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Abstract 

Under-sampling is a technique to overcome imbalanced class problem, how-
ever, selecting the instances to be dropped and measuring their informativeness 
is an important concern. This paper tries to bring up a new point of view in this regard 
and exploit the structure of data to decide on the importance of the data points. 
For this purpose, a multi-manifold learning approach is proposed. Manifolds represent 
the underlying structures of data and can help extract the latent space for data distri-
bution. However, there is no evidence that we can rely on a single manifold to extract 
the local neighborhood of the dataset. Therefore, this paper proposes an ensemble 
of manifold learning approaches and evaluates each manifold based on an informa-
tion loss-based heuristic. Having computed the optimality score of each manifold, 
the centrality and marginality degrees of samples are computed on the manifolds 
and weighted by the corresponding score. A gradual elimination approach is pro-
posed, which tries to balance the classes while avoiding a drop in the F measure 
on the validation dataset. The proposed method is evaluated on 22 imbalanced 
datasets from the KEEL and UCI repositories with different classification measures. The 
results of the experiments demonstrate that the proposed approach is more effective 
than other similar approaches and is far better than the previous approaches, especially 
when the imbalance ratio is very high.
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Introduction
Imbalanced learning is one of the main challenges of classification in real-world prob-
lems. This challenge occurs when the number of examples from one class (called the 
majority class) is greater than the number of samples from the other class (called the 
minority class). Imbalance problem may be inevitable and happens when it is difficult 
to collect minority class samples, and the majority class samples are more abundant [1, 
2]. Classification problems such as fraud detection [3], image segmentation [4, 5], intru-
sion detection [6, 7], disease detection [8–10], etc. are mostly imbalanced. Dealing with 
this issue is challenging because traditional classification approaches have presupposi-
tions. Their default is that the training samples are equally distributed among the classes. 
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Therefore, the majority class prevails over the minority class, and the minority examples 
are ignored. The inherent characteristics of imbalanced problems, such as overlapping 
and inseparability of classes [11, 12], increase the complexity of such data and weaken 
the classification performance [1, 2, 13].

Big data is the term used to describe datasets that are very huge, complicated, and con-
tain a tremendous amount of information. In this kind of enormous dataset, the minor-
ity class may nevertheless be represented by a sizable number of examples. Because there 
are a lot of minority class samples even if they only make up a small fraction of the total 
dataset, handling imbalance becomes more difficult. In large data analytics, dealing with 
class imbalance becomes essential because disregarding it may result in biased model 
training. Large dataset processing and machine learning model training can be time- 
and resource-intensive. By balancing the classes, the training process can be improved, 
becoming more efficient and controllable.

Many studies have been done on the imbalanced data problem, and various techniques 
have been proposed. These techniques are divided into four main categories, which are 
algorithm-driven, cost-sensitive approaches, data-driven, and ensemble approaches. 
Algorithm-based methods try to adapt classifiers to imbalanced problems. These 
approaches try to modify the learning stage and accept the issue of imbalance in the 
data. In cost-sensitive methods, higher penalties are imposed for misclassifying minority 
samples, and these methods try to minimize the final penalty [14, 15].

Unlike other techniques, data-driven methods do not depend on classification and 
operate completely independently. These methods are usually done in the preprocess-
ing stage. These methods benefit from two under- or over-sampling techniques or both 
and try to create a relative balance on imbalanced data. It seems that under-sampling 
techniques are more popular than over-sampling techniques because over-sampling 
techniques cause over-fitting. In ensemble approaches, several classifications are used 
simultaneously, and learning is done with the help of a voting technique or by com-
bining the scores of the classifications. There is still a fundamental challenge with this 
type of approaches. The challenge here is how to combine the optimal classifications to 
increases the learning time [1, 2, 13].

Due to justifications such as applicability, generalizability and classifier independence, 
in this paper, an under-sampling approach is proposed. Two basic problems of under-
sampling techniques can be pointed out, which are still a challenge among research-
ers. The main problems are: how many and which samples should be removed from the 
majority class? In this research, it is tried to overcome these two problems by introduc-
ing a new under-sampling method. The proposed method is based on the hypothesis 
that manifolds are the structures that can reflect the density and neighborhood proper-
ties of data. But since we are not sure that which manifold best suits a specific problem 
and dataset, a multi-manifold learning is proposed in this paper, which assesses the opti-
mality of manifolds based on a proposed information loss-based heuristic.

The optimality indexes are used in a weighted combination of centrality and mar-
ginality criteria for the samples. The proposed approach is supposed to assign weights 
that determine the degree of importance of the samples from the majority class. A 
sequence of weights is created according to the relative importance of the samples. 
Then, the most insignificant samples are gradually removed from the majority class. 
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Finally, combining the most important data of the majority class with the samples of 
the minority class, the training dataset is created. The proposed method is evaluated 
on 22 imbalanced datasets from KEEL and UCI repositories. The main contributions 
of this research are summarized as follows:

• The samples of the majority class are weighted according to the multi-manifold 
approach, based on a weighted combination of the centrality and marginality of the 
samples on each manifold.

• The weights are sorted in descending order. Less important samples are gradually 
removed from the majority class. The remaining samples can largely represent the 
distribution of the data.

The proposed approach reduces the overlap of minority and majority classes and 
increases class separability, which causes better classification performance. A simpli-
fied graphical abstract of the proposed method is shown in Fig. 1.

The rest of the paper is organized as follows: The next section gives a brief overview 
of under-sampling methods and related works. "Definitions and background" section 
introduces some definitions and the required background for better understanding 
the proposed approach. "Proposed method" section explains the proposed method 
in detail. The experimental results and discussions are in "Experimental Results and 

Fig. 1 A simplified flowchart of the proposed multi-manifold approach for under-sampling
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discussion" section. Finally, in the last section, the conclusions and the future research 
directions are discussed.

Related works
Under-sampling and over-sampling methods are performed in the preprocessing stage. 
In oversampling methods, minority samples increase. In these methods, new samples 
are usually created around the minority samples, or the minority samples are repeated 
again. Increasing the sample can cause an overfitting problem [16].

Researchers introduced ensemble approaches based on bagging, such as the Over-
bagging method [17]. Various versions of the SMOTE technique, which is an oversam-
pling method, are presented [18]. The SMOTE technique synthesizes a number of new 
samples with the help of k nearest neighbors by randomly choosing a neighbor among 
the minority samples for each sample. Along with its advantages, the SMOTE algo-
rithm will include problems such as overgeneralization and variation in convergence 
[19]. Researchers presented the SMOTE-Bagging [17] and SMOTE-Boost [20] meth-
ods, which are a combination of SMOTE, bagging, and boosting. These methods have a 
high level of computational complexity, although they are significant in terms of perfor-
mance. In addition, these methods cause overfitting and have many parameters to adjust 
[21, 22].

There are numerous under-sampling methods in the literature. Random under-sam-
pling deals with the random removal of majority class samples. This may remove useful 
instances. This method is combined with ensemble approaches [23]. The under-bagging 
method is a combination of the ensemble method based on bagging and the random 
under-sampling method [24]. Seiffert et al. presented the RUS-Boost method, which is a 
combination of random under-sampling and boosting approaches [25]. Researchers pro-
posed de-under-sampling methods called Near Miss, which consider the elimination of 
majority samples according to their distance from minority samples [26].

Under-sampling methods can be divided into two main groups, including methods 
based on KNN (k nearest neighbors) [27–29] and methods based on k-means [30–32]. 
Some under-sampling methods eliminate the majority of samples based on the informa-
tion obtained from the nearest neighbors of the samples. The purpose of these meth-
ods is to remove samples that are located in marginal areas or are noisy and redundant. 
Kubat and Matwin [27] presented an under-sampling method called the One Side Selec-
tion method (OSS), which is one of the applications of Tomek links [33]. The samples in 
Tomek’s links are considered marginal or noise samples. In the condensed nearest neigh-
bor (CNN) method, if the label of a sample is the same as the label of its nearest neighbor 
(1NN), this sample is considered redundant [34]. In the OSS method, a large number of 
majority samples that are borderline, noisy, or redundant are removed. Removing a large 
number of samples reduces the performance of the classifier.

Laurikkala proposed the Neighborhood Cleaning Rule (NCL) to remove the samples 
of the majority class [28]. This method uses the Edited Nearest Neighbor (ENN) method 
[35] to eliminate the samples. In ref. [28], samples whose marginal score is more than 
two are eliminated. Also, samples are removed if one of the three nearest neighbors is 
from the minority class. In ref. [13], an under-sampling method is proposed that uses 
the density of the data to progressively remove data points from the majority class. Two 
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factors are proposed to measure the degree of importance degree of each instance. Fur-
thermore, the optimal under-sampling level is determined progressively.

In addition to eliminating the majority samples, Kang and his associates [29] also elim-
inated the noise in the minority class. They separated the minority samples into three 
groups: noisy, informative, and relatively informative. As a result, the classifier’s perfor-
mance will improve after the noisy minority samples have been eliminated. The exclu-
sion of minority samples from the algorithm could lead to the failure of the classifier, 
which makes figuring out the value of the parameter k crucial.

Yang et al. proposed an under-sampling method that uses the natural neighborhood 
graph (NaNG). With the help of this graph, they are able to classify the training samples 
into central, marginal, and noise samples. They are able to under-sample by removing 
noisy and redundant samples. They called their sample reduction method NNGIR. One 
of the strengths of their methods is that they are non-parametric, increasing the reduc-
tion rate and improving prediction accuracy. The disadvantages of their method are the 
dependence on parameters and relatively low accuracy [36]. Hamidzadeh et al. [37] pre-
sented the LMIRA under-sampling method. They removed the non-marginal samples 
and kept the marginal samples. They considered their method a constrained binary opti-
mization problem and used the filled function algorithm to solve it.

Pang and his colleagues [38] introduced a new secure under-sampling method called 
SIR-KMTSVM. In ref. [38], most redundant samples are removed from both the major-
ity and minority classes. One of the advantages of their method is its use for large-scale 
problems. The disadvantages include high computational complexity and the removal 
of informative samples. Hamidzadeh and colleagues [39] proposed an under-sampling 
method that solves the instance reduction problem as an unconstrained multi-objective 
optimization problem. They designed a weighted optimizer and searched for the appro-
priate samples with the help of chaotic krill-herd evolutionary algorithm. The advantage 
of the method is the improvement in accuracy, geometric mean, and calculation time. 
The main weakness of the method is that it can only be applied to normal-sized datasets.

Another common under-sampling technique is clustering, which helps to have a logi-
cal training set [40]. Researchers named Chen and Shiu [30] put the majority of samples 
in k different clusters and used the k-means clustering method. Then, by combining each 
cluster from the majority class with the minority samples, they created new data groups 
that are more balanced. Each data group is trained separately and builds a classification 
model. Finally, all models are aggregated together to predict new samples. The weak-
ness of this algorithm is that it has not determined how the value of the parameter k is 
determined.

Yen and Lee [32] used clustering to propose their under-sampling method. They iden-
tified representatives of the majority class to create new training data. They first divided 
the entire training data into k clusters. They performed clustering based on a ratio of 
majority samples to minority data. The weakness of the algorithm is that it does not 
specify how to value the parameters k and m. Lin and his colleagues [31] presented a 
new under-sampling method that clusters the majority samples with the k-means 
method, where the value of k is equal to the number of minority samples.

In addition to the mentioned methods, some researchers [41–43] used k-means clus-
tering before applying the under-sampling method to determine the type of the majority 
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sample in terms of noise, redundancy, or marginality. Hamidzadeh and his colleagues 
[44] introduced an under-sampling method based on hyper-rectangle clustering and 
called their method IRAHC. They removed the central samples and kept the marginal 
and near-marginal samples.

Huang and colleagues [45] introduced a neural network algorithm (NN_HIDC) for the 
classification problem of highly imbalanced data. They proposed the generalized gradi-
ent descent algorithm. This algorithm is used in re-sampling and re-weighting methods 
in neural network. They extended the locally controllable bound to reduce the insuf-
ficient empirical representation of the positive class. The advantages of this algorithm 
can be mentioned in its use for any very imbalanced data, and the weaknesses of the 
algorithm are that the extended gradient of the positive class can only reach the local 
border and gradient measurement is required for all samples in each iteration. Koziarski 
[46] introduced a radial under-sampling (RBU) method in the classification problem of 
imbalanced data. RBU uses the concept of mutual class potential in the under-sampling 
method. The advantages of the method include reducing the time complexity compared 
to RBO, being effective on the difficult minority class that includes small disjunct, out-
liers and small number of samples, overcoming the limitations of neighborhood-based 
methods.

Sun et  al. [47] introduced a radial under-sampling approach with adaptive under-
sampling ratio determination. They called their algorithm RBU-AR. This method deter-
mines the appropriate under-sampling ratio according to the complexity of the class 
overlap and does not use the default value of one or trial and error. The advantages of 
their approach are better performance in high overlap. The weakness of their approach is 
the lack of application in multi-class problems. Mayabadi and colleagues [48] proposed 
two density-based algorithms to remove overlap, noise and balance between classes. The 
first algorithm uses under-sampling technique and the second algorithm uses under-
sampling and over-sampling simultaneously. Their method removes high density sam-
ples from the majority class. The advantages of their algorithms are maintaining the class 
structure as much as possible and improving performance.

Vuttipittayamongkol and Elyan [49] proposed an under-sampling method to solve 
binary data imbalance problem by removing overlapping data. They focused on the 
detection and elimination of overlapping majority samples. The advantages of their algo-
rithm are preventing information loss and improving the sensitivity criterion. The weak 
points of the algorithm are how to set the value of k in the k-NN law and the failure to 
examine multi-class problems. Nwe and colleagues [50] introduced an effective under-
sampling method using k-nearest-neighbor-based overlapping samples filter to classify 
imbalanced and overlapping data. The advantage of their algorithm is to prevent infor-
mation loss. The weak points of their algorithm are setting the value of k, not checking 
high dimensions and not checking multi-class problems.

Zhai and colleagues [51] proposed two diversity over-sampling methods, BIDC1 
and BIDC2, which were based on generative models. BIDC1 and BIDC2 methods use 
extreme machine autoencoder and generative adversarial network, respectively. Among 
the advantages of their methods, we can mention the simple but effective idea, improv-
ing performance in data with low and high imbalance ratio, suitable for different prac-
tical scenarios, creating variety in over-sampling and preventing overlap of classes. 
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The weaknesses of their method are the lack of scalability in big data and the differ-
ence between the original and generated data distribution. Table 1 summarizes of the 
strengths and weaknesses of the some of the main approaches in this regard.

Definitions and background
For better explanation of the proposed approach, in this section some primary defini-
tions and backgrounds are explained.

Definitions

Manifold: Manifold refers to any process, curve, or complex nonlinear shape. In fact, in 
the manifold learning method, the system’s intrinsic parameters are identified, and the 
entire data set is placed on a manifold that expresses the intrinsic relationship between 
the data in a space with less dimension.

Multi-manifold learning: In pattern recognition, we often encounter situations where 
the data set is not on a manifold. In other words, if the dataset has several classes, the 
data for each class will have a separate manifold.

Traditional Degree of centrality: If the data is in the center of the class in such a way 
that its label is the same as the label of its  Kc nearest neighbors, then it has a degree of 
centrality. The degree of centrality of a sample is greater when the number of neighbors 
with the same label is greater than the number of neighbors with the opposite label, or 
most of its neighbors are of the same class.

Traditional Degree of marginality: If a data point is on the edge or border of the class 
and its label is not the same as all the neighboring samples or some of its  Km nearest 
neighbors, then the degree of marginality can be considered for this data point. The 
degree of marginality of a sample is higher when the number of neighbors from the 
opposite class is greater than the number of neighbors from the same class.

Manifold learning

The purpose of manifold learning algorithms is to map a set of data with high dimen-
sions to a set of data with smaller dimensions in such a way that the distance between 
samples in the lower dimensional subspace is close to the distance between samples 
in the original space. Assume that  xi is data in a high-dimensional space, and data set 
X = (x1, x2, . . . , xn) ∈ Rn×D represents n data in a space with D dimensions. Manifold 
learning methods seek to represent this set of data in a space with lower dimensions, 
d, which is much lower than the dimensions of the data in the original representation 
space, i.e. d <  < D. Supposing  yi as a data in the lower dimensional space, the correspond-
ing data set in the low-dimensional space can be expressed as Y = {y1,  y2,…,yn} ∈  Rd×n. In 
this way, manifold learning is a process that calculates Y while maintaining the inherent 
connection of data, in such a way that the manifold resulting from Y in a low-dimen-
sional space is the most similar to the manifold resulting from X in a high-dimensional 
space.

Manifold learning approaches are divided into different aspects of view but here, since 
we have a concern for computational complexity, we have limited the employed algo-
rithms to linear unsupervised manifold learning methods. Among the main character-
istics of linear manifold learning methods that make them appropriate for the approach, 



Page 8 of 36Feizi et al. Journal of Big Data          (2023) 10:153 

Table 1 Summary of the strengths and weaknesses of the most important reviewed articles

Refs. The proposed framework Strengths Weaknesses

[16] A review of hybrid models in 
unbalanced data problem: 
approaches based on bagging, 
boosting and hybrid

- Increasing accuracy and preci-
sion
- Improved performance

- Increasing complexity
- Failure to examine multi-class 
issues

[21] Application of automatic 
enhanced twin support vector 
machine for imbalanced data 
classification

- Better classifier performance
- Less training time

- High computational complexity
- Setting many parameters

[22] Cost-sensitive multi-variate 
decision tree with hybrid feature 
measure on unbalanced data

- Performance improvement
- Reducing the cost of misclas-
sification

- Increasing the complexity
- Setting many parameters

[23] A new hybrid method for clas-
sification of imbalanced data

- Improved performance
- Very unbalanced data fit

- Delete useful information
- Wrong classification
- Data distribution change
- Increasing complexity

[29] An under-sampling method with 
noise filtering for imbalanced 
data classification

- Performance improvement
- Improvement of AUC, F-meas-
ure and G-means
- Insensitivity to minority class 
noise

- Failure to build a learning model 
by removing the minority sample
- Sensitive to the imbalance coef-
ficient
- Lack of efficiency in highly unbal-
anced data

[30] Clustering-Based under-sampling 
for Imbalanced Data

- Runtime improvements
- Data preprocessing
- Better performance

- Remove useful examples
- Determining the number of 
clusters

[36] Parameter-free under-sampling 
algorithm based on natural 
neighborhood graph

- Being non-parametric
- Increased reduction rate
- Improvement of prediction 
accuracy

- Dependence on parameters
- Relatively low accuracy

[37] LMIRA: Large Margin Sample 
Reduction Algorithm

- Increase accuracy
- Increasing the reduction rate

- Removing samples with informa-
tion
- Random selection of samples

[38] A new secure under-sampling 
method called SIR-KMTSVM

- Increasing computing power
- Speeding up the execution of 
the algorithm
- Reduction of calculation time
- Application in large-scale 
problems
- Maintaining acceptable 
accuracy

- High computational complexity
- Removal of informative examples

[39] Unconstrained weighted multi-
objective optimizer for under-
sampling in binary imbalanced 
data problem

- Improved accuracy
- Improved G-means
- Improved calculation time
- Effective on noise data

- Lack of efficiency by increasing 
the number of features
- Lack of efficiency with increasing 
samples

[40] Automatic clustering-based 
under-sampling for imbalanced 
data classification

- Improve accuracy
- Improved performance
- Increased stability

- Increasing complexity
- Removal of informative examples

[41] Fast-CBUS: a clustering-based 
under-sampling method to solve 
the imbalance problem

- Improved performance
- Increasing the speed of predic-
tion
- Reducing time complexity

- Increasing computational 
complexity

[43] Diverse sensitivity-based under-
sampling for class imbalance

- Attention to data distribution
- Increasing diversity in sampling
- Increasing the sensitivity 
criterion

- Increasing computational 
complexity
- Removal of informative examples

[44] IRAHC: an under-sampling 
method based on hyper-rectan-
gular clustering

- Increase accuracy
- Increased reduction rate

- Delete examples with informa-
tion
- Random selection of samples
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is their out-of-sample mapping property. It means that they can map the test data to a 
low-dimensional space using the mapping matrix obtained from the training data. In the 
following, the manifold learning methods included in the proposed approach are briefly 
introduced.

Principal component analysis (PCA)

Principal component analysis is one of the most common global and linear methods of 
manifold learning and dimensionality reduction. The main idea of PCA is to find the 
linear subspace in the low-dimensional space that best fits the scatter of the data in 
the high-dimensional space. By defining the covariance matrix of the data in the high-
dimensional space, Cov(X), and due to the non-negativity and symmetry of the covari-
ance matrix we have:

In which UPCA ∈ RD×D is an orthogonal identity matrix ( UPCA
TUPCA = I ) contain-

ing eigenvectors of Cov(X) and D is a diagonal matrix containing eigenvalues. Assum-
ing UPCA=[u1,u2, …,  ud] as the matrix of eigenvectors corresponding to eigenvalues 

(1)Cov(x) = UPCADUPCA
T

Table 1 (continued)

Refs. The proposed framework Strengths Weaknesses

[45] A neural network algorithm for 
highly unbalanced data clas-
sification problem

- Use for any very unbalanced 
data

- The extended gradient of the 
positive class can only reach the 
local edge
- Gradient measurement is 
required for all samples in each 
repetition

[46] Radial under-sampling method 
in unbalanced data classification 
problem

- It is effective on the difficult 
minority class
- Overcoming the limitations of 
neighborhood-based methods

[47] Radial under-sampling approach 
by determining adaptive under-
sampling ratio

- Better performance in high 
overlap

- Not applicable in multi-class 
problems

[48] Two density-based sampling 
approaches for overlapping and 
unbalanced data problem

- Maintaining the class structure 
as much as possible
- Improved performance

[49] A neighborhood-based under-
sampling approach to solve the 
problem of unbalanced and 
overlapping data

- Prevent data loss
- Improve the sensitivity criterion

- How to set the value of k in the 
k-NN law
- Failure to examine multi-class 
issues

[50] Overlapping samples filter 
method based on k-nearest 
neighbor to solve the imbal-
anced data problem

- Preventing information loss - Setting the value of k
- Failure to check the high dimen-
sions
- Failure to examine multi-class 
issues

[51] Diversity over-sampling by gen-
erative models for unbalanced 
binary data classification

- Simple but effective idea
- Diversity in prototyping
- Improved performance in data 
with low and high imbalance 
ratio
- Suitable for various practical 
scenarios

- Lack of scalability in big data
- Difference between original and 
generated data distribution
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0 ≤ �d ≤ �d−1 ≤ · · · ≤ �1 , it is proved that λi represents the data scatter after a linear 
mapping byUPCA . As a result, data in the lower dimensional subspace is as follows

Neighborhood preserving embedding (NPE)

The NPE algorithm is one of the popular local methods in manifold learning. This algo-
rithm includes three steps. The first step is to determine the neighbors of each data 
point. The second step is to form the neighborhood graph matrix, W, and the third step 
is to calculate the transformation matrix,  UNPE, using W, after solving the following con-
vex optimization problem.

where M = (IN −W)T (IN −W) . After finding the optimal solutions for  UNPE, any data 
point x can be linearly mapped to the new subspace y using y = UT

NPEx.

Locality preserving projection (LPP)

LPP manifold learning is a local method that, again includes the three main steps of 
neighbor finding, graph formation, and embedded data extraction. Determining the 
neighbor and how to form the LPP manifold graph are completely the same as the other 
local manifold learning methods and it differs from the other methods only in data 
extraction step. In fact, LPP manifold learning is a linear learning method in which the 
data mapping matrix from high-dimensional space to low-dimensional space is obtained 
from Eq. (4):

where  ULPP is the mapping matrix, L = O-W, W is the local manifold graph and O is 
the diagonal matrix with diagonal elements equal to 

∑

j wij . In this method, the map-
ping matrix can be calculated as an eigenvalue problem. After calculating the mapping 
matrix, the data representation in the low-dimensional space will be Y = UT

LPPX.

Proposed method
The logic of the proposed approach

As discussed, every subspace of data can be expressed by a manifold. The problem is that 
it is not possible to find out which manifolds the data points obey in each subspace or 
which manifolds the distribution of the data sample is based on. On the other hand, the 
data structure may be so complex that a concrete manifold is not appropriate.

Therefore, we use an alternative method. Instead of having multiple manifolds 
where each manifold represents a part of the data, we choose multiple manifolds to 
represent all the data samples, but according to the weight or the degree of suitabil-
ity in maintaining the local neighborhood structure, optimality weights are assigned 
to each manifold. Consider Fig.  2. The graph in which we have a series of data 
points is the red dotted curve, and we don’t know what their structure is. Instead of 

(2)Y = UT
PCAX

(3)min trace
(

UNPE
TXMXTUNPE

)

s.t.UNPE
TXXTUNPE = I

(4)ULPP = argmin
U

UT
LPPXLX

TULPP , s.t.U
T
LPPXOXTULPP = I
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considering a complex non-linear function (manifold) for this data, we combine sev-
eral linear functions (orange curves) and assign a combination weight to each mani-
fold based on the degree of similarity to the structure of the whole data. We consider 
this linear combination of simpler manifolds as a suitable approximation of a more 
complex function.

In this paper, data importance weighting considers novel measures of the marginality 
and centrality of data on the data manifolds and then scores the data points based on 
a weighted combination of these measures. The algorithm gradually removes the data 
samples from the majority class until a definite termination condition is met. To meas-
ure and optimize the manifolds, a distance-based information loss heuristic is proposed.

In the proposed method, different manifolds of data are extracted and used to select 
the neighbors of the sample that belong to the majority class. For this purpose, several 
manifold learning approaches, namely principal component analysis (PCA), neighbor-
hood preserving embedding (NPE), and locality preserving projection (LPP), are applied.

Mapped majority class data, XN , on the extracted manifolds are denoted by YN . The 
three manifolds are trained in parallel. For each of the mentioned manifolds, Mi , a coef-
ficient α(Mi) is calculated, which indicates the optimality of the manifold. Instance 
weighting is done based on two criteria of centrality and marginality on the extracted 
manifolds, separately. The final centrality and marginality criterion for the sample xi 
is obtained from the α(Mi) weighted combination of centralities and marginalities 
obtained on each manifold Mi . In other words, Centrality(xi,Mi) , which expresses the 
centrality degree of xi on manifold Mi , and Marginality(xi,Mi) , which expresses the 
marginality score of xi on Mi , are weighted by the parameter α(Mi) , to construct the final 
score. Then the samples are sorted based on their centrality and marginality degrees and 
the unnecessary samples are excluded using an iterative strategy. The following sections, 
explain the approach in more detail.

Multi‑manifold learning approach

Assume that X =

(

xl1, x
l
2, . . . , x

l
n

)

∈ Rn×D refers to a set of n data points in a space with 

dimension D, where l(xi) is the class label of xi and i = {1, 2, . . . , n} . As stated before, a sub-
set XN from X which correspond to the larger class, is considered a the majority samples. In 
the multi-manifold learning approach, several manifolds are trained on XN . A coefficient 

Fig. 2 The logic of the proposed multi-manifold learning method based on the weighting of linear 
manifolds
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α(Mi)  is calculated for each manifold, Mi , which aims to indicate the optimality of that 
manifold for XN.

In the initial experiments, supervised nonlinear manifold learning methods includ-
ing Neighborhood Component Analysis (NCA), Maximally Collapsing Metric Learning 
(MCML) and Large-Margin Nearest Neighbor Metric Learning (LMNN) were used in the 
proposed approach, but due to the higher complexity and more execution time, the contin-
uation of experiments with these manifolds was abandoned. The execution time of super-
vised manifolds, including NCA, MCML, and LMNN, increases greatly when the number 
of dataset samples is close to or more than 1000. Therefore, in this paper, unsupervised 
manifold learning approaches such as PCA, NPE, and LPP are investigated.

Manifolds optimality determination

In the second step, the manifolds of the majority class are assessed to see if they fit the 
neighborhood structure of the class. The goal is to give higher score to the manifolds that 
best fit the data of the majority class. The idea for this manifold weighting is simple. After 
the mapping of the original data, XN , there will be a distance between the original data and 
the mapped samples, YN . Here, an information loss criterion which is denoted as the dis-
tances between the initial data points and their mappings is used according to Eqs. (5) and 
(6) to score the manifolds.

Set of new data points YN in the latent space is obtained by mapping the majority sam-
ples XN onto the manifold Mi . The set of YN will be obtained using a linear transformation 
like YN = UXN , where U is the mapping matrix. Then, mapping distance, i.e., the distance 
between the points of  XN and their corresponding latent representation YN , is calculated 
for each manifold Mi according to Eq. (5). The smaller the distance, the better is the mani-
fold. Suppose that the number of data samples equal nc . If the sum of distances is divided 
by the number of samples, and the average distance is obtained. Each manifold Mi can be 
weighted according to the inverse value of the average distances according to Eq. (5). The 
higher the value of α(Mi) , the better this manifold has preserved the neighborhood struc-
ture of the data.

Weighted combination of centrality and marginality in the multi‑manifold approach

Instance selection is based on two criteria of centrality and marginality. The combinatorial 
criteria of centrality and marginality for each data sample xNi  is calculated based on Eqs. (7) 
and (8). Equation (7) denotes the degree of centrality for sample xNi  which is obtained from 
the weighted combination of centralities of the data point over the learned manifolds (i.e. 
PCA, NPE and LPP). Equation  (8) shows the marginality degree for sample xNi  which is 
obtained from the weighted combination of marginalities obtained over the mentioned 
manifolds.

(5)
InfoLost(Mi) =

1

nc

∑

∀(xi ,U−1yi)
d2(xi, yiU

−1) =
1

nc
�xi − yiU

−1�
2

2, Mi ∈ {PCA,NPE, LPP},

(6)αi = α(Mi) = 1/InfoLost(Mi)i ∈ {1, 2, 3}

(7)
Cent

(

xNi

)

= α(PCA) ∗ Centrality(xNi ,PCA)+ α(LPP) ∗ Centrality(xNi , LPP)+ α(NPE) ∗ Centrality(xNi ,NPE)



Page 13 of 36Feizi et al. Journal of Big Data          (2023) 10:153  

Gradual under‑sampling of data

In the sample reduction stage, first the marginal samples which may be outliers or 
noise samples, and then the central samples are gradually removed from the major-
ity class with a specific reduction step. The relation for calculating the weight of each 
sample from the majority class can be written according to Eq. (9). This relationship 
means that the coefficient of sample xNi  is obtained from the linear combination of 
centrality and marginality degrees.

After calculating the weight for all samples in the majority class, a sequence of 
weights is created. The sequence of the weights is sorted in descending order and 
gradually remove the majority samples with a specific step. A high value for the sam-
ple weight, W

(

xNi
)

 , means that the sample tends to be an outlier and is a good choice 
to be removed. By removing a portion of the data (i.e., 5 or 10 percent in the exper-
iments) as marginal data, the overlapping of the majority and minority classes will 
decrease. On the other hand, by removing marginal samples from the majority class, 
it helps to better separate the majority and minority classes. This process continues 
until the size of the minority and majority classes is equal or the F-measure on the 
validation set starts reducing. Figure 3 shows the algorithm of the proposed method. 
Figure 4 shows the flowchart of the proposed method along with all the calculation 
steps.

Experimental results and discussion
In this section, many experiments have been conducted with the aim of comparing the 
proposed multi-manifold approach with other methods. For example, the proposed 
multi-manifold approach is compared with the single-manifold approaches of PCA, 
NPE and LPP. Also, the proposed method is compared with RUS, NCL [28], OSS [27], 
CNN [34], ENN [35], CBU [31], and PUMD [13] under-sampling approaches using 
support vector machine (SVM), k nearest neighbors (kNN) and classification and 
regression trees (CART) with a 10-fold cross evaluation scheme and in 5 repetitions.

These evaluations are performed on KEEL and UCI datasets based on various effi-
ciency criteria. The mentioned methods have been chosen for comparison because 

(8)
Marg

(

xNi

)

= α(PCA) ∗Marginality(xNi ,PCA)+ α(LPP) ∗Marginality(xNi , LPP)+ α(NPE) ∗Marginality
(

xNi ,NPE
)

(9)W
(

xNi

)

= Marg
(

xNi

)

− Cent
(

xNi

)

(10)ifW
(

xNi

)

< 0xNi is a central sample

(11)ifW
(

xNi

)

> 0xNi is amarginal sample

(12)fW
(

xNi

)

= 0xNi is a noise sample
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they are among the most common under-sampling methods in literature reviews. 
Also, a non-parametric Wilcoxon signed rank test is used for statistical evaluation of 
the results. The details are explained in the following sections.

Datasets

In this research, 22 datasets are used in the experiments. These datasets are standard 
datasets and are usually used in the evaluation of the imbalanced data problem. These 
datasets are taken from the KEEL and UCI repositories. The datasets are shown in 
Table 2 along with their attributes such as the number of features, the number of minor-
ity class samples, the number of majority class samples, the total number of samples and 
the imbalance ratio. Similar to other researches, the multi-class data are transformed 
into two-class data by the common one-versus-all technique. Fewer samples represent 
the minority class and more samples represent the majority class. As seen in Table 2, 
kddcup- buffer_overflow_vs_back and shuttle_2_vs_5 datasets are among the most 
imbalanced ones which are important to be monitored in the evaluation.

Figure 5 shows the data of ecoli1 and glass0 in three modes: the main data, the output 
of the single-manifold under-sampling method, and the output of the proposed method 
(multi-manifold). In this figure  x1 and  x2 denote features that increase the differentiation 
between classes. It can be seen that using the proposed method will reduce the overlap 
between the majority and minority classes. For this purpose, average number of oppo-
site-label neighbors is considered as a class overlap criterion.

Consider K as the number of neighboring points of each data point. For each data sam-
ple, K nearest neighbors are found. Then, for each data sample, the ratio of neighbors 

Fig. 3 The algorithm of the proposed method
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belonging to the opposite class is calculated. This value is averaged for all data points. 
The smaller the value is, it suggests less overlap between two classes. For this pur-
pose, experiments are conducted in three modes of original data, after single-manifold 
method and after multi-manifold method on a number of data sets. Table 3 denotes the 
results. The results of the experiments show that in all dataset, the amount of overlap 
after applying the proposed method, either single-manifold or multi-manifold, is less 
than the amount of overlap of the original data.

Fig. 4 The flowchart of the proposed method with the step-by-step calculations
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Experimental setup

The evaluations of the proposed under-sampling approach have been carried out with 
four scenarios, and they have been compared with the results of other articles. The eval-
uation criteria are precision, recall, F-measure, G-Mean and accuracy. In this research, a 
SVM classifier with an RBF kernel, a 3NN, and a CART with MaxNumSplits = 7 is used 
as the classifiers so that the results are comparable with those of other articles. Unsuper-
vised manifold learning approaches such as PCA, NPE and LPP are used in the experi-
ments. The proposed multi-manifold method can be implemented with supervised 
manifold learning approaches, but due to the high execution time, they are not used.

In the first scenarios (i.e. "Multi-manifold approach with reduction step of 5 percent" 
and "Multi-manifold approach with reduction step of 10 percent" sections), the effect 
of the proposed multi-manifold approach for gradual elimination of the majority sam-
ples is investigated separately with steps of 5% and 10% respectively, and the efficiency 
criteria are reported along with the standard deviation. In "Comparison of single-man-
ifold and multi-manifold approaches" section, the results of the proposed multi-man-
ifold approach and the best single-manifold results for gradual elimination with a step 
of 5% are compared based on the three criteria of recall, precision and F-measure, and 
the results together with standard deviation are reported. In "Comparison with other 
under-sampling approaches" section, the proposed multi-manifold approach is com-
pared with RUS, NCL [28], OSS [27], CNN [34], ENN [35], CBU [31], and PUMD [13] 

Table 2 Description of the experimental datasets

Name #Attributes #Minority Class #Majority Class #Examples Imbalance Ratio

ecoli1 7 77 259 336 3.36

ecoli2 7 52 284 336 5.46

ecoli3 7 35 301 336 8.60

ecoli4 7 20 316 336 15.8

ecoli0147vs56 6 25 307 332 12.28

ecoli034_5 7 20 180 200 9

ecoli0147_2356 7 29 307 336 10.59

glass0 9 70 144 214 2.06

glass0123456 9 51 163 214 3.20

kddcup- buffer_overflow_
vs_back

41 30 2203 2233 73.43

kddcup-rootkit-imap_vs_
back

41 22 2203 2225 100.14

kddcup-guess_passwd_
vs_satan

41 53 1589 1642 29.98

kddcup-land_vs_portsweep 41 21 1040 1061 49.52

kddcup-land_vs_satan 41 21 1589 1610 75.67

new-thyroid1 5 35 180 215 5.14

page-blocks-1-3_vs_4 10 28 444 472 15.86

Pima 8 268 500 768 1.87

segment0 19 329 1979 2308 6.02

shuttle_2_vs_5 9 49 3267 3316 66.67

vehicle2–1 18 218 628 846 2.88

vowel0 13 90 898 988 9.98

Wisconsin 9 239 444 683 1.86
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Fig. 5 Data distribution of Ecoli1, and Glass0 in three modes, original data, single manifold under-sampling 
method and the proposed multi manifold approach. Red dots denote the majority class

Table 3 The average number of opposite class neighbors in three modes (i.e. original data, after 
using the single-manifold method, and after using the multi-manifold method)

Dataset K Original Single‑manifold Multi‑
manifold

ecoli1 11 0.030 0 0

page-blocks-1-3_vs_4 7 0.035 0 0

Pima 35 0.004 0 0

vehicle2–1 5 0.158 0.055 0
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under-sampling methods. The simulation results show that our proposed method has 
better results than other methods on most datasets.

R2018b MatLab and DRToolbox are used for evaluations. For simplicity, the optimal 
parameters used in the simulation, like the number of nearest neighbors to calculate the 
centrality  (Kc) and marginality  (Km), are 5.

Evaluation criteria

In this research, common criteria such as F-measure and G-Mean are used to measure 
the classification quality. To calculate these criteria, it is necessary to count the number 
of TP, FN, FP, TN. The confusion matrix is illustrated in Table 4. In imbalanced prob-
lems, examples with positive labels represent the minority class, and examples with neg-
ative labels represent the majority class.

Precision, Recall, F-measure, and accuracy criteria can be calculated by Eqs.  (13) to 
(19).

Simulation results

Multi‑manifold approach with reduction step of 5 percent

In this section, the effect of the proposed multi-manifold approach for gradual elimina-
tion of the majority samples with a reduction step of 5% is investigated. Performance cri-
teria are reported in Tables 5, 6, 7 along with the standard deviation. These evaluations 
are performed for All three selected classifiers.

(13)Precision = TP/(TP+ FP)

(14)Recall = TP/(TP+ FN)

(15)Sensitivity = TP/(TP + FN )

(16)Specificity = TN/(TN + FP)

(17)F−measure = 2 ∗ (Recall ∗ Precision)/(Recall + Precision)

(18)G−Mean = 2
√

Sensitivity × Specificity

(19)Accuracy = (TN + TP)/(TN + TP+ FN + FP)

Table 4 Confusion matrix

Predict positive class Predict 
negative 
class

Actual positive class TP FN

Actual negative class FP TN
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The tables show two observations. The first one is that using the proposed approach, 
the recall rate is much higher than the precision rate. This means that the classifiers are 
more successful at remembering the positive class, which is the minority class. This can 

Table 5 The performance of the SVM classifier with the multi-manifold approach with step of 5 
percent

Dataset Recall Precision G‑means F‑measure Accuracy

ecoli1 0.90 ± 0.170 0.71 ± 0.228 0.88 ± 0.141 0.83 ± 0.159 0.87 ± 0.131

ecoli2 0.90 ± 0.202 0.88 ± 0.192 0.92 ± 0.131 0.90 ± 0.142 0.96 ± 0.062

ecoli3 0.93 ± 0.160 0.76 ± 0.270 0.93 ± 0.091 0.86 ± 0.195 0.94 ± 0.072

ecoli4 0.90 ± 0.200 0.78 ± 0.307 0.93 ± 0.137 0.92 ± 0.170 0.96 ± 0.071

ecoli0147vs56 0.85 ± 0.240 0.75 ± 0.311 0.80 ± 0.303 0.89 ± 0.119 0.88 ± 0.266

ecoli034_5 0.85 ± 0.320 0.63 ± 0.394 0.75 ± 0.387 0.88 ± 0.151 0.86 ± 0.261

ecoli0147_2356 0.78 ± 0.279 0.64 ± 0.327 0.75 ± 0.307 0.78 ± 0.211 0.86 ± 0.264

glass0 0.80 ± 0.165 0.67 ± 0.137 0.77 ± 0.099 0.79 ± 0.116 0.78 ± 0.098

glass0123456 0.98 ± 0.060 0.85 ± 0.244 0.93 ± 0.148 0.92 ± 0.166 0.91 ± 0.171

kddcup-buffer_overflow_vs_back 1 ± 0 0.88 ± 0.256 0.99 ± 0.014 0.95 ± 0.161 0.99 ± 0.027

new-thyroid1 0.91 ± 0.204 0.83 ± 0.274 0.93 ± 0.151 0.89 ± 0.206 0.94 ± 0.098

page-blocks-1-3_vs_4 0.57 ± 0.372 0.69 ± 0.440 0.66 ± 0.352 0.79 ± 0.262 0.94 ± 0.089

Pima 0.71 ± 0.163 0.58 ± 0.130 0.65 ± 0.131 0.63 ± 0.086 0.68 ± 0.122

segment0 0.97 ± 0.039 0.98 ± 0.023 0.98 ± 0.020 0.98 ± 0.017 0.99 ± 0.006

shuttle_2_vs_5 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

vehicle2–1 0.97 ± 0.035 0.94 ± 0.079 0.98 ± 0.026 0.97 ± 0.033 0.98 ± 0.028

vowel0 0.95 ± 0.113 0.84 ± 0.198 0.96 ± 0.063 0.90 ± 0.120 0.97 ± 0.031

Wisconsin 0.98 ± 0.040 0.88 ± 0.079 0.90 ± 0.085 0.95 ± 0.053 0.91 ± 0.065

Average 0.881 0.793 0.872 0.879 0.912

Table 6 The performance of the 3NN classifier with the multi-manifold approach with step of 5 
percent

Dataset Recall Precision G‑means F‑measure Accuracy

ecoli1 0.93 ± 0.130 0.70 ± 0.201 0.89 ± 0.110 0.85 ± 0.153 0.87 ± 0.111

ecoli2 0.95 ± 0.111 0.78 ± 0.188 0.94 ± 0.074 0.91 ± 0.105 0.94 ± 0.063

ecoli3 0.93 ± 0.225 0.60 ± 0.337 0.90 ± 0.152 0.75 ± 0.231 0.90 ± 0.097

ecoli4 0.95 ± 0.150 0.75 ± 0.334 0.93 ± 0.178 0.88 ± 0.279 0.91 ± 0.199

ecoli0147vs56 0.88 ± 0.183 0.72 ± 0.251 0.92 ± 0.106 0.84 ± 0.159 0.96 ± 0.036

ecoli034_5 0.90 ± 0.200 0.78 ± 0.269 0.92 ± 0.122 0.86 ± 0.180 0.95 ± 0.067

ecoli0147_2356 0.82 ± 0.240 0.66 ± 0.253 0.87 ± 0.149 0.81 ± 0.159 0.94 ± 0.047

glass0 0.89 ± 0.124 0.64 ± 0.116 0.79 ± 0.070 0.78 ± 0.076 0.78 ± 0.083

glass0123456 0.96 ± 0.80 0.86 ± 0.227 0.94 ± 0.117 0.92 ± 0.153 0.93 ± 0.133

kddcup-buffer_overflow_vs_back 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

new-thyroid1 0.93 ± 0.200 0.93 ± 0.155 0.95 ± 0.125 0.93 ± 0.160 0.97 ± 0.048

page-blocks-1-3_vs_4 0.93 ± 0.133 0.75 ± 0.293 0.94 ± 0.079 0.87 ± 0.210 0.95 ± 0.069

Pima 0.62 ± 0.208 0.56 ± 0.148 0.64 ± 0.114 0.58 ± 0.141 0.68 ± 0.103

segment0 0.99 ± 0.027 0.92 ± 0.056 0.99 ± 0.014 0.97 ± 0.023 0.99 ± 0.010

shuttle_2_vs_5 1 ± 0 0.91 ± 0.274 0.99 ± 0.025 0.97 ± 0.100 0.98 ± 0.047

vehicle2–1 0.97 ± 0.042 0.82 ± 0.098 0.94 ± 0.030 0.92 ± 0.051 0.93 ± 0.036

vowel0 0.90 ± 0.213 0.67 ± 0.330 0.89 ± 0.181 0.87 ± 0.157 0.89 ± 0.153

Wisconsin 0.98 ± 0.027 0.93 ± 0.083 0.94 ± 0.074 0.97 ± 0.050 0.94 ± 0.061

Average 0.918 0.767 0.91 0.871 0.917
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denote that the approach has lowered the effect of imbalanced classes on the minority 
class, although at the cost of more false alarms and lower precision. The other observa-
tion is that the performances of the SVM and 3NN classifiers are similar, but the CART 
performance is degraded. Therefore, to avoid excessive evaluations and tables and due 
to the fact that KNN is the most common classifier in this regard, future evaluations will 
only concern the 3NN as the experimental classifier.

Multi‑manifold approach with reduction step of 10 percent

In this section, the effect of the proposed new multi-manifold approach with a reduction 
step of 10% is investigated. The other experimental settings are the same as the previ-
ous experiments. The results of Table 8 on 3NN classifier does not show much different 
from the results indicated in Table 6. Therefore, we can conclude that the approach is 
not much dependent on the step size. Therefore, in the following experiment reduction 
step size of 5 is selected to avoid divergence of the proposed reduction method while 
maintaining a good reduction speed.

Comparison of single‑manifold and multi‑manifold approaches

In this section, the results of the proposed multi-manifold approach and the single-man-
ifold approaches compared and shown in Tables 9 and 10. The numbers in parentheses 
show the rank of each approach for each the corresponding data separately. The average 
rank and efficiency of each approach are shown separately in the last row of the tables. 
According to Table 9, the multi-manifold approach has the best average rank consider-
ing the recall performance measure and other single-manifold approaches have won the 
second to fourth ranks.

Table 7 The performance of the CART classifier with the multi-manifold approach and step of 5 
percent

Dataset Recall Precision G‑means F‑measure Accuracy

ecoli1 0.80 ± 0.334 0.61 ± 0.247 0.72 ± 0.328 0.78 ± 0.221 0.80 ± 0.206

ecoli2 0.69 ± 0.324 0.60 ± 0.354 0.72 ± 0.334 0.72 ± 0.260 0.83 ± 0.245

ecoli3 0.73 ± 0.361 0.32 ± 0.160 0.70 ± 0.267 0.58 ± 0.155 0.81 ± 0.083

ecoli4 0.85 ± 0.229 0.58 ± 0.364 0.78 ± 0.287 0.79 ± 0.193 0.83 ± 0.276

ecoli0147vs56 0.72 ± 0.365 0.34 ± 0.357 0.57 ± 0.392 0.79 ± 0.138 0.68 ± 0.341

ecoli034_5 0.85 ± 0.229 0.79 ± 0.335 0.87 ± 0.172 0.88 ± 0.212 0.91 ± 0.156

ecoli0147_2356 0.77 ± 0.300 0.44 ± 0.322 0.71 ± 0.261 0.67 ± 0.255 0.75 ± 0.275

glass0 0.71 ± 0.268 0.57 ± 0.216 0.62 ± 0.191 0.66 ± 0.198 0.66 ± 0.174

glass0123456 0.90 ± 0.132 0.78 ± 0.245 0.88 ± 0.143 0.87 ± 0.157 0.88 ± 0.159

kddcup-buffer_overflow_vs_back 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

new-thyroid1 0.93 ± 0.133 0.89 ± 0.231 0.92 ± 0.126 0.93 ± 0.146 0.94 ± 0.148

page-blocks-1-3_vs_4 1 ± 0 0.90 ± 0.200 1 ± 0.009 0.96 ± 0.080 0.99 ± 0.018

pima 0.66 ± 0.104 0.61 ± 0.148 0.69 ± 0.075 0.65 ± 0.071 0.71 ± 0.095

segment0 0.95 ± 0.069 0.92 ± 0.156 0.96 ± 0.044 0.97 ± 0.032 0.97 ± 0.047

shuttle_2_vs_5 1 ± 0 0.91 ± 0.284 0.99 ± 0.044 0.91 ± 0.261 0.97 ± 0.080

vehicle2–1 0.85 ± 0.133 0.79 ± 0.159 0.87 ± 0.061 0.87 ± 0.081 0.89 ± 0.049

vowel0 0.84 ± 0.206 0.85 ± 0.185 0.89 ± 0.125 0.90 ± 0.104 0.97 ± 0.028

wisconsin 0.90 ± 0.128 0.86 ± 0.130 0.82 ± 0.182 0.91 ± 0.073 0.85 ± 0.111

Average 0.841 0.708 0.817 0.824 0.857



Page 21 of 36Feizi et al. Journal of Big Data          (2023) 10:153  

Table 8 The Average performance measures of the 3NN classifier with the multi-manifold approach 
with reduction step of 10 percent

Name Recall Precision G‑means F‑measure Accuracy

ecoli1 0.98 ± 0.050 0.70 ± 0.208 0.89 ± 0.126 0.85 ± 0.152 0.86 ± 0.152

ecoli2 0.95 ± 0.110 0.75 ± 0.200 0.93 ± 0.076 0.89 ± 0.116 0.93 ± 0.066

ecoli3 0.93 ± 0.225 0.56 ± 0.359 0.88 ± 0.155 0.73 ± 0.250 0.87 ± 0.114

ecoli4 0.95 ± 0.150 0.74 ± 0.350 0.92 ± 0.178 0.88 ± 0.279 0.91 ± 0.199

ecoli0147vs56 0.88 ± 0.183 0.71 ± 0.258 0.92 ± 0.106 0.84 ± 0.159 0.95 ± 0.039

ecoli034_5 0.90 ± 0.200 0.78 ± 0.269 0.92 ± 0.122 0.86 ± 0.180 0.95 ± 0.067

ecoli0147_2356 0.82 ± 0.240 0.64 ± 0.261 0.87 ± 0.147 0.81 ± 0.159 0.93 ± 0.049

glass0 0.89 ± 0.124 0.61 ± 0.121 0.77 ± 0.093 0.78 ± 0.076 0.75 ± 0.101

glass0123456 0.96 ± 0.080 0.83 ± 0.226 0.93 ± 0.115 0.91 ± 0.151 0.92 ± 0.131

kddcup-buffer_overflow_vs_back 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

new-thyroid1 1 ± 0 0.93 ± 0.155 0.99 ± 0.026 0.98 ± 0.075 0.98 ± 0.043

page-blocks-1-3_vs_4 0.93 ± 0.133 0.71 ± 0.319 0.94 ± 0.084 0.87 ± 0.210 0.95 ± 0.071

Pima 0.70 ± 0.162 0.57 ± 0.142 0.66 ± 0.095 0.63 ± 0.094 0.68 ± 0.110

segment0 0.99 ± 0.027 0.90 ± 0.066 0.98 ± 0.014 0.97 ± 0.023 0.98 ± 0.012

shuttle_2_vs_5 1 ± 0 0.91 ± 0.269 0.99 ± 0.021 0.97 ± 0.100 0.98 ± 0.040

vehicle2–1 0.98 ± 0.040 0.80 ± 0.110 0.94 ± 0.034 0.92 ± 0.048 0.92 ± 0.047

vowel0 0.97 ± 0.245 0.62 ± 0.301 0.84 ± 0.176 0.87 ± 0.212 0.81 ± 0.117

Wisconsin 0.98 ± 0.028 0.93 ± 0.079 0.94 ± 0.086 0.97 ± 0.039 0.94 ± 0.061

Average 0.933889 0.761667 0.906111 0.873889 0.906111

Table 9 The average recall of the 3NN classifier in the multi-manifold and single manifold 
approaches

Dataset PCA LPP NPE Multi‑Manifold

ecoli1 0.89 ± 0.139 (4) 0.93 ± 0.130 (1) 0.93 ± 0.130 (1) 0.93 ± 0.130 (1)

ecoli2 0.95 ± 0.110 (1) 0.95 ± 0.110 (1) 0.95 ± 0.110 (1) 0.95 ± 0.111 (1)

ecoli3 0.90 ± 0.229 (2) 0.85 ± 0.229 (3) 0.85 ± 0.229 (3) 0.93 ± 0.225 (1)

ecoli4 0.90 ± 0.200 (4) 0.95 ± 0.150 (1) 0.95 ± 0.150 (1) 0.95 ± 0.150 (1)

ecoli0147vs56 0.85 ± 0.189 (3) 0.85 ± 0.189 (3) 0.88 ± 0.183 (1) 0.88 ± 0.183 (1)

ecoli034_5 0.90 ± 0.200 (1) 0.90 ± 0.200 (1) 0.90 ± 0.200 (1) 0.90 ± 0.200 (1)

ecoli0147_2356 0.82 ± 0.240 (1) 0.82 ± 0.240 (1) 0.82 ± 0.240 (1) 0.82 ± 0.240 (1)

glass0 0.89 ± 0.106 (1) 0.89 ± 0.124 (1) 0.87 ± 0.134 (4) 0.89 ± 0.124 (1)

glass0123456 0.96 ± 0.080 (1) 0.96 ± 0.080 (1) 0.96 ± 0.080 (1) 0.96 ± 0.80 (1)

kddcup-buffer_overflow_vs_back 1 ± 0 (1) 1 ± 0 (1) 1 ± 0 (1) 1 ± 0 (1)

new-thyroid1 0.93 ± 0.200 (1) 0.93 ± 0.200 (1) 0.93 ± 0.200 (1) 0.93 ± 0.200 (1)

page-blocks-1-3_vs_4 0.93 ± 0.133 (1) 0.93 ± 0.133 (1) 0.93 ± 0.133 (1) 0.93 ± 0.133 (1)

Pima 0.63 ± 0.167 (1) 0.62 ± 0.177 (2) 0.61 ± 0.153 (4) 0.62 ± 0.208 (2)

segment0 0.99 ± 0.027 (1) 0.99 ± 0.020 (1) 0.99 ± 0.020 (1) 0.99 ± 0.027 (1)

shuttle_2_vs_5 1 ± 0 (1) 1 ± 0 (1) 1 ± 0 (1) 1 ± 0 (1)

vehicle2–1 0.96 ± 0.041 (2) 0.95 ± 0.061 (3) 0.95 ± 0.061 (3) 0.97 ± 0.042 (1)

vowel0 0.88 ± 0.245 (4) 0.90 ± 0.213 (1) 0.90 ± 0.213 (1) 0.90 ± 0.213 (1)

Wisconsin 0.98 ± 0.027 (1) 0.98 ± 0.028 (1) 0.98 ± 0.028 (1) 0.98 ± 0.027 (1)

Average Ratings 1.72 (4) 1.39 (2) 1.56 (3) 1.06 (1)

Average Recall 0.91 (2) 0.91 (2) 0.91 (2) 0.92 (1)
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The experimental results which are denoted in Table 9 show a marginal superiority of 
the proposed multi-manifold approach over each single manifold approaches. It denotes 
the classification recall of the reduction approach using each manifold learning method 
alone is approximately the same, but using the multi-manifold approaches, we have a 
slightly better measure for dropping the instances.

The results of evaluation based to the average F-measure with 3NN classifier are 
reported in Table 10. According to Table 10, the multi-manifold approach has the best 
average rank and other single-manifold approaches have obtained a lower average effi-
ciency and average rank. As seen, the effectiveness and superiority of the proposed 
multi-manifold approach is obvious compared to single manifold learning approaches. 
The main strength of the manifold based approach either single or multiple, is their 
impressing F measure on the highly imbalanced datasets (i.e., kddcup-buffer_overflow_
vs_back and shuttle_2_vs_5). This observation can approximately be seen for both single 
manifold and multi-manifold approaches. This will be discussed in the next experiments 
which concerns comparisons with the other state-of-the-art approaches.

Comparison with other under‑sampling approaches

In this section, the results of the proposed multi-manifold approach are compared with 
under-sampling models such as RUS, NCL [28], OSS [27], CNN [34], ENN [35], CBU 
[31], and PUMD [13], and illustrated in Tables  11, 12, 13. Comparisons are based on 
recall, precision and F-measure criteria. The results of the simulation show that the 
F-measure of the proposed method outperforms the other under-sampling methods by 
a wide margin.

Table 10 The average F measure of the 3NN classifier in the multi-manifold and single manifold 
approaches

Dataset PCA LPP NPE Multi‑Manifold

ecoli1 0.84 ± 0.160 (4) 0.85 ± 0.152 (1) 0.85 ± 0.152 (1) 0.85 ± 0.152 (1)

ecoli2 0.88 ± 0.132 (4) 0.90 ± 0.104 (2) 0.90 ± 0.104 (2) 0.91 ± 0.105 (1)

ecoli3 0.73 ± 0.223 (2) 0.71 ± 0.191 (3) 0.71 ± 0.191 (3) 0.86 ± 0.195 (1)

ecoli4 0.86 ± 0.296 (4) 0.89 ± 0.272 (1) 0.89 ± 0.272 (1) 0.92 ± 0.170 (1)

ecoli0147vs56 0.82 ± 0.150 (3) 0.82 ± 0.150 (3) 0.84 ± 0.159 (1) 0.89 ± 0.119 (1)

ecoli034_5 0.86 ± 0.180 (1) 0.86 ± 0.180 (1) 0.86 ± 0.180 (1) 0.88 ± 0.151 (1)

ecoli0147_2356 0.81 ± 0.159 (1) 0.81 ± 0.159 (1) 0.81 ± 0.159 (1) 0.81 ± 0.159 (1)

glass0 0.78 ± 0.077 (3) 0.79 ± 0.080 (1) 0.78 ± 0.076 (3) 0.79 ± 0.116 (1)

glass0123456 0.92 ± 0.153 (1) 0.92 ± 0.153 (1) 0.92 ± 0.153 (1) 0.92 ± 0.153 (1)

kddcup-buffer_overflow_vs_back 1 ± 0 (1) 1 ± 0 (1) 1 ± 0 (1) 1 ± 0 (1)

new-thyroid1 0.93 ± 0.160 (2) 0.93 ± 0.160 (2) 0.93 ± 0.160 (2) 0.98 ± 0.075 (1)

page-blocks-1-3_vs_4 0.87 ± 0.210 (2) 0.87 ± 0.210 (2) 0.87 ± 0.210 (2) 096 ± 0.080 (1)

pima 0.59 ± 0.113 (2) 0.58 ± 0.094 (3) 0.58 ± 0.092 (3) 0.65 ± 0.067 (1)

segment0 0.97 ± 0.023 (3) 0.98 ± 0.023 (1) 0.98 ± 0.023 (1) 0.98 ± 0.017 (1)

shuttle_2_vs_5 0.97 ± 0.100 (2) 0.97 ± 0.100 (2) 0.97 ± 0.100 (2) 1 ± 0 (1)

vehicle2–1 0.92 ± 0.050 (2) 0.92 ± 0.052 (2) 0.92 ± 0.052 (2) 0.97 ± 0.030 (1)

vowel0 0.85 ± 0.174 (4) 0.87 ± 0.157 (2) 0.87 ± 0.157 (2) 0.90 ± 0.104 (1)

wisconsin 0.97 ± 0.050 (1) 0.97 ± 0.050 (1) 0.97 ± 0.050 (1) 0.97 ± 0.050 (1)

Average Ratings 2.00 (4) 1.33 (2) 1.28 (2) 1 (1)

Average F-measure 0.87 (2) 0.87 (2) 0.87 (2) 0.90 (1)
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First, the results of the evaluations related to the average recall are reported in 
Table 11. The numbers in parenthesis, show the rank of the method on that dataset. On 
all the data, the recall of the proposed approach ranks first and other under-sampling 
methods rank second to eighth. The average rank and average efficiency of each under-
sampling methods are shown separately in the last row of Table 11. The multi-manifold 
approach has the first average rank compared to other approaches. Also, it can clearly 
be seen that the recall of the proposed approach is considerably higher than the other 
approaches specially when the IR increases (refer to the rows corresponding to ecoli1, 
ecoli2, ecoli3, ecoli4, ecoli034_5, kddcup, page-block, vowel0 and shuttle dataset), the 
recall increases by a wide margin of 10 percent. Since, minority class is the positive class, 

Table 11 The average recall of different under-sampling methods

Dataset Original RUS NCL [28] OSS [27] CNN [34] ENN [35] CBU [31] PUMD [13] Proposed

ecoli1 0.72 (9) 0.82 
(4)

0.79 (5) 0.78 (6) 0.77 (7) 0.73 (8) 0.83 (3) 0.89 (2) 0.98 ± 0.050 
(1)

ecoli2 0.65 (6) 0.62 
(7)

0.66 (4) 0.66 (4) 0.62 (7) 0.61 (9) 0.76 (3) 0.83 (2) 0.95 ± 0.111 
(1)

ecoli3 0.50 (8) 0.72 
(4)

0.56 (6) 0.43 (9) 0.51 (7) 0.58 (5) 0.77 (3) 0.86 (2) 0.95 ± 0.100 
(1)

ecoli4 0.67 (6) 0.68 
(4)

0.64 (7) 0.64 (7) 0.68 (4) 0.64 (7) 0.82 (3) 0.90 (2) 0.95 ± 0.150 
(1)

ecoli0147vs56 0.67 (7) 0.79 
(3)

0.70 (6) 0.71 (5) 0.73 (4) 0.65 (8) 0.83 (2) 0.83 (2) 0.88 ± 0.183 
(1)

ecoli034_5 0.68 (7) 0.77 
(3)

0.73 (5) 0.73 (5) 0.68 (7) 0.68 (7) 0.82 (2) 0.77 (3) 0.90 ± 0.200 
(1)

ecoli0147_2356 0.50 (8) 0.79 
(3)

0.55 (5) 0.55 (5) 0.50 (8) 0.52 (7) 0.79 (3) 0.87 (1) 0.82 ± 0.240 
(2)

glass0 0.43 (9) 0.78 
(3)

0.61 (5) 0.57 (6) 0.46 (8) 0.57 (6) 0.78 (3) 0.83 (2) 0.89 ± 0.124 
(1)

glass0123456 0.75 (4) 0.57 
(9)

0.73 (5) 0.68 (8) 0.73 (5) 0.71 (7) 0.76 (3) 0.87 (2) 0.98 ± 0.060 
(1)

kddcup-
buffer_over-
flow_vs_back

0.67 (5) 0.85 
(3)

0.61 (8) 0.67 (5) 0.64 (7) 0.64 (7) 0.82 (4) 0.90 (2) 1 ± 0 (1)

new-thyroid1 0.74 (7) 0.80 
(5)

0.71 (8) 0.78 (6) 0.86 (3) 0.67 (9) 0.86 (3) 0.87 (2) 1 ± 0 (1)

page-
blocks-1-3_vs_4

0.74 (9) 0.91 
(3)

0.77 (8) 0.85 (5) 0.85 (5) 0.79 (7) 0.91 (3) 0.90 (2) 1 ± 0 (1)

Pima 0.51 (9) 0.63 
(3)

0.58 (6) 0.61 (5) 0.52 (8) 0.54 (7) 0.63 (3) 0.86 (1) 0.78 ± 0.160 
(2)

segment0 0.88 (7) 0.88 
(7)

0.87 (7) 0.87 (7) 0.86 (9) 0.88 (4) 0.90 (2) 0.89 (3) 0.99 ± 0.027 
(1)

shuttle_2_vs_5 0.91 (2) 0.89 
(9)

0.91 (2) 0.91 (2) 0.91 (2) 0.91 (2) 0.91 (2) 0.90 (3) 1 ± 0 (1)

vehicle2–1 0.70 (7) 0.85 
(2)

0.70 (7) 0.70 (7) 0.73 (4) 0.72 (5) 0.84 (3) 0.71 (6) 0.98 ± 0.022 
(1)

vowel0 0.83 (5) 0.89 
(3)

0.79 (9) 0.81 (7) 0.83 (5) 0.81 (7) 0.89 (3) 0.90 (2) 0.99 ± 0.033 
(1)

wisconsin 0.83 (9) 0.85 
(7)

0.84 (8) 0.88 (4) 0.89 (3) 0.88 (4) 0.87 (6) 0.90 (2) 0.98 ± 0.028 
(1)

Average Ratings 6.83 (9) 4.56 
(4)

6.28 (7) 5.83 (5) 5.89 (6) 6.61 (8) 3.28 (3) 2.27 (2) 1.11 (1)

Average Recall 0.69 (9) 0.78 
(4)

0.71 (5) 0.71 (5) 0.71 (5) 0.70 (8) 0.82 (3) 0.86 (2) 0.95 (1)
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it denotes that the proposed approach is successful in reducing the impact of majority 
(negative) class specially when there is a high imbalance.

Table 12 illustrates the results of evaluations related to the average precision criterion. 
As seen, the multi-manifold approach relatively degrades on this measure and has the 
second average rank compared to other under-sampling models. This lower precision is 
the observation we have seen previously in the initial experiments. This shows that the 
approach is tending to focus more on the positive class (minority class) and increase the 
recall rate with the cost of decreasing the precision. The degradation is not favorable, but 
the main measure that we have to focus on is F measure which is the harmonic mean of 
these metrics and compromise between recall and precision. The evaluations based on 
this measure are denoted in Table 13.

The results of evaluations of the approaches based on the average F-measure are 
reported in Table 13. As seen, this time, the proposed multi-manifold approach has the 

Table 12 The average precision of different under-sampling methods

Dataset Original RUS NCL [28] OSS [27] CNN [34] ENN [35] CBU [31] PUMD [13] Proposed

ecoli1 0.78 (4) 0.83 (2) 0.83 (2) 0.78 (4) 0.77 (6) 0.77 (6) 0.77 (6) 0.89 (1) 0.72 ± 0.212 
(9)

ecoli2 0.80 (7) 0.86 (3) 0.82 (6) 0.76 (8) 0.76 (8) 0.86 (3) 0.86 (3) 0.90 (1) 0.88 ± 0.192 
(2)

ecoli3 0.66 (6) 0.77 (2) 0.55 (9) 0.58 (8) 0.70 (5) 0.65 (7) 0.76 (3) 0.88 (1) 0.76 ± 0.270 
(3)

ecoli4 0.73 (7) 0.79 (4) 0.76 (6) 0.71 (9) 0.82 (3) 0.73 (7) 0.88 (2) 0.90 (1) 0.78 ± 0.307 
(5)

ecoli0147vs56 0.84 (2) 0.78 (8) 0.84 (2) 0.83 (5) 0.80 (6) 0.84 (2) 0.80 (6) 0.90 (1) 0.75 ± 0.311 
(9)

ecoli034_5 0.83 (3) 0.80 (7) 0.82 (5) 0.83 (3) 0.86 (2) 0.82 (5) 0.80 (7) 0.90 (1) 0.79 ± 0.335 
(9)

ecoli0147_2356 0.73 (7) 0.77 (2) 0.76 (4) 0.77 (2) 0.71 (8) 0.74 (6) 0.75 (5) 0.90 (1) 0.66 ± 0.253 
(9)

glass0 0.51 (8) 0.67 (2) 0.60 (5) 0.60 (5) 0.51 (8) 0.59 (7) 0.67 (2) 0.83 (1) 0.67 ± 0.137 
(2)

glass0123456 0.79 (8) 0.60 (9) 0.82 (5) 0.81 (6) 0.83 (3) 0.80 (7) 0.83 (3) 0.89 (1) 0.86 ± 0.227 
(2)

kddcup-
buffer_over-
flow_vs_back

0.15 (9) 0.89 (3) 0.82 (5) 0.80 (7) 0.80 (7) 0.81 (6) 0.89 (3) 0.9 (2) 1 ± 0 (1)

new-thyroid1 0.78 (8) 0.78 (8) 0.82 (5) 0.81 (6) 0.86 (3) 0.86 (3) 0.81 (6) 0.81 (2) 0.93 ± 0.155 
(1)

page-
blocks-1-3_vs_4

0.88 (4) 0.83 (8) 0.88 (4) 0.88 (4) 0.91 (1) 0.82 (9) 0.86 (5) 0.90 (2) 0.90 ± 0.200 
(2)

Pima 0.62 (8) 0.67 (5) 0.68 (3) 0.72 (2) 0.63 (7) 0.66 (6) 0.68 (3) 0.75 (1) 0.61 ± 0.148 
(8)

segment0 0.87 (8) 0.87 (8) 0.88 (5) 0.88 (5) 0.89 (3) 0.88 (5) 0.89 (3) 0.90 (1) 0.98 ± 0.023 
(2)

shuttle_2_vs_5 0.91 (3) 0.91 (3) 0.91 (3) 0.91 (3) 0.91 (3) 0.91 (3) 0.89 (9) 0.9 (2) 1 ± 0 (1)

vehicle2–1 0.74 (5) 0.80 (3) 0.73 (6) 0.72 (8) 0.75 (4) 0.73 (6) 0.83 (2) 0.71 (9) 0.94 ± 0.079 
(1)

vowel0 0.82 (6) 0.85 (4) 0.81 (8) 0.86 (3) 0.82 (6) 0.81 (8) 0.89 (2) 0.9 (1) 0.85 ± 0.185 
(4)

wisconsin 0.86 (5) 0.84 (8) 0.87 (3) 0.85 (6) 0.87 (3) 0.84 (8) 0.85 (6) 0.9 (2) 0.93 ± 0.083 
(1)

Average Ratings 6.06 (9) 5.00 (6) 4.83 (4) 5.28 (7) 4.89 (5) 5.83 (8) 4.39 (3) 1.72 (1) 3 (2)

Average Preci-
sion

0.74 (9) 0.80 (4) 0.79 (6) 0.78 (8) 0.79 (6) 0.78 (5) 0.82 (3) 0.87 (1) 0.83 (2)
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first average rank by a wide margin and the best average performance compared to other 
under-sampling models.

Apart from the intrinsic effectiveness of the proposed approach in reducing the sam-
ples from the majority class, a very interesting observation is seen in these experiments. 
As discussed previously in Sect.  "Datasets" and Table  2, there are two highly imbal-
ance datasets in the experiments, namely kddcup-buffer_overflow_vs_back and shut-
tle_2_vs_5. Fortunately, the proposed approach shows a significant performance on 
these datasets which is more than 10 percent better than the next competing approach. 
This shows the effectiveness, scalability and generalization of the proposed approach on 
highly imbalanced data.

Table 13 The average F measure of different under-sampling methods

Dataset Original RUS NCL [28] OSS [27] CNN [34] ENN [35] CBU [31] PUMD [13] Proposed

ecoli1 0.73 (9) 0.82 (3) 0.81 (4) 0.77 (6) 0.76 (7) 0.75 (8) 0.79 (5) 0.89 (1) 0.85 ± 0.152 
(2)

ecoli2 0.70 (6) 0.71 (5) 0.72 (4) 0.69 (8) 0.66 (9) 0.70 (6) 0.80 (3) 0.86 (2) 0.91 ± 0.105 
(1)

ecoli3 0.54 (4) 0.70 (3) 0.54 (4) 0.46 (8) 0.54 (4) 0.53 (7) 0.72 (2) 0.86 (1) 0.86 ± 0.195 
(1)

ecoli4 0.70 (5) 0.69 (6) 0.66 (8) 0.64 (9) 0.73 (4) 0.67 (7) 0.83 (3) 0.90 (2) 0.92 ± 0.170 
(1)

ecoli0147vs56 0.72 (8) 0.77 (4) 0.74 (6) 0.75 (5) 0.74 (6) 0.70 (9) 0.80 (3) 0.86 (2) 0.89 ± 0.119 
(1)

ecoli034_5 0.72 (9) 0.77 (4) 0.76 (5) 0.76 (5) 0.73 (7) 0.73 (7) 0.80 (3) 0.81 (2) 0.88 ± 0.151 
(1)

ecoli0147_2356 0.56 (9) 0.75 (3) 0.60 (5) 0.60 (5) 0.57 (8) 0.59 (7) 0.75 (3) 0.89 (1) 0.81 ± 0.159 
(2)

glass0 0.46 (9) 0.72 (3) 0.60 (5) 0.57 (6) 0.47 (8) 0.57 (6) 0.72 (3) 0.82 (1) 0.79 ± 0.116 
(2)

glass0123456 0.75 (6) 0.57 (9) 0.77 (4) 0.73 (8) 0.76 (5) 0.74 (7) 0.78 (3) 0.88 (2) 0.92 ± 0.153 
(1)

kddcup-
buffer_over-
flow_vs_back

0.24 (9) 0.86 (3) 0.68 (8) 0.71 (7) 0.75 (5) 0.74 (6) 0.84 (4) 0.90 (2) 1 ± 0 (1)

new-thyroid1 0.73 (7) 0.79 (5) 0.72 (9) 0.76 (6) 0.85 (3) 0.73 (7) 0.82 (4) 0.84 (2) 0.98 ± 0.075 
(1)

page-
blocks-1-3_vs_4

0.79 (9) 0.87 (5) 0.80 (8) 0.86 (7) 0.87 (5) 0.88 (3) 0.88 (3) 0.90 (2) 096 ± 0.080 
(1)

Pima 0.56 (9) 0.65 (3) 0.63 (6) 0.66 (2) 0.57 (8) 0.59 (7) 0.65 (3) 0.80 (1) 0.65 ± 0.067 
(3)

segment0 0.88 (3) 0.88 (3) 0.87 (7) 0.88 (3) 0.87 (7) 0.88 (3) 0.89 (2) 0.89 (2) 0.98 ± 0.017 
(1)

shuttle_2_vs_5 0.91 (2) 0.91 (2) 0.91 (2) 0.91 (2) 0.91 (2) 0.91 (2) 0.90 (3) 0.90 (3) 1 ± 0 (1)

vehicle2–1 0.71 (6) 0.82 (3) 0.71 (6) 0.71 (6) 0.74 (4) 0.72 (5) 0.83 (2) 0.72 (5) 0.97 ± 0.030 
(1)

vowel0 0.81 (6) 0.87 (3) 0.79 (8) 0.83 (4) 0.82 (5) 0.80 (7) 0.89 (2) 0.90 (1) 0.90 ± 0.104 
(1)

Wisconsin 0.84 (8) 0.85 (7) 0.85 (7) 0.86 (4) 0.88 (3) 0.86 (4) 0.86 (4) 0.90 (2) 0.97 ± 0.050 
(1)

Average Rat-
ings

7.17 (9) 4.39 (4) 6.17 (7) 5.89 (6) 5.83 (5) 6.28 (8) 3.33 (3) 1.77 (2) 1.27 (1)

Average 
F-measure

0.69 (9) 0.78 (4) 0.73 (5) 0.73 (5) 0.73 (5) 0.73 (5) 0.81 (3) 0.86 (2) 0.90 (1)



Page 26 of 36Feizi et al. Journal of Big Data          (2023) 10:153 

Comparison with state‑of‑the‑art under/over sampling approaches

It should be noted that in Tables  11, 12, 13, the PUMD method is one of the recent 
under-sampling methods. However, in this section, the results of the proposed multi-
manifold approach are compared with some other state-of-the-art under-sampling 
methods such as DB_US [48], NB-Rec [49], K-US [50], state-of-the-art over-sampling 
methods such as BIDC1 [51] and BIDC2 [51] on KEEL and UCI data based on the 
F-measure and reported in Table 14. Other settings are the same as the previous experi-
ments described. The average performance of each under-sampling and over-sampling 
model are shown separately in the last row of Table 14. The simulation results show that 
the F-measure of the proposed method has the best average rank compared to the other 
mentioned methods. As mentioned in the previous experiments, the proposed method 
can obtain significant results on very imbalanced data.

Statistical analysis by Wilcoxon test

In this research, Wilcoxon’s non-parametric signed rank test is used for statistical evalu-
ation of results. The mentioned test investigates the significant difference of F-measure 
between the proposed multi-manifold method and other under-sampling approaches 
according to Table 15. In this test, the hypotheses H0 and H1 are defined as follows:

H0: There is no significant difference between the two methods.
H1: There is a significant difference between the two methods.
The p-value of the Wilcoxon test is reported for each pair of methods and can be 

seen based on the F-measure evaluation criteria according to Table 15.
As it is clear in Table 15, all p-value values are so lower than α = 0.05 and the H0 

condition is rejected. Therefore, there is a significant difference between the proposed 

Table 14 Average F-measure of different state-of-the-art under-sampling and over-sampling 
methods as compared with the proposed approach

Name BIDC1 [51] BIDC2 [51] K‑US [50] NB‑Rec [49] DB_US [48] Proposed

ecoli2 0.81 0.83 0.59 0.91 0.96 0.90 ± 0.142

ecoli3 NA NA 0.71 0.63 0.71 0.86 ± 0.195
glass0 0.63 0.66 0.61 0.61 0.61 0.79 ± 0.116
new-thyroid1 NA NA 0.73 0.92 1.00 0.89 ± 0.206

Pima NA NA 0.73 0.58 0.71 0.63 ± 0.086

segment0 1.00 1.00 0.83 1.00 1.00 0.98 ± 0.017

wisconsin NA NA 0.97 0.97 0.97 0.95 ± 0.053

Average F-measure 0.81(4) 0.83(3) 0.74(6) 0.80(5) 0.85(2) 0.86(1)

Table 15 The Wilcoxon test on the proposed multi-manifold method compared with other 
methods

Original RUS NCL [28] OSS [27] CNN [34] ENN [35] CBU [31] PUMD 
[13]

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01
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multi-manifold method and other under-sampling methods. This means that other 
methods have not performed better than the proposed method, and the proposed 
method is significantly superior.

Evaluation and discussions on kddcup network intrusion detection dataset

One of the applications that can show the effectiveness of the proposed method spe-
cially on highly imbalanced data is the problem of network intrusion detection. For 
this purpose, kddcup datasets are incorporated in the research. Different versions of 
kddcup data are shown in Table  2. The highest imbalanced ratios of these datasets 
which are included in Table 2 are 73, 75 and 100, which are very significant.

In Table  16, the average F-measure of different under-sampling methods and the 
proposed approach on these data can be seen. According to these evaluations, the 
proposed method has considerably performed better than other NN_HIDC [45], 
NBUS [13], CRIUS [1] and RBUS [48] methods. The average efficiency of the pro-
posed method is in the first place compared to other methods.

It should be noted that the proposed multi-manifold-based under-sampling method 
cannot be implemented when the number of minority class samples in a data set is 
less than or equal to the number of features of that class. This constraint is imposed 
by LPP and NPE manifold learning approaches. Therefore, in this situation, we are 
forced to use the single-manifold method on that dataset. Therefore, in Table  16, a 
column titled "manifold model" is added, which shows the type of manifold learning 
approach (i.e. multi-manifold/single-manifold). According to Table 16, the proposed 
single-manifold method is evaluated on kddcup-land_vs_portsweep, kddcup-land_
vs_satan and kddcup-rootkit-imap_vs_back datasets. PCA manifold learning is used 
for this purpose. The multi-manifold-based under-sampling method is applied on 
other kddcup datasets.

Evaluations on artificial datasets

In addition to the evaluations performed on the KEEL and UCI datasets, some experi-
ments are performed on some imbalanced artificially created datasets. These evalua-
tions can show the stability of the proposed method on datasets with different levels of 

Table 16 Average F-measure of different under-sampling methods on kddcup datasets

Dataset Manifold model RBUS [48] CRIUS [1] NBUS [13] NN_HIDC [45] Proposed

kddcup-buffer_over-
flow_vs_back

multi-manifold 0.66 0.83 0.43 1 1 ± 0

kddcup-rootkit-imap_
vs_back

single-manifold 0.83 0.86 0.78 1 1 ± 0

kddcup-guess_passwd_
vs_satan

multi-manifold 0.00 0.00 0.00 0.99 0.99 ± 0.027

kddcup-land_vs_ports-
weep

single-manifold 0.96 0.23 0.23 0.23 1 ± 0

kddcup-land_vs_satan single-manifold 0.97 0.97 0.97 1 1 ± 0
Average F-measure 0.685(3) 0.578(4) 0.482(5) 0.844(2) 0.998(1)
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imbalance. Two synthetic datasets are generated. The first model uses uniform distribu-
tion function in a specific interval [47]. Figure 6 shows 4 synthetic datasets generated 
using the first model. The second model uses the synthetic dataset of Two Moons [1]. 
Figure 7 shows 4 synthetic data sets generated using the second model. Each data con-
tains two features, denoted by  x1 and  x2. In the first and second models of imbalanced 
synthetic data generation, the imbalance ratio is from the set {1, 5, 10, 20}. In the follow-
ing, the generation process of both models of imbalanced artificial data is described.

The first model: The process of generating synthetic data sets from the first model is 
as follows: The minority class includes 100 data samples, which are shown with blue 
circles in Fig. 6. The values of the first feature  (x1) and the values of the second feature 
 (x2) are randomly extracted from a uniform distribution. The values of  x1 are selected 
from the interval [50,100] while the values of  x2 are selected from the interval [0,100]. 
The majority class includes  Nmajority of data samples, which are indicated by red cir-
cles in Fig. 6. The  Nmajority variable takes values from the set {100, 500, 1000, 2000}. 
The values of the first attribute  (x1) and the values of the second attribute  (x2) of the 
majority class are created in the same way as the minority class, with the difference 
that the values of  x1 are extracted from the interval [0,50], while the values of  x2 are 

Fig. 6 Synthetic datasets generated using the uniform model
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extracted from the interval of values [0,100]. The number of samples in the majority 
class controls the imbalance ratio (IR) in the generated imbalanced dataset.

a. If  Nmajority = 100, Fig. 6-a, IR = 1.
b. If  Nmajority = 500, Fig. 6-b, IR = 5.
c. If  Nmajority = 1000, Fig. 6-c, IR = 10.
d. If  Nmajority = 2000, Fig. 6-d, IR = 20.

The second model: The process of generating the Two Moons data set is as follows: 
the majority class contains 700 data samples, which are marked with red circles in 
Fig.  7. The samples of the majority class that make up the upper moon are created 
with the center (0, 0). Minority class includes  Nminority data samples, which are shown 
with blue circles in Fig. 7. The  Nminority variable takes values from the set {35, 70, 140, 
700}. Minority class samples that form the lower moon are created with center (0, 1). 
The number of minority class samples controls the imbalance ratio (IR) in the gener-
ated imbalanced Two Moons dataset.

a. If  Nminority = 700, Fig. 7-a, the IR = 1.
b. If  Nminority = 140, Fig. 7-b, the IR = 5.

Fig. 7 Synthetic datasets generated using the second model
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c. If  Nminority = 70, Fig. 7-c, the IR = 10.
d. If  Nminority = 35, Fig. 7-d, the IR = 20.

The results of the evaluations (by SVM, 3NN and CART classifiers) on the imbal-
anced artificially created datasets with uniform distribution are shown in Tables 17, 
18, 19. The average F-measure is reported in two situations of the original data and 
the under-sampled data. The results of experiments with 3NN classification show 
that when the imbalance coefficient increases, the proposed method is more effec-
tive, and the average F-measure of the proposed method is increased compared to 
the original data state.

The results of the propose approach on Two Moons imbalanced data are illus-
trated in Tables 20, 21, 22. The average F-measure is reported in two situations of 

Table 17 Average F-measure of SVM classification on the uniformly created artificial datasets

Dataset Original data Proposed

synthetic_data_IR = 1 0.98 ± 0.050 0.98 ± 0.050

synthetic_data_IR = 5 0.91 ± 0.243 0.93 ± 0.219
synthetic_data_IR = 10 0.95 ± 0.135 0.95 ± 0.127

synthetic_data_IR = 20 0.87 ± 0.258 0.88 ± 0.260

Table 18 Average F-measure of 3NN classification on the uniformly created artificial datasets

Dataset Original data Proposed

synthetic_data_IR = 1 0.98 ± 0.050 0.98 ± 0.050

synthetic_data_IR = 5 0.88 ± 0.295 0.95 ± 0.065
synthetic_data_IR = 10 0.90 ± 0.246 0.96 ± 0.090
synthetic_data_IR = 20 0.83 ± 0.311 0.90 ± 0.162

Table 19 Average F-measure of CART classification on the uniformly created artificial datasets

Dataset Original data Proposed

synthetic_data_IR = 1 0.97 ± 0.068 0.97 ± 0.056

synthetic_data_IR = 5 0.91 ± 0.185 0.91 ± 0.184

synthetic_data_IR = 10 0.90 ± 0.217 0.90 ± 0.217

synthetic_data_IR = 20 0.85 ± 0.302 0.85 ± 0.302

Table 20 Average F-measure of SVM classification on the Two Moons artificial datasets

Dataset Original data Proposed

imb_two_moons_IR = 1 0.98 ± 0.027 0.98 ± 0.027

imb_two_moons_IR = 5 0.98 ± 0.029 0.99 ± 0.025
imb_two_moons_IR = 10 0.98 ± 0.034 0.99 ± 0.029
imb_two_moons_IR = 20 0.91 ± 0.182 1 ± 0
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the original data and the under-sampled data. When IR = 20, the average F-measure 
has increased from 91 to 100%. The results of experiments with CART classification 
also show that the results of the proposed method are better than the original data.

Discussion on marginality and centrality criteria

To discuss the effect of the proposed marginality and centrality degrees, the average 
F-measure of the proposed method is compared in three different weighting models 

Table 21 Average F-measure of 3NN classification on the Two Moons artificial datasets

Dataset Original data Proposed

imb_two_moons_IR = 1 0.99 ± 0.019 0.99 ± 0.017

imb_two_moons_IR = 5 0.99 ± 0.024 0.99 ± 0.024

imb_two_moons_IR = 10 0.98 ± 0.034 0.98 ± 0.034

imb_two_moons_IR = 20 0.98 ± 0.043 0.99 ± 0.043

Table 22 Average F-measure of CART classification on the Two Moons artificial datasets

Dataset Original data Proposed

imb_two_moons_IR = 1 0.80 ± 0.198 0.88 ± 0.120
imb_two_moons_IR = 5 0.90 ± 0.165 0.96 ± 0.069
imb_two_moons_IR = 10 0.95 ± 0.074 0.96 ± 0.075
imb_two_moons_IR = 20 0.79 ± 0.318 0.84 ± 0.265

Table 23 Average F-measure of the proposed method with three different sample weighting 
models

Dataset Model 1 Model 2 Model 3
weight = marg weight = ‑cent weight = marg‑cent

ecoli1 0.85 ± 0.153 0.85 ± 0.153 0.85 ± 0.152
ecoli2 0.90 ± 0.105 0.90 ± 0.123 0.91 ± 0.105
ecoli3 0.86 ± 0.196 0.86 ± 0.196 0.86 ± 0.195
ecoli4 0.92 ± 0.171 0.92 ± 0.171 0.92 ± 0.170
ecoli0147vs56 0.89 ± 0.119 0.88 ± 0.141 0.89 ± 0.119
ecoli034_5 0.88 ± 0.151 0.88 ± 0.151 0.88 ± 0.151
ecoli0147_2356 0.81 ± 0.159 0.81 ± 0.159 0.81 ± 0.159
glass0 0.78 ± 0.076 0.78 ± 0.076 0.79 ± 0.116
glass0123456 0.92 ± 0.154 0.92 ± 0.154 0.92 ± 0.153
kddcup-buffer_overflow_vs_back 1.00 ± 0.000 1.00 ± 0.000 1 ± 0
new-thyroid1 0.93 ± 0.146 0.93 ± 0.146 0.98 ± 0.075
page-blocks-1-3_vs_4 0.96 ± 0.080 0.96 ± 0.080 096 ± 0.080
Pima 0.65 ± 0.071 0.65 ± 0.071 0.65 ± 0.067
segment0 0.98 ± 0.017 0.99 ± 0.018 0.98 ± 0.017

shuttle_2_vs_5 1.00 ± 0.000 1.00 ± 0.000 1 ± 0
vehicle2–1 0.98 ± 0.032 0.97 ± 0.033 0.97 ± 0.030

vowel0 0.90 ± 0.120 0.90 ± 0.120 0.90 ± 0.104
wisconsin 0.97 ± 0.050 0.97 ± 0.050 0.97 ± 0.050
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in Table 23. In order to weight the samples, in the first model (i.e. the first column), 
only the marginality degree is used. In the second model (i.e. the second column), 
only the degree of centrality is applied. In the third model (i.e. third column), the 
linear combination of marginality and centrality is experimented. The results of the 
experiments show that in most of the datasets, the use of the linear combination of 
marginality and centrality is more effective than other methods of weighting. Only for 
segment0 dataset, the results of the second model are better than other models, and 
for the vehicle2-1 dataset, the results of the first model are the best.

Computational complexity analysis
The proposed approach includes mapping stages, traditional centrality and marginal-
ity calculation, weighted centrality and marginality calculation and gradual removal 
of samples. Assume that n is the number of samples and D is the dimension of data. 
Since manifolds are trained in parallel in the proposed method, the computational 
complexity of the mapping part is equal to the highest computational complexity 
of the manifolds used. Therefore, we assume that in the worst case, the computa-
tional complexity of the mapping part is equal to that of PCA which is O(D3) [52]. 
On the other hand, the complexity of traditional centrality and marginality calcula-
tion section depends on the complexity of k nearest neighborhoods selection. The 

Table 24 The average execution time of the proposed method in 5 experimental repetitions of 
10-fold CV

Name #Attributes #Examples Run time 
(second)

ecoli1 7 336 1.52

ecoli2 7 336 1.53

ecoli3 7 336 1.43

ecoli4 7 336 1.44

ecoli0147vs56 6 332 1.59

ecoli034_5 7 200 0.85

ecoli0147_2356 7 336 1.55

glass0 9 214 0.77

glass0123456 9 214 0.79

kddcup-buffer_overflow_vs_back 41 2233 6.72

kddcup-rootkit-imap_vs_back 41 2225 1.00

kddcup-guess_passwd_vs_satan 41 1642 8.40

kddcup-land_vs_portsweep 41 1061 0.52

kddcup-land_vs_satan 41 1610 0.82

new-thyroid1 5 215 0.75

page-blocks-1-3_vs_4 10 472 1.92

pima 8 768 3.34

segment0 19 2308 8.87

shuttle_2_vs_5 9 3316 43.09

vehicle2–1 18 846 2.34

vowel0 13 988 6.25

wisconsin 9 683 2.27
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computational complexity of the the selection is generally O(nDk) where k <  < n. 
Therefore, the complexity of calculating traditional centrality and marginality 
becomes 3 × O(nDk), in which 3 indicates the number of mappings. The computa-
tional complexity of computing weighted centrality and marginality depends on 
the number of samples, so the order becomes n × 3 × O(nDk). The complexity of 
the gradual under-sampling part is O(1) because it does not depend on the size of 
the problem. Finally, the computational complexity of the proposed multi-manifold 
approach is O(D3) + O(n × 3 × nDk) + O(1) in the worst case.

In Table  24, the average execution time of the proposed method in 5 experimen-
tal repetitions of 10-fold CV is shown. The average execution time indicates that the 
execution time of the proposed method is consistent with the theoretical analysis of 
computational complexity and follows the polynomial time order.

Conclusions and future work
Class imbalance is an important issue that is tried to be handled in this paper. This 
issue can be solved via under-sampling, and there are many under-sampling strategies 
in the literature. This paper introduces a multi-manifold learning-based technique to 
evaluate the importance of the data points. Different manifold learning strategies are 
used and assessed using a criterion based on information loss. Three linear unsuper-
vised manifold learning methods are used in order to avoid high computing complex-
ity. The traditional centrality and marginality degrees of the samples are computed on 
the manifolds and weighted by the corresponding score after computing the optimal-
ity score of each manifold. The suggested method of gradual removal attempts to bal-
ance the classes without causing the F measure to decrease on the validation dataset. 
The proposed approach is assessed on 22 imbalanced datasets from the KEEL and 
UCI repositories with different and considerable imbalance ratios using various clas-
sification metrics. The findings show that the proposed method outperforms other 
comparable approaches, especially on highly imbalanced problems.

The weakness of the proposed method is that if the number of minority class exam-
ples in a dataset is less than or equal to the number of features of that class, the multi-
manifold-based approach cannot be implemented. LPP and NPE manifold learning 
methods must have a minimum number of samples to be applicable. Therefore, it 
may be desirable to use other mapping approaches that do not have this constraint. 
Also, the proposed multi-manifold method performs poorly when the overlap of the 
classes increases. On the other hand, when the number of samples (i.e. n) increases, 
for example, n > 5000, the execution time increases dramatically. Therefore, for a large 
number of samples, more powerful hardware may be required. Supervised nonlinear 
manifold learning methods including Neighborhood Components Analysis (NCA), 
Maximally Collapsing Metric Learning (MCML) and Large-Margin Nearest Neighbor 
Metric Learning (LMNN) were omitted due to computational complexity and more 
execution time. Some other limitations of the proposed method are:
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– Manifold learning methods such as LLE and IsoMap, do not produce out-of-sam-
ple mapping matrix.

– Manifold learning methods such as Factor Analysis (FA) produce NaN values in 
the transformation matrix.

– Manifold learning methods such as Locally Linear Embedding (LLE) and IsoMap 
reduce the number of samples after mapping.

All these limitations led us to use unsupervised manifold learning methods such as 
PCA, LPP, and NPE.

However, the approach has some costs that are not  negligible. The first weakness 
is the relative loss of precision. Precision reduction is unavoidable when we target to 
increase the classification rate of minority classes, but some future research is required 
to mitigate this reduction and maybe improve the classification measures much more. 
The second weakness is the relatively higher computational costs due to applying several 
manifold learning approaches and computing the degrees of centrality and marginality 
on each manifold. Although the experiment tries to reduce the computational costs and 
increase the applicability of the approach by applying three linear unsupervised mani-
fold learning approaches, further improvements are necessary in this regard.
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