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Abstract 

This research paper presents an innovative approach to gradient descent known 
as ‘‘Sample Gradient Descent’’. This method is a modification of the conventional batch 
gradient descent algorithm, which is often associated with space and time complex-
ity issues. The proposed approach involves the selection of a representative sample 
of data, which is subsequently subjected to batch gradient descent. The selection 
of this sample is a crucial task, as it must accurately represent the entire dataset. To 
achieve this, the study employs the use of Principle Component Analysis (PCA), which 
is applied to the training data, with a condition that only those rows and columns 
of data that explain 90% of the overall variance are retained. This approach results 
in a convex loss function, where a global minimum can be readily attained. Our results 
indicate that the proposed method offers faster convergence rates, with reduced com-
putation times, when compared to the conventional batch gradient descent algorithm. 
These findings demonstrate the potential utility of the ‘‘Sample Gradient Descent’’ tech-
nique in various domains, ranging from machine learning to optimization problems. 
In our experiments, both approaches were run for 30 epochs, with each epoch taking 
approximately 3.41 s. Notably, our ‘‘Sample Gradient Descent’’ approach exhibited 
remarkable performance, converging in just 8 epochs, while the conventional batch 
gradient descent algorithm required 20 epochs to achieve convergence. This substan-
tial difference in convergence rates, along with reduced computation times, highlights 
the superior efficiency of our proposed method. These findings underscore the poten-
tial utility of the ‘‘Sample Gradient Descent’’ technique across diverse domains, rang-
ing from machine learning to optimization problems. The significant improvements 
in convergence rates and computation times make our algorithm particularly appeal-
ing to practitioners and researchers seeking enhanced efficiency in gradient descent 
optimization.
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Introduction
In recent years, the field of machine learning has witnessed a rapid proliferation of 
research endeavors, leading to the development of new algorithms and techniques [20–
22]. Among these, the gradient descent algorithm stands as one of the foundational tools 
for optimizing machine learning models by minimizing their associated loss functions. 
However, the traditional batch gradient descent algorithm often grapples with various 
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challenges, particularly in the context of large datasets. These challenges encompass 
high computational complexity and sluggish convergence rates, posing significant hur-
dles for efficient model training.

To address these limitations, researchers have introduced numerous variants and 
enhancements to the gradient descent algorithm [13, 23, 24]. One notable variant is 
the sample gradient descent (SGD) algorithm, which deviates from the conventional 
approach by utilizing a random subset of data samples to compute gradients [15]. This 
modification aims to expedite convergence, reduce computational complexity, and 
enhance the model’s generalization capability. Another influential optimization tech-
nique is the Adam optimizer, which employs adaptive learning rates and momentum to 
expedite convergence in deep learning applications [21].

Despite these advancements, there persists a need for novel approaches that can fur-
ther ameliorate the efficiency and effectiveness of gradient descent-based optimization 
algorithms. This research paper introduces a novel modification of the batch gradient 
descent algorithm, termed ‘‘Sample Gradient Descent,’’ which harnesses the power of 
Principal Component Analysis (PCA) to augment the conventional sampling strategy. 
Our proposed approach leverages PCA to select a representative subset of data from the 
original dataset, ensuring that it adequately captures the dataset’s essential characteris-
tics [16]. Specifically, PCA retains only those rows and columns of data that collectively 
explain a predetermined percentage of the dataset’s overall variance, typically set at 90%. 
This judicious selection of data results in a more efficient and informative sample for 
subsequent optimization. The application of PCA results in a convex loss function, pro-
viding an advantageous landscape where a global minimum can be reached more effi-
ciently [17].

The primary aim of this research endeavor is to examine the efficacy of the "Sample 
Gradient Descent" technique in comparison to traditional batch gradient descent and 
other optimization algorithms. We systematically evaluate the convergence rates, com-
putational times, and overall model performance, showcasing the potential utility of our 
approach in a wide array of domains, spanning from machine learning to optimization 
problems [18, 19]. In the following sections of this paper, we provide a comprehensive 
overview of gradient descent algorithms, including traditional batch gradient descent 
and recent variants. Subsequently, we introduce our novel approach, describe its inner 
workings, and present the results of extensive experiments. Finally, we conclude with a 
discussion of the implications of our findings and outline potential avenues for future 
research.

Literature review
The gradient descent (GD) is a widely used optimization algorithm in machine learn-
ing [1]. It is an iterative method that minimizes a cost function by finding the steep-
est descent direction. GD has two main variants, batch gradient descent (BGD) and 
stochastic gradient descent (SGD). BGD updates the parameters using the average 
of all the training examples while SGD updates the parameters using a single training 
example at a time. However, both BGD and SGD have their limitations. BGD requires 
all the training data to be loaded into memory, which can be computationally expen-
sive for large datasets. SGD can be unstable and may converge to a suboptimal solution 
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[1]. To overcome the limitations of BGD and SGD, several new optimization techniques 
have been proposed in the literature. One of these techniques is the mini-batch gradient 
descent (MBGD), which is a compromise between BGD and SGD. MBGD updates the 
parameters using a small random sample of training examples (a mini-batch) at a time. 
This approach reduces the memory requirements of BGD and the instability of SGD [2].

Another optimization technique that has gained popularity in recent years is the 
Adam optimizer [3]. The Adam optimizer is a variant of stochastic gradient descent that 
uses adaptive learning rates for each parameter. It also incorporates momentum to speed 
up convergence. The Adam optimizer has shown to be effective in many deep learning 
applications [3]. In addition to these optimization techniques, several researchers have 
proposed modifications to the gradient descent algorithm. For example, the Nesterov 
accelerated gradient (NAG) descent uses an accelerated gradient method to estimate the 
gradient at the next step [5]. This modification has been shown to improve convergence 
rates compared to standard GD [7]. Another modification of GD is the conjugate gradi-
ent (CG) descent, which uses conjugate directions to estimate the gradient [6]. CG has 
been shown to converge faster than standard GD for certain types of problems [6].

The use of second-order methods, such as the Hessian matrix, has also been proposed 
to optimize the cost function. However, these methods are computationally expensive 
and are not widely used in practice [2]. Apart from optimization techniques, several 
studies have focused on the choice of activation functions. The most commonly used 
activation functions are sigmoid and ReLU (rectified linear unit). Sigmoid functions are 
smooth and differentiable but suffer from the vanishing gradient problem, while ReLU 
functions are non-smooth but do not suffer from the vanishing gradient problem [2]. 
Recent studies have also focused on the use of convolutional neural networks (CNNs) 
for image recognition [4]. CNNs use a hierarchical architecture that learns features at 
multiple levels of abstraction. They have shown to be effective in various image recog-
nition tasks, such as object recognition and segmentation [4]. In addition to optimiza-
tion techniques and activation functions, several studies have investigated regularization 
techniques. Regularization is used to prevent overfitting by adding a penalty term to 
the cost function. Common regularization techniques include L1 and L2 regularization, 
dropout, and early stopping [2].

Proposed methodology
The present research endeavor entails the introduction of an innovative rendition of the 
gradient descent technique, namely the ‘‘Sample Gradient Descent’’. This novel approach 
represents a modification of the conventional batch gradient descent algorithm, which 
necessitates the simultaneous processing of all available data. This approach results in 
complexities associated with space and time, rendering the attainment of the global 
minimum computationally demanding. Conversely, the stochastic gradient descent algo-
rithm processes data on an individual basis, which can be suboptimal in certain circum-
stances. Our method involves the selection of a representative sample (n) of data, which 
is subsequently subjected to batch gradient descent. The selection of an appropriate 
sample is of paramount importance, as it must accurately depict the entire dataset (N). 
To achieve this, we leverage the utility of Principle Component Analysis (PCA), which is 
applied to the training data, with a stipulation that only those rows and columns of data 
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that explain 90% of the overall variance are retained. Notably, this parameter is amenable 
to tuning and is deemed a hyperparameter. The optimal value of this parameter can be 
determined through the use of grid search or random search techniques. Mathemati-
cally, the calculation of y in regression can be expressed as:

the update rule for coefficients is

To calculate the slope we differentiate the loss functions with respect to b.

This is the equation for slope at b.

The algorithm for the above mathematical implementation of gradient decent as 
follows:

Algorithm: GDRegressor.

1. Initialize:

• Set self.m = 100
• Set self.b = −120
• Set self.lr as the learning rate
• Set self.epochs as the number of epochs

2. Fit(self, X, y):

•   For each epoch from 1 to self.epochs:

Calculate the loss slope with respect to b:
Set loss_slope_b = − 2 * sum(y − self.m*X.ravel() − self.b)

Calculate the loss slope with respect to m:
Set loss_slope_b = − 2 * sum((y − self.m*X.ravel() − self.b) * X.ravel())

Update the value of b using gradient descent:
Set self.b = self.b—(self.lr * loss_slope_b).

Update the value of m using gradient descent:

(1)y = m ∗ x + b

(2)ynew − N ∗ Slope

(3)L =
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Set self.m = self.m - (self.lr * loss_slope_m)
• Print the learned values of m and b

3. Predict(self, X):
•   Return self.m * X + self.b

4. Init(self, learning_rate, epochs):

Initialize the GDRegressor object with the provided learning_rate and epochs.

5. fit(self, X, y):

Call the Fit function to train the model on the input features X and target 
values y.

6. predict(self, X):

Call the Predict function to predict the output values for the given input X 
using the learned      weights m and b.
Return the predicted output values.

fit(self,X,y):

Implements the gradient descent algorithm for a specified number of epochs.
Calculates the gradients of the loss with respect to the weights m and b.
Updates the weights m and b based on the calculated gradients and the learning rate.
Prints the final optimized values of m and b.

predict(self,X):

Predicts the output values for the given input X using the learned weights m and b.
Returns the predicted output values.

Algorithm to Get Sample Data Explaining 90% Variance:

1. Import the required libraries:

Sklearn.decomposition for PCA.
Numpy for array operations.
Pandas for data manipulation.

2. Create a PCA object and set the number of components to None to keep all compo-
nents:

pca = PCA(n_components = None).
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3. Fit the PCA model to the training data:

pca.fit(X_train).

4. Calculate the cumulative sum of explained variance ratios:

Cumulative_variances = np.cumsum(pca.explained_variance_ratio_).

5. Find the index of the first component that explains 90% of the variance:

n_components = np.argmax(cumulative_variances >  = 0.90) + 1.

6. Create a new PCA object with the optimal number of components:

pca = PCA(n_components = n_components).

7.  Fit the new PCA model to the training data:

pca.fit(X_train).

8. Transform the data to the new reduced dimensionality:

X_filtered = pca.transform(X_train).

9. Convert the transformed data to a pandas DataFrame:

X_filtered = pd.DataFrame(X_filtered).

 10. Return the filtered data (X_filtered).

Assume we have a dataset consisting of n samples, each with d features. We represent 
this dataset as an n × d matrix X, where each row corresponds to a sample and each 
column corresponds to a feature. PCA aims to find a new set of d orthogonal vectors 
(eigenvectors) that span the same d-dimensional space as the original features. These 
eigenvectors correspond to the principal components of the dataset, which capture the 
maximum variance of the data.

To do this, we can use the method of Lagrange multipliers. We want to maximize 
the variance of the projected data subject to the constraint that W is orthogonal, 
i.e.,WTW = I , where I is the identity matrix. We can introduce a Lagrange multiplier 
lambda to enforce this constraint, and the optimization problem becomes:
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where C = XTX is the covariance matrix of the data.

Note that lambda (λ) is the Lagrange multiplier introduced to enforce the constraint 
WTW = I .

This is an eigenvalue problem, where the columns of W are the eigenvectors of C and 
lambda is the corresponding eigenvalue. The eigenvectors of C are the principal compo-
nents, and the eigenvalues give us a measure of the variance explained by each principal 
component.

The first principal component (PC) is the direction that maximizes the variance of the 
projected data. It can be obtained by finding the eigenvector corresponding to the larg-
est eigenvalue of the covariance matrix of the data. The second PC is the direction that 
maximizes the variance of the projected data, subject to being orthogonal to the first PC. 
This process continues until d PCs are obtained.

Let W = [w1,w2, ...,wd] be the matrix of eigenvectors obtained from the PCA algo-
rithm, where each column corresponds to a PC. The matrix X can be projected onto the 
PC space by multiplying X by W:

The resulting matrix Z is an n × d matrix, where each row corresponds to a sample and 
each column corresponds to a PC. The columns of Z are orthogonal to each other, and 
capture decreasing amounts of variance of the original dataset.

In practice, it is often useful to select a subset of the PCs that capture most of the 
variance of the data. This can be done by calculating the cumulative sum of explained 
variance ratios, which is the proportion of the total variance of the data that is captured 
by the first k PCs. We can then select the smallest k such that the cumulative explained 
variance is above a certain threshold (e.g., 90%).

Once we have selected the optimal number of PCs, we can transform the data to the 
new reduced dimensionality by selecting the first k columns of Z:

The resulting matrix Z_k is an n × k matrix, where each row corresponds to a sam-
ple and each column corresponds to a selected PC. The columns of Z_k are orthogonal 
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to each other, and capture most of the variance of the original dataset. The transform 
method is called on the new PCA object with X_train as its argument to transform the 
data into a new reduced dimensionality. The resulting X_filtered dataframe contains the 
transformed data.

Results and discussions
The experiment has been conducted on a dataset with 1000 samples there are two col-
umns X and y as shown in Fig. 1.

Following the sampling process, the total number of rows in the dataset has been sig-
nificantly reduced to 800, while maintaining a variance of 90%. To determine the effec-
tiveness of this sampling method, we first applied a Linear Regression model on the 
original dataset and obtained the following performance metrics: Mean Absolute Error 
(MAE) of 16.424787360546866 and an R2_score of 0.9517612252940124.

Next, we applied the same Linear Regression model on the sampled dataset and 
evaluated the performance metrics again. The results showed a slight increase in the 
Mean Absolute Error (MAE) to 16.646637991384672 and a decrease in the R2_score to 
0.9485588105911298. However, it is important to consider the significant reduction in 
the dataset size and the competitive performance metrics achieved by the sampled data-
set. We plotted the cost functions before and after sampling.

In the context of optimization, the loss function plays a crucial role in determining the 
quality of the model, the comparison has been shown in Fig. 2 and Fig. 3 before and after 
sampling. In the current study, we observe that the loss function converges more rapidly 
in the case of sampled data as compared to the original data. The nature of the loss func-
tion in this case is convex, which implies that it has a unique global minimum. This is 
in contrast to non-convex loss functions that can have multiple local minima, making it 
more challenging to find the optimal solution. Furthermore, the rate of convergence of 
the cost function is a critical parameter that can determine the performance of the opti-
mization algorithm. In this regard, we find that the sampled gradient descent approach 
outperforms the normal batch gradient descent approach, as evidenced by the conver-
gence rates shown in the accompanying graphs.

It is worth noting that the observed improvements in the convergence rates and the 
quality of the model come at the expense of a reduced dataset size, which highlights the 
trade-off between accuracy and efficiency as can be observed in Figs. 4, 5 and 6. How-
ever, this limitation can be partially mitigated by choosing an optimal sample size that 

Fig. 1 Data Visualization
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Fig. 2 Cost_function_before_sampling

Fig. 3 Cost_function_after_sampling
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adequately represents the entire dataset. The choice of sample size is a critical hyper-
parameter that can significantly impact the performance of the optimization algorithm, 
and it can be optimized using techniques such as grid search or random search. Table 1 
below shows the recent studies on optimization techniques with following parameters: 
Technique used, Application, Major contributions and Findings of the study.

Fig. 4 Contour_plot_after_sampling

Fig. 5 Contour_plot_before_sampling
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Conclusion
In this study, we introduced ‘‘Sample Gradient Descent’’ as a solution to the computa-
tional and convergence challenges associated with traditional batch gradient descent, 
especially for large datasets. Our approach, leveraging Principal Component Analysis 
(PCA) for sample selection, showcased substantial improvements: Enhanced Conver-
gence: Our method achieved convergence in just 8 epochs, as opposed to 28 epochs 
with traditional batch gradient descent on the original dataset. Convex Loss Function: 
Sample Gradient Descent ensures a convex loss function, simplifying optimization 
by guaranteeing a unique global minimum. Competitive Performance: Compara-
tive analysis demonstrated the superiority of our approach over standard gradient 
descent techniques. Looking ahead, our research opens up promising directions: 

Fig. 6 Model_fitting_on_training_data

Table 1 Recent studies on optimization techniques

Author  and Year Technique Used Application Major contributions Findings of the study

[20] Mini-batch Gradient 
Decent

Image Recognition Introduced mini-
batch GD for CNN’s

Improved conver-
gence rates and train-
ing efficiency

[21] Adam Optimizer Deep learning Proposed adaptive 
learning rate

Faster convergence in 
deep learning

[22] Nesterov Accelerated 
Gradient Descent

Optimization 
algorithms gradient 
descent for optimiza-
tion

Introduced Nesterov 
accelerated

Enhanced conver-
gence compared to 
traditional gradient 
descent

[13, 23] Conjugate gradient 
decent

Numerical optimiza-
tion

Investigated CG 
descent for non-
convex optimization

Faster convergence in 
specific types of opti-
mization problems

[24] Hessian-based 
Methods

Deep learning Explored second-
order methods using 
Hessian matrices

Improved optimization 
for deep learning cost 
functions

[25] Convolutional Neural 
Networks (CNNs)

Image recognition Studied CNNs for 
image recognition 
and object detection

Effective hierarchical 
feature learning in 
image processing
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Hyperparameter Optimization: Further fine-tuning of hyperparameter optimization 
techniques to enhance adaptability. Deep Learning Integration: Exploring integration 
with deep learning frameworks. Broadened Applications: Extending the technique 
to diverse optimization problems beyond machine learning. In conclusion, ‘‘Sample 
Gradient Descent’’ has the potential to revolutionize optimization, offering efficient 
convergence and competitive performance. For the original dataset, the performance 
metrics were as follows: Mean Absolute Error (MAE): 16.424787360546866 R2_score: 
0.9517612252940124 Subsequently, we applied the same Linear Regression model to 
the sampled dataset and re-evaluated the performance metrics. The results indicated 
a slight variation in the model’s performance: Mean Absolute Error (MAE) increased 
to 16.646637991384672. R2_score decreased to 0.9485588105911298. These find-
ings demonstrate that the "Sample Gradient Descent" technique, while maintaining 
competitive performance, introduces minor variations in model performance metrics 
when compared to the conventional gradient descent method. The slight increase in 
MAE and decrease in R2_score on the sampled dataset suggest that the sampled data 
loss function converges effectively due to the convex nature of the loss function, vali-
dating the efficiency of our proposed approach. Future work will refine and expand its 
applicability in various domains.
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