes a concatenation of the weighted 
representations and auxiliary data for each route r with k segments:

where Hr is the matrix of size k × eg of graph-based segment embeddings, Ir is 
the matrix of size k × ei obtained from a flattened RegNet output, α , (1− α) , and β 
correspond to the weight coefficients of specific modalitites.

Sequence representation block

To extract sequential features from the output of the pointwise representation block, 
it is fed to transformer encoder [31]. The encoder consists of two attention layers with 
a residual connection followed by a normalization operator. The multi-head attention 
coefficients are defined as follows:

where xi, xj ∈ Pr , h is an attention head, dk is a scale coefficient, WT
h,q and WT

h,k are query 
and key weight matrices, wj is a vector of softmax learning parameters. The output of the 
attention layer will be:

(3)Ar = War ,

(4)h(k)u = ReLU

(

W(k) AGG v∈N (u) (
h
(k−1)
v

||Nuv||
)

)

,

(5)L = 1

N +M

(

N
∑

i=1

EG

[

log(D(hu, hG))
]

+
M
∑

j=1

EG̃

[

log(1− D(h̃u, hG))
])

,

(6)Pr = CONCAT(α ·Hr, (1− α) · Ir, β · Ar),

(7)α
(h)
i,j = softmaxwj

(

�WT
h,qxi,W

T
h,kxj�

√

dk

)

,
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where WT
h,v is value weight matrix, H is a number of attention heads.

The final part of the sequence representation block corresponds to the flattening 
operator and several linear layers with the ReLU activation, which predict the travel time 
of a route.

Results
In this section, we reveal the parameter dependencies of the model and compare the 
results of the considered baselines.

Experimental setup

The experiments were conducted on 16 GPU Tesla V100. For the GCT-TTE training, 
Adam optimizer [32] was chosen with a learning rate 5× 10−5 and batch size of 16. For 
better convergence, we apply the scheduler with patience equal to 10 epochs and 0.1 
scaling factor. The training time for the final configuration of the GCT-TTE model is 6 h 
in the case of Abakan and 30 for Omsk.

The established values of quality metrics were obtained from the 5-fold cross-
validation procedure. As the measures of the model performance, we use mean absolute 
error (MAE), rooted mean squared error (RMSE), and 10% satisfaction rate (SR). 
Additionally, we compute mean absolute percentage error (MAPE) as it is frequently 
applied in related studies.

Models comparison and evaluation

The results regarding path-blind evaluation are depicted in Table 3. Neighbor average 
(AVG) and linear regression (LR) demonstrated the worst results among the trivial 
baselines as long as gradient boosted decision trees (GBDT) explicitly outperformed 
more complex models in the case of the largest city. The MURAT model achieved the 
best score for Abakan in terms of MAE and RMSE, while GCT-TTE has the minimum 
MAPE among all of the considered architectures.

Demonstrated variability of metric values makes the identification of the best model 
rather a hard task for a path-blind setting. The simplest models are still capable to be 
competitive regarding such architectures as MURAT, which was expected to perform 

(8)ui = LayerNorm



xi +
H
�

h=1

WT
c,h

n
�

j=1

α
(h)
i,j W

T
h,vxj



,

Table 3  Path-blind models comparison

The best results are highlighted in bold

Baseline/metric Abakan Omsk

MAE RMSE MAPE SR MAE RMSE MAPE SR

AVG 322.77 477.61 0.761 0.018 439.05 628.75 0.741 0.012

LR 262.33 456.63 1.169 9.527 416.81 593.01 1.399 7.187

GBDT 245.77 433.91 1.106 10.28 209.99 372.11 0.656 17.72
MURAT​ 182.97 282.15 0.685 10.77 285.72 444.74 0.856 9.997

GCT-TTE 221.71 337.59 0.505 11.12 376.74 590.93 0.5486 8.99
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tangibly better on both considered datasets. The results regarding GCT-TTE can be par-
tially explained by its structure as it was not initially designed for a path-blind evaluation.

As can be seen in Table 4, the proposed solution outperformed baselines in terms of 
the RMSE value, which proves the rigidity of GCT-TTE towards large errors prevention. 
The comparison of MAE and RMSE for considered methods has shown a minimal gap 
between these metrics in the case of GCT-TTE for both cities, signifying the efficiency 
of the technique with respect to dataset size. Overall, the results have confirmed that 
GCT-TTE appeared to be a more reliable approach than the LSTM-based models: while 
MAPE remains approximately the same across top-performing architectures, GCT-TTE 
achieves significantly better MAE and RMSE values. Conducted computational experi-
ments also indicated that DeepI2T and WDR have intrinsic problems with the conver-
gence, while GCT-TTE demonstrates smoother training dynamics.

Performance analysis

In the case of both datasets, dependencies between the travelled distance and obtained 
MAE on the corresponding trips reveal similar dynamics: as the path length increases, 
the error rate continues to grow, Fig.  4b, d. The prediction variance is inversely 
proportional to the number of routes in a particular length interval except for the small 
percentage of the shortest routes. The main difference between the MAE curves is 
reflected in the higher magnitudes of performance fluctuations in Abakan compared to 
Omsk.

The temporal dynamics of GCT-TTE errors exhibit rich nonlinear properties during 
a 24-hour period. The shape of the error curves demonstrates that our model tends to 
accumulate a majority of errors in the period between 16:00 and 18:00, Fig. 4a, c. This 
time interval corresponds to the end of the working day, which has a crucial impact on 
the traffic flow foreseeability.

Despite the mentioned performance outlier, the general behaviour of temporal 
dependencies allows concluding that GCT-TTE successfully captures the factors 
influencing the target value in the daytime. With the growing sparsity of data during 
night hours, it is still capable of producing relevant predictions for Omsk. In the case of 
Abakan, the GCT-TTE performance drop can be associated with a substantial reduction 
in intercity trips number (which emerged to be an easier target for the model).

Table 4  Path-aware models comparison

The best results are highlighted in bold

Baseline/metric Abakan Omsk

MAE RMSE MAPE SR MAE RMSE MAPE SR

DeepIST 153.88 241.29 0.3905 18.08 256.50 415.16 0.6361 14.39

DeepTTE 111.03 174.56 0.2165 31.45 179.07 296.98 0.1898 34.03

GridLSTM 100.27 206.91 0.2202 30.74 135.74 257.18 0.2120 31.21

DeepI2T 97.99 201.33 0.2128 31.34 136.66 260.90 0.2124 31.23

WDR 97.22 190.09 0.2162 31.98 131.57 269.00 0.2039 33.34

GCT-TTE 92.26 147.89 0.2262 30.46 107.97 169.15 0.1961 35.17
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Fig. 4  Spatial and temporal (hour) dependencies across the different groups of test entries for Abakan (a, b) 
and Omsk (c, d): blue and red lines depict mean and median values of MAE, borders of filled area correspond 
to Q1 and Q3 quartiles of a MAE distribution

Fig. 5  Temporal (day and week) dependencies across the different groups of test entries for Abakan (a, b) 
and Omsk (c, d): blue and red lines depict mean and median values of MAE, borders of filled area correspond 
to Q1 and Q3 quartiles of a MAE distribution. The weekends are represented by the vertical areas filled with a 
darker colour
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Focusing on higher levels of seasonality, day- and week-based temporal dependen-
cies of error demonstrate explicit periodical behaviour, Fig.  5. The GCT-TTE model 
performs better at the end of the week for both considered cities, with a pronounced 
error decrease in the case of Omsk. In contrast, the middle of the week (i.e. Wednesday 
for Abakan and Tuesday for Omsk) is the most challenging period, which has averagely 
12.48% higher MAE compared to Saturday and Sunday.

Sensitivity analysis

In order to achieve better prediction quality, we extensively studied the dependencies 
between GCT-TTE parameters and model performance in the sense of the MAE metric. 
The best value for modality coefficient α was 0.9, which reflects the significant contri-
bution of graph data towards error reduction. For the final model, we utilized 2 graph 
convolutional layers with hidden size 192, Fig. 6a, b. The lack of aggregation depth can 
significantly reduce the performance of GCT-TTE, while the excessive number of layers 
has a less expressive negative impact on MAE. A similar situation can be observed in the 
case of the hidden size, which is getting close to a plateau after reaching a certain thresh-
old value.

Along with the graph convolutions, we explored the configuration of the sequence 
representation part of GCT-TTE. Since the transformer block remains its main com-
ponent, the computational experiments were focused on the influence of encoder depth 
on quality metrics, Fig. 3c. As it can be derived from the U-shaped dependency, the best 
number of attention layers is 3.

Demonstration
In order to provide access to the inference of GCT-TTE, we deployed a demonstrational 
application http://​gctte.​online in a website format, Fig.  7. The application’s interface 
consists of a user guide, navigation buttons, erase button, and a comparison button. A 
potential user can construct and evaluate an arbitrary route by clicking on the map at the 
desired start and end points: the system’s response will contain the shortest path and the 
corresponding value of the estimated time of arrival.

For additional evaluation of considered baselines, the limited number of predefined 
trajectories with known ground truth can also be requested. In this case, the response 
will contain three random trajectories from the datasets with associated predictions of 
WDR, DeepI2T, and GCT-TTE models along with the real travel time.

Fig. 6  Parametric dependencies of GCT-TTE performance for Abakan: number of graph convolutions (a), 
hidden size of graph convolutions (b), and number of transformer encoder layers (c)

http://gctte.online
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Conclusion
In this paper, we introduced a multimodal transformer architecture for travel time 
estimation and performed an extensive comparison with the other existing approaches. 
Obtained results allow us to conclude that the transformer-based models can be 
efficiently utilized as sequence encoders in the path-aware setting. Our experiments 
with different data modalities revealed the superior importance of graphs compared 
to map patches. Such an outcome can be explained by the inheritance of main features 
between modalities where graph data represents the same properties more explicitly. In 
further studies, we intend to focus on the design of a more expressive image encoder as 
well as consider the task of path-blind travel time estimation, which currently remains 
challenging for the GCT-TTE model.
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